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Les 6: Spectrale analyse

* Deterministic signals

short-time DFT, windowing, frequency measurement,
spectrogram...

+ MATLAB exercise

* Random signals
periodogram, periodogram averaging, periodogram smoothing
+ MATLAB exercise
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Les 6: Literatuur

* Deterministic signals
B. Porat, A Course in Digital Signal Processing
— Ch. 6, “Practical Spectral Analysis”
« Section 6.1, “The Effect of Rectangular Windowing”
« Section 6.2, “Windowing”
e Section 6.3, “Common Windows”
« Section 6.4, “Frequency Measurement”
* Random signals
B. Porat, A Course in Digital Signal Processing
— Ch. 2, “Review of Frequency-Domain Analysis”
« Section 2.9, “Discrete-Time Random Signals”

— Ch. 13, “Analysis and Modeling of Random Signals”
« Section 13.1, “Spectral Analysis of Random Signals”

« Section 13.2, “SA by Smoothed Periodogram” m



Les 6: Spectrale analyse

* Deterministic signals

short-time DFT, windowing, frequency measurement,
spectrogram...

+ MATLAB exercise

* Random signals
periodogram, periodogram averaging, periodogram smoothing
+ MATLAB exercise
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Deterministic signals: overview

* Introduction: motivating example
* Rectangular windowing

* Windowing

* Frequency measurement

* Spectrogram

+ MATLAB exercise
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* Example from musical signal processing
— spectral analysis of Brahms’ 4" symphony
— motivation: automatic music transcription

— some numbers:
* 40 min of music
* 44.1 KHz sampling rate
« O(108) samples
— note:
[Porat, 1996] “such a task is still beyond our ability”

» status in 2014 commercial software available, research ongoing
o v ~au lXJ IEI\%JIA\ |4 EIE \swmm-
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Introduction: motivating example (2)

* Naive approach: calculate N-point DFT with N = O(108)
— extremely high frequency resolution ~ 0.4 mHz
— inefficient in terms of memory and processing resources
— useless since result will be long-term spectrum average
* Meaningful approach: calculate sequence of short DF Ts
— naturally leads to time-frequency signal representation
= essence of (short-time) spectral analysis

— example:
 DFT length = 4096 (~ 92.9 ms signal segments)
« frequency resolution = 11 Hz
« 50 % overlap between successive signal segments
« symphony = 52000 signal segments = 52000 length-4096 DFTs

ﬂ



Introduction: motivating example (3)

* Example of eight 92.9 ms segments from Brahms’ symphony

time-domain waveforms magnitude spectra




Deterministic signals: overview

* Introduction: motivating example
* Rectangular windowing

* Windowing

* Frequency measurement

* Spectrogram

+ MATLAB exercise
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Rectangular windowing (1)

* Signal segmentation = rectangular windowing
— consider picking short segment x[n] from long signal y[n]

{y[n], 0<n<N-1

zln] = 0, otherwise

— this operation can also be written as a multiplication of y[n]
with a rectangular window
z[n] = y[njw,[n]
where the window is defined as

{1, 0<n<N-1

] 0, otherwise m



Rectangular windowing (2)

* Key question: how is Fourier transform of rectangular-
windowed signal related to that of original signal?

* Example:
— exponential signal and its Fourier transform:
am n >0 ‘ 1
y[n] — 7 Y (‘9) 0
0, n <0 1 —aeJ

— Fourier transform of rectangular-windowed signal
N _—j6N
Z ae —jon _ 1 a €
1 —ae—J3Y

(note: apply sum formula for geometric series) m




Rectangular windowing (3)

* Example:a=0.9, N=16

1X7(8)1, 1Y(8) 1 — aNe—jeN
X'(9) = —
1 —ae™J
1
YH(0) = ;
1 —aeJ
—obn o&n % b

— magnitude spectrum of x[n] approximates that of y[n]
— magnitude spectrum of y[n] exhibits smoother behavior

ﬂ



Rectangular windowing (4)

