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Linear adaptive filtering algorithms 
•  Adaptive filtering concept 
•  Recursive Least Squares (RLS) adaptive filters 
•  Steepest Descent method 
•  Least Mean Squares (LMS) adaptive filters 
•  Computational complexity 



Adaptive filtering concept (1) 
•  FIR adaptive filter 
－  signal flow graph 

308 ADAPTIVE FILTERS: KALMAN, RLS, LMS

trajectory of non-stationary signals. These are essential characteristics in applications such as echo
cancellation, adaptive delay estimation, low-delay predictive coding, noise cancellation, radar, and
channel equalisation in mobile telephony, where low delay and fast tracking of time-varying processes
and time-varying environments are important objectives.

Figure 9.4 illustrates the configuration of a least square error adaptive filter. At each sampling
time, an adaptation algorithm adjusts the P filter coefficients w!m" = #w0!m"$w1!m"$ % % % $wP−1!m"&
to minimise the difference between the filter output and a desired, or target, signal. An adaptive filter
starts at some initial state, then the filter coefficients are periodically updated, usually on a sample-by-
sample basis, to minimise the difference between the filter output and a desired or target signal. The
adaptation formula has the general recursive form:

Next parameter estimate = Previous parameter estimate +Update !error"

where the update term is a function of the error signal. In adaptive filtering a number of decisions
have to be made concerning the filter model and the adaptation algorithm:

(a) Filter type: This can be a finite impulse response (FIR) filter, or an infinite impulse response (IIR)
filter. In this chapter we only consider FIR filters, since they have good stability and convergence
properties and for these reasons are the type often used in practice.

(b) Filter order: Often the correct number of filter taps is unknown. The filter order is either set using
a priori knowledge of the input and the desired signals, or it may be obtained by monitoring the
changes in the error signal as a function of the increasing filter order.

(c) Adaptation algorithm: The two commonly used adaptation algorithms are the recursive least square
(RLS) error and the least mean square error (LMS) methods. The factors that influence the choice
of the adaptation algorithm are the computational complexity, the speed of convergence to optimal
operating conditions, the minimum error at convergence, the numerical stability and the robustness
of the algorithm to initial parameter states.

(d) Optimisation criteria: In this chapter two optimality criteria are used. One is based on the minimi-
sation of the mean of squared error (used in LMS, RLS and Kalman filter) and the other is based
on constrained minimisation of the norm of the incremental change in the filter coefficients which
results in normalised LMS (NLMS). In Chapter 12, adaptive filters with non-linear objective
functions are considered for independent component analysis.

Adaptation
algorithm

“Desired” or “target”
signal x(m)

Input y(m)
z–1 . . .

y(m – 1) y(m – 2) y (m – P – 1)

x(m)ˆ

w0 w1

Transversal filter

e(m)

z–1 z–1

w2 wP – 1

Figure 9.4 Illustration of the configuration of an adaptive filter.

this part is different 
from Wiener filter 



Adaptive filtering concept (2) 
•  Adaptive filtering concept 
－  adaptive filter = time-varying optimal filter 
－  filter coefficients are updated whenever new input/desired 

signal sample (or block of samples) is provided 
－  general updating scheme:  

optimal filter (time t) = optimal filter (time t-1) + adaptation gain * error  

•  Design choices: 
－  FIR/IIR structure 
－  filter order 
－  cost function 
－  adaptation algorithm 
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•  Recursive Least Squares (RLS) adaptive filters 
•  Steepest Descent method 
•  Least Mean Squares (LMS) adaptive filters 
•  Computational complexity 



Recursive Least Squares (RLS) algorithm (1) 
•  Online Wiener/LS filter implementation 
－  starting point: Wiener filter or least squares estimate 
 
 
 

