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Les 6: Spectrale analyse 

•  Deterministic signals 
short-time DFT, windowing, frequency measurement, 

spectrogram… 
+ MATLAB exercise 

 
•  Random signals 

periodogram, periodogram averaging, periodogram smoothing 
+ MATLAB exercise 



Les 6: Literatuur 
•  Deterministic signals 

B. Porat, A Course in Digital Signal Processing 
－  Ch. 6, “Practical Spectral Analysis” 

•  Section 6.1, “The Effect of Rectangular Windowing” 
•  Section 6.2, “Windowing” 
•  Section 6.3, “Common Windows” 
•  Section 6.4, “Frequency Measurement” 

•  Random signals 
B. Porat, A Course in Digital Signal Processing 
－  Ch. 2, “Review of Frequency-Domain Analysis” 

•  Section 2.9, “Discrete-Time Random Signals”  
－  Ch. 13, “Analysis and Modeling of Random Signals” 

•  Section 13.1, “Spectral Analysis of Random Signals” 
•  Section 13.2, “SA by Smoothed Periodogram” 



Les 6: Spectrale analyse 

•  Deterministic signals 
short-time DFT, windowing, frequency measurement, 

spectrogram… 
+ MATLAB exercise 

 
•  Random signals 

periodogram, periodogram averaging, periodogram smoothing 
+ MATLAB exercise 



Deterministic signals: overview 
•  Introduction: motivating example 
•  Rectangular windowing 
•  Windowing 
•  Frequency measurement 
•  Spectrogram 

+ MATLAB exercise 



•  Example from musical signal processing 
－  spectral analysis of Brahms’ 4th symphony 
－  motivation: automatic music transcription 
－  some numbers: 

•  40 min of music 
•  44.1 kHz sampling rate 
•  O(108) samples 

－  note:  
•  [Porat, 1996] “such a task is still beyond our ability” 
•  status in 2014: commercial software available, research ongoing 

Introduction: motivating example (1) 



•  Naïve approach: calculate N-point DFT with N = O(108) 
－  extremely high frequency resolution ～ 0.4 mHz 
－  inefficient in terms of memory and processing resources 
－  useless since result will be long-term spectrum average  

•  Meaningful approach: calculate sequence of short DFTs 
－  naturally leads to time-frequency signal representation 

 = essence of (short-time) spectral analysis 
－  example: 

•  DFT length = 4096 (～ 92.9 ms signal segments) 
•  frequency resolution = 11 Hz 
•  50 % overlap between successive signal segments 
•  symphony = 52000 signal segments ⇒ 52000 length-4096 DFTs 

Introduction: motivating example (2) 



•  Example of eight 92.9 ms segments from Brahms’ symphony 
         time-domain waveforms                      magnitude spectra 

Introduction: motivating example (3) 



Deterministic signals: overview 
•  Introduction: motivating example 
•  Rectangular windowing 
•  Windowing 
•  Frequency measurement 
•  Spectrogram 

+ MATLAB exercise 



•  Signal segmentation = rectangular windowing 
－  consider picking short segment x[n] from long signal y[n] 

－  this operation can also be written as a multiplication of y[n] 
with a rectangular window 

     where the window is defined as 

Rectangular windowing (1) 

x[n] =

⇢
y[n], 0  n  N � 1

0, otherwise

wr[n] =

⇢
1, 0  n  N � 1

0, otherwise

x[n] = y[n]wr[n]



•  Key question: how is Fourier transform of rectangular-
windowed signal related to that of original signal? 

•  Example: 
－  exponential signal and its Fourier transform: 

－  Fourier transform of rectangular-windowed signal  

 (note: apply sum formula for geometric series) 

Rectangular windowing (2) 

y[n] =

⇢
an, n � 0
0, n < 0

Y f(✓) =
1

1� ae�j✓

X f(✓) =
N�1X

n=0

ane�j✓n =
1� aNe�j✓N

1� ae�j✓



•  Example: a = 0.9, N = 16 

－  magnitude spectrum of x[n] approximates that of y[n] 
－  magnitude spectrum of y[n] exhibits smoother behavior 

Rectangular windowing (3) 

Y f(✓) =
1

1� ae�j✓

X f(✓) =
1� aNe�j✓N

1� ae�j✓



•  General result: 
－  time-domain multiplication = frequency-domain convolution 

－  Fourier transform of rectangular window: 

Rectangular windowing (4) 

x[n] = y[n]wr[n] ) X

f(✓) =
1

2⇡

�
Y

f ⇤W f
r

 
(✓)

