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Research Division 
•  STADIUS Center for Dynamical Systems, 

Signal Processing and Data Analytics: 
－  Dynamical Systems: 

•  identification 
•  optimization 
•  systems & control 

－  Signal Processing: 
•  speech & audio processing 
•  digital communications 
•  biomedical signal processing 

－  Data Analysis: 
•  machine learning 
•  bio-informatics 
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Research Topics 

Acoustic signal enhancement 
-  noise reduction 
-  echo/feedback control 
-  room equalization 
 
 

Audio signal analysis  
-  speech recognition 
-  event detection 
-  source localization 
-  audio classification 

Acoustic modeling 
-  ear modeling 
-  room modeling 
-  loudspeaker modeling 
-  signal modeling 
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(b) First DFT atoms.

0 10 20 30 40 50 60 70 80 90 100
−1

0

1

S
9
8
S

 

 

0 10 20 30 40 50 60 70 80 90 100
−1

0

1

S
9

9

 

 

0 10 20 30 40 50 60 70 80 90 100
−1

0

1

S
1
0
0

 

 

real
imaginary

real
imaginary

real
imaginary

(c) Last DFT atoms.

Figure 4.5. Some of the DFT atoms for N=100.



Contact 
 
Toon van Waterschoot 
 
•  Mail: toon.vanwaterschoot@esat.kuleuven.be 

•  Office: Department of Electrical Engineering (ESAT), 
room 01.91 

•  Phone: +32 16 321788 
 



Course Structure 

Optimization 
(B-KUL-H03E3A) 

 
 
 
 
 
 
 

MSc Mathematical Engineering 
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Statistics, Informatics, Engineering 
(Electrical, Energy, Transport, Civil) 

Optimization of Mechatronic 
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MSc Mechanical Engineering 

 

Optimization: Lecture (B-KUL-H03E3a) 

Optimization of Mechatronic 
Systems: Exercises and 

Laboratory Sessions 
(B-KUL-H04U1a) 

Optimization: Exercises and 
Laboratory Sessions 

(B-KUL-H03E4a) 



Optimization: Lecture 
•  Study load: 4 ECTS 
•  Schedule 
－  15 lectures of 2 hours each 
－  Tuesdays, 14:00 – 16:00 

•  weekly until 02/12 
•  MTM 00.13 (23/9) or MOLE 00.07 (Aud. De Molen) 

－  Wednesdays, 10:30 – 12:30 
•  weekly until 29/10 
•  ESAT 00.54 (Aud. A) 

－  note: online schedule has 17 lectures 
•  no lecture on 24/9! (will be announced on Toledo) 
•  no lecture on x/x! (will be announced on Toledo) 

  



Optimization: Lecture 
•  Lecture 1: Introduction & Fundamental Concepts of Optimization 
•  Lecture 2: Types of Optimization Problems 
•  Lecture 3: Convex Optimization 
•  Lecture 4: The Lagrangian Function and Duality 
•  Lecture 5: Optimality Conditions for Unconstrained Optimization 
•  Lecture 6: Estimation and Fitting Problems 
•  Lecture 7: Newton Type Optimization 
•  Lecture 8: Globalisation Strategies 
•  Lecture 9: Calculating Derivatives 
•  Lecture 10: Optimality Conditions for Constrained Optimization 
•  Lecture 11: Equality Constrained Optimization Algorithms 
•  Lecture 12: Inequality Constrained Optimization Algorithms 
•  Lecture 13: Optimal Control Problems 
•  Lecture 14: Summary 
 



Optimization: Lecture 
•  Course materials 
－  syllabus “Numerical Optimization” by Moritz Diehl 

•  printed version available at VTK 
•  PDF version available on Toledo 

－  textbook “Numerical Optimization” by Nocedal & Wright 
•  printed version available at VTK 
•  PDF version available at SpringerLink (http://link.springer.com) 
•  important chapters & sections: see App. B.1 of syllabus 

－  textbook “Convex Optimization” by Boyd & Vandenberghe 
•  PDF version available at http://stanford.edu/~boyd/cvxbook/ 
•  important chapters & sections: see App. B.1 of syllabus 

－  slides for Lectures 1 & 2 
•  PPT & PDF version available on Toledo 

－  optional: lecture videos & research papers (Toledo) 



Exercises and Laboratory Sessions 
•  Master of Mathematical Engineering 
－  study load: 2 ECTS 
－  8 sessions of 2.5 hours each, starting at 14/10 
－  schedule: http://people.cs.kuleuven.be/~btw/roosters.html  
－  session 1 – 6: guided exercises 
－  session 7 – 8: support for individual project work 
－  individual project: 

•  individually or in groups of two 
•  topic from list or own topic 
•  5-page report + Matlab software to be delivered by 19/12 
•  oral part of exam = project discussion 

－  lecturers: Milan Vukov & Joris Gillis 
－  location: ESAT PC rooms (see schedule) 



Exercises and Laboratory Sessions 
•  Master of Mathematical Engineering 
－  Session 1: Fitting problems 
－  Session 2: Hanging chain 
－  Session 3: Steepest descent & Newton 
－  Session 4: Gauss-Newton 
－  Session 5: SQP 
－  Session 6: Optimal control 

－  exercise assignments available on Toledo page for 
“Optimization: Exercises and Laboratory Sessions” 

