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Les 3: Optimale filtering

* Introduction

 Least-squares and Wiener filter estimation
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geometrical interpretation, performance analysis, frequency
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* Wiener filtering applications

noise reduction, time alignment of multi-channel/-sensor signals,
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Les 3: Optimale filtering

* Introduction

 Least-squares and Wiener filter estimation
S. V. Vaseghi, Multimedia Signal Processing

— Ch. 8, “Least Square Error, Wiener-Kolmogorov Filters”
« Section 8.1, “LSE Estimation: Wiener-Kolmogorov Filter”
« Section 8.2, “Block-Data Formulation of the WF”
« Section 8.3, “Interpretation of WF as Projection in Vector Space”
« Section 8.4, “Analysis of the Least Mean Square Error Signal”
« Section 8.5, “Formulation of WFs in the Frequency Domain”
* Wiener filtering applications
« Section 8.6, “Some Applications of Wiener Filters”

* Wiener filter implementation

« Section 8.7, “Implementation of Wiener Filters” m
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Introduction

* Optimal filters
— data-dependent filters

— designed such as to minimize “difference” between filter
output signal and desired or target signal

— many applications: linear prediction, echo cancellation, signal
restoration, channel equalization, radar, system identification

* Wiener filters
— filters for signal prediction or signal/parameter estimation

— optimal for removing effect of linear distortion (filtering) and/or
additive noise from observed data

— many flavors: FIR/IIR, single-/multi-channel, time-/frequency-
domain, fixed/block-adaptive/adaptive
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Least-squares and Wiener filter estimation

* Stochastic Wiener filter estimation

* Deterministic least squares estimation
 Computational aspects

* Geometrical interpretation

* Performance analysis

* Frequency domain formulation

ﬂ



Stochastic Wiener filter estimation (1)

* FIR Wiener filter:
— signal flow graph

Input y (m) 4 y(m-1) y(m—2) y(m—-P-1)

FIR Wiener Filter

\ J
x(m) \

x(m) m

Desired signal



Stochastic Wiener filter estimation (2)

* FIR Wiener filter:
— Input signal = noisy or distorted observed data

T
y=[y(0) y(1) ... y(N-1)]
— desired signal = (unknown) clean data
x=[z(0) z(1) ... z(N-1]"
— Wiener filter coefficients
T
W = [’LU() wp ... wp_l}

— Input-output relation

P—1
z(m) = Z wry(m — k) =wly
k=0

ﬂ



Stochastic Wiener filter estimation (3)

* Wiener filter error signal:
— error signal = desired signal — Wiener filter output signal

e(m) =z(m) — &(m) =x(m) —w'ly

— stacking error signal samples for m = 0,..., N — 1 yields
- e(0) 1 [ =0 | [ w(0) y(=1) ... yd-=P)] [ wo
e(1) _ z(1) | | w(@) y(0) ... y2-P)| | w
N=D|  |leN=D] lyN=1) yN=2) ... y(N=P)] |wrs

e=x—YWwW

— initial conditions y(1 — P),...,y(—1) are known or assumed
zero (cf. Les 2: autocorrelation vs. covariance method)

ﬂ



Stochastic Wiener filter estimation (4)

* Number of solutions
— Wiener filter is optimal filter in sense of minimizing mean

squared error signal
ex~x(=>x~Yw NII%lIIP
<>
P

— 3 different cases, depending on no. observations N and
Wiener filter length P (cf. Les 2: linear systems of equations)

- square system, unique solution with e = 0
- underdetermined system, oo solutions with e = 0
- overdetermined system, no solutions with e = 0,

unique solution with “minimal” e £ 0 m



Stochastic Wiener filter estimation (5)

* Wiener filter estimation:
— mean squared error (MSE) criterion

E{e*(m)} = E{(z(m)-w'y)"}
— B{a2(m)} - 2w  E{yx(m)} + w' E{yy”}w
= 722(0) — 2w Ty + W Ry, w

— autocorrelation matrix & cross-correlation vector definition:

I B e |

Ryy = : : . : = E{yy"}
oy (P—1) 1y (P—2) ... 1u(0)
7y0(0) Tye(l) ... re(P—1)]" = E{yz(m))




Stochastic Wiener filter estimation (6)