W f
r (✓) =

N�1X

n=0

e�j✓n =
1� e�j✓N

1� e�j✓

=
sin(0.5✓N)

sin(0.5✓)| {z }
magnitude

e�j0.5✓(N�1)
| {z }

phase



•  General result: 
－  magnitude spectrum of rectangular window = Dirichlet kernel 

－  example: N = 40 

Rectangular windowing (5) 

D(✓, N) =
sin(0.5✓N)

sin(0.5✓)



•  Dirichlet kernel: 
－  maximum value = N, occuring at 
－  main lobe between zero crossings at  

－  side lobes between zero crossings at  

－  highest side lobe occurs at  

 with amplitude 

Rectangular windowing (6) 

D(✓, N) =
sin(0.5✓N)

sin(0.5✓)

✓ = 0
✓ = ±2⇡

N

✓ = ±2m⇡

N
, m > 1

✓ = ±3⇡

N
⇡ 2N

3⇡



•  Distortions due to rectangular windowing: 
－  smearing: spectral lines become spectral lobes 

•  bandwidth of main lobe is non-zero 
•  loss of frequency resolution 
•  neighboring spectral lines (                ) will become unseparable 

－  side-lobe interference: leakage of energy into other bins  
•  weak spectral lines can be masked by                                  

strong spectral lines in other frequency bins 
•  worst-case effect when weak/strong spectral                            

    lines are separated by 

Rectangular windowing (7) 

D(✓, N) =
sin(0.5✓N)

sin(0.5✓)

�✓ =
(2m+ 1)⇡

N

�✓  4⇡

N



Deterministic signals: overview 
•  Introduction: motivating example 
•  Rectangular windowing 
•  Windowing 
•  Frequency measurement 
•  Spectrogram 

+ MATLAB exercise 



•  Rationale of window design: 
－  time-domain multiplication = frequency-domain convolution 

 
－  constraints on window sequence w[n] 

•  finite duration 
•  length N must agree with desired segmentation length 
•  non-negative  

－  desirable properties of window sequence w[n] 
•  main lobe as narrow as possible 
•  side lobes as low as possible 

 

Windowing (1) 

x[n] = y[n]w[n] ) X

f(✓) =
1

2⇡

�
Y

f ⇤W f
 
(✓)



•  Rationale of window design: 
－  Fourier transform of window sequence = kernel function 
－  desired kernel shape = frequency-domain delta function 

 (why don’t we choose                             ?) 
 
 
 
 
 
 
 
－  window design = trade-off between main lobe width and  

side lobe levels 

Windowing (2) 

W f(✓) = 2⇡�(✓)



1.  Rectangular window (revisited): 
－  main lobe width = 4π/N 
     = narrowest of all 
        length-N windows! 
－  side lobe level = −13.5 dB 
－  example: N = 41 

Windowing (3)  



2.  Bartlett window (= triangular window): 
－  rationale: squaring kernel function halves side lobe level 
－  implementation: 

•  convolve rectangular time-domain window sequence with itself 
•  in case N is odd, start from length-(N+1)/2 rectangular window: 

•  corresponding kernel function: 

 
•  (note: similar expressions exist for case of even N) 

Windowing (4)  

wt[n] =
2

N + 1
{wr ⇤ wr} [n] = 1� |2n�N + 1|

N + 1
, 0  n  N � 1

W f
t (✓) =

2

N + 1
D2 (✓, 0.5(N + 1)) e�j0.5✓(N�1) =

2 sin2 {0.25✓(N + 1)}
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e�j0.5✓(N�1)



2.  Bartlett window (= triangular window): 
－  main lobe width = 8π/(N+1) 
－  side lobe level = −27 dB 
－  example: N = 41 

Windowing (5)  



3.  Hann window (= cosine window): 
－  rationale: superposition of 3 frequency-shifted Dirichlet 

kernels to reduce side lobe level 
－  implementation: 

•  exploit modulation theorem 
    of Fourier transform: 

Windowing (6)  

W f
hn(✓) = 0.5W f

r (✓)� 0.25W f
r

✓
✓ � 2⇡

N � 1

◆
� 0.25W f

r

✓
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N � 1

◆
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✓
j2⇡n

N � 1

◆
� 0.25 exp

✓
� j2⇡n

N � 1

◆

= 0.5


1� cos

✓
2⇡n

N � 1

◆�
, 0  n  N � 1



3.  Hann window (= cosine window): 
－  main lobe width = 8π/N 
－  side lobe level = −32 dB 
－  example: N = 41 
－  note: two end points = 0 