－  how can we implement this filter in online applications? 
•  at time m, only data {x(0),y(0),…,x(m),y(m)} are available 
•  optimal filter coefficients w might be time-varying 
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Recursive Least Squares (RLS) algorithm (2) 
•  Recursive time update of correlation matrix/vector 
－  consider the LS estimate at time m: 
－  the correlation matrix/vector can be computed recursively as 

－  if optimal filter w is time-varying, use “forgetting” mechanism: 
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yy

(m)r̂
yx

(m)

R̂yy(m) =
mX

n=0

y(n)yT (n) = R̂yy(m� 1) + y(m)yT (m)

r̂
yx

(m) =
mX

n=0

y(n)x(n) = r̂
yx

(m� 1) + y(m)x(m)

r̂
yx

(m) =
mX

n=0

�

m�ny(n)x(n) = �r̂
yx

(m� 1) + y(m)x(m)

R̂yy(m) =
mX

n=0

�m�ny(n)yT (n) = �R̂yy(m� 1) + y(m)yT (m)

0 ⌧ � < 1



Recursive Least Squares (RLS) algorithm (3) 
•  Matrix inversion lemma (MIL) 
－  since autocorrelation matrix needs to be inverted at each 

time m, recursive computation of inverse matrix is desired 
－  define inverse autocorrelation matrix  
－  Matrix inversion lemma: 

    with gain vector 
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Recursive Least Squares (RLS) algorithm (4) 
•  Recursive time update of filter coefficients 
－  plug recursive update for               into optimal filter solution: 

－  replacing inverse autocorrelation matrix by 

     results in a recursive time update of filter coefficients 
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Recursive Least Squares (RLS) algorithm (5) 
•  RLS algorithm 
－  input:  
－  initialization: 
－  recursion (for m = 1,2,…): 

•  adaptation gain: 

•  error signal: 

•  filter coefficient update: 

•  inverse input autocorrelation matrix update 

y(m), x(m)

�yy(0) = �I,w(0) = 0

k(m) =
��1�yy(m� 1)y(m)

1 + ��1yT (m)�yy(m� 1)y(m)

e(m) = x(m)�wT (m� 1)y(m)

w(m) = w(m� 1) + k(m)e(m)
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•  Adaptive filtering concept 
•  Recursive Least Squares (RLS) adaptive filters 
•  Steepest Descent method 
•  Least Mean Squares (LMS) adaptive filters 
•  Computational complexity 



Steepest Descent method (1) 
•  Steepest Descent (SD) method 
－  RLS algorithm 

•  recursive implementation of LS optimal filter 
•  calcuation of RLS adaptation gain is computationally expensive 

－  Steepest Descent method 
•  iterative implementation of Wiener filter 
•  autocorrelation matrix inversion avoided to reduce complexity 

－  idea: step-wise minimization of MSE cost function 314 ADAPTIVE FILTERS: KALMAN, RLS, LMS
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Figure 9.6 Illustration of gradient search of the mean square error surface for the minimum error point.

where ! is the adaptation step size.
From Equation (9.62), the gradient (derivative) of the mean square error function is given by

"E #e2$m%&

"w$m%
= −2ryx +2Ryyw$m% (9.94)

Substituting Equation (9.94) in Equation (9.93) yields

w$m+1% = w$m%+!
[
ryx −Ryyw$m%

]
(9.95)

where the factor of 2 in Equation (9.94) has been absorbed in the adaptation step size !. Let wo denote
the optimal LSE filter coefficient vector; we define a filter coefficients error vector w̃$m% as

w̃$m% = w$m%−wo (9.96)

For a stationary process, the optimal LSE filter wo is obtained from the Wiener filter,
Equation (5.10), as

wo = R−1
yy ryx (9.97)

Note from a comparison of Equations (9.94) and (9.96) that the recursive version does not need the
computation of the inverse of the autocorrelation matrix.