* Wiener filter estimation:
— mean squared error (MSE) criterion

2 T T
E{e“(m)} =rz2(0) — 2w ryx + W' Ryyw
= quadratic function of Wiener filter coefficient vector w

— quadratic function (with full-rank Hessian matrix R, ) is
always convex and has unique minimum

— example: £
P =2




Stochastic Wiener filter estimation (7)

e Wiener filter estimation:

— minimum MSE solution is obtained at point with zero gradient
— gradient of MSE criterion w.r.t. Wiener filter coefficient vector

8, 0
a—wE{e2(m)} = Sw [rm (0) — ZWTI'yX + WTRyyW}

— example: #1)
P =2




Stochastic Wiener filter estimation (8)

* Wiener filter estimation:
— minimum MSE solution is obtained at point with zero gradient

0
a—WE{eZ(m)} =0=ryx = Ryyw

— minimum MSE Wiener filter estimate:

wp_1 | Tyy(P—1) 7yy(P—2) ... ryy(0) Ty (P —1)]




Stochastic Wiener filter estimation (9)

* FIR Wiener filter:
— signal flow graph (revisited)

Input y (m) 4 y(m-1) y(m—2) y(m—-P-1)

FIR Wiener Filter
I \ J

Desired signal

x(m) v

x(m) m




Least-squares and Wiener filter estimation

* Stochastic Wiener filter estimation

* Deterministic least squares estimation
 Computational aspects

* Geometrical interpretation

* Performance analysis

* Frequency domain formulation
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Deterministic least squares estimation (1)

* Wiener filter input/output relation
— set of N linear equations

z(0) y(0) y(=1) ... y@A-=-P)] [ wo
(1) _ y(1) y(0) ... y2-P)| | w
V-] V-1 yV=2) . gV = P)] [wp

X =YW

— Wiener filter error signal vector

e = X—X

= X— YW m



Deterministic least squares estimation (2)

* Least squares estimation

— sum of squared errors criterion
N-1

e’(m) = ele

= (x-Yw)l(x—Yw)
= xIx—x'Yw—-w!lYIx+w!YYWwW
— difference with MSE criterion: expectation replaced by time
averaging
« mean squared error: E{eQ(m)} = stochastic criterion

N-1
. sum of squared errors: E eQ(m) = deterministic criterion



Deterministic least squares estimation (3)

* Least squares estimation

— minimum sum of squared errors is obtained at point with zero
gradient

del'e

= 2Y'x+2Y'Yw=0= (Y'Y)w =Y x

OwW
— least squares filter estimate:

— if desired/observed signals are correlation-ergodic processes,
least squares estimate converges to Wiener filter estimate

lim [w=(Y'Y)""Y'x] = Ryyrxy

N — o0 m



Least-squares and Wiener filter estimation

* Stochastic Wiener filter estimation

* Deterministic least squares estimation
* Computational aspects

* Geometrical interpretation

* Performance analysis

* Frequency domain formulation
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Computational aspects (1)

Calculation of correlation functions

Wiener filter estimate requires autocorrelation matrix Ry,
and cross-correlation vector ryx

correlation functions are obtained by averaging over
ensemble of different realizations of desired/observed signals

for correlation-ergodic processes, ensemble averaging can
be replaced by time averaging so only 1 realization is needed

(k) = % 3 ymym + 8

Ty (K Zy r(m+ k)

choice of N. compromlse between accuracy and
(cf. Les 2: LP modeling of speech)




Computational aspects (2)

e (Calculation of correlation functions

— calculation of cross-correlation vector ryy is not
straightforward if desired signal x is unknown

— two possible solutions:
* use prior knowledge about x to estimate I'yx

* rewrite cross-correlation function in terms of other correlation
functions (see later: Wiener filtering applications)

ﬂ



Computational aspects (3)

 Computation of least squares filter estimate
— least squares filter estimate: w = (YY) 'Y 'x
— direct matrix inversion has complexity O(P?)