* General result:
— time-domain multiplication = frequency -domain convolution

z[n] = y[njw,[n] = X'(9) = {Yf * Wf} (0)
— Fourier transform of rectangular window:
N—1 -
. 1 — 6—]9]\7
f _ —jon  __
W.(0) = E_O e =

sin(0.50V) o—70.50(N—1)
Sln(059) ~ ~~ o

phase

-~

magnitude m



Rectangular windowing (5)

* General result:
— magnitude spectrum of rectangular window = Dirichlet kernel

sin(0.560N)
sin(0.56)

D(O,N)
NA

D, N) =

— example: N =40




Rectangular windowing (6)

 Dirichlet kernel:
— maximum value = N, occuring at 8 = ()

_ . 27
— main lobe between zero crossings at § = +—
N
| | 2mar
— side lobes between zero crossings at 6 = :T’ m > 1
| | 3T
— highest side lobe occurs at = +— DN
2N N
with amplitude ~~ —— m
3T
sin(0.560 N
D ( . N) = ( ) CAAAAAA v AVI\VA I\V/\\N\,,\‘,,\,,\,,\,A‘it e
sin(0.56) V[V




Rectangular windowing (7)

* Distortions due to rectangular windowing:

— smearing: spectral lines become spectral lobes
« bandwidth of main lobe is non-zero
* loss of frequency resolution
* neighboring spectral lines ( Ay < % ) will become unseparable

— side-lobe interference: leakage of energy into other bins
« weak spectral lines can be masked by

strong spectral lines in other frequency bins pen
« worst-case effect when weak/strong spectral
lines are separated by A, = (Qm;\; D
sin(0.50N) il
.D (9, N ) — - —“1’t AAAAAAAAA v AVI\VI\V VAVAVAVAVAVAVAVA‘;; -
sin(0.50) VIV




Deterministic signals: overview

* [ntroduction: motivating example
* Rectangular windowing

* Windowing

* Frequency measurement

* Spectrogram

+ MATLAB exercise

ﬂ



Windowing (1)

* Rationale of window design:
— time-domain multiplication = frequency-domain convolution

2[n] = ylnlwln] = X*(0) = % Y« Wi (o)

— constraints on window sequence w[n]
« finite duration
* length N must agree with desired segmentation length
* non-negative
— desirable properties of window sequence w[n]
* main lobe as narrow as possible
» side lobes as low as possible
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Windowing (2)

* Rationale of window design:
— Fourier transform of window sequence = kernel function
— desired kernel shape = frequency-domain delta function
(why don’t we choose W' (8) = 278(6) ?)

w'(®)

\

— window design = trade-off between main lobe width and

side lobe levels m

0




Windowing (3)

1. Rectangular window (revisited):

— main lobe width = 4m7/N . win] (2)
1.09299292929272929990999 7 Mr« PeTY XXX r« XXX N X
= narrowest of all 0.8l |
length-N windows! 0.67
. 0.41
— side lobe level =-13.5dB |
— example: N = 41
10 20 30 40 n
20log,,|W'(8)| (b)
e —0f51t 0.:51t n 0
_20 ......................................... BB A
-40
—60 1 b




Windowing (4)

2. Bartlett window (= triangular window):
— rationale: squaring kernel function halves side lobe level

— Implementation:
« convolve rectangular time-domain window sequence with itself

* in case N is odd, start from length-(N+1)/2 rectangular window:

2 2n— N +1
wt[n]:N—H{wr*wr}[n]zl— | nN+1—|— |, 0<n<N-1
« corresponding kernel function:
ooy 2 2 _j0.50(N—1) _ 2sin” {0.250(N + 1)} —j0.50(N—1)
Wi (0) = N + et (6:05(N +1))e (N +1)sin?(0.56) ‘

« (note: similar expressions exist for case of even N)

ﬂ



Windowing (5)

2. Bartlett window (= triangular window):

— main lobe width = 8m/(N+1)  ywin (a)
— side lobe level = -27dB '] Al
' el T,
— example: N = 41 06) i
0.4" ‘II lJl
21
024]””” | | ””“h,
10 20 30 40 n
20tog,,|W (9)]| (b)

