KU LEUVEN

Digital Signal Processing 2 **Les 4: Adaptieve filtering**

Prof. dr. ir. Toon van Waterschoot

Faculteit Industriële Ingenieurswetenschappen **ESAT** – Departement Elektrotechniek KU Leuven, Belgium

Digital Signal Processing 2: Vakinhoud

- Les 1: Eindige woordlengte
- Les 2: Lineaire predictie
- Les 3: Optimale filtering
- Les 4: Adaptieve filtering
- Les 5: Detectieproblemen
- Les 6: Spectrale signaalanalyse
- Les 7: Schattingsproblemen 1
- Les 8: Schattingsproblemen 2
- Les 9: Sigma-Deltamodulatie
- Les 10: Transformatiecodering

- **Linear adaptive filtering algorithms** RLS, steepest descent, LMS, …
- **Case study: Adaptive notch filters for acoustic feedback control**

acoustic feedback problem, acoustic feedback control, adaptive notch filters, ANF-LMS algorithm …

KU

- **Linear adaptive filtering algorithms**
	- S. V. Vaseghi, *Multimedia Signal Processing*
	- Ch. 9, "Adaptive Filters: Kalman, RLS, LMS"
		- Section 9.3, "Sample Adaptive Filters"
		- Section 9.4, "RLS Adaptive Filters"
		- Section 9.5, "The Steepest-Descent Method"
		- Section 9.6, "LMS Filter"
- **Case study: Adaptive notch filters for acoustic feedback control**

Course notes:

T. van Waterschoot, "Adaptive notch filters for acoustic feedback control", *Course Notes Digital Signal Processing-2*, KU Leuven, Faculty of Engineering Technology, Dept. ESAT, Oct. 2014.

KU LEUVEN

- **Linear adaptive filtering algorithms** RLS, steepest descent, LMS, …
- **Case study: Adaptive notch filters for acoustic feedback control**

acoustic feedback problem, acoustic feedback control, adaptive notch filters, ANF-LMS algorithm …

KU I

Linear adaptive filtering algorithms

- Adaptive filtering concept
- Recursive Least Squares (RLS) adaptive filters

KU I

- Steepest Descent method
- Least Mean Squares (LMS) adaptive filters
- Computational complexity

Adaptive filtering concept (1) α comparison minimization of the incremental change in the filter change in the filter coefficients which which in the filter coefficients which we have α

Adaptive filtering concept (2)

- **Adaptive filtering concept**
	- $-$ adaptive filter $=$ time-varying optimal filter
	- filter coefficients are updated whenever new input/desired signal sample (or block of samples) is provided
	- general updating scheme:

optimal filter (time t) = optimal filter (time t-1) + adaptation gain * error

KU I

- **Design choices:**
	- FIR/IIR structure
	- filter order
	- cost function
	- adaptation algorithm

Linear adaptive filtering algorithms

- Adaptive filtering concept
- Recursive Least Squares (RLS) adaptive filters

KU I

1 S I

- Steepest Descent method
- Least Mean Squares (LMS) adaptive filters
- Computational complexity

Recursive Least Squares (RLS) algorithm (1)

- **Online Wiener/LS filter implementation**
	- starting point: Wiener filter or least squares estimate

$$
\mathbf{w} = \begin{bmatrix} w_0 \\ w_1 \\ \vdots \\ w_{p-1} \end{bmatrix}, \ \mathbf{Y} = \begin{bmatrix} \mathbf{y}^T(0) \\ \mathbf{y}^T(1) \\ \vdots \\ \mathbf{y}^T(N-1) \end{bmatrix}, \ \mathbf{y}(m) = \begin{bmatrix} y(m) \\ y(m-1) \\ \vdots \\ y(m-P+1) \end{bmatrix}, \ \mathbf{x} = \begin{bmatrix} x(0) \\ x(1) \\ \vdots \\ x(N-1) \end{bmatrix}
$$

- how can we implement this filter in online applications?
	- at time *m*, only data $\{x(0), y(0), \ldots, x(m), y(m)\}$ are available

KU I

• optimal filter coefficients **w** might be time-varying

Recursive Least Squares (RLS) algorithm (2)

