You are here: Home > For Researchers > Projects > DISPATCH Neuro-Sense - Distributed Signal Processing Algorithms for Chronic Neuro-Sensor Networks

DISPATCH Neuro-Sense - Distributed Signal Processing Algorithms for Chronic Neuro-Sensor Networks

From 01-01-2019 to 30-06-2024

Description

The possibility to chronically monitor the brain 24/7 in daily-life activities would revolutionize human-machine interactions and health care, e.g., in the context of neuroprostheses, neurological disorders, and brain-computer interfaces (BCI). Such chronic systems must satisfy challenging energy and miniaturization constraints, leading to modular designs in which multiple networked miniature neuro-sensor modules form a ‘neuro-sensor network’ (NSN). 

However, current multi-channel neural signal processing (NSP) algorithms were designed for traditional neuro-sensor arrays with central access to all channels. These algorithms are not suited for NSNs, as they require unrealistic bandwidth budgets to centralize the data, yet a joint neural data analysis across NSN modules is crucial. 

The central idea of this project is to remove this algorithm bottleneck by designing novel scalable, distributed NSP algorithms to let the modules of an NSN jointly process the recorded neural data through in-network data fusion and with a minimal exchange of data. 

To guarantee impact, we mainly focus on establishing a new non-invasive NSN concept based on electroencephalography (EEG). By combining multiple ‘smart’ mini-EEG modules into an ‘EEG sensor network’ (EEG-Net), we compensate for the lack of spatial information captured by current stand-alone mini-EEG devices, without compromising in ‘wearability’. Equipping such EEG-Nets with distributed NSP algorithms will allow to process high-density EEG data at viable energy levels, which is a game changer towards high-performance chronic EEG for, e.g., epilepsy monitoring, neuroprostheses, and BCI. 

We will validate these claims in an EEG-Net prototype in the above 3 use cases, benefiting from ongoing collaborations with the KUL university hospital. In addition, to demonstrate the general applicability of our novel NSP algorithms, we will validate them in other emerging NSN types as well, such as modular or untethered neural probes. 

 

Team

Financing

Funding: ERC - European Research Council

Program/Grant Type: ERC StG - ERC Starting Grant

Events

2/09/2024:
PhD defense - Martijn Oldenhof
Machine Learning for Advanced Chemical Analysis and Structure Recognition in Drug Discovery


3/09/2024:
Meet the Jury Igor Tetko on Advanced Machine Learning in Drug Discovery


12/09/2024:
Multimodal analysis of cell-free DNA for sensitive cancer detection in low-coverage and low-sample settings
Seminar by Antoine Passemiers


More events

News

STADIUS Alumni Herman Verrelst – new CEO of Biocartis

08 June 2017

Herman Verrelst, the founder of KU Leuven spin-off Cartagenia, who has been working in Silicon Valley, US for the last few years will be returning to Belgium to follow the steps of Rudi Pauwels as CEO of the Belgian diagnostic company, Biocartis.


Supporting healthcare policymaking via machine learning – batteries included!

29 May 2017

STADIUS takes the lead in the data analytics efforts in an ambitious European Project MIDAS.


Marc Claesen gives an interview about his PhD for the magazine of the Faculty of Engineering Sciences "Geniaal"

10 February 2017

Did you know that in Belgium approximately one third of type 2 diabetes patients are unaware of their condition?


Joos Vandewalle is nieuwe voorzitter KVAB

09 October 2016

Op 5 oktober 2016 heeft de Algemene Vergadering van de Academie KVAB Joos Vandewalle verkozen tot voorzitter van de KVAB.


More news

Logo STADIUS