-7 -0.57 0.5 T o9




Windowing (6)

3. Hann window (= cosine window):
— rationale: superposition of 3 frequency-shifted Dirichlet
kernels to reduce side lobe level
— Iimplementation:
« exploit modulation theorem
of Fourier transform:

e

<’

y _ y
Wi (6) = 0.5W(9) —0.25W! (9 L ) — 0.25W! <9+ i >

N -1 N -1

4

2 2
wimln] = 0.5 — 0.25exp (K[ i”l) — 0.25 exp (-jjv inl)

()] oo




Windowing (7)

3. Hann window (= cosine window):

— main lobe width = 8m/N e ®
— side lobe level = -32 dB 0.84 0 |
— example: N = 41 Zj |
— note: two end points =0 0.2}
e
* Modified Hann window: ° ¥ 3° o
— start from length-(N+2) | | 20l0g,olW'(0) ®
rectangular window N osm N oS "o
— delete zero end points 40 gl B
PPNUTY | £ N N | 1" VO
Whn[n] = 0.5 {1 — COS [27;£7n++11)] } 7 ;ZZ A .......... PTYTL LY A . YR

0<n<N-1 m



Windowing (8)

4. Hamming window (= raised cosine window):

— rationale: superposition of 3 frequency-shifted Dirichlet
kernels to reduce side lobe level
— Iimplementation:
* similar to Hann window
* weights chosen to minimize
side lobe level

2
Wi (0) = 0.54W1(0) — 0.23W! (9 S

4

2
Whm 1] :0.54—0.46(308( mn ), 0<n<N-1




Windowing (9)

4. Hamming window (= raised cosine window):
main lobe width = 8r7/N
side lobe level = -43 dB
example: N = 41

note: two end points # 0

wln} (a)
1.0t 12 ‘f [
0.81 1 R
0.61 : <
X H ll
0.2¢
nﬂ””, , ””Hm
10 20 30 40 n
20log,,|WF(8)| (b)
e —OfSTE O.%n T 0
_20 .................................................................................................
_40 .................................................................................................




Windowing (10)

5. Blackman window:

— rationale: superposition of 5 frequency-shifted Dirichlet
kernels to reduce side lobe level

— Iimplementation:
* similar to Hamming window
« S instead of 3 Dirichlet kernels

2 2
Wi (60) = 0.42W1(9) — 0.25W! (9 + N—il) —0.25W" (9 27 )

N —1
A7 A7
f f
. 04 _
! | +0.041V! (9+N_1)+00 W (9 N—l)
2mn dmn
wp[n] = 0.42 — 0.5 cos N1 + 0.08 cos N1} 0<n<N-1

ﬂ



Windowing (11)

5. Blackman window: win] (@)
~ main lobe width = 12m/N | R
— side lobe level = =57 dB 0.6 |
— example: N = 41 o4 l
— note: two end points =0 z;""””LU

HJOHIIT.W

20

* Modified Blackman window:

— start from length-(N+2)
rectangular window

— delete zero end points

20log,,IW'(9)]




Windowing (12)

6. Kaiser window:

— rationale: calculate family of windows as solution to
constrained optimization problem

ml[n] main lobe width
Wk |

side lobe energy

S.t.
total energy

— solution (with /; = modified Bessel function of order zero):

I() |:C¥\/1 — (|2n];§1—|-1|
Iplal
— parameter a determines trade-off between main lobe width

and side lobe energy m

)
wi|n) = ,0<n<N-1



Windowing (13)

6. Kaiser window (a =12): win) @
. . 1.01 111,
— main lobe width = 16m/N 0.5t |
— side lobe level = -90dB (I) o1
0.471
— example: N = 41 .o ”” ““
Main-lobe width (a) ] QYTI] 7 ]hh
10 20 30 40 n
20log,,|Wf(8)] (b)
- —OfSn O.i.'m T 0
3 p 5 1:2 5w _20 .................................................................................................
_40 .................................................................................................
Side-lobe level [dB] (b) _60 .................................................................................................