Subtracting wo from both sides of Equation (9.95), and then substituting Ryywo for ryx, and using
Equation (9.96) yields

w̃$m+1% =
[
I −!Ryy

]
w̃$m% (9.98)

It is desirable that the filter error vector w̃$m% vanishes as rapidly as possible. The parameter !,
the adaptation step size, controls the stability and the rate of convergence of the adaptive filter. Too
large a value for ! causes instability; too small a value gives a low convergence rate. The stability
of the parameter estimation method depends on the choice of the adaptation parameter ! and the
autocorrelation matrix.



Steepest Descent method (2) 
•  Steepest Descent (SD) method 
－  idea: step-wise minimization of MSE cost function 
－  optimal step = “steepest descent” direction                                       

                   = negative gradient direction  
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where ! is the adaptation step size.
From Equation (9.62), the gradient (derivative) of the mean square error function is given by
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where the factor of 2 in Equation (9.94) has been absorbed in the adaptation step size !. Let wo denote
the optimal LSE filter coefficient vector; we define a filter coefficients error vector w̃$m% as

w̃$m% = w$m%−wo (9.96)

For a stationary process, the optimal LSE filter wo is obtained from the Wiener filter,
Equation (5.10), as

wo = R−1
yy ryx (9.97)

Note from a comparison of Equations (9.94) and (9.96) that the recursive version does not need the
computation of the inverse of the autocorrelation matrix.

Subtracting wo from both sides of Equation (9.95), and then substituting Ryywo for ryx, and using
Equation (9.96) yields

w̃$m+1% =
[
I −!Ryy

]
w̃$m% (9.98)

It is desirable that the filter error vector w̃$m% vanishes as rapidly as possible. The parameter !,
the adaptation step size, controls the stability and the rate of convergence of the adaptive filter. Too
large a value for ! causes instability; too small a value gives a low convergence rate. The stability
of the parameter estimation method depends on the choice of the adaptation parameter ! and the
autocorrelation matrix.
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Steepest Descent method (3) 
•  SD convergence & step size  
－  consider SD filter error vector w.r.t. optimal Wiener filter 

－  SD method produces filter estimates resulting in error update 

－  SD convergence properties thus depend on 
•  step size  
•  input autocorrelation matrix  

w̃(m) = w(m)�w0

w̃(m+ 1) = [I� µRyy]w̃(m)

Ryy

µ



Steepest Descent method (4) 
•  SD convergence & step size  
－  consider eigenvalue decomposition of autocorrelation matrix 

－  stable adaptation (i.e.                                 ) is guaranteed if 

－  convergence rate is inversely proportional to 

－  note: eigenvalue spread = measure for magnitude of power 
spectrum variations  
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Least Mean Squares (LMS) algorithm (1) 
•  LMS filter 
－  Steepest Descent method 

•  iterative implementation of Wiener filter 
•  correlation matrix/vector assumed to be known a priori 

－  Least Mean Squares (LMS) algorithm 
•  recursive implementation of Steepest Descent method 
•  gradient of instantaneous squared error i.o. mean squared error 

•  surprisingly simple algorithm!  

w(m+ 1) = w(m) + µ
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Least Mean Squares (LMS) algorithm (2) 
•  LMS variations 
－  Leaky LMS algorithm 

•  leakage factor α < 1 results in improved stability and tracking  

－  Normalized LMS (NLMS) algorithm 
•  step size normalization results in power-independent adaptation 
•  small regularization parameter δ avoids division by zero 

•  input power =  

w(m+ 1) = ↵w(m) + µ [y(m)e(m)]

w(m+ 1) = w(m) +
µ

yT (m)y(m) + �
[y(m)e(m)]

yT (m)y(m) = ky(m)k22 =
P�1X

k=0

y2(m� k)



Linear adaptive filtering algorithms 
•  Adaptive filtering concept 
•  Recursive Least Squares (RLS) adaptive filters 
•  Steepest Descent method 
•  Least Mean Squares (LMS) adaptive filters 
•  Computational complexity 



