KU LEUVEN

Optimization

Lecture 1: Introduction & Fundamental Concepts of Optimization

Prof. dr. ir. Toon van Waterschoot

Faculty of Engineering ScienceESAT – Department of Electrical EngineeringKU Leuven, Belgium

Research Division

- **STADIUS** Center for Dynamical Systems, Signal Processing and Data Analytics:
 - Dynamical Systems:
 - identification
 - optimization
 - systems & control
 - Signal Processing:
 - speech & audio processing
 - digital communications
 - biomedical signal processing
 - Data Analysis:
 - machine learning
 - bio-informatics

KU LEUVEN

Research Disciplines

Room Acoustics

Psychoacoustics

Numerical Optimization

Research Topics

Acoustic modeling

- ear modeling
- room modeling
- loudspeaker modeling
- signal modeling

Audio signal analysis

- speech recognition
- event detection
- source localization
- audio classification

Acoustic signal enhancement

- noise reduction
- echo/feedback control
- room equalization

KU LEUVEN

Toon van Waterschoot

- Mail: toon.vanwaterschoot@esat.kuleuven.be
- Office: Department of Electrical Engineering (ESAT), room 01.91
- Phone: +32 16 321788

Course Structure

Optimization (B-KUL-H03E3A)

Optimization of Mechatronic Systems (B-KUL-H04U1C)

Optimization: Lecture (B-KUL-H03E3a)

Optimization: Exercises and Laboratory Sessions (B-KUL-H03E4a)

MSc Mathematical Engineering Optional course in MSc Mathematics, Statistics, Informatics, Engineering (Electrical, Energy, Transport, Civil) Optimization of Mechatronic Systems: Exercises and Laboratory Sessions (B-KUL-H04U1a)

MSc Mechanical Engineering

- Study load: 4 ECTS
- Schedule
 - 15 lectures of 2 hours each
 - Tuesdays, 14:00 16:00
 - weekly until 02/12
 - MTM 00.13 (23/9) or MOLE 00.07 (Aud. De Molen)
 - Wednesdays, 10:30 12:30
 - weekly until 29/10
 - ESAT 00.54 (Aud. A)
 - note: online schedule has 17 lectures
 - no lecture on 24/9! (will be announced on Toledo)

KUL

• no lecture on x/x! (will be announced on Toledo)

- Lecture 1: Introduction & Fundamental Concepts of Optimization
- Lecture 2: Types of Optimization Problems
- Lecture 3: Convex Optimization
- Lecture 4: The Lagrangian Function and Duality
- Lecture 5: Optimality Conditions for Unconstrained Optimization
- Lecture 6: Estimation and Fitting Problems
- Lecture 7: Newton Type Optimization
- Lecture 8: Globalisation Strategies
- Lecture 9: Calculating Derivatives
- Lecture 10: Optimality Conditions for Constrained Optimization

KU LEUV

- Lecture 11: Equality Constrained Optimization Algorithms
- Lecture 12: Inequality Constrained Optimization Algorithms
- Lecture 13: Optimal Control Problems
- Lecture 14: Summary

- Course materials
 - syllabus "Numerical Optimization" by Moritz Diehl
 - printed version available at VTK
 - PDF version available on Toledo
 - textbook "Numerical Optimization" by Nocedal & Wright
 - printed version available at VTK
 - PDF version available at SpringerLink (<u>http://link.springer.com</u>)
 - important chapters & sections: see App. B.1 of syllabus
 - textbook "Convex Optimization" by Boyd & Vandenberghe
 - PDF version available at <u>http://stanford.edu/~boyd/cvxbook/</u>

KU LEUVEN

- important chapters & sections: see App. B.1 of syllabus
- slides for Lectures 1 & 2
 - PPT & PDF version available on Toledo
- optional: lecture videos & research papers (Toledo)

- Master of Mathematical Engineering
 - study load: 2 ECTS
 - 8 sessions of 2.5 hours each, starting at 14/10
 - schedule: <u>http://people.cs.kuleuven.be/~btw/roosters.html</u>
 - session 1 6: guided exercises
 - session 7 8: support for individual project work
 - individual project:
 - individually or in groups of two
 - topic from list or own topic
 - 5-page report + Matlab software to be delivered by 19/12
 - oral part of exam = project discussion
 - lecturers: Milan Vukov & Joris Gillis
 - location: ESAT PC rooms (see schedule)

- Master of Mathematical Engineering
 - **Session 1:** Fitting problems
 - Session 2: Hanging chain
 - Session 3: Steepest descent & Newton
 - Session 4: Gauss-Newton
 - Session 5: SQP
 - Session 6: Optimal control
 - exercise assignments available on Toledo page for "Optimization: Exercises and Laboratory Sessions"
 - solutions available on Toledo by mid December

- Master of Mechanical Engineering
 - study load: 2 ECTS
 - 13 sessions of 2.5 hours each, starting at 7/10
 - schedule: KU Leuven programmes website
 - session 1 6: guided exercises
 - session 7 13: case studies with individual assignment
 - coordination: Joris De Schutter & Goele Pipeleers
 - location: MECH PC rooms (see schedule)