- **Recursive time update of correlation matrix/vector**
	- consider the LS estimate at time m : $\mathbf{w}(m) = \mathbf{\hat{R}_{yy}^{-1}}(m)\mathbf{\hat{r}_{yx}}(m)$
	- the correlation matrix/vector can be computed recursively as $\mathbf{\hat{R}_{yy}}(m) = \sum_{\mathbf{y}} \mathbf{y}(n) \mathbf{y}^T(n) = \mathbf{\hat{R}_{yy}}(m-1) + \mathbf{y}(m) \mathbf{y}^T(m)$ *m* $n=0$ $\mathbf{\hat{r}_{yx}}(m) = \sum_{\mathbf{y}} \mathbf{y}(n)x(n) = \mathbf{\hat{r}_{yx}}(m-1) + \mathbf{y}(m)x(m)$ *m* $n=0$
	- if optimal filter *w* is time-varying, use "forgetting" mechanism:

$$
\hat{\mathbf{R}}_{\mathbf{y}\mathbf{y}}(m) = \sum_{n=0}^{m} \lambda^{m-n} \mathbf{y}(n) \mathbf{y}^T(n) = \lambda \hat{\mathbf{R}}_{\mathbf{y}\mathbf{y}}(m-1) + \mathbf{y}(m) \mathbf{y}^T(m)
$$

$$
\hat{\mathbf{r}}_{\mathbf{y}\mathbf{x}}(m) = \sum_{n=0}^{m} \lambda^{m-n} \mathbf{y}(n) x(n) = \lambda \hat{\mathbf{r}}_{\mathbf{y}\mathbf{x}}(m-1) + \mathbf{y}(m) x(m)
$$

Recursive Least Squares (RLS) algorithm (3)

- **Matrix inversion lemma (MIL)**
	- since autocorrelation matrix needs to be inverted at each time *m*, recursive computation of inverse matrix is desired
	- define inverse autocorrelation matrix $\mathbf{\Phi}_{\mathbf{y}\mathbf{y}}(m) = \mathbf{\hat{R}}_{\mathbf{y}\mathbf{y}}^{-1}(m)$
	- Matrix inversion lemma:

$$
\hat{\mathbf{R}}_{\mathbf{y}\mathbf{y}}(m) = \lambda \hat{\mathbf{R}}_{\mathbf{y}\mathbf{y}}(m-1) + \mathbf{y}(m)\mathbf{y}^T(m)
$$

$$
\updownarrow
$$

$$
\Phi_{\mathbf{y}\mathbf{y}}(m) = \lambda^{-1} \Phi_{\mathbf{y}\mathbf{y}}(m-1) - \lambda^{-1} \mathbf{k}(m)\mathbf{y}^T(m)\Phi_{\mathbf{y}\mathbf{y}}(m-1)
$$

KU I

with gain vector

$$
\mathbf{k}(m) = \frac{\lambda^{-1} \mathbf{\Phi}_{\mathbf{y}\mathbf{y}}(m-1)\mathbf{y}(m)}{1 + \lambda^{-1} \mathbf{y}^T(m) \mathbf{\Phi}_{\mathbf{y}\mathbf{y}}(m-1)\mathbf{y}(m)}
$$

Recursive Least Squares (RLS) algorithm (4)

- **Recursive time update of filter coefficients**
	- plug recursive update for $\mathbf{\hat{r}_{yx}}(m)$ into optimal filter solution:

$$
\mathbf{w}(m) = \mathbf{\Phi}_{\mathbf{y}\mathbf{y}}(m)[\lambda \mathbf{r}_{\mathbf{y}\mathbf{x}}(m-1) + \mathbf{y}(m)x(m)]
$$

- replacing inverse autocorrelation matrix by

$$
\mathbf{\Phi}_{\mathbf{y}\mathbf{y}}(m) = \lambda^{-1} \mathbf{\Phi}_{\mathbf{y}\mathbf{y}}(m-1) - \lambda^{-1} \mathbf{k}(m) \mathbf{y}^T(m) \mathbf{\Phi}_{\mathbf{y}\mathbf{y}}(m-1)
$$

results in a recursive time update of filter coefficients

$$
\mathbf{w}(m) = \underbrace{\mathbf{\Phi}_{\mathbf{y}\mathbf{y}}(m-1)\mathbf{r}_{\mathbf{y}\mathbf{x}}(m-1)}_{\mathbf{w}(m-1)} + \mathbf{k}(m) \underbrace{[x(m) - \mathbf{y}^T(m)\mathbf{w}(m-1)]}_{e(m)}
$$

