



# Regeltechniek

Les 6: Het wortellijnendiagram

#### Prof. dr. ir. Toon van Waterschoot

Faculteit Industriële Ingenieurswetenschappen **ESAT** – Departement Elektrotechniek KU Leuven, Belgium



## **Regeltechniek: Vakinhoud**

- Deel 1: Systeemtheorie
  - Les 1: Inleiding en modelvorming
  - Les 2: Signaaltransformaties
  - Les 3: Systemen van eerste orde
  - Les 4: Systemen van tweede & hogere orde en met dode tijd
- **Deel 2:** Analoge regeltechniek
  - Les 5: De regelkring
  - Les 6: Het wortellijnendiagram
  - Les 7: De klassieke regelaars
  - Les 8: Voorbeelden en toepassingen
  - Les 9: Systeemidentificatie en regelaarsinstelling
  - Les 10: Speciale regelstructuren
  - Les 11: Niet-lineaire regeltechniek & aan-uit regelaars

KU L

# Les 6: Het wortellijnendiagram

- Het wortellijnendiagram [Baeten, REG1, Hoofdstuk 3] [\*]
  - Inleiding
  - Voorbeeld: analytische berekening polen
  - Constructieregels
  - Eigenschappen
- Oefeningen [Baeten, Regeltechniek Oefeningenbundel]
  - voorbeeldoefening
  - oefeningen

Bijkomende referentie:

[\*] Christian Schmid, "The root-locus method," in *Course on Dynamics of multidisplicinary and controlled Systems*, 2005.

KU I

URL: http://www.atp.ruhr-uni-bochum.de/rt1/syscontrol/node46.html

# Inleiding

- Transiënt gedrag:
  - bepaald door ligging polen van geslotenlussysteem (= wortels van karakteristieke vergelijking)
- Wortellijnenmethode = grafische procedure die verloop van polen van geslotenlussysteem i.f.v. versterkingsfactor K weergeeft
- Zelfde als stabiliteit van een P-regelaar bestuderen



# Les 6: Het wortellijnendiagram

- Het wortellijnendiagram [Baeten, REG1, Hoofdstuk 3] [\*]
  - Inleiding
  - Voorbeeld: analytische berekening polen
  - Constructieregels
  - Eigenschappen
- Oefeningen [Baeten, Regeltechniek Oefeningenbundel]
  - voorbeeldoefening
  - oefeningen

Bijkomende referentie:

[\*] Christian Schmid, "The root-locus method," in *Course on Dynamics of multidisplicinary and controlled Systems*, 2005.

KU I

URL: http://www.atp.ruhr-uni-bochum.de/rt1/syscontrol/node46.html

- Concept: polen van geslotenlus TF berekenen en tekenen als functie van versterkingsfactor *K*
- Haalbaar voor 2<sup>e</sup> orde systemen, niet voor hogere orde !
- Voorbeeld: 2<sup>e</sup> orde systeem



- Geslotenlus TF:  $Q(p) = \frac{Y(p)}{X(p)} = \frac{K}{p^2 + pa + K} = \frac{T(p)}{T(p) + N(p)}$
- Karakteristieke vergelijking:

$$T(p) + N(p) = 0$$
 of  $p^2 + pa + K = 0$ 

• Polen geslotenlussysteem = wortels karakteristieke vgl:



• Wortellijnendiagram: *a* constant,  $K = 0 \rightarrow \infty$ 



- Wortellijnendiagram: conclusies?
  - geslotenlussysteem altijd absoluut stabiel
  - geslotenlussysteem relatief onstabiel bij hoge versterking



**KU LEUVEN** 

# Les 6: Het wortellijnendiagram

- Het wortellijnendiagram [Baeten, REG1, Hoofdstuk 3] [\*]
  - Inleiding
  - Voorbeeld: analytische berekening polen
  - Constructieregels
  - Eigenschappen
- Oefeningen [Baeten, Regeltechniek Oefeningenbundel]
  - voorbeeldoefening
  - oefeningen

Bijkomende referentie:

[\*] Christian Schmid, "The root-locus method," in *Course on Dynamics of multidisplicinary and controlled Systems*, 2005.