－  solutions available on Toledo by mid December 



Exercises and Laboratory Sessions 
•  Master of Mechanical Engineering 
－  study load: 2 ECTS 
－  13 sessions of 2.5 hours each, starting at 7/10 
－  schedule: KU Leuven programmes website 
－  session 1 – 6: guided exercises 
－  session 7 – 13: case studies with individual assignment 
－  coordination: Joris De Schutter & Goele Pipeleers 
－  location: MECH PC rooms (see schedule) 



Exercises and Laboratory Sessions 
•  Master of Mechanical Engineering 
－  Session 1: Fitting problems 
－  Session 2: Hanging chain 
－  Session 3: Steepest descent & Newton 
－  Session 4: Gauss-Newton 
－  Session 5: SQP 
－  Session 6: Optimal control 
－  Session 7 – 10: Case studies “Optimal motion trajectories”  
－  Session 11 – 13: Case studies “Optimal balancing of 

linkages”  
－  exercise assignments available on Toledo page for 

“Optimization of Mechatronic Systems:                    
Exercises and Laboratory Sessions” 



Evaluation 
•  Master of Mathematical Engineering 
－  written part: theory + exercises 
－  oral part: individual project discussion (T. van Waterschoot) 
－  weights: written part (2/3), oral part (1/3) 

•  Master of Mechanical Engineering 
－  written part: theory + exercises 
－  oral part: case studies (J. De Schutter, G. Pipeleers) 
－  weights: written part (2/3), oral part (1/3) 

－  list of rehearsal questions (+ answers) included in syllabus 
(App. B.2) 



Optimization: Lecture 
•  Lecture 1: Introduction & Fundamental Concepts of Optimization 
•  Lecture 2: Types of Optimization Problems 
•  Lecture 3: Convex Optimization 
•  Lecture 4: The Lagrangian Function and Duality 
•  Lecture 5: Optimality Conditions for Unconstrained Optimization 
•  Lecture 6: Estimation and Fitting Problems 
•  Lecture 7: Newton Type Optimization 
•  Lecture 8: Globalisation Strategies 
•  Lecture 9: Calculating Derivatives 
•  Lecture 10: Optimality Conditions for Constrained Optimization 
•  Lecture 11: Equality Constrained Optimization Algorithms 
•  Lecture 12: Inequality Constrained Optimization Algorithms 
•  Lecture 13: Optimal Control Problems 
•  Lecture 14: Summary 
 



Lecture 1: Introduction & Fundamental 
Concepts of Optimization 

•  Introduction 
－  motivation 
－  research examples 

•  Fundamental Concepts of Optimization 
－  fundamental concepts: variables, objective function, … 
－  research examples revisited 



Motivation: Engineering = Optimization 
•  Computer simulation nowadays 

ubiquitous in design of cars, aircraft, 
reactors, ships, … 

•  Engineer usually “plays” with input 
parameters (sizes, lengths, …) until 
satisfied by results 

•  Question: Can’t computer directly 
OPTIMIZE? 

•  New paradigm: engineer plays NOT 
with input parameters, but with 
objective, constraints, … 

•  Need reliable optimization methods 
(course topic) 



OPTEC - Optimization in Engineering Center 
Center of Excellence of KU Leuven, since 2005 
    70 people, working jointly on methods and applications 

of optimization, 
    in 5 departments: 
•  Electrical Engineering 
•  Mechanical Engineering  
•  Chemical Engineering  
•  Computer Science 
•  Civil Engineering 
Many real world applications at OPTEC...     



Methods: New 
developments are 

inspired and driven by 
application needs 

Applications: Smart 
problem formulations 
allow efficient solution 

(e.g. convexity) 

OPTEC Aim: Connect Optimization Methods 
& Applications 



•  Objective: 
－  follow given writing trajectory as close as possible 
－  while maximizing the speed of writing 

•  Solution: 
－  convex reformulation 
－  global solution found in 2 ms 
 

PhD work of Diederik Verscheure 
https://www.mech.kuleuven.be/en/pma/research/robotics/media#section-1   

 
 

OPTEC Research Example: Time Optimal 
Robot Motion 



•  Objective: 
－  minimize amount of material used 
－  while keeping sufficiently high stiffness 
－  and reducing sensitivity to geometric imperfection 
 
 
 
 
PhD work of Miche Jansen 

OPTEC Research Example: Topology 
Optimization 



•  Other applications: 
Bridges, roofs, aircraft wings/

fuselages… 
 
 

OPTEC Research Example: Topology 
Optimization 

Camera support aircraft section            roof structures 



•  Objective: 
－  fast crane movement 
－  minimal residual payload vibration 

•  Solution: 
－  Time Optimal MPC (TOMPC) impementation using xPC target 
－  time sampling at 60 Hz 
－  at each time, solve series of medium scale QPs in <10 ms 
PhD work of Lieboud Van den Broeck 
https://www.mech.kuleuven.be/en/pma/research/robotics/media#section-2  

OPTEC Research Example: Time Optimal 
Control of Crane 

A model predictive control approach for time optimal point-to-point motion control

Lieboud Van den Broeck a,⇑, M. Diehl b, J. Swevers a

a Department of Mechanical Engineering, Celestijnenlaan 300 B, B-3001 Leuven, Belgium
b Department of Electrical Engineering, Kasteelpark Arenberg 10, B-3001 Leuven, Belgium

a r t i c l e i n f o
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a b s t r a c t

This paper presents a new model predictive control method for time-optimal point-to-point motion con-
trol of mechatronic systems. The formulation of time-optimal behavior within the model predictive con-
trol framework and the structure of the underlying optimization problem are discussed and
modifications are presented in order to decrease the computational load of the numerical solution
method such that sampling rates in the millisecond range and long prediction horizons for large point-
to-point motions are feasible. An extensive experimental validation on a linear motor drive and an over-
head crane setup demonstrates the advantages of the developed time-optimal model predictive control
approach in comparison with traditional model predictive control.