Recursive Least Squares (RLS) algorithm (5)

- **RLS algorithm**
	- $-$ input: $y(m), x(m)$
	- ${\bf -}$ initialization: ${\bf \Phi}_{\bm{y}\bm{y}}(0) = \delta {\bf I}, {\bf w}(0) = 0$
	- $-$ recursion (for $m = 1, 2, \ldots$):
		- adaptation gain: $\mathbf{k}(m) = \frac{\lambda^{-1}\boldsymbol{\Phi_{yy}}(m-1)\mathbf{y}(m)}{1+\lambda^{-1}\boldsymbol{\Phi_{yy}}(m-1)\mathbf{x}(m-1)}$ $1 + \lambda^{-1} \mathbf{y}^T(m) \mathbf{\Phi}_{\mathbf{y}\mathbf{y}}(m-1)\mathbf{y}(m)$
		- error signal: $e(m) = x(m) \mathbf{w}^T(m-1)\mathbf{y}(m)$
		- filter coefficient update: $\mathbf{w}(m) = \mathbf{w}(m-1) + \mathbf{k}(m)e(m)$
		- inverse input autocorrelation matrix update

$$
\mathbf{\Phi}_{\mathbf{y}\mathbf{y}}(m) = \lambda^{-1} \mathbf{\Phi}_{\mathbf{y}\mathbf{y}}(m-1) - \lambda^{-1} \mathbf{k}(m) \mathbf{y}^T(m) \mathbf{\Phi}_{\mathbf{y}\mathbf{y}}(m-1)
$$

Linear adaptive filtering algorithms

- Adaptive filtering concept
- Recursive Least Squares (RLS) adaptive filters

KU I

- Steepest Descent method
- Least Mean Squares (LMS) adaptive filters
- Computational complexity

Steepest Descent method (1)

- **Steepest Descent (SD) method**
	- RLS algorithm
		- recursive implementation of LS optimal filter
		- calcuation of RLS adaptation gain is computationally expensive
	- Steepest Descent method
		- iterative implementation of Wiener filter
		- autocorrelation matrix inversion avoided to reduce complexity
	- $-$ idea: step-wise minimization of MSE cost function

Steepest Descent method (2)

- **Steepest Descent (SD) method**
	- idea: step-wise minimization of MSE cost function
	- optimal step = "steepest descent" direction = negative gradient direction

$$
\mathbf{w}(m+1) = \mathbf{w}(m) + \mu \left[-\frac{\partial E\{e^{2}(m)\}}{\partial \mathbf{w}(m)} \right]
$$

$$
= \mathbf{w}(m) + \mu \left[\mathbf{r}_{\mathbf{y}\mathbf{x}} - \mathbf{R}_{\mathbf{y}\mathbf{y}} \mathbf{w}(m) \right]
$$

KU

Steepest Descent method (3)

- **SD convergence & step size**
	- consider SD filter error vector w.r.t. optimal Wiener filter

$$
\tilde{\mathbf{w}}(m) = \mathbf{w}(m) - \mathbf{w}_0
$$

- SD method produces filter estimates resulting in error update

$$
\tilde{\mathbf{w}}(m+1) = [\mathbf{I} - \mu \mathbf{R}_{\mathbf{y}\mathbf{y}}] \tilde{\mathbf{w}}(m)
$$

- SD convergence properties thus depend on
	- step size μ
	- input autocorrelation matrix $\, {\bf R_{yy}}$

Steepest Descent method (4)

• **SD convergence & step size**

- consider eigenvalue decomposition of autocorrelation matrix

$$
\mathbf{R}_{\mathbf{y}\mathbf{y}} = \mathbf{Q}\mathbf{\Lambda}\mathbf{Q}^T
$$

$$
\Lambda = \mathrm{diag}\{\lambda_{\max},\ldots,\lambda_{\min}\}
$$

 $-$ stable adaptation (i.e. $\mathbf{\tilde{w}}(m+1) < \mathbf{\tilde{w}}(m)$) is guaranteed if

$$
0<\mu<\frac{2}{\lambda_{\max}}
$$

- convergence rate is inversely proportional to

eigenvalue spread =
$$
\frac{\lambda_{\text{max}}}{\lambda_{\text{min}}}
$$

- *note:* eigenvalue spread = measure for magnitude of power spectrum variations **KU LEUVEN**