— QR decomposition of data matrix (Q = orthonormal,
R = upper—trlangular)

ol -

allows to compute least squares fllter estlmate from a square,
triangular system (allowing back-substitution)

Rw = xq
— QR-based computation of LS estimate has complexity O (P?)
(exploiting Toeplitz structure of data matrix)




Least-squares and Wiener filter estimation

* Stochastic Wiener filter estimation

* Deterministic least squares estimation
 Computational aspects

* (Geometrical interpretation

* Performance analysis

* Frequency domain formulation
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Geometrical interpretation (1)

* Wiener filter input/output relation
— input/output relation X = Yw can also be written as

- 2(0) ] - y(0) ] - y(—1) y(1 - P)
(1) y(1) y(0) y(2 - P)
: = Wo : + w1 : +...+twp_1
(N —1)] y(N —1)] y(N —2)] y(N - P)

X = woyo + W1y1+ ... T wp_1yp-1

— Wiener filter output signal = linear weighted combination of
input signal vectors

(cf. Les 2: two interpretations of matrix-vector product)
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Geometrical interpretation (2)

* Vector space interpretation

— set of P input signal vectors {¥o0,y1,--.,Yp—1} forms P-
dimensional subspace of N-dimensional vector space

— Wiener filter output signal lies in this subspace, since

X = woyo + wW1y1+ ... T wp_1yp-1
- subspace = entire space, including desired signal
=>X=X, e=0

- subspace C entire space,

output signal is orthogonal projection of desired signal vector
onto subspace

= X#*xX, e#0 m



Geometrical interpretation (3)

* Vector space interpretation
— example: N =3, P =2

Error

N __— _ signal |e(m)

z(m) y(m) Clean e=le(m—-1) Noisy
t(m—1) = wo |g(m—1) A signal e(m—-2) ym) | signal
z(m — 2 y(m — 2 x(m) y,=|y(m-1)

( ) :y( )Z X =|x(m-1) ’ y(m-2)

g(m —1) x(m—2)
+ w1 Q(m — 2)
g(m —3) ]

Noisy
signal

y(m-1)
Y1=|y(m-2)
y(m—3)

KU LEUVEN



Least-squares and Wiener filter estimation

* Stochastic Wiener filter estimation

* Deterministic least squares estimation
 Computational aspects

* Geometrical interpretation

* Performance analysis

* Frequency domain formulation
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Performance analysis (1)

e Variance of Wiener filter estimate

— substituting Wiener filter esimate w = R;;ryx into MSE
criterion gives error variance

E{e*(m)} = 122(0) — W' ryx = r22(0) — Wl Ryyw

— variance of Wiener filter output signal is
A2 _..T
E{z*(m)} = w Ryyw
SO error variance can be written as

E{e*(m)} = E{z*(m)} — E{2°(m)}

e e



Performance analysis (2)

* Variance of Wiener filter estimate
— in general, observed data can be decomposed as

y(m) = zc(m) +n(m)

« z.(m) = part of observation correlated with desired signal z(m)
. n(m)=random noise signal

— Wiener filter error signal can be decomposed accordingly

e(m) = (x(m) — z_: Wi T (m — k)) — E_: wrn(m — k)

\ - 7\
" "~

Ex (m) €n (m)

— error variance is then -




Least-squares and Wiener filter estimation

* Stochastic Wiener filter estimation

* Deterministic least squares estimation
 Computational aspects

* Geometrical interpretation

* Performance analysis

* Frequency domain formulation
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Frequency domain formulation (1)

* Frequency domain MSE criterion
— frequency domain Wiener filter output and error signal:

X(f)=W(HY(f)
E(f) = X(f) = X(f) = X(f) =W ()Y (f)
— frequency domain MSE criterion:
E{|E(f)} = E{(X(f) =W(HY ()" (X(f) =W(HY ()}

— Parseval's theorem: sum of squared errors in time domain =
integral of squared error power spectrum
N—1 fs/2

S 2(m) = / B(f)Pdf

m=0 —fs/2




Frequency domain formulation (2)

* Frequency domain Wiener filter estimate
— minimum MSE solution is obtained at point with zero gradient

OE{|E(f)

o o
ow(f) 2W(f)Pyy(f) —2Pxy(f) =0

— power and cross-power spectra:
Pyy(f) = E{Y ()Y (f)}
Pxy (f) = E{X(/)Y"(f)}

— frequency domain Wiener filter estimate:

_ WSS



Les 7: Optimale filtering

* Introduction

 Least-squares and Wiener filter estimation

stochastic & deterministic estimation, computational aspects,
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* Wiener filtering applications
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filter order, filter-bank implementation, ... m



Wiener filtering applications

* Application 1: noise reduction
* Application 2: channel equalization

* Application 3: time-alignment of multi-channel/-sensor
signals
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Application 1: noise reduction (1)

e Time domain Wiener filter
— data model

y(m) = z(m) + n(m)