! 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Most mechatronic systems are controlled using linear feedback
controllers, e.g. traditional PID controllers [1] or more advanced
model-based controllers, like e.g. H1 robust controllers [2] or inter-
nal model controllers [3]. Their main advantage is their simplicity
and for numerous applications, linear controllers are perfectly sui-
ted and can be well-tuned. Their main disadvantage however, is
their inability to account for constraints on inputs, outputs and
states. Hence linear controllers can not cope well with applications
where time optimality is required within stringent input con-
straints, except if they are combined with reference trajectories
that take into account these constraints. Two different time-
optimal applications can be considered: time-optimal trajectory
tracking like e.g. [4] and time-optimal point-to-point or setpoint
control. This paper considers the latter application, which means
that a desired endpoint is defined without specifying an intermedi-
ate trajectory. Hence, in order to achieve time-optimal point-
to-point motion with a linear controller, a point-to-point reference
trajectory has to be designed first. Demeulenaere et al. [5] present
a polynomial spline based reference trajectory optimization ap-
proach. The method can be applied to any linear time invariant
system, input, output and state constraints can be accounted for,
and time-optimality is achieved by solving a sequence of feasibility
problems. Also, Henrion and Lasserre [6] present a method to com-
pute a polynomial reference trajectory which can take into account
constraints on inputs and outputs. Although the formulated trajec-
tory optimization problems are either linear, quadratic or LMI
problems [7], and hence can be solved typically within one second,

the method is an off-line method, meaning that either all reference
trajectories have to be optimized beforehand, or references are
generated during motion by interpolating between a limited set
of optimized trajectories. In the latter case, time-optimality and
constraint satisfaction cannot be guaranteed. Besides this off-line
approach, several on-line approaches exist, however none of them
can guarantee time-optimality and constraints satisfaction for all
possible point-to-point motions. Input shapers [8–12] are linear
filters that generate reference trajectories aiming at minimal resid-
ual vibrations. These filters can be designed to yield time-optimal
behavior for one particular reference step. However, if they are ap-
plied to smaller or larger reference steps, the resulting reference
trajectories are either conservative or yield input constraint viola-
tion. Alternatively, to obtain near time optimality over a wider
range of step references, these prefilters which compensate for
higher order vibrations modes can be combined with an optimized
rigid body reference trajectory [13]. [14,15] present strategies that
calculate reference trajectories which satisfy constraints on veloc-
ity, acceleration and eventual higher derivatives. Hence, these
methods cannot take input constraints into account directly. In
addition, time-optimality can only be guaranteed for specific
point-to-point motions that e.g. include a constant velocity part
and for systems of which the order is limited to four. None of these
on-line methods can cope well with the situation where a new ref-
erence step is requested while still executing the previous step.
Model predictive control (MPC) is more appropriate for these
applications since it can take system constraints explicitly into ac-
count. MPC algorithms calculate future control actions by solving
at each sampling time an optimization problem specified over a
certain prediction horizon for a given system model, a given esti-
mate of the current system state and reference signal, and taking
into account constraints on inputs, outputs and states. The main

0957-4158/$ - see front matter ! 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.mechatronics.2011.07.008

⇑ Corresponding author. Tel.: +32 16 322833.
E-mail address: lieboud.vandenbroeck@mech.kuleuven.be (L. Van den Broeck).
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OPTEC Research Example: Real-Time 
Perception-Based Clipping of Audio Signals 

IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 20, NO. 10, DECEMBER 2012 2657

Real-Time Perception-Based Clipping of Audio
Signals Using Convex Optimization

Bruno Defraene, Student Member, IEEE, Toon van Waterschoot, Member, IEEE, Hans Joachim Ferreau,
Moritz Diehl, Member, IEEE, and Marc Moonen, Fellow, IEEE

Abstract—Clipping is an essential signal processing operation in
many real-time audio applications, yet the use of existing clipping
techniques generally has a detrimental effect on the perceived
audio signal quality. In this paper, we present a novel multidis-
ciplinary approach to clipping which aims to explicitly minimize
the perceptible clipping-induced distortion by embedding a
convex optimization criterion and a psychoacoustic model into a
frame-based algorithm. The core of this perception-based clipping
algorithm consists in solving a convex optimization problem for
each time frame in a fast and reliable way. To this end, three
different structure-exploiting optimization methods are derived
in the common mathematical framework of convex optimization,
and corresponding theoretical complexity bounds are provided.
From comparative audio quality evaluation experiments, it is
concluded that the perception-based clipping algorithm results in
significantly higher objective audio quality scores than existing
clipping techniques. Moreover, the algorithm is shown to be ca-
pable to adhere to real-time deadlines without making a sacrifice
in terms of audio quality.