•  Modified Hann window: 
－  start from length-(N+2) 
     rectangular window 
－  delete zero end points 

Windowing (7)  

whn[n] = 0.5

⇢
1� cos


2⇡(n+ 1)

N + 1

��
,

0  n  N � 1



W f
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r (✓)� 0.23W f
r

✓
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◆
� 0.23W f

r

✓
✓ +

2⇡

N � 1

◆

4.  Hamming window (= raised cosine window): 
－  rationale: superposition of 3 frequency-shifted Dirichlet 

kernels to reduce side lobe level 
－  implementation: 

•  similar to Hann window 
•  weights chosen to minimize 
    side lobe level 

Windowing (8)  

whm[n] = 0.54� 0.46 cos

✓
2⇡n

N � 1

◆
, 0  n  N � 1



4.  Hamming window (= raised cosine window): 
－  main lobe width = 8π/N 
－  side lobe level = −43 dB 
－  example: N = 41 
－  note: two end points ≠ 0 

Windowing (9)  



5.  Blackman window: 
－  rationale: superposition of 5 frequency-shifted Dirichlet 

kernels to reduce side lobe level 
－  implementation: 

•  similar to Hamming window 
•  5 instead of 3 Dirichlet kernels 

Windowing (10)  

wb[n] = 0.42� 0.5 cos

✓
2⇡n
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◆
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✓
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5.  Blackman window: 
－  main lobe width = 12π/N 
－  side lobe level = −57 dB 
－  example: N = 41 
－  note: two end points = 0 

•  Modified Blackman window: 
－  start from length-(N+2) 
     rectangular window 
－  delete zero end points 

Windowing (11)  



6.  Kaiser window: 
－  rationale: calculate family of windows as solution to 

constrained optimization problem 

－  solution (with I0 = modified Bessel function of order zero): 

－  parameter α determines trade-off between main lobe width 
and side lobe energy 

Windowing (12)  

min

wk[n]
main lobe width

s.t.
side lobe energy

total energy

 �

wk[n] =

I0

"
↵

r
1�

⇣
|2n�N+1|

N�1

⌘2
#

I0[↵]
, 0  n  N � 1



6.  Kaiser window (α = 12): 
－  main lobe width = 16π/N 
－  side lobe level = −90 dB (!) 
－  example: N = 41 

Windowing (13)  



Deterministic signals: overview 
•  Introduction: motivating example 
•  Rectangular windowing 
•  Windowing 
•  Frequency measurement 
•  Spectrogram 

+ MATLAB exercise 



•  Frequency measurement of single complex sinusoid: 
－  in theory, frequency of single complex sinusoid 

 
     can be uniquely determined from its Fourier transform 
 
 
     by finding maximum of magnitude spectrum 

Frequency measurement (1) 

y[n] = Aej(✓0n+�0), 0  n  N � 1

Y f(✓) = Ae�j[0.5(✓�✓0)(N�1)��0]D(✓ � ✓0, N)

✓0 = argmin
✓

|Y f(✓)|



•  Frequency measurement of single complex sinusoid: 
－  in practice, however, DFT is calculated on frequency grid 

generally not including θ0 
－  simple frequency measurement: 

•  find frequency bin with maximum magnitude 

－  improved frequency measurement: 
•  zero pad sequence y[n] and increase DFT length 

 
      

Frequency measurement (2) 

k0 = argmin
k

|Y d[k]| ) ✓[k0] =
2⇡k0
N



•  Frequency measurement of two complex sinusoids: 
－  sum of two complex sinusoids and its frequency spectrum 

 
 
 
－  evaluation of Fourier transform at one sinusoid frequency θ1 

－  frequency measurement only feasible when  

Frequency measurement (3) 

y[n] = A1e
j(✓1n+�1) +A2e

j(✓2n+�2), 0  n  N � 1

Y f(✓) = A1e
�j[0.5(✓�✓1)(N�1)��1]D(✓ � ✓1, N)

+A2e
�j[0.5(✓�✓2)(N�1)��2]D(✓ � ✓2, N)

Y f(✓1) = NA1e
j�1 +A2e

�j[0.5(✓1�✓2)(N�1)��2]D(✓1 � ✓2, N)

|A2D(✓1 � ✓2, N)| ⌧ NA1 ,
⇢

|✓2 � ✓1| � 2⇡/N
O(A2) = O(A1)



•  Frequency measurement of two complex sinusoids: 
－  example: 

Frequency measurement (4) 

