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Introduction 
•  Optimal filters 
－  data-dependent filters 
－  designed such as to minimize “difference” between filter 

output signal and desired or target signal 
－  many applications: linear prediction, echo cancellation, signal 

restoration, channel equalization, radar, system identification 
•  Wiener filters 
－  filters for signal prediction or signal/parameter estimation 
－  optimal for removing effect of linear distortion (filtering) and/or 

additive noise from observed data 
－  many flavors: FIR/IIR, single-/multi-channel, time-/frequency-

domain, fixed/block-adaptive/adaptive  
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Stochastic Wiener filter estimation (1) 
•  FIR Wiener filter: 
－  signal flow graph 
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is described in his classic work on interpolation, extrapolation and smoothing of time series (Wiener
1949). The extension of the Wiener filter theory from continuous time to discrete time is simple, and
of more practical use for implementation on digital signal processors.

The typical scenarios in which Wiener filters are used is in the context of estimation or prediction
of a signal observed in noise and system identification/estimation (such as channel estimation) given
the inputs and the outputs of a system.

The Wiener filter can be used for signal enhancement to remove the effect of linear distortions such as
the de-blurring of distorted or unfocused images or equalisation of the distortion of a telecommunication
channel, or noise reduction. Wiener filter can also be used to predict the trajectory of a projectile; a
problem during the second world war on which Norbert Wiener worked. Predicting the fluctuations
of a signal from its past values has a wide range of applications from speech and video coding to
economic data analysis. The Wiener filter formulation is the basis of least squared error applications
such as linear prediction and adaptive filters.

A Wiener filter can be an infinite-duration impulse response (IIR) or a finite-duration impulse
response (FIR) filter. In this chapter, we consider FIR Wiener filters, since they are relatively simple
to compute, inherently stable and more practical. The main drawback of FIR filters compared with IIR
filters is that they may need a large number of coefficients to approximate a desired response.

8.1.1 Derivation of Wiener Filter Equation

Figure 8.1 illustrates a Wiener filter represented by the filter’s coefficient vector w. The filter takes as
the input a signal y!m", usually a distorted version of a desired signal x!m", and produces an output
signal x̂!m", where x̂!m" is the least mean square error estimate of the desired or target signal x!m".
The filter input–output relation is given by

x̂!m" =
P−1∑

k=0

wky!m−k"

= wTy

(8.1)
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Figure 8.1 Illustration of a Wiener filter. The output signal x̂!m" is an estimate of the desired signal x!m". It is
obtained as the product of the input vector #y!m−1"$ $ $ y!m−P −1"% and the coefficients vector #w0$ $ $ wP−1%.
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Stochastic Wiener filter estimation (2) 
•  FIR Wiener filter: 
－  input signal = noisy or distorted observed data 

 
 

－  desired signal = (unknown) clean data 

 

－  Wiener filter coefficients 

－  input-output relation 
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⇥
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Stochastic Wiener filter estimation (3) 
•  Wiener filter error signal: 
－  error signal = desired signal – Wiener filter output signal 

 
 

－  stacking error signal samples for                                 yields 

－  initial conditions                                    are known or assumed 
zero (cf. Les 2: autocorrelation vs. covariance method) 

e(m) = x(m)� x̂(m) = x(m)�wTy

m = 0, . . . , N � 1
2

6664

e(0)
e(1)
...

e(N � 1)

3

7775
=

2

6664

x(0)
x(1)
...

x(N � 1)

3

7775
�

2

6664

y(0) y(�1) . . . y(1� P )
y(1) y(0) . . . y(2� P )
...

...
. . .

...
y(N � 1) y(N � 2) . . . y(N � P )

3

7775

2

6664

w0

w1
...

wP�1

3

7775

e = x�Yw

y(1� P ), . . . , y(�1)



Stochastic Wiener filter estimation (4) 
•  Number of solutions 
－  Wiener filter is optimal filter in sense of minimizing mean 

squared error signal 

 
－  3 different cases, depending on no. observations N and 

Wiener filter length P (cf. Les 2: linear systems of equations) 

N = P   square system, unique solution with 

N < P   underdetermined system,      solutions with 

N > P   overdetermined system, no solutions with           ,          
           unique solution with “minimal” 
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Stochastic Wiener filter estimation (5) 
•  Wiener filter estimation: 
－  mean squared error (MSE) criterion 