Computational complexity 

RLS LMS Leaky LMS NLMS 
number of 
multiplications O(P 2) 4P + 23P + 1 4P + 1
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Case study: Adaptive notch filters 
•  Introduction 
－  sound reinforcement 
－  acoustic feedback 

•  Acoustic feedback control 
•  Adaptive notch filtering 
•  ANF-LMS algorithm 
 



Introduction (1): Sound reinforcement (1) 

Goal: to deliver sufficiently high sound level 
          and best possible sound quality to audience   

•  sound sources 
•  microphones 
•  mixer & amp 
•  loudspeakers 
•  monitors 
•  room 
•  audience 



•  We will restrict ourselves to the single-channel case          
(= single loudspeaker, single microphone) 
 
 
 
 
 
 
 

 

Introduction (2): Sound reinforcement (2) 



Introduction (3): Sound reinforcement (3) 
•  Assumptions: 

–  loudspeaker has linear & flat response 
–  microphone has linear & flat response 
–  forward path (amp) has linear & flat response 
–  acoustic feedback path has linear response 

•  But: acoustic feedback path has non-flat response 



•  Acoustic feedback path response: example room (36 m3) 
          impulse response            frequency magnitude response 

Introduction (4): Sound reinforcement (4) 

direct 
coupling 

early 
reflections 

diffuse 
sound field 

 peaks/dips = anti-nodes/nodes of standing waves 
peaks ~10 dB above average, and separated by ~10 Hz 



•  “Desired” system transfer function: 

•  Closed-loop system transfer function: 

–  spectral coloration 
–  acoustic echoes 
–  risk of instability 

•  “Loop response”: 
–  loop gain 
–  loop phase   

  
  

Introduction (5): Acoustic feedback (1) 

U(z)

V (z)
= G(z)

U(z)

V (z)
=

G(z)

1�G(z)F (z)

|G(ei!)F (ei!)|
\G(ei!)F (ei!)



•  Nyquist stability criterion: 
–  if there exists a radial frequency ω for which 

  
 then the closed-loop system is unstable 

–  if the unstable system is excited at the critical frequency ω, 
then an oscillation at this frequency will occur = howling 

•  Maximum stable gain (MSG): 
–  maximum forward path gain before instability 
–  primarily determined by peaks in frequency magnitude 

response               of the room 
–  2-3 dB gain margin is desirable to avoid ringing 

Introduction (6): Acoustic feedback (2) 

⇢
|G(ei!)F (ei!)| � 1
\G(ei!)F (ei!) = n2⇡, n 2 Z

|F (ei!)|



•  Example of closed-loop system instability: 
     loop gain                      loudspeaker spectrogram 

Introduction (7): Acoustic feedback (3) 

|G(ei!)F (ei!)| U(ei!, t)



Case study: Adaptive notch filters 
•  Introduction 
•  Acoustic feedback control 
•  Adaptive notch filtering 
•  ANF-LMS algorithm 
 



Acoustic feedback control (1) 
•  Goal of acoustic feedback control 

 = to solve the acoustic feedback problem 
–  either completely (to remove acoustic coupling) 
–  or partially (to remove howling from loudspeaker signal) 

•  Manual acoustic feedback control: 
–  proper microphone/loudspeaker selection & positioning 
–  a priori room equalization using 1/3 octave graphic EQ filters 
–  ad-hoc discrete room modes suppression using notch filters 

•  Automatic acoustic feedback control: 
–  no intervention of sound engineer required 
–  different approaches can be classified into four categories 



Acoustic feedback control (2) 
1.  phase modulation (PM) methods 

–  smoothing of “loop gain” (= closed-loop magnitude response) 
–  phase/frequency/delay modulation, frequency shifting 
–  well suited for reverberation enhancement systems (low gain) 

2.  spatial filtering methods 
–  (adaptive) microphone beamforming for reducing direct coupling 

