

Digital Signal Processing 2 Les 5: Detectieproblemen

Prof. dr. ir. Toon van Waterschoot

Faculteit Industriële Ingenieurswetenschappen **ESAT** – Departement Elektrotechniek KU Leuven, Belgium

Digital Signal Processing 2: Vakinhoud

- Les 1: Eindige woordlengte
- Les 2: Lineaire predictie
- Les 3: Optimale filtering
- Les 4: Adaptieve filtering
- Les 5: Detectieproblemen
- Les 6: Spectrale signaalanalyse
- Les 7: Schattingsproblemen 1
- Les 8: Schattingsproblemen 2
- Les 9: Sigma-Deltamodulatie
- Les 10: Transformatiecodering

Signal detection

introduction, binary hypothesis testing, ...

- Example: detection of sinusoid in noise energy detection, periodogram-based detection, ...
- **Detection performance analysis** confusion matrix, receiver operating characteristic (ROC), ...

- Signal detection
- Example: detection of sinusoid in noise
 - Research paper:

H. C. So *et al.*, "Comparison of various periodograms for sinusoid detection and frequency estimation," *IEEE Trans. Aerospace Electron. Syst.*, vol. 35, no. 3, July 1999, pp. 945-952.

(Section I–II)

Matlab code:

DSP2_sinusoid_detection.m (available on Toledo)

Detection performance analysis

Research paper:

T. Fawcett, "An introduction to ROC analysis," *Patt. Recognition Lett.*, vol. 27, 2006, pp. 861-874.

KU LEU

(Section 1–3)

- Signal detection introduction, binary hypothesis testing, ...
- Example: detection of sinusoid in noise energy detection, periodogram-based detection, ...
- **Detection performance analysis** confusion matrix, receiver operating characteristic (ROC), ...

Signal detection

- Introduction
- Binary hypothesis testing

Introduction

- Signal detection
 - problem of determining whether or not signal is active
 - trivial problem in noiseless case (amplitude $\neq 0$?)
 - challenging problem in noisy case (e.g. sinusoid in noise)

Detection ≠ Estimation !!!

- estimation: real-valued result
- detection: binary result

KU LEUVEN

Signal detection

- Introduction
- Binary hypothesis testing

Binary hypothesis testing (1)

- Two hypotheses
 - null hypothesis \mathcal{H}_0 : signal is not active
 - alternative hypothesis \mathcal{H}_1 : signal is active

Two detection outcomes

- null hypothesis is rejected (signal is detected)
- null hypothesis is not rejected (no signal is detected)

Binary hypothesis testing (2)

- Observed signal
 - observation: data vector of length N

$$\mathbf{y} = \begin{bmatrix} y(0) & y(1) & \dots & y(N-1) \end{bmatrix}^T$$

- Signal features
 - signal properties that are most characteristic of signal (and can hence be used to detect the signal)

$$\mathbf{f} = \begin{bmatrix} f_0 & f_1 & \dots & f_{P-1} \end{bmatrix}^T$$

- Detection function
 - function that "summarizes" feature values to single value

$$\delta(\mathbf{f}) \in \mathbb{R}$$

Binary hypothesis testing (3)

- Binary hypothesis test
 - single-feature test: comparison of detection function to threshold

 $\delta(\mathbf{f}) \geq T \Rightarrow \text{reject } \mathcal{H}_0$

 multiple-feature test: logical conjunction of single-feature tests, using multiple feature vectors, detection functions and thresholds

Binary hypothesis testing (3)

Discriminative power

- how easy is it to discriminate \mathcal{H}_1 from \mathcal{H}_0 based on detection function value $\delta(\mathbf{f})$?
- denote detection function value
 - by $\delta(\mathbf{f},\mathcal{H}_1)$ for observation with active signal
 - by $\delta(\mathbf{f},\mathcal{H}_0)$ for observation without active signal
- optimal threshold value *T* should be in between both detection function values:

 $\delta(\mathbf{f}, \mathcal{H}_1) \ge T > \delta(\mathbf{f}, \mathcal{H}_0)$

- discriminative power of detection algorithm
 - is determined by choice of signal features and detection function
 - can be quantified by means of ratio

$$rac{\delta({f f},{\cal H}_1)}{\delta({f f},{\cal H}_0)}$$

Signal detection

introduction, binary hypothesis testing, ...

- Example: detection of sinusoid in noise energy detection, periodogram-based detection, ...
- **Detection performance analysis** confusion matrix, receiver operating characteristic (ROC), ...

Example: detection of sinusoid in noise (1)

Problem statement

- observation consisting of two fragments (active/inactive):

$$\begin{cases} y(n) = \sin(\omega n) + e(n), & n = 0, \dots, N/2 - 1\\ y(n) = e(n), & n = N/2, \dots, N - 1 \end{cases}$$

 Gaussian white noise

$$e(n) \sim \mathcal{N}(0, \sigma_e^2)$$

- SNR = 0 dB
- N = 1000

$$-\omega$$
 = 0.05 rad/s

KU LEUVEN

Example: detection of sinusoid in noise (2)

Method 1: energy detection

- features: squared signal values

$$\mathbf{f} = \begin{bmatrix} y^2(0) & y^2(1) & \dots & y^2(N-1) \end{bmatrix}^T$$

detection function: mean of feature values

$$\delta(\mathbf{f}) = \frac{1}{N} \sum_{p=0}^{N-1} f_p = \frac{1}{N} \sum_{n=0}^{N-1} y^2(n) = \frac{1}{N} \mathbf{y}^T \mathbf{y}$$

hypothesis test: $\delta(\mathbf{f}) ≥ T \Rightarrow$ reject \mathcal{H}_0 (e.g. threshold *T* = noise power) | *T*

