You are here: Home > For Researchers > Projects > Back to the Roots - Back to the roots of data-driven dynamical system identification

Back to the Roots - Back to the roots of data-driven dynamical system identification

From 01-01-2021 to 31-12-2025

Description

To obtain data-driven dynamic models for simulation, prediction, monitoring, classification or control tasks, in applications e.g. in Industry 4.0 and eHealth, most identification methods ‘solve’ an optimization problem, relying on some nonlinear iterative algorithm. Undeniably, too many heuristics prevail: What do we mean by ‘solved’? Where did the algorithm converge to? Is the model globally optimal, unique and reproducible?

To tackle these scientific deficiencies, we design a framework to deal with inexact data. We solve a longstanding open problem of least squares optimality in system identification: for polynomial dynamical models, the optimal model derives from an eigenvalue problem. Hereto, we generalize notions from Algebraic Geometry (multivariate polynomials), Operator Theory (model spaces), System Theory (multidimensional realization) and Numerical Linear Algebra (matrix computations).

The first objective is to develop a mathematically rigorous realization approach that maps data onto new mathematical structures (multi-shift invariant projective subspaces). The second objective is to conceive a ‘misfit-latency’ framework to optimally map inexact data to these mathematical structures. We prove this to be a multiparameter eigenvalue problem. We expect breakthroughs in system theoretic characterizations of optimality (covering all existing methods), in the generalization to multiple input-output and multidimensional models and in finding the global optimum in the linear dynamic H2 model reduction problem.

The third objective is to implement matrix computation algorithms for the results of the first two objectives, to root sets of multivariate polynomials, to solve multiparameter eigenvalue problems and to isolate only the minimizing roots. We focus on matrix aspects of large scale, sparsity and structure.

Deliverables will be publications, software, graduate course material and science outreach initiatives, in line with the PI’s excellent track record.

 

Team

Financing

Funding: ERC - European Research Council

Program/Grant Type: ERC Adv - ERC Adv

Events

2/09/2024:
PhD defense - Martijn Oldenhof
Machine Learning for Advanced Chemical Analysis and Structure Recognition in Drug Discovery


3/09/2024:
Meet the Jury Igor Tetko on Advanced Machine Learning in Drug Discovery


12/09/2024:
Multimodal analysis of cell-free DNA for sensitive cancer detection in low-coverage and low-sample settings
Seminar by Antoine Passemiers


More events

News

STADIUS Alumni Herman Verrelst – new CEO of Biocartis

08 June 2017

Herman Verrelst, the founder of KU Leuven spin-off Cartagenia, who has been working in Silicon Valley, US for the last few years will be returning to Belgium to follow the steps of Rudi Pauwels as CEO of the Belgian diagnostic company, Biocartis.


Supporting healthcare policymaking via machine learning – batteries included!

29 May 2017

STADIUS takes the lead in the data analytics efforts in an ambitious European Project MIDAS.


Marc Claesen gives an interview about his PhD for the magazine of the Faculty of Engineering Sciences "Geniaal"

10 February 2017

Did you know that in Belgium approximately one third of type 2 diabetes patients are unaware of their condition?


Joos Vandewalle is nieuwe voorzitter KVAB

09 October 2016

Op 5 oktober 2016 heeft de Algemene Vergadering van de Academie KVAB Joos Vandewalle verkozen tot voorzitter van de KVAB.


More news

Logo STADIUS