KU I

URL: http://www.atp.ruhr-uni-bochum.de/rt1/syscontrol/node46.html

### Constructieregels: Concept

• Meest algemene vorm van karakteristieke vergelijking:

$$1 + G(p)H(p) = 0$$

• Hier is de openlus TF

$$G(p)H(p) = \frac{K_{RL}(p+z_1)(p+z_2)\dots(p+z_m)}{(p+p_1)(p+p_2)\dots(p+p_n)}$$

met  $z_i$  de nulpunten en  $p_i$  de polen van de open-lus TF

 Concept grafische methode: teken wortellijnendiagram op basis van openlus nulpunten en polen ipv op basis van geslotenluspolen (veel moeilijker te berekenen)

**KU LEUVEN** 

#### **Constructieregels: Definities**

- Vermenigvuldigingsfactor  $K_{RL}$  (RL-gain)
- Gelijkspanningsversterking K<sub>D</sub>

$$K_D = \left| \frac{K_{RL} z_1 z_2 \dots z_m}{p_1 p_2 \dots p_n} \right|$$

Voorbeeld:  $GH = \frac{5(p^2+1)}{(p+2)(p+4)}$ 

**KU LEUV** 

Karakteristieke vergelijking van systeem (met versterkingsfactor K):

 $1 + KG(p)H(p) = 0 \quad \text{of} \quad KG(p)H(p) = -1$ 

- Hieruit kunnen we twee voorwaarden halen:
  - modulusvoorwaarde:

hoekvoorwaarde:

$$K = \frac{1}{|G(p)H(p)|}$$
$$\angle KG(p)H(p) = 180^{\circ} + k360^{\circ}$$

- We zoeken nu alle complexe getallen  $p = \bar{p}e^{j\phi}$  die aan beide voorwaarden voldoen:
  - de hoekvoorwaarde heeft een oplossing p die voldoet aan:
  - $180^{\circ} + k360^{\circ} = \angle KG(p)H(p) \\ = \angle G(p)H(p) \\ = \angle \frac{K_{RL}(p+z_1)(p+z_2)\dots(p+z_m)}{(p+p_1)(p+p_2)\dots(p+p_n)} \\ = \angle (p+z_1) + \angle (p+z_2) + \dots + \angle (p+z_m) \\ -\angle (p+p_1) \angle (p+p_2) \dots \angle (p+p_n) \end{cases}$ 
    - deze oplossing kan grafisch bepaald worden (zie verder)
    - deze oplossing is onafhankelijk van de versterkingsfactor K

**KU LEUVEN** 

- We zoeken nu alle complexe getallen  $p = \bar{p}e^{j\phi}$  die aan beide voorwaarden voldoen:
  - de hoeken  $\angle (p + z_i)$  en  $\angle (p + p_j)$  tussen een willekeurig punt *p* en de nullen en polen van de openlus TF G(p)H(p)kunnen grafisch bepaald worden:



- We zoeken nu alle complexe getallen  $p = \bar{p}e^{j\phi}$  die aan beide voorwaarden voldoen:
  - gegeven een oplossing *p* voor de hoekvoorwaarde, dan kan aan de modulusvoorwaarde altijd voldaan worden door een gepaste versterkingsfactor *K* te kiezen:

$$K = \frac{1}{|G(p)H(p)|}$$



## Constructieregels: overzicht

- We overlopen nu een aantal eigenschappen en regels die het tekenen van een wortellijnendiagram vergemakkelijken:
  - aantal takken
  - beginpunten
  - eindpunten
  - takken op de reële as
  - asymptotische richting
  - breekpunten bij samenvallende polen of nulpunten
  - hoek van vertrek



#### Constructieregels: aantal takken

• Het aantal takken van het wortellijnendiagram is gelijk aan het aantal polen van de openlus TF G(p)H(p)