Index Terms—Audio signal processing, clipping, convex opti-
mization, psychoacoustics, real-time.

I. INTRODUCTION

I N many real-time audio applications, the amplitude of a dig-
ital audio signal is not allowed to exceed a certain maximum

level. This amplitude level restriction can be imposed for dif-
ferent generic or application-specific reasons. First, it can relate
to an inherent limitation of the adopted digital representation
of the signal. In this case, audio signal samples exceeding the
allowable maximum amplitude level will either wrap-around
or saturate, depending on the digital signal processing (DSP)
system architecture [1]. In both modes, the result will be a sig-
nificant degradation of the audio signal’s sound quality. Sec-

Manuscript received July 19, 2011; revised February 11, 2012 and May 25,
2012; accepted July 03, 2012. Date of publication July 31, 2012; date of cur-
rent version October 01, 2012. This research work was carried out at the ESAT
Laboratory of KU Leuven, in the frame of KU Leuven Research Council CoE
EF/05/006 Optimization in Engineering (OPTEC), the Belgian Program on In-
teruniversity Attraction Poles initiated by the Belgian Federal Science Policy
Office IUAP P6/04 (DYSCO, “Dynamical systems, control and optimization,”
2007–2011), and Concerted Research Action GOA-MaNet. The scientific re-
sponsibility is assumed by its authors. The associate editor coordinating the re-
view of this manuscript and approving it for publication was Prof. Bryan Pardo.

The authors are with the Department of Electrical Engineering, ESAT-SCD
(SISTA), KU Leuven, B-3001 Leuven, Belgium (e-mail: bruno.defraene@esat.
kuleuven.be; toon.vanwaterschoot@esat.kuleuven.be; joachim.ferreau@esat.
kuleuven.be; moritz.diehl@esat.kuleuven.be; marc.moonen@esat.kuleuven.
be).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TASL.2012.2210875

ondly, the maximum amplitude level can be imposed in order to
prevent the audio signal from exceeding the reproduction capa-
bilities of the subsequent power amplifier and/or electroacoustic
transducer stages. In fact, an audio signal exceeding this max-
imum amplitude level will not only result in a degradation of
the sound quality of the reproduced audio signal (e.g. due to
amplifier overdrive and loudspeaker saturation), but could pos-
sibly also damage the audio equipment. Thirdly, in music pro-
duction applications, the amplitude level restriction is often set
deliberately as part of a mastering/mixing process. Lastly, in
hearing aid applications, the maximum amplitude level restric-
tion is necessary to preserve a high listening comfort, as im-
pulsive noises in the vicinity of the hearing aid user will sound
uncomfortably loud if the audio signal amplitude is not properly
limited.

In order to preserve a high sound quality of the reproduced
audio signal and a high user listening comfort in the above
mentioned applications, it is of paramount importance to in-
stantaneously limit the digital audio signal with respect to the
allowable maximum amplitude level. Clippers (or infinite lim-
iters) are especially suited for this purpose: these alter incoming
signal sample amplitudes such that no sample amplitude ex-
ceeds the maximum amplitude level (referred to as clipping
level from here on) [2, Sec. 5.2]. Most existing clipping1

techniques are governed by a static input-output characteristic,
acting onto the input audio signal on a sample by sample
basis by mapping a range of input amplitudes to a reduced
range of output amplitudes. Depending on the sharpness of this
input-output characteristic, one can distinguish between two
types of clipping techniques: hard clipping and soft clipping
[3], where the input-output characteristic exhibits an abrupt
(“hard”) or gradual (“soft”) transition from the linear zone to
the nonlinear zone respectively.

However, such a clipping operation itself introduces different
kinds of unwanted distortion into the audio signal: odd har-
monic distortion components, intermodulation distortion com-
ponents and aliasing distortion components [4]. In a series of
listening experiments performed on normal hearing subjects [5]
and hearing-impaired subjects [6], it is concluded that the ap-
plication of hard clipping and soft clipping to audio signals has
a significant negative effect on perceptual sound quality scores,
irrespective of the subject’s hearing acuity. To our best knowl-
edge, there have been no previous research efforts on improving
the perceptual sound quality of existing clipping techniques. It

1In this work, we use the word “clipping” to denote the deliberate operation
of bounding the samples of a digital audio signal to a predefined maximum am-
plitude level. This should not be confused with the undesired “analog clipping
phenomenon” as it can subsequently occur in various analog audio devices.

1558-7916/$31.00 © 2012 IEEE

•  Objective: 
－  constrain amplitude level of audio signal 
－  while minimizing perceived signal distortion 

•  Solution: 
－  convex optimization formulation 
－  FPGA implementation 

PhD work of Bruno Defraene 
ftp://ftp.esat.kuleuven.be/pub/SISTA/vanwaterschoot/abstracts/11-127.html  

demo 
videos: 

see website 



•  Objective: 
－  estimate efficient and scalable acoustic room model  
－  with minimal and user-specified model complexity…  
－  … but maximal accuracy in approximating room response 

•  Solution: 
－  sparse & iterative approximation of room response        

using linear combination of orthogonal basis functions 
PhD work of Giacomo Vairetti 