3.  gain reduction methods 
–  (frequency-dependent) gain reduction after howling detection 
–  most popular method for sound reinforcement applications 

4.  room modeling methods 
–  adaptive inverse filtering (AIF): adaptive equalization of acoustic 

feedback path response 
–  adaptive feedback cancellation (AFC): adaptive prediction and 

subtraction of feedback (≠howling) component in microphone signal 



Case study: Adaptive notch filters 
•  Introduction 
•  Acoustic feedback control 
•  Adaptive notch filtering 
•  ANF-LMS algorithm 
 



Adaptive notch filtering (1) 
•  Gain reduction methods 

–  automation of the actions a sound engineer would undertake 
•  Classification of gain reduction methods 

–  automatic gain control (full-band gain reduction) 
–  automatic equalization (1/3 octave bandstop filters) 
–  notch filtering (NF) (1/10-1/60 octave filters) 

gain margin

G’(z)F(z)

f
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door notch filter

Notch−filterkarakteristiek

gain margin

G(z)F(z)

H(z)

f
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Notch filter characteristic

Increase of stable gain due to notch filter
G F

x(t)

v(t)y(t)e(t)

u(t)

Notch Filter



Adaptive notch filtering (2) 
•  Adaptive notch filter 

–  filter that automatically finds & removes narrowband signals 
–  based on constrained second-order pole-zero filter structure 
–  constraint 1: poles and zeros lie on same radial lines 

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Real Part

Im
a
g
in

a
ry

 P
a
rt

α r
i
 

r
i
 

Bode Diagram

Frequency (rad/sec)

P
h
a
se

 (
d
e
g
)

M
a
g
n
itu

d
e
 (

d
B

)

−15

−10

−5

0

5

10
3

10
4

−60

−30

0

30

60

Figure 3: Pole-zero map (left) and Bode plot (right) of an 2nd order ANF with
zeros zi = rie

±j!i and poles pi = ↵rie
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3.1 Adaptive Notch Filter (ANF)

3.1.1 Overview of the literature

The ANF filter structure. The Adaptive Notch Filter (ANF) was first
conceived by Rao et al. [15] as a means for retrieving sinusoids or narrow-band
signals buried in broadband noise. Their idea was based on Widrow’s Adaptive
Line Enhancer (ALE, Widrow et al. [16]), implemented as an adaptive FIR
filter preceded by a decorrelating delay. This implementation was copied by
Bustamante et al. [7] for suppressing acoustic feedback in hearing aids but
provided a smaller increase in stable gain than desired.

Rao et al. believed though that a constrained IIR filter would suit the
problem better than an unconstrained FIR filter. Their constraint was that
poles and zeros should lie on the same radial lines, both inside the unit circle,
with the zeros lying between the poles and the unit circle, see Figure 3 on
the left. Intuitively this constraint can be understood as follows: a zero zi =
rie

j!i close to the unit circle (0 ⌧ ri  1) attenuates all frequencies in the
neighbourhood of !i. A pole pi = ↵rie

j!i lying on the same radial line causes a
resonance at frequency !i, thereby narrowing the bandwidth of the notch. This
is probably the reason Bustamante et al. [7] found that the FIR adaptive notch
filter (i.e. without poles) produced very broad notches.

Rao et al. called ↵ the debiasing parameter, since for ↵ ! 1 the “ideal”
unbiased notch filter is approached. “Ideal” here means that the frequency re-
sponse magnitude equals 0 dB at all frequencies, except at the notch frequencies
where it equals �1 dB. Taking into account the proposed filter structure, the
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Figure 3: Pole-zero map (left) and Bode plot (right) of an 2nd order ANF with
zeros zi = rie

±j!i and poles pi = ↵rie
±j!i

3.1 Adaptive Notch Filter (ANF)

3.1.1 Overview of the literature

The ANF filter structure. The Adaptive Notch Filter (ANF) was first
conceived by Rao et al. [15] as a means for retrieving sinusoids or narrow-band
signals buried in broadband noise. Their idea was based on Widrow’s Adaptive
Line Enhancer (ALE, Widrow et al. [16]), implemented as an adaptive FIR
filter preceded by a decorrelating delay. This implementation was copied by
Bustamante et al. [7] for suppressing acoustic feedback in hearing aids but
provided a smaller increase in stable gain than desired.