A1 = A2

A2 = 0.25A1

|✓2 � ✓1| = 2⇡/N 1.5⇡/N ⇡/N



•  Frequency measurement of two complex sinusoids: 
－  windowed sum of two complex sinusoids                                

has Fourier transform 

 
－  evaluation of Fourier transform at one sinusoid frequency θ1 

－  frequency measurement feasible with window for which 

•                  greater than kernel main lobe width 
•                                 larger than side-lobe level 

Frequency measurement (5) 

x[n] = y[n]w[n]

X f(✓) = A1e
j�1W f(✓ � ✓1, N) +A2e

j�2W f(✓ � ✓2, N)

X f(✓1) = A1e
j�1W f(0, N) +A2e

j�2W f(✓1 � ✓2, N)

|A2W
f(✓1 � ✓2, N)| ⌧ A1

N�1X

n=0

w[n]

|✓2 � ✓1|
20 log10(A1/A2)



•  Frequency measurement of two complex sinusoids: 
－  example: Hann window 

Frequency measurement (6) 

A1 = A2

A2 = 0.25A1

|✓2 � ✓1| = 8⇡/N 6⇡/N 4⇡/N



•  Frequency measurement of M real sinusoids: 
－  real sinusoids can be decomposed as sum of complex 

sinusoids, hence previous results still hold 
－  frequency measurement is feasible without windowing if 

•  sinusoid frequencies are separated by at least 2π/N 
•  π/N < sinusoid frequencies < π(1 - 1/N) 
•  O(A1) = … = O(AM) 

－  frequency measurement is feasible with windowing if 
•  sinusoid frequencies are separated by at least ½ main lobe width 
•  ½ main lobe width < sinusoid frequencies < π – ½ main lobe width 
•  sinusoid amplitude differences > side lobe level 

 

Frequency measurement (7) 



•  Practice of frequency measurement  
1.  multiply sampled sequence by window 
2.  compute DFT (using FFT algorithm) 
3.  search for local maxima in magnitude spectrum 

Frequency measurement (8) 



Deterministic signals: overview 
•  Introduction: motivating example 
•  Rectangular windowing 
•  Windowing 
•  Frequency measurement 
•  Spectrogram 

+ MATLAB exercise 



•  Spectrogram = 2-D color plot of DFT log-magnitude for 
number of overlapping windowed signal segments 
－  example: speech signal [Rice University] 

Spectrogram 



Deterministic signals: overview 
•  Introduction: motivating example 
•  Rectangular windowing 
•  Windowing 
•  Frequency measurement 
•  Spectrogram 

+ MATLAB exercise 



Consider signal 

1.  Draw magnitude spectrum by hand 
2.  Generate length-N segment of this signal in Matlab 
3.  Calculate and plot magnitude spectrum for N = 21 
4.  Calculate and plot magnitude spectrum for N = 21 with zero 

padding up till 2048 samples 
5.  Calculate and plot magnitude spectrum for N = 81 with zero 

padding up till 2048 samples  
6.  Calculate and plot magnitude spectrum for N = 81 with zero 

padding up till 2048 samples and Hamming windowing 
7.  Compare and explain results 

MATLAB exercise (1) 
y[n] = cos 0.35⇡n+ cos 0.4⇡n+ 0.25 cos 0.8⇡n



Consider signal 
•  Solution: 

MATLAB exercise (2) 
y[n] = cos 0.35⇡n+ cos 0.4⇡n+ 0.25 cos 0.8⇡n
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FIGURE 5.7
Spectrum of three sinusoids using rectangular and Hamming
windows.

For a rectangular window of length N , the exact value of !ω is equal to 1.81π/(N − 1).
If N is too small, the two peaks at ω = 0.35π and ω = 0.4π are fused into one, as shown
in the N = 21 plot. When N = 81, the corresponding plot shows a resolvable separation;
however, the peaks have shifted somewhat from their true locations. This is called bias, and
it is a direct result of the leakage from sidelobes. In both cases, the peak at ω = 0.8π can
be distinguished easily (but also has a bias).