OPTEC Research Example: Acoustic Room 
Modeling using Sparse Approximation 

AN AUTOMATIC MODEL-BUILDING ALGORITHM FOR SPARSE APPROXIMATION OF
ROOM IMPULSE RESPONSES WITH ORTHONORMAL BASIS FUNCTIONS

Giacomo Vairetti 1, Toon van Waterschoot 1,2, Marc Moonen1, Michael Catrysse 3, and Søren Holdt Jensen 4

1KU Leuven, Dept. of Electrical Engineering (ESAT), STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics,
Kasteelpark Arenberg 10, 3001 Leuven, Belgium

2 KU Leuven, Dept. of Electrical Engineering (ESAT), ETC AdvISe Lab, Kleinhoefstraat 4, 2440 Geel, Belgium
3 Televic N.V., Leo Bekaertlaan 1, 8870 Izegem, Belgium

4Aalborg University, Dept. of Electronic Systems, Niels Jernes Vej 12, 9220 Aalborg, Denmark

ABSTRACT
Orthonormal Basis Function (OBF) models are used to define
stable fixed-poles infinite impulse response filter structures
that allow to incorporate knowledge about the resonant char-
acteristics of a stable, causal and linear system. In the approx-
imation of a room impulse response, OBF models can include
knowledge about the room resonances as a set of poles, which
appear nonlinearly in the structure. A novel algorithm is pro-
posed, that avoids this nonlinear problem by iteratively esti-
mating the poles and building the model. Some of the prop-
erties of OBF models, such as orthogonality and linearity-in-
the-parameters, are exploited and the final model has the fa-
vorable property of being scalable. The OBF model provides
a longer response than the all-zero model and is particularly
suited in approximating the early response and the predomi-
nant resonances for relatively small model orders.

Index Terms— Orthonormal Basis Functions, Sparse ap-
proximation, Room Acoustics, Orthogonal Matching Pursuit

1. INTRODUCTION

Modeling of room acoustics refers to the description of the
sound field inside a room. Non-parametric models are based
on an approximation of the wave equation or on the geomet-
rical properties of sound propagation. Parametric models, in-
stead, approximate the room transfer function (RTF), which

This research work was carried out at the ESAT Laboratory of KU
Leuven, in the frame of (i) the FP7-PEOPLE Marie Curie Initial Training
Network ‘Dereverberation and Reverberation of Audio, Music, and Speech
(DREAMS)’, funded by the European Commission under Grant Agreement
no. 316969, (ii) KU Leuven Research Council CoE PFV/10/002 (OPTEC),
(iii) the Interuniversity Attractive Poles Programme initiated by the Belgian
Science Policy Office IUAP P7/19 ‘Dynamical systems control and opti-
mization’ (DYSCO) 2012-2017, (iv) Research Project FWO no. G.0763.12
‘Wireless Acoustic Sensor Networks for Extended Auditory Communica-
tion’, (v) the FP7-ICT FET-Open Project ‘Heterogeneous Ad-hoc Networks
for Distributed, Cooperative and Adaptive Multimedia Signal Processing
(HANDiCAMS)’, (vi) Concerted Research Action GOA/10/09 MaNet, and
(vii) a Postdoctoral Fellowship of the Research Foundation Flanders (FWO-
Vlaanderen). The scientific responsibility is assumed by its authors.

corresponds to the Green’s function for given positions of
the source and the receiver, by a rational function in the z-
transform domain, under the assumption that the room is a
stable, causal and linear system. This rational function can be
parameterized in terms of zeros and poles by computing the
roots of the numerator and denominator polynomials, respec-
tively. The zeros represent anti-resonances in the system and
time delays, while the poles represent the resonant modes of
the room and the damping constants that appear in the Green’s
function [1].

The most common parametric model is the all-zero
model, which corresponds to a truncation of the room impulse
response (RIR) and is able to achieve an arbitrary degree of
accuracy by using a high-order finite impulse response (FIR)
filter, the order corresponding to the sample index at which
the RIR is truncated. The number of parameters of the filter
often has to be quite large in order to identify the inherent
resonant properties of the system. Also, the actual parameter
values depend strongly on the source and receiver position.

The number of parameters needed for approximating the
RIR can be reduced by using all-pole [2] and pole-zero mod-
els [3], which correspond to infinite impulse response (IIR)
filters. All-pole models can describe room resonances by
means of complex-conjugate pole pairs, but, since the poles
have to be stable, only the minimum-phase characteristics of
the RTF can be approximated and also true delays cannot be
modeled. Given that the resonances are a property of the
room, the parameter values of an all-pole model are less sensi-
tive to changes in the source and receiver position. Pole-zero
models can represent both resonances and time delays, as well
as the minimum and non-minimum-phase components of the
system. However, since the parameters appear nonlinearly in
the model, no closed-form solution exists and nonlinear opti-
mization techniques are required, possibly yielding instability
or convergence to local minima.