Example: detection of sinusoid in noise (3)

• Method 1: energy detection

Example: detection of sinusoid in noise (4)

- Method 2: periodogram-based energy detection
 - features: squared DFT magnitude values (= periodogram)

$$\mathbf{f} = \begin{bmatrix} |Y(0)|^2 & |Y(1)|^2 & \dots & |Y(N-1)|^2 \end{bmatrix}^T$$

with Y = DFT(y)

detection function: maximum of feature values (why?)

$$\delta(\mathbf{f}) = \max(\mathbf{f}) = \max_{k} |Y(k)|^2$$

hypothesis test: $\delta(\mathbf{f}) \ge T \Rightarrow \text{reject } \mathcal{H}_0$ (e.g. threshold *T* = noise power) | *T*

$$\xrightarrow{\mathbf{y}} |\mathrm{DFT}(\cdot)|^2 \xrightarrow{\mathbf{f}} \max \xrightarrow{\delta(\mathbf{f})} \overbrace{\delta(\mathbf{f}) \stackrel{\geq}{\leq} T} \xrightarrow{\mathsf{reject}} \mathcal{H}_0$$

Example: detection of sinusoid in noise (5)

Method 2: periodogram-based energy detection

Example: detection of sinusoid in noise (6)

- Method 3: periodogram-based energy detection with known sinusoid frequency
 - features: squared DFT magnitude values (= periodogram)

$$\mathbf{f} = \begin{bmatrix} |Y(0)|^2 & |Y(1)|^2 & \dots & |Y(N-1)|^2 \end{bmatrix}^T$$

with Y = DFT(y)

- detection function: feature value at DFT bin k = 1

$$\frac{\omega(N/2)}{2\pi}$$

$$\delta(\mathbf{f}) = |Y(k)|^2$$

- hypothesis test: $\delta(\mathbf{f}) \geq T \Rightarrow \text{reject } \mathcal{H}_0$

$$\xrightarrow{\mathbf{y}} |\mathrm{DFT}(\cdot)|^2 \xrightarrow{\mathbf{f}} k = \left\lfloor \frac{\omega(N/2)}{2\pi} \right\rceil \xrightarrow{\delta(\mathbf{f})} \delta(\mathbf{f}) \gtrless T \xrightarrow{\mathsf{reject}} \operatorname{accept}^{\mathsf{reject}} \mathcal{H}_0$$

Example: detection of sinusoid in noise (7)

 Method 3: periodogram-based energy detection with known sinusoid frequency – detection function

Signal detection

introduction, binary hypothesis testing, ...

- Example: detection of sinusoid in noise energy detection, periodogram-based detection, ...
- **Detection performance analysis** confusion matrix, receiver operating characteristic (ROC), ...

Detection performance analysis

- Performance measures
- Confusion matrix
- Receiver operating characteristic

Performance measures (1)

- Data realizations:
 - suppose we have R realizations of the observation vector y

$$\mathbf{y}^{(1)},\ldots,\mathbf{y}^{(R)}$$

- each realization either corresponds to:
 - active signal (positive realization), or
 - no active signal (negative realization)
- number of positive and negative realizations:

 $R_P + R_N = R$

- performance analysis should be based on "balanced" set of data realizations, i.e. $R_P \approx R_N$

KU LEUVEN

Performance measures (2)

Detection outcomes

- true positive: \mathcal{H}_0 rejected for positive realization
- false positive: \mathcal{H}_0 rejected for negative realization
- true negative: \mathcal{H}_0 not rejected for negative realization
- false negative: \mathcal{H}_0 not rejected for positive realization

Counting detection outcomes

- R_{TP} : number of true positives
- R_{FP} : number of false positives
- R_{TN} : number of true negatives
- R_{FN} : number of false negatives

Performance measures (3)

• Performance measures:

probability of detection = true positives rate = recall

KUL

$$P_D = P(\mathcal{H}_1; \mathcal{H}_1) = \frac{R_{TP}}{R_P}$$

probability of false alarm = false positives rate

$$P_{FA} = P(\mathcal{H}_{1}; \mathcal{H}_{0}) = \frac{R_{FP}}{R_{N}}$$

$$- \text{ precision} = \frac{R_{TP}}{R_{TP} + R_{FP}}$$

$$- \text{ accuracy} = \frac{R_{TP} + R_{TN}}{R}$$

$$- \text{ F-measure} = \frac{2}{1/\text{precision} + 1/\text{recall}}$$

Detection performance analysis

- Performance measures
- Confusion matrix
- Receiver operating characteristic

Confusion matrix

Confusion matrix

2 x 2 representation of counted detection outcomes

KU LEUVEN

Detection performance analysis

- Performance measures
- Confusion matrix
- Receiver operating characteristic

Receiver operating characteristic (1)

- Receiver operating characteristic (ROC)
 - 2-dimensional representation of (R_{FP}, R_{TP}) -curve obtained for different threshold values in range $T \in [0, \infty]$

Receiver operating characteristic (2)

- ROC interpretation:
 - ROC curve = on or below diagonal line from (0,0) to (1,1):
 useless detector (not better than random decision)
 - ROC curve = line segments from (0,0) and (1,1) to (0,1):
 ideal detector
 - area under ROC curve = number to compare different ROC
 curves

KU