3 6 9 12 15




Deterministic signals: overview

* Introduction: motivating example
* Rectangular windowing

* Windowing

* Frequency measurement

* Spectrogram

+ MATLAB exercise
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Frequency measurement (1)

* Frequency measurement of single complex sinusoid:
— in theory, frequency of single complex sinusoid

y[n] = Aedlfonteo) g <p <N -1
can be uniquely determined from its Fourier transform
Yf(g) _ Ae—j[0-5(9—90)(N—1)—¢0]D(g — 6y, N)
by finding maximum of magnitude spectrum

0y = arg mein 1Y)

ﬂ



Frequency measurement (2)

* Frequency measurement of single complex sinusoid:

— in practice, however, DFT is calculated on frequency grid
generally not including 6,

— simple frequency measurement:
 find frequency bin with maximum magnitude

2k
_ . d _ 0
ko = arg mkm Y k|| = 0|ko] =

— improved frequency measurement:
« zero pad sequence y[n] and increase DFT length

ﬂ




Frequency measurement (3)

* Frequency measurement of two complex sinusoids:
— sum of two complex sinusoids and its frequency spectrum

y[n] = Al Onto0) 4 4oedlfonto) g <p < N —1
Yf(g) _ Ale—j[0-5(9—91)(N—1)—¢1]D(@ —61,N)
+A2€—j[0-5(9—92)(1\’—1)—¢2]D(g — 605, N)
— evaluation of Fourier transform at one sinusoid frequency 6,
Yf((gl) _ NA1€j¢1 + A2€—j[0-5(91—92)(N—1)—¢2]D(91 — s, N)

— frequency measurement only feasible when

1V

0o — 01| 2w /N
AsD (01 — 05, N NA 02 — 0,
420000 < v { P ) 2 T
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Frequency measurement (4)

* Frequency measurement of two complex sinusoids:
— example:

o } 2010g,,1Y (8)] (a)
| ]
~101% [
1R
-20 11
-30 L
0,90, 0
20log,,| Y (8)] (d)
Ao = 0.25A1 of |
-10+4 :
AR
-30 i
8,0, ¢

|(92 —01’ — 27T/N

0+
-10+
-204

-30

0+t
-10+
-201+

-30

20log,,|Y (8)]

DDIF—r—m————

|
i
i
|
[
i
[
|
1
0

(b)

—

20log,,| Y (8)]

|
I
|
I
I
I !
I |
I !
1 |
1 1
0,6,

1.5t /N

=

201log,,1Y (0)]

(c)

D -
<>
)

20log, Y (0)]

|
|
|
|
|
|
|
|
|
1

0

()

o F-————-=

6,6,

w/N



Frequency measurement (5)

* Frequency measurement of two complex sinusoids:

— windowed sum of two complex sinusoids z|[n| = y[n]w(n|
has Fourier transform

X 0) = A7 WO — 01, N) + A’ W6 — 05, N)
— evaluation of Fourier transform at one sinusoid frequency 6,
Xf(Hl) — A1€j¢1 Wf((), N) + A2€j¢2Wf((91 — 92, N)

— frequency measurement feasible with window for which

N-—-1
\AQWf(é’l — QQ,N)‘ < Al Z w[n]
n=0

O — 91’ greater than kernel main lobe width

« 20log;((A1/A2) larger than side-lobe level m



Frequency measurement (6)

* Frequency measurement of two complex sinusoids:
— example: Hann window

fll — f42 0+
-20+
~-40+

-60

Ay =0.25A1 of
-20+
—40+

-60

20log,,1X"(9)]

DF-————m-——s

[
[
[
i
I
!
|
|
|
1

0

(a)

1 2

20log,,|X ()]

)

(d)

Opr=-——-——-

[
[
i
i
|
|
|
i
I
1
0

| 2

0

’92 —91| — 87T/N

0+
=20+
—-40+

-60

O..
-20+
-40+

-60

20log,,|Xf(9)]

i
|
)
|
|
|
|
I
1

0

Opr—r———————

(b)