An alternative to conventional parametric models is rep-
resented by models based on Orthonormal Basis Functions
(OBFs) [4], which also correspond to an IIR filter but offer

2014 14th International Workshop on Acoustic Signal Enhancement (IWAENC)
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•  Objective: 
－  optimize kite trajectory (stable orbit) 
－  maximize output power 
 
ERC Project “Highwind” of Moritz Diehl 
http://homes.esat.kuleuven.be/~highwind/  
https://www.youtube.com/playlist?list=UUxMrjYTMI_qny20p0jnBbhQ  

OPTEC Research Example: Kite Power 

demo videos: 
see website 



Lecture 1: Introduction & Fundamental 
Concepts of Optimization 

•  Introduction 
－  motivation 
－  research examples 

•  Fundamental Concepts of Optimization 
－  fundamental concepts: variables, objective function, … 
－  research examples revisited 



Fundamental Concepts of Optimization 
•  Optimization problem consists of three ingredients: 
－  objective function, to be maximized or minimized 

－  decision variables, to be calculated 

－  constraints, to be respected 

Chapter 1

Fundamental Concepts of
Optimization

1.1 Why Optimization?

Optimization algorithms are used in many applications from diverse areas.

• Business: Allocation of resources in logistics, investment, etc.

• Science: Estimation and fitting of models to measurement data, design of experiments.

• Engineering: Design and operation of technical systems/ e.g. bridges, cars, aircraft, digital
devices, etc.

1.2 What Characterizes an Optimization Problem?

An optimization problem consists of the following three ingredients.

• An objective function, f(x), that shall be minimized or maximized,

• decision variables, x, that can be chosen, and

• constraints that shall be respected, e.g. of the form g(x) = 0 (equality constraints) or
h(x) � 0 (inequality constraints).

6

Chapter 1

Fundamental Concepts of
Optimization

1.1 Why Optimization?

Optimization algorithms are used in many applications from diverse areas.
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Fundamental Concepts of Optimization 
•  Optimization problem in standard form: 

－  assumptions: differentiability of objective and constraint 
functions 

－  inequalities should hold for all components: 

CHAPTER 1. FUNDAMENTAL CONCEPTS OF OPTIMIZATION 7

1.3 Mathematical Formulation in Standard Form

minimize
x 2 Rn

f(x) (1.1)

subject to g(x) = 0, (1.2)

h(x) � 0. (1.3)

Here, f : Rn ! R, g : Rn ! Rp, h : Rn ! Rq, are usually assumed to be di↵erentiable. Note that
the inequalities hold for all components, i.e.

h(x) � 0 , h
i

(x) � 0, i = 1, . . . , q. (1.4)

Example 1.1 (A two dimensional example):

minimize
x 2 R2

x2

1

+ x2

2

(1.5)

subject to x
2

� 1 � x2

1

� 0, (1.6)

x
1

� 1 � 0. (1.7)

x1

x2

1

1

x2 � x

2
1 + 1

x1 > 1

⌦

Figure 1.1: Visualization of Example 1.1, ⌦ is defined in Definition 1.2
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Fundamental Concepts of Optimization 
•  Example: 

－  Ω = “feasible set” 
－  solution at 

intersection of 
constraint functions 
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•  Objective: 
－  follow given writing trajectory as close as possible 
－  while maximizing the speed of writing 
 

OPTEC Research Example Revisited: 
Time Optimal Robot Motion 
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path tracking that goes beyond mere time-optimality, are pre-
sented in Section IV. Section V shows that direct transcription
[6], [25]–[27] by simultaneous discretization of the states and
the controls, results in a reliable and very efficient method to nu-
merically solve the optimal control problem based on second-
order cone programming. Section VI subsequently validates this
numerical method against the examples introduced in [13]. Sec-
tion VII illustrates the practicality and versatility of the gener-
alized problem formulation through a more advanced example
of a six-DOF KUKA 361 industrial robot carrying out a writing
task. Section VIII contrasts the proposed solution method with
the existing indirect methods [7], [10], [13], [14], [16], [19],
[21], [22], dynamic programming methods [11], [13], [24] and
direct transcription methods [18], [23] and identifies aspects of
future work.

II. ORIGINAL PROBLEM FORMULATION

The equations of motion of an -DOF robotic manipulator
with joint angles , can be written as a function of the
applied joint torques as [28]

(1)

where is a positive definite mass matrix
and is a matrix accounting for Coriolis
and centrifugal effects, which is linear in the joint velocities,

is a matrix of Coulomb friction torques, which
can be joint angle dependent, while denotes the
vector accounting for gravity and other joint angle dependent
torques. In this paper, similarly as in [13], viscous friction is not
considered.1

Consider a path , given in joint space coordinates,2 as a
function of a scalar path coordinate . The path coordinate de-
termines the spatial geometry of the path, whereas the trajec-
tory’s time dependency follows from the relation between
the path coordinate and time . Without loss of generality, it
is assumed that the trajectory starts at , ends at and
that . In addition, since this paper
considers time-optimal path tracking or related problems, it is
assumed that everywhere and almost every-
where for .

For notational convenience, the time dependency of the path
coordinate and its derivatives is omitted wherever possible.
For the given path, the joint velocities and accelerations can be
rewritten using the chain rule as

(2)

(3)

where , , and
. Substituting and based on (2),

(3) results in the following expression for the equations of mo-
tion [10]:

(4)

1Similarly as in [13], viscous friction is ignored to allow the equations of
motion to be reformulated as a linear set of equations in and .

2For a path given in operational space coordinates, inverse kinematics tech-
niques can be used to obtain the corresponding path in joint space coordinates
[14], [28].

where

(5)

(6)

(7)

and where is replaced by using (2) and
the assumption that almost everywhere.