－  autocorrelation matrix & cross-correlation vector definition: 
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Stochastic Wiener filter estimation (6) 
•  Wiener filter estimation: 
－  mean squared error (MSE) criterion 

 = quadratic function of Wiener filter coefficient vector w 
－  quadratic function (with full-rank Hessian matrix          ) is 

always convex and has unique minimum 
－  example: 

E{e2(m)} = r
xx

(0)� 2wT r
yx

+wTR
yy

w
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In Wiener theory, the objective criterion is the least mean square error (LSE) between the filter
output and the desired signal. The least square error criterion is optimal for Gaussian distributed signals.
As shown in the following, for FIR filters the LSE criterion leads to a linear and closed-form solutions.
The Wiener filter coefficients are obtained by minimising an average squared error function E!e2"m#$
with respect to the filter coefficient vector w, where E is expectation or average. From Equation (8.2),
the mean square estimation error is given by

E !e2"m#$ = E !"x"m#−wTy#2$

= E !x2"m#$−2wTE !yx"m#$+wTE !yyT$w (8.5)

= rxx"0#−2wTryx +wTRyyw

where Ryy = E!y"m#yT"m#$ is the autocorrelation matrix of the input signal and rxy = E!x"m#y"m#$ is
the cross-correlation vector of the input and the desired signals. An expanded form of Equation (8.5)
can be obtained as

E !e2"m#$ = rxx"0#−2
P−1∑

k=0

wkryx"k#+
P−1∑

k=0

wk

P−1∑

j=0

wjryy"k− j# (8.6)

where ryy"k# and ryx"k# are the elements of the autocorrelation matrix Ryy and the cross-correlation
vector rxy respectively.

From Equation (8.5), the mean square error for an FIR filter is a quadratic function of the filter
coefficient vector w and has a single minimum point. For example, for a filter with two coeffi-
cients "w0%w1#, the mean square error function is a bowl-shaped surface, with a single minimum
point, as illustrated in Figure 8.2. The least mean square error point corresponds to the minimum
error power. At this operating point the mean square error surface has zero gradient. From Equa-
tion (8.5), the gradient of the mean square error function with respect to the filter coefficient vector is
given by

&

&w
E !e2"m#$ = −2E !x"m#y"m#$+2wTE !y"m#yT"m#$

= −2ryx +2wTRyy

(8.7)
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Figure 8.2 Mean square error surface for a two-tap FIR filter.
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•  Wiener filter estimation: 
－  minimum MSE solution is obtained at point with zero gradient 
－  gradient of MSE criterion w.r.t. Wiener filter coefficient vector 

－  example: 

Stochastic Wiener filter estimation (7) 
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•  Wiener filter estimation: 
－  minimum MSE solution is obtained at point with zero gradient 

－  minimum MSE Wiener filter estimate: 

Stochastic Wiener filter estimation (8) 
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Stochastic Wiener filter estimation (9) 
•  FIR Wiener filter: 
－  signal flow graph (revisited) 
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is described in his classic work on interpolation, extrapolation and smoothing of time series (Wiener
1949). The extension of the Wiener filter theory from continuous time to discrete time is simple, and
of more practical use for implementation on digital signal processors.

The typical scenarios in which Wiener filters are used is in the context of estimation or prediction
of a signal observed in noise and system identification/estimation (such as channel estimation) given
the inputs and the outputs of a system.

The Wiener filter can be used for signal enhancement to remove the effect of linear distortions such as
the de-blurring of distorted or unfocused images or equalisation of the distortion of a telecommunication
channel, or noise reduction. Wiener filter can also be used to predict the trajectory of a projectile; a
problem during the second world war on which Norbert Wiener worked. Predicting the fluctuations
of a signal from its past values has a wide range of applications from speech and video coding to
economic data analysis. The Wiener filter formulation is the basis of least squared error applications
such as linear prediction and adaptive filters.

A Wiener filter can be an infinite-duration impulse response (IIR) or a finite-duration impulse
response (FIR) filter. In this chapter, we consider FIR Wiener filters, since they are relatively simple
to compute, inherently stable and more practical. The main drawback of FIR filters compared with IIR
filters is that they may need a large number of coefficients to approximate a desired response.