#### Constructieregels: beginpunten

- De beginpunten van elke tak van het wortellijnendiagram worden bepaald door de polen van de geslotenlus TF bij een versterkingsfactor K = 0.
- In dit geval komen de polen van de geslotenlus TF overeen met de polen van de openlus TF.
- Modulusvoorwaarde:  $K = 0 \Rightarrow |G(p)H(p)| = \infty$  $\Rightarrow p = \text{pool van } G(p)H(p)$
- Conclusie: de beginpunten zijn de polen van de openlus TF G(p)H(p)

#### Constructieregels: eindpunten

- De eindpunten van elke tak van het wortellijnendiagram worden bepaald door de polen van de geslotenlus TF bij een versterkingsfactor K = ∞.
- In dit geval komen de polen van de geslotenlus TF overeen met de nulpunten van de openlus TF.
- Modulusvoorwaarde:  $K = \infty \Rightarrow |G(p)H(p)| = 0$

 $\Rightarrow p =$ nulpt van G(p)H(p)

**KU LEUV** 

- Indien de openlus TF minder nulpunten (m) dan polen (n) heeft dan ligger er n-m eindpunten op oneindig.
- Conclusie:
  - de eindpunten zijn de nulpunten van de openlus TF G(p)H(p)
  - er zijn *n-m* asymptoten naar eindpunten op ∞

#### Constructieregels: takken op de reële as

- Een punt p op de reële as maakt altijd een hoek van 0° of 180° met een reële pool of nulpunt van de openlus TF.
- Een punt p op de reële as maakt altijd tegengestelde hoeken van -a° en +a° met een complex paar polen of nulpunten van de openlus TF.





• **Conclusie:** alle punten op de reële as die links gelegen zijn van een oneven aantal nulpunten of polen van de openlus TF G(p)H(p) behoren tot het wortellijnendiagram

#### Constructieregels: asymptotische richting

 Als openlus TF meer polen dan nulpunten heeft (n > m) dan lopen n-m takken naar oneindig met asymptotische richting:

$$\theta = \frac{180^\circ + k360^\circ}{n-m}$$

 De asymptoten snijden de reële as in het zwaartepunt van de polen en nulpunten van de openlus TF:

$$\sigma = \frac{\sum_{j=1}^{n} p_j - \sum_{i=1}^{m} z_i}{n - m}$$

• Voorbeelden:



# Constructieregels: breekpunten

- Wortellijnen verlaten of bereiken reële as altijd onder hoek van 90°.
- Het punt waar dit gebeurt is breakaway/entry point en komt overeen met dubbele pool van geslotenlus TF:

$$\frac{d}{dp}\left(1+G(p)H(p)\right) = \frac{d}{dp}\left(G(p)H(p)\right) = 0$$

• Voorbeeld:



#### Constructieregels: hoek van vertrek

• Hoek  $\Phi_l$  waarmee wortellijn vertrekt vanuit complex nulpunt  $z_l$  of pool  $p_l$  kan berekend worden uit hoekvoorwaarde:



# Constructieregels: voorbeelden



**KU LEUVEN** 

# Les 6: Het wortellijnendiagram

- Het wortellijnendiagram [Baeten, REG1, Hoofdstuk 3] [\*]
  - Inleiding
  - Voorbeeld: analytische berekening polen
  - Constructieregels
  - Eigenschappen
- Oefeningen [Baeten, Regeltechniek Oefeningenbundel]
  - voorbeeldoefening
  - oefeningen

Bijkomende referentie:

[\*] Christian Schmid, "The root-locus method," in *Course on Dynamics of multidisplicinary and controlled Systems*, 2005.

KU I

URL: http://www.atp.ruhr-uni-bochum.de/rt1/syscontrol/node46.html

# Eigenschappen

• Wat kunnen we leren uit het wortellijnendiagram?