Linear adaptive filtering algorithms

- Adaptive filtering concept
- Recursive Least Squares (RLS) adaptive filters

KU I

- Steepest Descent method
- Least Mean Squares (LMS) adaptive filters
- Computational complexity

Least Mean Squares (LMS) algorithm (1)

- **LMS filter**
	- Steepest Descent method
		- iterative implementation of Wiener filter
		- correlation matrix/vector assumed to be known a priori
	- Least Mean Squares (LMS) algorithm
		- recursive implementation of Steepest Descent method
		- gradient of instantaneous squared error i.o. mean squared error

KU L

$$
\mathbf{w}(m+1) = \mathbf{w}(m) + \mu \left[-\frac{\partial e^2(m)}{\partial \mathbf{w}(m)} \right]
$$

=
$$
\mathbf{w}(m) + \mu \left[\mathbf{y}(m)e(m) \right]
$$

surprisingly simple algorithm!

Least Mean Squares (LMS) algorithm (2)

- **LMS variations**
	- Leaky LMS algorithm
		- leakage factor *α* < 1 results in improved stability and tracking

$$
\mathbf{w}(m+1) = \alpha \mathbf{w}(m) + \mu \left[\mathbf{y}(m)e(m) \right]
$$

- Normalized LMS (NLMS) algorithm
	- step size normalization results in power-independent adaptation
	- small regularization parameter *δ* avoids division by zero

$$
\mathbf{w}(m+1) = \mathbf{w}(m) + \frac{\mu}{\mathbf{y}^T(m)\mathbf{y}(m) + \delta} \left[\mathbf{y}(m)e(m)\right]
$$

• input power = $\mathbf{y}^T(m)\mathbf{y}(m) = ||\mathbf{y}(m)||_2^2 = \sum_{k=0}^{P-1} y^2(m-k)$
KU LEUVEN

Linear adaptive filtering algorithms

- Adaptive filtering concept
- Recursive Least Squares (RLS) adaptive filters

KU I

- Steepest Descent method
- Least Mean Squares (LMS) adaptive filters
- Computational complexity

Computational complexity

- **Linear adaptive filtering algorithms** RLS, steepest descent, LMS, …
- **Case study: Adaptive notch filters for acoustic feedback control**
	- acoustic feedback problem, acoustic feedback control, adaptive notch filters, ANF-LMS algorithm …

Case study: Adaptive notch filters

KU LEUVEN

- Introduction
	- sound reinforcement
	- acoustic feedback
- Acoustic feedback control
- Adaptive notch filtering
- ANF-LMS algorithm

Introduction (1): Sound reinforcement (1)

 S microphone signals

Goal: to deliver sufficiently high sound level and best possible sound quality to audience

KUL

Introduction (2): Sound reinforcement (2)

• We will restrict ourselves to the **single-channel case** (= single loudspeaker, single microphone)

KU L 1 S I

Introduction (3): Sound reinforcement (3)

- **Assumptions:**
	- loudspeaker has linear & flat response
	- microphone has linear & flat response
	- forward path (amp) has linear & flat response
	- acoustic feedback path has linear response
- **But:** acoustic feedback path has **non-flat** response

KU I

Introduction (4): Sound reinforcement (4)

• Acoustic feedback path response: example room (36 m3)

KU

Introduction (5): Acoustic feedback (1)

• **"Desired" system transfer function:**

$$
\frac{U(z)}{V(z)}=G(z)
$$

• **Closed-loop system transfer function:**

$$
\frac{U(z)}{V(z)} = \frac{G(z)}{1 - G(z)F(z)}
$$

- spectral coloration
- acoustic echoes
- risk of instability
- **"Loop response":**
	- $-$ loop gain $|G(e^{i\omega})F(e^{i\omega})|$
	- $-$ loop phase $\angle G(e^{i\omega})F(e^{i\omega})$

KU I

Introduction (6): Acoustic feedback (2)

• **Nyquist stability criterion:**

– if there exists a radial frequency *ω* for which

 $\int |G(e^{i\omega})F(e^{i\omega})| \geq 1$ $\angle G(e^{i\omega})F(e^{i\omega}) = n2\pi, n \in \mathbb{Z}$

then the closed-loop system is **unstable**

 $-$ if the unstable system is excited at the critical frequency ω , then an oscillation at this frequency will occur **= howling**