Similarly as in [7], [10], [13], the time-optimal path tracking
problem for the robotic manipulator subject to lower and upper
bounds on the torques, can be expressed as

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

where the torque lower bounds and upper bounds may de-
pend on . In most cases, and can be taken equal to 0.

III. REFORMULATION AS A CONVEX OPTIMAL

CONTROL PROBLEM

From (8)–(15), it is not obvious to decide whether any local
solution to the problem is also globally time-optimal. In [19], the
time-energy optimal control problem, which features (8)–(15)
as a special case, is reformulated as an optimal control problem
with linear system dynamics, differential state and con-
trol input , subject to nonlinear state dependent control con-
straints. Subsequently, the Hamiltonian is shown to be convex
with respect to the control input, which allows to conclude that
any local optimum of the problem is also globally optimal. This
paper provides, thanks to the use of a nonlinear change of vari-
ables, an appreciably different reformulation with a number of
attractive properties.

First, by changing the integration variable from to , the
objective function (8) is rewritten as

(16)

Second

(17)

(18)

are introduced as optimization variables and supplemented with
an additional constraint

(19)

which follows from the observation that:

(20)

minimize time 

obey laws of motion 

within trajectory 
error bounds 



•  Objective: 
－  constrain amplitude level of audio signal 
－  while minimizing perceived signal distortion 

OPTEC Research Example: Real-Time 
Perception-Based Clipping of Audio Signals 
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1 Introduction
• Clipping problem definition

Restrict digital audio signal x[n] to available amplitude
range [�l, l], while maximally preserving sound quality

• Traditional clipping techniques

Hard clipper and soft clipper transfer functions
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Hard clipper and soft clipper acting on a pure sine with
frequency f0 = 2500Hz ! nonlinear distortion :
? Harmonic distortion components (Hi)
? Aliasing distortion components (Ai)
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Perception of nonlinear distortion
? strongly diminished sound quality [1],
? strongly diminished speech quality and intelligibility [2, 3]

2 Perceptually optimal clipping

• Divide input signal x[n] in windows of N = 512 sam-
ples (overlap of P = 128 samples)

Our approach is to formulate clipping of an input window
x 2 RN as a constrained optimisation problem :

? optimisation variable : output window y 2 RN

? cost function : reflects the perceptual difference be-
tween y and x

? constraint : y cannot exceed available amplitude range
[�l, l]

• Constrained frequency domain weighted least-
squares formulation :

min
y

N�1X

i=0
wi|Y (ej!i)�X(ej!i)|2 s.t. � l  y  l (1)

where !i = (2⇡i)/N represents the discrete frequency
variable, X(ej!i) and Y (ej!i) are the discrete frequency
components of x and y respectively, l is the clipping
level, and wi are the weights of a perceptual weighting
function (to be defined in Section 3).

• Formulation of (1) as a convex QP :

y⇤ = arg min
y

(y � x)T DTWD (y � x) s.t. � l  y  l

= arg min
y

1

2
yT DTWD| {z }

Hessian H
y + ( �DTWD x| {z }

Gradient g=�Hx
)T y (2)

with D 2 RN⇥N the DFT-matrix defined as

D =

2

666666666666666666664

1 1 1 . . . 1
1 e�j!1 e�j!2 . . . e�j!N�1

1 e�j!2 e�j!4 . . . e�j!2(N�1)

... ... ... ... ...
1 e�j!N�1 e�j!2(N�1) . . . e�j!(N�1)(N�1)

3

777777777777777777775

and the perceptual weighting matrix W 2 RN⇥N a diag-
onal matrix with nonnegative perceptual weights wi

W =

2

66666666666666666664

w0 0 0 . . . 0
0 w1 0 . . . 0
0 0 w2 . . . 0
... ... ... . . . ...
0 0 0 . . . wN�1

3

77777777777777777775

3 Perceptual weighting function

• Calculation of the instantaneous masking threshold

The ISO/IEC 11172-3 MPEG-1 Layer 1 psychoacoustic
model 1 [4] is used to calculate the instantaneous global
masking threshold Tg[i] of the input window x :

1. Identification of noise and tonal maskers

Tonal maskers and noise maskers are identified in the in-
put signal spectrum.

2. Calculation of individual masking thresholds

Each tonal masker and each noise masker has an individ-
ual masking effect on neighbouring frequency regions.
This masking effect can be represented by an individual
masking threshold per masker.

3. Calculation of global masking threshold

Additivity of masking effects is assumed. Under this
assumption, the instantaneous global masking threshold
Tg[i] (dB) can be calculated as the sum of the individual
masking thresholds and the absolute threshold of hearing.
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• Calculation of the perceptual weighting function wi

wi =

8
>>>>>><

>>>>>>:

10�0.1Tg[i] if 0  i  N
2

10�0.1Tg[N�i] if N
2 < i  N � 1

(3)

4 Simulation results
• Preserved time-domain signal dynamics
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– Input signal (t)
– Hard clipped output signal (t)
– Perceptually optimal clipped output signal (t)

• Frequency-domain noise shaping
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– Hard clipped difference signal (f)
– Perceptually optimal clipped difference signal (f)

• Significant improvement of sound quality

Informal comparative listening tests show a significant
improvement of sound quality when applying perceptu-
ally optimal clipping, as compared to applying soft clip-
ping.