**KU LEUVEN** 

- absolute stabiliteit
- relatieve stabiliteit
- natuurlijke eigenpulsatie
- gedempte eigenpulsatie
- settling time

#### Eigenschappen: absolute stabiliteit

- Regelsysteem is absoluut stabiel voor versterkingsfactoren die overeenkomen met wortellijnen in linkerhalfvlak
- Marginale stabiliteit wordt bereikt wanneer wortellijnen imaginaire as snijden:

$$K_{rand\_stabiliteit}G(j\omega)H(j\omega) = -1$$

• Twee vergelijkingen in twee onbekenden: oplossing geeft versterkingsfactor  $K(\omega)$  waarvoor regelsysteem marginaal stabiel is op frequentie  $\omega$ 



#### Eigenschappen: relatieve stabiliteit

• Om relatieve stabiliteit te onderzoeken benaderen we regelsysteem door 2e orde systeem:

$$TF_{2eorde} = \frac{K\omega_n^2}{p^2 + 2\zeta\omega_n p + \omega_n^2}$$

Reële as.

 Relatieve stabiliteit en dempingsfactor worden dan bepaald door ligging van dominante polen:

$$p_{1,2} = -\omega_n \left(\zeta \pm j\sqrt{1-\zeta^2}\right)$$

$$\int_{\substack{\text{demping} \\ 0,5 \\ 0,9 \\ 0,9 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\ 0,97 \\$$

## Eigenschappen: eigenpulsaties

- De natuurlijke eigenpulsatie is evenredig met de reactiesnelheid van het systeem
- De gedempte eigenpulsatie is imaginair deel van pool die oscillerend gedrag van overgangsverschijnsel weergeeft



#### Eigenschappen: Settling time

Reële deel van pool geeft snelheid waarmee systeem naar eindwaarde gaat, bv. voor zuiver 1e orde systeem:

$$\frac{1}{p+a} \to e^{-at}$$

Settling time bepaalt grens van ±1% rond eindwaarde:

het een een 'settling' tijd  $< t_s$ 

een een 'settling' tijd =  $t_s$ 

tet een een 'settling' tijd >  $t_s$ 

**KU LEU** 

# Les 6: Het wortellijnendiagram

- Het wortellijnendiagram [Baeten, REG1, Hoofdstuk 3] [\*]
  - Inleiding
  - Voorbeeld: analytische berekening polen
  - Constructieregels
  - Eigenschappen
- Oefeningen [Baeten, Regeltechniek Oefeningenbundel]
  - voorbeeldoefening
  - oefeningen

Bijkomende referentie:

[\*] Christian Schmid, "The root-locus method," in *Course on Dynamics of multidisplicinary and controlled Systems*, 2005.

KU I

URL: http://www.atp.ruhr-uni-bochum.de/rt1/syscontrol/node46.html

# Voorbeeldoefening

- Oefening B.1) [Baeten, Regeltechniek Oefeningenbundel]
  - Opgave:
    - B.1) Teken het wortellijnendiagram van het volgende systeem:

$$KGH = \frac{K(p+1)(p-1)}{(p+2)(p+3)}$$

• Voor welke *K*-waarde ligt de pool van het gesloten systeem in nul?

KU L

• Voor welke *K*-waarden krijgen we samenvallende polen?

# Voorbeeldoefening

- Oefening B.1) [Baeten, Regeltechniek Oefeningenbundel]
   Oplossing:
- nulpunten : 1, -1
- polen: -2, -3 n-m = 0, dus geen asymptoten of polen op oneindig.
- Ligging van de samenvallende polen:



# Les 6: Het wortellijnendiagram

- Het wortellijnendiagram [Baeten, REG1, Hoofdstuk 3] [\*]
  - Inleiding
  - Voorbeeld: analytische berekening polen
  - Constructieregels
  - Eigenschappen
- Oefeningen [Baeten, Regeltechniek Oefeningenbundel]
  - voorbeeldoefening
  - oefeningen

Bijkomende referentie:

[\*] Christian Schmid, "The root-locus method," in *Course on Dynamics of multidisplicinary and controlled Systems*, 2005.

KU I

URL: http://www.atp.ruhr-uni-bochum.de/rt1/syscontrol/node46.html

## Oefeningen

 Oefening B.2) – 7) [Baeten, Regeltechniek Oefeningenbundel]