• **Maximum stable gain (MSG):**

- maximum forward path gain before instability
- primarily determined by peaks in frequency magnitude $|F(e^{i\omega})|$ of the room

KUL

– 2-3 dB gain margin is desirable to avoid **ringing**

Introduction (7): Acoustic feedback (3)

• **Example of closed-loop system instability:**

 $|$ $|G(e^{i\omega})F(e^{i\omega})|$ $|G(e^{i\omega})F(e^{i\omega})|$ $|G(\omega)|$ **|G**

Case study: Adaptive notch filters

KU LEUVEN

- Introduction
- Acoustic feedback control
- Adaptive notch filtering
- ANF-LMS algorithm

Acoustic feedback control (1)

- **Goal of acoustic feedback control**
	- = to solve the acoustic feedback problem
	- either completely (to remove acoustic coupling)
	- or partially (to remove howling from loudspeaker signal)
- **Manual acoustic feedback control:**
	- proper microphone/loudspeaker selection & positioning
	- a priori room equalization using 1/3 octave graphic EQ filters
	- ad-hoc discrete room modes suppression using notch filters
- **Automatic acoustic feedback control:**
	- no intervention of sound engineer required
	- different approaches can be classified into four categories

KU LEUVER

Acoustic feedback control (2)

- 1. phase modulation (PM) methods
	- smoothing of "loop gain" (= closed-loop magnitude response)
	- phase/frequency/delay modulation, frequency shifting
	- well suited for reverberation enhancement systems (low gain)
- 2. spatial filtering methods
	- (adaptive) microphone beamforming for reducing direct coupling
- 3. gain reduction methods
	- (frequency-dependent) gain reduction after howling detection
	- most popular method for sound reinforcement applications
- 4. room modeling methods
	- adaptive inverse filtering (AIF): adaptive equalization of acoustic feedback path response
	- adaptive feedback cancellation (AFC): adaptive prediction and subtraction of feedback (≠howling) component in microphone signal

KU LEUVEN

Case study: Adaptive notch filters

KU LEUVEN

- Introduction
- Acoustic feedback control
- Adaptive notch filtering
- ANF-LMS algorithm

Adaptive notch filtering (1)

- **Gain reduction methods**
	- automation of the actions a sound engineer would undertake
- **Classification of gain reduction methods**
	- automatic gain control (full-band gain reduction)
	- automatic equalization (1/3 octave bandstop filters)
	- notch filtering (NF) (1/10-1/60 octave filters)

Adaptive notch filtering (2) 0.4

- **Adaptive notch filter**
	- − filter that automatically finds & removes narrowband signals
	- − based on constrained second-order pole-zero filter structure
	- **constraint 1:** poles and zeros lie on same radial lines −1

Adaptive notch filtering (3) *i*=1 11 **a**2*n***₁** α **²***y*****

- ANF transfer function
- cascade of constrained second-order pole-zero filters: **ANF transfer function**
 ACCORDO of constrained accord arder note zero filteral

$$
H(z^{-1}) = \frac{\prod_{i=1}^{2n} (1 - z_i z^{-1})}{\prod_{i=1}^{2n} (1 - \alpha z_i z^{-1})}
$$
 where $0 \le \alpha < 1$
=
$$
\frac{1 + a_1 z^{-1} + a_2 z^{-2} + \dots + a_{2n} z^{-2n}}{1 + \alpha a_1 z^{-1} + \alpha^2 a_2 z^{-2} + \dots + \alpha^{2n} a_{2n} z^{-2n}}
$$

- **constraint 2:** zeros are forced to lie on unit circle $\frac{1}{2}$ $\frac{1}{2}$

necessary condition to meet this constraint is the numerator constraint is that the numerator coecients of the

$$
H(z^{-1}) = \frac{1 + a_1 z^{-1} + \dots + a_n z^{-n} + \dots + a_1 z^{-2n+1} + z^{-2n}}{1 + \rho a_1 z^{-1} + \dots + \rho^n a_n z^{-n} + \dots + \rho^{2n-1} a_1 z^{-2n+1} + \rho^{2n} z^{-2n}}
$$

$$
= \frac{A(z^{-1})}{A(\rho z^{-1})}
$$

- "pole radius" *ρ* = "debiasing parameter" *α a z imposition* μ = debiasing parameter α **imposition in the second by the second by**

Adaptive notch filtering (4) \mathbb{R} and debiasing parameter \mathbb{R} has been replaced by the "pole radius \mathbb{R} ".