Rao et al. believed though that a constrained IIR filter would suit the
problem better than an unconstrained FIR filter. Their constraint was that
poles and zeros should lie on the same radial lines, both inside the unit circle,
with the zeros lying between the poles and the unit circle, see Figure 3 on
the left. Intuitively this constraint can be understood as follows: a zero zi =
rie

j!i close to the unit circle (0 ⌧ ri  1) attenuates all frequencies in the
neighbourhood of !i. A pole pi = ↵rie

j!i lying on the same radial line causes a
resonance at frequency !i, thereby narrowing the bandwidth of the notch. This
is probably the reason Bustamante et al. [7] found that the FIR adaptive notch
filter (i.e. without poles) produced very broad notches.

Rao et al. called ↵ the debiasing parameter, since for ↵ ! 1 the “ideal”
unbiased notch filter is approached. “Ideal” here means that the frequency re-
sponse magnitude equals 0 dB at all frequencies, except at the notch frequencies
where it equals �1 dB. Taking into account the proposed filter structure, the
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Adaptive notch filtering (3) 
•  ANF transfer function 

–  cascade of constrained second-order pole-zero filters: 

 
–  constraint 2: zeros are forced to lie on unit circle 

–  “pole radius” ρ = “debiasing parameter” α 

ANF transfer function in the z-domain looks like

H(z�1) =

2nY

i=1

(1� ziz
�1)

2nY

i=1

(1� ↵ziz
�1)

where 0  ↵ < 1 (3)

=
1 + a1z

�1 + a2z
�2 + ...+ a2nz

�2n

1 + ↵a1z�1 + ↵2a2z�2 + ...+ ↵2na2nz�2n
(4)

=
A(z�1)

A(↵z�1)
(5)

With this structure a filter of order 2n has 2n unknown parameters and may
suppress at most n narrow-band components. A Bode plot of a 2nd order ANF
is shown on the right in Figure 3.

Nehorai [17] proposed an adaptive notch filter with half as much parameters
by imposing a second constraint : the zeros zi should lie on the unit circle. A
necessary condition to meet this constraint is that the numerator coe�cients
have a mirror symmetric form (i.e. when zi is a zero, 1

zi
will also be a zero). A

2nth order ANF with n unknown parameters thus has a transfer function

H(z�1) =
1 + a1z

�1 + ...+ anz
�n + ...+ a1z

�2n+1 + z�2n

1 + ⇢a1z�1 + ...+ ⇢nanz�n + ...+ ⇢2n�1a1z�2n+1 + ⇢2nz�2n
(6)

=
A(z�1)

A(⇢z�1)
(7)

where the debiasing parameter ↵ has been replaced by the “pole radius ⇢”.

Estimating the filter coe�cients. Including an adaptive notch filter in the
forward path of the 1-microphone/1-loudspeaker setup results in the scheme
depicted in Figure 4. An estimate of parameter vector ✓ = [a1 a2 ... an]T is
obtained by minimizing the cost function VN (✓):

✓̂ = argmin
✓

VN (✓) (8)

= argmin
✓

NX

t=1

e2(✓, t) (9)

= argmin
✓

NX

t=1


A(✓, z�1)

A(✓, ⇢z�1)
y(t)

�2
(10)

When the ANF order is chosen approximately twice the number of expected
narrow-band components, minimizing the square of the filter output e(✓, t) with
the filter stucture as defined in (6) results in a filter with n notches at the desired
frequencies. As for the bandwidth of the notches, the pole radius ⇢ plays a
crucial role: the closer ⇢ is to 1, the narrower the notches will be. Choosing ⇢
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Adaptive notch filtering (4) 
•  ANF coefficient estimation 