1 2

20log,,1X"(0)]

0, 6,

6w /N

0+
-20+

} 20log,,1X"(0)]

i
I
I
t
[
|
[
[
[
|
0

° b - —————

()

1 2

20log,,|X (0)]

0

(f)

¢ Ry




Frequency measurement (/)

* Frequency measurement of M real sinusoids:

— real sinusoids can be decomposed as sum of complex
sinusoids, hence previous results still hold

— frequency measurement is feasible without windowing if
 sinusoid frequencies are separated by at least 2r7/N
* 11/N < sinusoid frequencies < (1 - 1/N)
« OA)=...=0(A,)

— frequency measurement is feasible with windowing if
 sinusoid frequencies are separated by at least 2 main lobe width

* %2 main lobe width < sinusoid frequencies < 1T — %2 main lobe width
* sinusoid amplitude differences > side lobe level

ﬂ



Frequency measurement (8)

* Practice of frequency measurement
1. multiply sampled sequence by window

2. compute DFT (using FFT algorithm)
3. search for local maxima in magnitude spectrum

ﬂ



Deterministic signals: overview

* [ntroduction: motivating example
* Rectangular windowing

* Windowing

* Frequency measurement

* Spectrogram

+ MATLAB exercise
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Spectrogram

* Spectrogram = 2-D color plot of DFT log-magnitude for
number of overlapping windowed signal segments

— example: speech S|gnal [Rice UnlverS|ty]

Frequerncy (Hz)
8 )
3 3

S
3

]
S




Deterministic signals: overview

* [ntroduction: motivating example
* Rectangular windowing

* Windowing

* Frequency measurement

* Spectrogram

+ MATLAB exercise
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M exercise (1)
Consider signal y|n| = cos 0.35mn + cos 0.4mn + 0.25 cos 0.87n

Draw magnitude spectrum by hand
Generate length-N segment of this signal in Matlab
Calculate and plot magnitude spectrum for N = 21

Calculate and plot magnitude spectrum for N = 21 with zero
padding up till 2048 samples

5. Calculate and plot magnitude spectrum for N = 81 with zero
padding up till 2048 samples

6. Calculate and plot magnitude spectrum for N = 81 with zero
padding up till 2048 samples and Hamming windowing

/. Compare and explain results

ﬂ
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M exercise (2)

Consider signal y|n| = cos 0.35mn + cos 0.4mn + 0.25 cos 0.87n

¢ SOI Utl on. — T True spectral lines
3
3
>
0 l
0 0.35 0.4 0.8 1
1E T T T ]
S Spectrum for N = 21
&
=
0 L s
0 0.35 0.4 0.8 1
1 [ T T
= Spectrum for N = 81
K
=
0

0 035 0.4 0.8 1

- r /V\-Iammng window N = é1
2
5
. . AN
0 0.35 0.4 0.8 1

w/mT



Les 6: Spectrale analyse

* Deterministic signals

short-time DFT, windowing, frequency measurement,
spectrogram...

+ MATLAB exercise

* Random signals
periodogram, periodogram averaging, periodogram smoothing
+ MATLAB exercise
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Random signals: overview

* Introduction: motivating example
* Averaged periodogram
* Smoothed periodogram

+ MATLAB exercise
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Introduction: motivating example (1)

* Example from oceanography
— measurement of time variation in height of ocean waves

x(t) [m] (a)
201

kb

0 10 20 30 40 50 1 [s]

20log, oI X (2mfT)| (b)

0 1 2 3 4 S f[Hz]

— signal shows oscillatory behavior but not sinusoidal behavior
— repeating measurement yields similar but not same signal




Introduction: motivating example (2)

* Example from oceanography
— how do we perform spectral analysis of random signals?