— main assumption: desired signal and noise are uncorrelated
— time domain Wiener filter:

Ryy — Rxx + Rnn

I'xy = I'xx

— noise correlation matrix is estimated during noise-only periods,

which requires signal activity detection m



Application 1: noise reduction (2)

* Frequency domain Wiener filter
— data model

Y(f) = X(f)+ N(f)

— main assumption: desired signal and noise are uncorrelated
— frequency domain Wiener filter:

_ Pxx(f)
W) = Pxx(f)+ Pnn(f)

— interpretation in terms of signal-to-noise ratio (SNR):

| MRS e



Application 1: noise reduction (3)

* Frequency domain Wiener filter

SNR(f
W(f) = oo i)
SNR(f)+1
— Wiener filter attenuates each frequency component in
proportion to SNR

A A

w2
—
(0]
=
o
j
|
|
[S—
=)

ignal and noise magnitude spectrum
Wiener filter magnitude W(f) °

Si
A 4
=)
o

Frequency (f)



Application 1: noise reduction (4)

* Frequency domain Wiener filter
— noise can only be removed completely when desired signal
and noise spectra are separable

Signal
Noise

A Magnitude

A

N

Frequency

ﬂ

A Magnitude

ﬂ

Overlapped spectra

Separable Spectra

=
L

Frequency



Wiener filtering applications

* Application 1: noise reduction
* Application 2: channel equalization

* Application 3: time-alignment of multi-channel/-sensor
signals
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Application 2: channel equalization

* Frequency domain Wiener filter
— data model

Y(f)=X(f)H(f)+ N(f)

— frequency domain Wiener filter = compromise between
channel equalization & noise reduction

_ Pxx(f)H*(f)
W) = B (DIHPP+ Pan (D
noise n(m)
Distortion Equaliser A

y(m)

x(m) H!
HO |~ O\ E ) N




Wiener filtering applications

* Application 1: noise reduction
* Application 2: channel equalization

* Application 3: time-alignment of multi-channel/-sensor
signals

ﬂ



Application 3: time-alignment of multi-
channel/-sensor signals (1)

* Multi-channel/-sensor signals:

— sensor array = collection of multiple sensors observing same
source signal x at different positions in space

— each sensor signal is filtered & noisy version of source signal
(linear filter h,, additive noise n,)

n; (m) R
x(m) v, (m) x(m)
———  hy(m) wim)

n, (m) A
x(m) ¥, (m) x(m)
— e  hy(m) wy(m)  —p

. nK(m) .
* x(m)
x(m) i (m) yg(m) Wi (m)




Application 3: time-alignment of multi-
channel/-sensor signals (2)

* Wiener filter
— data model for simple example (K= 2, h, =1, h, = AzP):
yi(m) = x(m)+ni(m)
y2(m) = Ax(m — D)+ na(m)

— Wiener filter error signal (y, = input, y, = desired signal):

e(m) = yo(m) — 3 iy (m)

— time domain Wiener filter: W = (Rxx + Ruyn, ) Arxx (D)
— frequeny domain Wiener filter:

W(f) = Pxx(f) Ae—iwD

Pxx(f)+ Pnyn, (f) m
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Wiener filter implementation (1)

* Estimation of noise and noisy signal spectra
— use of signal activity detector
— see Les 5: Detectieproblemen

v

Noisy signal
Noisy signal Spectral SNR(f)
spectrum estimator > SNR Estimator W) SNR(f)+1 _ i
Wiener filter
A ..
coefficient
Signal vector
—P activity
detector

Noise spectrum
—> ) P
estimator




Wiener filter implementation (2)

* Filterbank implementation (see DSP-1)
— downsampling in subbands leads to complexity reduction

y(m)

-
-

BPF(f,)

Y({)

BPF(fy)

\

2
[ .l

Z—l

-®

———  —1

XA(f
O X (fl)_ YA(f)

Y(f))

NAE) X(m)

|enl—




Wiener filter implementation (3)

e Choice of Wiener filter order

— Wiener filter order affects:
1. ability of filter to model and remove distortion and to reduce noise

2. computational complexity of filter
3. numerical stability of Wiener filter solution

— choice of model order is always trade-off between these three
criteria
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