–  coefficient vector  
–  least squares (LS) cost function: 
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ANF-LMS algorithm (1) 
•  2nd order constrained ANF implementation 

–  Direct-Form II implementation of second-order ANF 

 

 

Figure 4: Including an adaptive notch filter in the 1-microphone/1-loudspeaker
setup

too close to 1 can result in an unstable filter though. For optimal convergence a
time-varying pole radius ⇢(t) could be applied, starting at a smaller value ⇢(0)
(i.e. wider notches) and exponentially growing towards a final value ⇢(1):

⇢(t+ 1) = �⇢(t) + (1� �)⇢(1) (11)

where � corresponds to an exponential decay time constant [17]. For more
details about the ANF’s convergence and stability properties we refer to [18]
and [19].

3.1.2 The ANF-LMS algorithm

A 2nd order ANF of the type described above was applied to hearing aids
by Kates [20], only to detect oscillations due to acoustic feedback. Later on,
Maxwell et al. [21] employed Kates’ algorithm to suppress feedback oscillations
for comparison with adaptive feedback cancellation techniques. Their imple-
mentation in Direct Form II follows directly from the ANF tranfer function
(6):

x(t) = y(t) + ⇢(t)a(t� 1)x(t� 1)� ⇢2(t)x(t� 2) (12)

e(t) = x(t)� a(t� 1)x(t� 1) + x(t� 2) (13)

where y(t) and e(t) represent the ANF input resp. output as before, x(t) is
introduced as an auxiliary variable and some signs have been changed. This
2nd order ANF has only one parameter a(t) that appears in both transfer func-
tion numerator and denominator. Instead of solving the nonlinear minimization
problem (10) the filter coe�cient update is done in an approximate way as sug-
gested by Travassos-Romano et al. [19]. Only the FIR portion of the filter is
adapted to track the frequency of the narrow-band components and the coef-
ficients are then copied to the IIR portion of the filter. The filter coe�cient
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ANF-LMS algorithm (2) 
•  ANF filter coefficient update 

 

 

–  adaptation strategy: only FIR portion of filter is adapted, 
coefficients are then copied to IIR portion of filter 

–  LMS filter coefficient update: 
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update can thus be calculated as follows:

aupd(t) = argmin
a

(e2(t)) (14)

= arg

✓
d

da
e2(t) = 0

◆
(15)

= arg

✓
2e(t)

d

da
e(t) = 0

◆
(16)

= arg
⇣
2e(t)(�x(t� 1)) = 0

⌘
(17)

where the last equality follows from (13). In this way we obtain an LMS filter
update which completes the filter implementation given by (12)-(13):

a(t) = a(t� 1) + 2µe(t)x(t� 1) (18)

The 2nd order ANF-LMS algorithm is summarized in Algorithm 1.

Algorithm 1 : 2nd order ANF-LMS algorithm

Input step size µ, initial pole radius ⇢(0), final pole radius ⇢(1), expo-
nential decay time constant �, input data {y(t)}Nt=1, initial conditions
x(0), x(�1), a(0)

Output 2nd order ANF parameter {a(t)}Nt=1

1: for t = 1, . . . , N do
2: ⇢(t) = �⇢(t� 1) + (1� �)⇢(1)
3: x(t) = y(t) + ⇢(t)a(t� 1)x(t� 1)� ⇢2(t)x(t� 2)
4: e(t) = x(t)� a(t� 1)x(t� 1) + x(t� 2)
5: a(t) = a(t� 1) + 2µe(t)x(t� 1)
6: end for

Higher order ANF’s can be implemented in a similar way. As an example
we give the di↵erence equations describing an 8th order ANF with LMS update:

x(t) = y(t) + ⇢a1(t� 1)x(t� 1)� ⇢2a2(t� 1)x(t� 2) + ⇢3a3(t� 1)x(t� 3)