— short-time spectral analysis (as for deterministic signals)? No!
* random signals have random Fourier transform
 DFT magnitude spectrum will look very noisy
« spectrum details vary from experiment to experiment
« zero padding does not solve this problem

20log, o|X (2mfT)| (b)

5 i 5 3 2 5 f(Hz)

— some sort of averaging or smoothing is required m



Random signals: overview

* Introduction: motivating example
* Averaged periodogram
* Smoothed periodogram

+ MATLAB exercise

ﬂ



Averaged periodogram (1)

* Averaged periodogram
— periodogram = square magnitude of DFT
— divide length-NL signal x[n] into L length-N segments
— averaged periodogram (AP) over L segments:

( N—1 2

L—1
N 1 1 :
KL9) = 7 g X N E x[n + IN]e 7"
[=0 n=0

\

— key property: AP converges to power spectral density (PSD)

(. IN-1 2
A 1 .
lim K!(6)=K.(0) =F« ~ g x[n 4 [N]e 79"

L—oco \ n=0

— note: why average periodogram instead of DFT? m




Averaged periodogram (2)

* Windowed averaged periodogram

— since N,L # ~ averaged periodogram is still (slightly) random
 Increasing N makes AP more detailed and more random
* increasing L makes AP smoother with less randomness

— additional smoothing can be obtained by windowing

L—-1

1 1

L0 = 734 < |3 wlnfefo + iN]e") 4

[=0

— example: ocean wave AP “

« L =100
« N=2500
* w[n] = Hann window

2)

10log K (27fT)

0 i 2 3 4 5 7 [Hz)




Averaged periodogram (3)

* Welch periodogram
— windowing reduces importance of end-of-segment samples
— compensated by using (50%) overlap in signal segmentation

N I al

&-

| | | | | | | |

&

4

— Welch periodogram = AP with windowing and 50% overlap
‘ 2

1 L—1 1 N—1 |
Ki9) = - >4 ~ > wnjz[n + 0.5INJe 7| &
[=0 n=0

\ /
= standard tool for spectral analysis of stationary random signals

ﬂ




Random signals: overview

* [ntroduction: motivating example
* Averaged periodogram
* Smoothed periodogram

+ MATLAB exercise
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Smoothed periodogram (1)

* Smoothed periodogram

— consider case when data sequence is too short for averaging
* because limited amount of data measurement is available
* because signal has non-stationary behavior

— smoothed periodogram (without segmentation or averaging)
» frequency-domain convolution of periodogram and window kernel

1 T

Ko (0)=o— [ X0 = )W)

+ time-domain implementation by length-(2M+1) windowing

K (0)= ) FRelmJwlmle™"™

ﬂ



Smoothed periodogram (2)

* Smoothed periodogram
— kg[m] ~ inverse Fourier transform of periodogram | X*(6)|?
— Rg|m]| is estimate of covariance k,[m| of random signal x[n]
N—-1—|m|
. 1 _ _
Ralm] = > wliafi+ Iml] = E{zi]ali + |m[]} = r,[m]
i=0
— smoothed periodogram computational procedure:
1. estimate covariance
2. multiply with window
3. compute DFT

— window length 2(M+1) should always be smaller than 2N-1,
and typically 0.2 < M/IN < 0.5

ﬂ



Smoothed periodogram (3)

 Example: sunspot statistics

annual sunspot numbers

eriodogram
1749-1924 P J
x[n] (a) K'(9) (b)
160 1 341
0 \N\M[\A/\M\MA= OA‘LA s — '
0 44 88 132 176 n 0 0.25r 0.5m 0.75=x n 0
Kf(8) (c) K'(9) (d)
04 ¢ ' e 4 0 4 » 4 t
0 0.25r 0.57 0.75=m T 9 0 0.25n 0.5 0.75=n n 9
smoothed periodogram smoothed periodogram

M =388 M =44 m



Random signals: overview

* Introduction: motivating example
* Averaged periodogram
* Smoothed periodogram

+ MATLAB exercise
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MATLAB exercise

1. Generate zero-mean unit-variance Gaussian white noise signal
(length NL=215)

2. Filter this signal with FIR filter H(z) = 1 + 0.827!

Calculate and plot periodogram of original and filtered signal

4. Calculate and plot averaged periodogram of original and filtered
signal (try out different combinations of N and L)

oo
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