Another important observation is that the sidelobes of the data window introduce false
peaks. For a rectangular window, the peak sidelobe level is 13 dB below zero, which is not
a good attenuation. Thus these false peaks have values that are comparable to that of the
true peak at ω = 0.8π , as shown in Figure 5.7. These peaks can be minimized by reducing
the amplitudes of the sidelobes. The rectangular window cannot help in this regard because
of Gibb’s well-known phenomenon associated with it. We need a different window shape.
However, any window other than the rectangular window has a wider mainlobe; hence this
reduction can be achieved only at the expense of the resolution. To illustrate this, consider
the Hamming (Hm) data window, given by

wHm(n) =

⎧
⎨

⎩
0.54− 0.46 cos 2πn

N − 1 0 ≤ n ≤ N − 1

0 otherwise
(5.1.14)

with the approximate width of the mainlobe equal to 8π/(N − 1) and the exact mainlobe
width equal to 6.27π/(N − 1). The peak sidelobe level is 43 dB below zero, which is



Les 6: Spectrale analyse 

•  Deterministic signals 
short-time DFT, windowing, frequency measurement, 

spectrogram… 
+ MATLAB exercise 

 
•  Random signals 

periodogram, periodogram averaging, periodogram smoothing 
+ MATLAB exercise 



Random signals: overview 
•  Introduction: motivating example 
•  Averaged periodogram 
•  Smoothed periodogram 

+ MATLAB exercise 



•  Example from oceanography 
－  measurement of time variation in height of ocean waves 

－  signal shows oscillatory behavior but not sinusoidal behavior 
－  repeating measurement yields similar but not same signal 

Introduction: motivating example (1) 



•  Example from oceanography 
－  how do we perform spectral analysis of random signals? 
－  short-time spectral analysis (as for deterministic signals)? No! 

•  random signals have random Fourier transform 
•  DFT magnitude spectrum will look very noisy 
•  spectrum details vary from experiment to experiment 
•  zero padding does not solve this problem 

－  some sort of averaging or smoothing is required 

－  signal shows oscillatory behavior but not sinusoidal behavior 
－  repeating measurement yields similar but not same signal 

Introduction: motivating example (2) 



Random signals: overview 
•  Introduction: motivating example 
•  Averaged periodogram 
•  Smoothed periodogram 

+ MATLAB exercise 



•  Averaged periodogram 
－  periodogram = square magnitude of DFT 
－  divide length-NL signal x[n] into L length-N segments 
－  averaged periodogram (AP) over L segments: 

－  key property: AP converges to power spectral density (PSD) 

－  note: why average periodogram instead of DFT?  

Averaged periodogram (1) 
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•  Windowed averaged periodogram 
－  since N,L ≠ ∞ averaged periodogram is still (slightly) random 

•  increasing N makes AP more detailed and more random 
•  increasing L makes AP smoother with less randomness 

－  additional smoothing can be obtained by windowing 

－  example: ocean wave AP 
•  L = 100 
•  N = 500 
•  w[n] = Hann window 

Averaged periodogram (2) 
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•  Welch periodogram 
－  windowing reduces importance of end-of-segment samples 
－  compensated by using (50%) overlap in signal segmentation 

－  Welch periodogram = AP with windowing and 50% overlap 

= standard tool for spectral analysis of stationary random signals 

Averaged periodogram (3) 
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Random signals: overview 
•  Introduction: motivating example 
•  Averaged periodogram 
•  Smoothed periodogram 

+ MATLAB exercise 



•  Smoothed periodogram 
－  consider case when data sequence is too short for averaging 

•  because limited amount of data measurement is available 
•  because signal has non-stationary behavior 

－  smoothed periodogram (without segmentation or averaging) 
•  frequency-domain convolution of periodogram and window kernel 

•  time-domain implementation by length-(2M+1) windowing 

Smoothed periodogram (1) 
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•  Smoothed periodogram 
－             ~ inverse Fourier transform of periodogram   
－             is estimate of covariance             of random signal x[n] 

－  smoothed periodogram computational procedure: 
1.  estimate covariance 
2.  multiply with window 
3.  compute DFT 

－  window length 2(M+1) should always be smaller than 2N-1, 
and typically 0.2 < M/N < 0.5 

Smoothed periodogram (2) 
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•  Example: sunspot statistics 

Smoothed periodogram (3) 

annual sunspot numbers 
1749-1924 periodogram 

smoothed periodogram 
M = 88 

smoothed periodogram 
M = 44 



Random signals: overview 
•  Introduction: motivating example 
•  Averaged periodogram 
•  Smoothed periodogram 

+ MATLAB exercise 



1.  Generate zero-mean unit-variance Gaussian white noise signal   
(length NL=216) 

2.  Filter this signal with FIR filter  
3.  Calculate and plot periodogram of original and filtered signal 
4.  Calculate and plot averaged periodogram of original and filtered 

signal (try out different combinations of N and L) 

MATLAB exercise 

H(z) = 1 + 0.8z�1