- Master of Mechanical Engineering
 - Session 1: Fitting problems
 - Session 2: Hanging chain
 - Session 3: Steepest descent & Newton
 - Session 4: Gauss-Newton
 - Session 5: SQP
 - Session 6: Optimal control
 - Session 7 10: Case studies "Optimal motion trajectories"
 - Session 11 13: Case studies "Optimal balancing of linkages"
 - exercise assignments available on Toledo page for "Optimization of Mechatronic Systems: Exercises and Laboratory Sessions"

Evaluation

Master of Mathematical Engineering

- written part: theory + exercises
- oral part: individual project discussion (T. van Waterschoot)
- weights: written part (2/3), oral part (1/3)

Master of Mechanical Engineering

- written part: theory + exercises
- oral part: case studies (J. De Schutter, G. Pipeleers)
- weights: written part (2/3), oral part (1/3)
- list of rehearsal questions (+ answers) included in syllabus (App. B.2)

- Lecture 1: Introduction & Fundamental Concepts of Optimization
- Lecture 2: Types of Optimization Problems
- Lecture 3: Convex Optimization
- Lecture 4: The Lagrangian Function and Duality
- Lecture 5: Optimality Conditions for Unconstrained Optimization
- Lecture 6: Estimation and Fitting Problems
- Lecture 7: Newton Type Optimization
- Lecture 8: Globalisation Strategies
- Lecture 9: Calculating Derivatives
- Lecture 10: Optimality Conditions for Constrained Optimization

KU LEUV

- Lecture 11: Equality Constrained Optimization Algorithms
- Lecture 12: Inequality Constrained Optimization Algorithms
- Lecture 13: Optimal Control Problems
- Lecture 14: Summary

Lecture 1: Introduction & Fundamental Concepts of Optimization

Introduction

- motivation
- research examples

Fundamental Concepts of Optimization

- fundamental concepts: variables, objective function, ...

KU LEUV

research examples revisited

Motivation: Engineering = Optimization

- Computer simulation nowadays ubiquitous in design of cars, aircraft, reactors, ships, ...
- Engineer usually "plays" with input parameters (sizes, lengths, ...) until satisfied by results
- Question: Can't computer directly
 OPTIMIZE?
- New paradigm: engineer plays NOT with input parameters, but with objective, constraints, ...
- Need reliable optimization methods (course topic)

OPTEC - Optimization in Engineering Center

Center of Excellence of KU Leuven, since 2005

70 people, working jointly on **methods and applications of optimization**,

in 5 departments:

- Electrical Engineering
- Mechanical Engineering
- Chemical Engineering
- Computer Science
- Civil Engineering

Many real world applications at OPTEC...

OPTEC Aim: Connect Optimization Methods & Applications

Methods: New developments are inspired and driven by application needs Applications: Smart problem formulations allow efficient solution (e.g. convexity)

OPTEC Research Example: Time Optimal Robot Motion

- Objective:
 - follow given writing trajectory as close as possible
 - while maximizing the speed of writing
- Solution:
 - convex reformulation
 - global solution found in 2 ms

PhD work of Diederik Verscheure

https://www.mech.kuleuven.be/en/pma/research/robotics/media#section-1

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 54, NO. 10, OCTOBER 2009

Time-Optimal Path Tracking for Robots: A Convex Optimization Approach

Diederik Verscheure, Bram Demeulenaere, Jan Swevers, Joris De Schutter, and Moritz Diehl

OPTEC Research Example: Topology Optimization

- Objective:
 - minimize amount of material used
 - while keeping sufficiently high stiffness
 - and reducing sensitivity to geometric imperfection

Robust optimized design

KUL

Robust topology optimization accounting for misplacement of material

Miche Jansen · Geert Lombaert · Moritz Diehl · Boyan S. Lazarov · Ole Sigmund · Mattias Schevenels

Deterministic optimized design

OPTEC Research Example: Topology Optimization

 Other applications: Bridges, roofs, aircraft wings/ fuselages...

Camera support

aircraft section

roof structures

OPTEC Research Example: Time Optimal Control of Crane

- Objective:
 - fast crane movement
 - minimal residual payload vibration
- Solution:
 - Time Optimal MPC (TOMPC) impementation using xPC target
 - time sampling at 60 Hz
 - at each time, solve series of medium scale QPs in <10 ms
 PhD work of Lieboud Van den Broeck

https://www.mech.kuleuven.be/en/pma/research/robotics/media#section-2

A model predictive control approach for time optimal point-to-point motion control

Lieboud Van den Broeck^{a,*}, M. Diehl^b, J. Swevers^a

^a Department of Mechanical Engineering, Celestijnenlaan 300 B, B-3001 Leuven, Belgium ^b Department of Electrical Engineering, Kasteelpark Arenberg 10, B-3001 Leuven, Belgium