• ANF coefficient estimation Estimating the filter coecients. Including an adaptive notch filter in the **formation particle in the 1-microphone 1-microphone 1-microphone in the 1-microphone setup results in the setup resu**

frequencies. As for the bandwidth of the notches, the pole radius ⇢ plays a

- coefficient vector ϵ coofficient vector $\theta = [a_1, a_2, \ldots, a_n]^T$ $\frac{1}{2}$ $\frac{1}{2}$ - coefficient vector $\theta = [a_1 \ a_2 \ ... \ a_n]^T$
- least squares (LS) cost function: obtained by minimizing the cost square \overline{V}

$$
\hat{\theta} = \arg \min_{\theta} V_N(\theta)
$$

=
$$
\arg \min_{\theta} \sum_{t=1}^N e^2(\theta, t)
$$

=
$$
\arg \min_{\theta} \sum_{t=1}^N \left[\frac{A(\theta, z^{-1})}{A(\theta, \rho z^{-1})} y(t) \right]^2
$$

Case study: Adaptive notch filters

KU LEUVEN

- Introduction
- Acoustic feedback control
- Adaptive notch filtering
- ANF-LMS algorithm

ANF-LMS algorithm (1) for comparison with adaptive feedback cancellation techniques. Their imple-

- **2nd order constrained ANF implementation**
	- Direct-Form II implementation of second-order ANF

$$
x(t) = y(t) + \rho(t)a(t-1)x(t-1) - \rho^{2}(t)x(t-2)
$$

\n
$$
e(t) = x(t) - a(t-1)x(t-1) + x(t-2)
$$

ANF-LMS algorithm (2) $\sum_{i=1}^n$

• **ANF filter coefficient update**

$$
\frac{x(t)}{e(t)} = y(t) + \rho(t)a(t-1)x(t-1) - \rho^{2}(t)x(t-2)
$$

$$
\frac{e(t)}{e(t)} = x(t) - a(t-1)x(t-1) + x(t-2)
$$

- adaptation strategy: only FIR portion of filter is adapted, coefficients are then copied to IIR portion of filter addpicuoti strategy. Only rain portion of filter to duapted,
anofficiente are then conject to IID nortion of filter coomercing are and reopied to my portion or men
- **2** 1 *nd* order Angler Coefficient update: update can thus be calculated as \overline{a}

$$
a_{upd}(t) = \arg \min_{a} (e^{2}(t))
$$

=
$$
\arg \left(\frac{d}{da}e^{2}(t) = 0\right)
$$

=
$$
\arg \left(2e(t)\frac{d}{da}e(t) = 0\right)
$$

=
$$
\arg \left(2e(t)(-x(t-1)) = 0\right)
$$
 KULER

(17)
17) - John Barnett, amerikanischer Politiker
17) - John Barnett, amerikanischer Politiker

ANF-LMS algorithm (2) where the last equality follows from $\mathcal{L}(\Omega)$. In this way we obtain an LMS filter and LMS filters from $\mathcal{L}(\Omega)$. update which completes the filter implementation given by (12)-(13):

• 2nd order ANF-LMS algorithm

Algorithm 1 : 2*nd* order ANF-LMS algorithm

Input step size μ , initial pole radius $\rho(0)$, final pole radius $\rho(\infty)$, exponential decay time constant λ , input data $\{y(t)\}_{t=1}^N$, initial conditions $x(0), x(-1), a(0)$ **Output** 2^{nd} order ANF parameter $\{a(t)\}_{t=1}^{N}$ 1: for $t = 1, \ldots, N$ do 2: $\rho(t) = \lambda \rho(t-1) + (1-\lambda) \rho(\infty)$ 3: $x(t) = y(t) + \rho(t)a(t-1)x(t-1) - \rho^{2}(t)x(t-2)$ 4: $e(t) = x(t) - a(t-1)x(t-1) + x(t-2)$ 5: $a(t) = a(t-1) + 2\mu e(t)x(t-1)$ 6: end for

we give the di⊄erence equations describing and 8th order ANF with LMS update: and 8th order ANF with LMS update:

KU I

^x(*t*) = *^y*(*t*) + ⇢*a*1(*^t* 1)*x*(*^t* 1) ⇢²*a*2(*^t* 1)*x*(*^t* 2) + ⇢³*a*3(*^t* 1)*x*(*^t* 3)