� ⇢4a4(t� 1)x(t� 4) + ⇢5a3(t� 1)x(t� 5)� ⇢6a2(t� 1)x(t� 6)

+ ⇢7a1(t� 1)x(t� 7)� ⇢8x(t� 8)

e(t) = x(t)� a1(t� 1)x(t� 1) + a2(t� 1)x(t� 2)� a3(t� 1)x(t� 3)

+ a4(t� 1)x(t� 4)� a3(t� 1)x(t� 5) + a2(t� 1)x(t� 6)

� a1(t� 1)x(t� 7) + x(t� 8)

✓̂(t) =

2

664

a1(t)
a2(t)
a3(t)
a4(t)

3

775 =

2

664

a1(t� 1)
a2(t� 1)
a3(t� 1)
a4(t� 1)

3

775+ 2µe(t)

2

664

x(t� 1) + x(t� 7)
�x(t� 2)� x(t� 6)
x(t� 3) + x(t� 5)

�x(t� 4)

3

775

(19)
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ANF-LMS algorithm (2) 
•  2nd order ANF-LMS algorithm 

update can thus be calculated as follows:

aupd(t) = argmin
a

(e2(t)) (14)

= arg

✓
d

da
e2(t) = 0

◆
(15)

= arg

✓
2e(t)

d

da
e(t) = 0

◆
(16)

= arg
⇣
2e(t)(�x(t� 1)) = 0

⌘
(17)

where the last equality follows from (13). In this way we obtain an LMS filter
update which completes the filter implementation given by (12)-(13):

a(t) = a(t� 1) + 2µe(t)x(t� 1) (18)

The 2nd order ANF-LMS algorithm is summarized in Algorithm 1.

Algorithm 1 : 2nd order ANF-LMS algorithm

Input step size µ, initial pole radius ⇢(0), final pole radius ⇢(1), expo-
nential decay time constant �, input data {y(t)}Nt=1, initial conditions
x(0), x(�1), a(0)

Output 2nd order ANF parameter {a(t)}Nt=1

1: for t = 1, . . . , N do
2: ⇢(t) = �⇢(t� 1) + (1� �)⇢(1)
3: x(t) = y(t) + ⇢(t)a(t� 1)x(t� 1)� ⇢2(t)x(t� 2)
4: e(t) = x(t)� a(t� 1)x(t� 1) + x(t� 2)
5: a(t) = a(t� 1) + 2µe(t)x(t� 1)
6: end for

Higher order ANF’s can be implemented in a similar way. As an example
we give the di↵erence equations describing an 8th order ANF with LMS update:

x(t) = y(t) + ⇢a1(t� 1)x(t� 1)� ⇢2a2(t� 1)x(t� 2) + ⇢3a3(t� 1)x(t� 3)

� ⇢4a4(t� 1)x(t� 4) + ⇢5a3(t� 1)x(t� 5)� ⇢6a2(t� 1)x(t� 6)

+ ⇢7a1(t� 1)x(t� 7)� ⇢8x(t� 8)

e(t) = x(t)� a1(t� 1)x(t� 1) + a2(t� 1)x(t� 2)� a3(t� 1)x(t� 3)

+ a4(t� 1)x(t� 4)� a3(t� 1)x(t� 5) + a2(t� 1)x(t� 6)

� a1(t� 1)x(t� 7) + x(t� 8)

✓̂(t) =

2

664

a1(t)
a2(t)
a3(t)
a4(t)

3

775 =

2

664

a1(t� 1)
a2(t� 1)
a3(t� 1)
a4(t� 1)

3

775+ 2µe(t)

2

664

x(t� 1) + x(t� 7)
�x(t� 2)� x(t� 6)
x(t� 3) + x(t� 5)

�x(t� 4)

3

775

(19)

8