OPTEC Research Example: Real-Time Perception-Based Clipping of Audio Signals

- Objective:
 - constrain amplitude level of audio signal
 - while minimizing perceived signal distortion
- Solution:
 - convex optimization formulation
 - FPGA implementation

IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 20, NO. 10, DECEMBER 2012

Real-Time Perception-Based Clipping of Audio Signals Using Convex Optimization

Bruno Defraene, Student Member, IEEE, Toon van Waterschoot, Member, IEEE, Hans Joachim Ferreau, Moritz Diehl, Member, IEEE, and Marc Moonen, Fellow, IEEE

PhD work of Bruno Defraene

ftp://ftp.esat.kuleuven.be/pub/SISTA/vanwaterschoot/abstracts/11-127.html

demo videos: see website

KU LEUVEN

OPTEC Research Example: Acoustic Room Modeling using Sparse Approximation

- Objective:
 - estimate efficient and scalable acoustic room model
 - with minimal and user-specified model complexity...
 - but maximal accuracy in approximating room response

AN AUTOMATIC MODEL-BUILDING ALGORITHM FOR SPARSE APPROXIMATION OF ROOM IMPULSE RESPONSES WITH ORTHONORMAL BASIS FUNCTIONS

- **Solution:** Giacomo Vairetti¹, Toon van Waterschoot^{1,2}, Marc Moonen¹, Michael Catrysse³, and Søren Holdt Jensen⁴
 - sparse & iterative approximation of room response using linear combination of orthogonal basis functions
 PhD work of Giacomo Vairetti

OPTEC Research Example: Kite Power

- Objective:
 - optimize kite trajectory (stable orbit)
 - maximize output power

ERC Project "Highwind" of Moritz Diehl http://homes.esat.kuleuven.be/~highwind/

https://www.youtube.com/playlist?list=UUxMrjYTMI_qny20p0jnBbhQ

demo videos: see website

Lecture 1: Introduction & Fundamental Concepts of Optimization

Introduction

- motivation
- research examples
- Fundamental Concepts of Optimization
 - fundamental concepts: variables, objective function, ...

KU LEUVEN

research examples revisited

Fundamental Concepts of Optimization

- Optimization problem consists of **three ingredients**:
 - objective function, to be maximized or minimized

f(x)

- decision variables, to be calculated

 ${\mathcal X}$

- constraints, to be respected

g(x) = 0 (equality constraints)

 $h(x) \ge 0$ (inequality constraints)

Fundamental Concepts of Optimization

• Optimization problem in standard form:

 $\begin{array}{ll} \underset{x \in \mathbb{R}^n}{\text{minimize}} & f(x) \\ \text{subject to} & g(x) &= 0, \\ & h(x) &\geq 0. \end{array}$

- assumptions: differentiability of objective and constraint functions $f : \mathbb{R}^n \to \mathbb{R}, g : \mathbb{R}^n \to \mathbb{R}^p, h : \mathbb{R}^n \to \mathbb{R}^q$

KUL

inequalities should hold for all components:

$$h(x) \ge 0 \quad \Leftrightarrow \quad h_i(x) \ge 0, \quad i = 1, \dots, q.$$

Fundamental Concepts of Optimization

• Example:

$$\begin{array}{ll} \underset{x \in \mathbb{R}^2}{\text{minimize}} & x_1^2 + x_2^2 \\ \text{subject to} & x_2 - 1 - x_1^2 \ge 0, \\ & x_1 - 1 \ge 0. \end{array}$$

- Ω = "feasible set"
- solution at intersection of constraint functions

OPTEC Research Example Revisited: Time Optimal Robot Motion

- Objective:
 - follow given writing trajectory as close as possible
 - while maximizing the speed of writing

OPTEC Research Example: Real-Time Perception-Based Clipping of Audio Signals

- Objective:
 - constrain amplitude level of audio signal
 - while minimizing perceived signal distortion

$$\min_{\mathbf{y}} \sum_{i=0}^{N-1} w_i |Y(e^{j\omega_i}) - X(e^{j\omega_i})|^2$$

s.t.
$$-l \leq \mathbf{y} \leq l$$

minimize perceived distortion

constrain amplitude level

OPTEC Research Example: Acoustic Room Modeling using Sparse Approximation

- Objective:
 - estimate efficient and scalable acoustic room model
 - with minimal and user-specified model complexity...
 - ... but maximal accuracy in approximating room response

$$\hat{\bar{\boldsymbol{\theta}}}_{N} = \operatorname*{arg\,min}_{\boldsymbol{\theta}} \left\{ \frac{1}{2} \sum_{t=1}^{N} \left(y(t) - \bar{\boldsymbol{\varphi}}(t, \boldsymbol{\xi})^{T} \bar{\boldsymbol{\theta}} \right)^{2} + \lambda \| \bar{\boldsymbol{\theta}} \|_{1} \right\}$$

minimize response approximation error penalize model complexity