• Low computational complexity

Efficient solution of convex QPs in equation (2) with
qpOASES solver [5]
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•  Objective: 
－  estimate efficient and scalable acoustic room model  
－  with minimal and user-specified model complexity…  
－  … but maximal accuracy in approximating room response 

OPTEC Research Example: Acoustic Room 
Modeling using Sparse Approximation 

where N is the size of the data set {u(t), y(t)}Nt=1.
The basis functions  i(e

j!
) form a complete set in

the Hardy space on the unit circle H2(T), provided thatP1
k=0(1 � |⇠k|) = 1 [6]; this means that any quadratic

summable function can be approximated with arbitrary accu-
racy by a linear combination of a certain finite number of the
basis functions. Furthermore, although the phase response
of each tap-output 'i(t, ⇠) depends on the ordering of the
all-pass filters sequence (cf. Fig. 1), the orthogonality of the
basis functions ensures that the same magnitude and phase
responses for the output are obtained for any ordering of the
pole set ⇠ [5]. Thus, any number of poles can be selected at
any position inside the unit circle.

3. SPARSE MODELING OF RIRS

The motivation for using an OBF model for approximating a
target RIR is to achieve the same modeling accuracy as the all-
zero model with a reduced number of parameters. For a given
number of basis functions, the problem is then to optimally
select the poles to parameterize the basis functions so that
the accuracy of the model is maximized. This is a non-linear
problem that might be addressed using non-linear numerical
optimization, but in this case the algorithm is likely to stall in
a locally optimal solution.

Here we propose a method that bypasses the non-linear
problem by selecting the poles from a large number of poles
distributed inside the unit circle. In order to achieve a trade-
off between accuracy and complexity we make use of the con-
cept of sparse approximation, which refers to the penalization
of non-zero entries in the tap-coefficient vector ✓, such that
the optimal solution will contain a large number of zero tap-
coefficients. A common way to obtain a sparse approximation
of the system is to add a regularization factor to the LS crite-
rion in (2) in order to minimize the approximation error and
the number of non-zero tap-coefficients at the same time.

The so-called LASSO (Least Absolute Shrinkage and Se-
lection Operator) [8] is a regularized linear regression opera-
tor where the regularization factor � determines the trade-off
between the accuracy of the estimation, by minimizing the
LS error, and the sparsity of the solution vector, i.e. its `1-
norm (which is the convex relaxation of the `0-norm). Larger
values of � de-emphasize the role of the LS error over the
`1-norm penalty, thus yielding fewer non-zero coefficients,
which means a sparser solution. The objective function of
the LASSO problem is the sum of a strictly convex function
(the LS error) and a (non-strictly) convex function (the `1-
norm). Although no closed-form solution to the minimization
problem exists in general, a globally optimal solution can be
obtained efficiently by using convex optimization algorithms.

Our method for pole selection consists in performing the
sparse approximation using an overcomplete set of basis func-
tions, obtained as a union of OBF bases with different orders
and pole values. The idea is to select the ‘most significant’
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Fig. 2. Pole grids with uniform (left) and logarithmic (right) radius
and angle distributions.

poles out of a grid defined over the unit disk. The poles
in the grid may be placed arbitrarily or following a particu-
lar distribution: for instance, the angle (resp. radius) of the
poles might be distributed over the range [0,⇡] (resp. [0,1))
uniformly or logarithmically. Two illustrative examples are
shown in Fig. 2. For a pole p = ⇢e�j#, the angle # defines
the frequency of the resonance, while the radius ⇢ determines
the bandwidth (or the Q-factor) of the response around that
frequency, where a pole close to the unit circle corresponds to
a sharp resonance.

An orthonormal basis of d functions is then built for each
pole of the grid by using the two-parameter Kautz model.
From P poles in the grid, P bases of d functions each are
produced, which are then all put together to create the vector

'̄(t, ⇠) = ['(1)
(t, ⇠1)

T , . . . ,'(P )
(t, ⇠P )

T
]

T . (3)

The j-th basis corresponding to the pole ⇠j is given by the
set of d functions  (j)

i , with i = 1, . . . , d, which is used to
compute the set of responses to the input signal u(t),

'(j)
(t, ⇠j) = ['

(j)
1 (t, ⇠j), . . . ,'

(j)
d (t, ⇠j)]

T

= [ 

(j)
1 (q, ⇠j)u(t), . . . , 

(j)
d (q, ⇠j)u(t)]

T .

Given the completeness of the set of OBFs, a target RIR
response can generally be approximated by the linear combi-
nation of a small number of basis functions. The goal is then
to find the poles from which these basis functions are built or
equivalently to find a coefficient vector with energy concen-
trated in few coefficients. For this purpose, the vector '̄(t, ⇠)
in (3), typically of length Pd � N with N the size of the data
set, is used to formulate a LASSO problem, thus obtaining an
underdetermined system of linear equations

ˆ

¯✓N = argmin

✓

(
1

2

NX

t=1

�
y(t)� '̄(t, ⇠)T ¯✓

�2
+ �k¯✓k1

)
,

(4)
having a solution vector of size Pd with only a small number
of significantly non-zero coefficients. In practice, many coef-
ficients are not exactly zero (due to the stopping criteria of the
convex optimization algorithm) and an additional threshold-
ing operation is needed. The number of non-zero coefficients
in ˆ

¯✓N depends on the regularization factor �, but no direct

minimize response 
approximation error 

penalize model 
complexity 