8.1.1 Derivation of Wiener Filter Equation

Figure 8.1 illustrates a Wiener filter represented by the filter’s coefficient vector w. The filter takes as
the input a signal y!m", usually a distorted version of a desired signal x!m", and produces an output
signal x̂!m", where x̂!m" is the least mean square error estimate of the desired or target signal x!m".
The filter input–output relation is given by

x̂!m" =
P−1∑

k=0

wky!m−k"

= wTy

(8.1)
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Figure 8.1 Illustration of a Wiener filter. The output signal x̂!m" is an estimate of the desired signal x!m". It is
obtained as the product of the input vector #y!m−1"$ $ $ y!m−P −1"% and the coefficients vector #w0$ $ $ wP−1%.
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Least-squares and Wiener filter estimation 
•  Stochastic Wiener filter estimation 
•  Deterministic least squares estimation 
•  Computational aspects 
•  Geometrical interpretation 
•  Performance analysis 
•  Frequency domain formulation 



Deterministic least squares estimation (1) 
•  Wiener filter input/output relation 
－  set of N linear equations 

－  Wiener filter error signal vector 
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Deterministic least squares estimation (2) 
•  Least squares estimation 
－  sum of squared errors criterion 

－  difference with MSE criterion: expectation replaced by time 
averaging 
•  mean squared error:                      = stochastic criterion 

•  sum of squared errors:                       = deterministic criterion 
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Deterministic least squares estimation (3) 
•  Least squares estimation 
－  minimum sum of squared errors is obtained at point with zero 

gradient 

－  least squares filter estimate: 

 
－  if desired/observed signals are correlation-ergodic processes, 

least squares estimate converges to Wiener filter estimate 
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Least-squares and Wiener filter estimation 
•  Stochastic Wiener filter estimation 
•  Deterministic least squares estimation 
•  Computational aspects 
•  Geometrical interpretation 
•  Performance analysis 
•  Frequency domain formulation 



Computational aspects (1) 
•  Calculation of correlation functions 
－  Wiener filter estimate requires autocorrelation matrix         

and cross-correlation vector 
－  correlation functions are obtained by averaging over 

ensemble of different realizations of desired/observed signals 
－  for correlation-ergodic processes, ensemble averaging can 

be replaced by time averaging so only 1 realization is needed 

－  choice of N: compromise between accuracy and stationarity 
(cf. Les 2: LP modeling of speech) 
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Computational aspects (2) 
•  Calculation of correlation functions 
－  calculation of cross-correlation vector         is not 

straightforward if desired signal x is unknown 

－  two possible solutions: 
•  use prior knowledge about x to estimate  

•  rewrite cross-correlation function in terms of other correlation 
functions (see later: Wiener filtering applications) 
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Computational aspects (3) 
•  Computation of least squares filter estimate 
－  least squares filter estimate: 
－  direct matrix inversion has complexity 
－  QR decomposition of data matrix (Q = orthonormal,              

R = upper-triangular) 

 
allows to compute least squares filter estimate from a square, 
triangular system (allowing back-substitution) 

－  QR-based computation of LS estimate has complexity 
(exploiting Toeplitz structure of data matrix)   
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Least-squares and Wiener filter estimation 
•  Stochastic Wiener filter estimation 
•  Deterministic least squares estimation 
•  Computational aspects 
•  Geometrical interpretation 
•  Performance analysis 
•  Frequency domain formulation 



Geometrical interpretation (1) 
•  Wiener filter input/output relation 
－  input/output relation                 can also be written as 

－  Wiener filter output signal = linear weighted combination of 
input signal vectors  
(cf. Les 2: two interpretations of matrix-vector product) 

x̂ = Yw

2

6664

x̂(0)
x̂(1)
...

x̂(N � 1)

3

7775
= w0

2

6664

y(0)
y(1)
...

y(N � 1)

3

7775
+ w1

2

6664

y(�1)
y(0)
...

y(N � 2)

3

7775
+ . . .+ wP�1

2

6664

y(1� P )
y(2� P )

...
y(N � P )

3

7775

x̂ = w0y0 + w1y1 + . . .+ wP�1yP�1



Geometrical interpretation (2) 
•  Vector space interpretation 
－  set of P input signal vectors                                   forms P-

dimensional subspace of N-dimensional vector space 
－  Wiener filter output signal lies in this subspace, since 

 

N = P   subspace = entire space, including desired signal   

 

N > P   subspace ⊂ entire space,  

output signal is orthogonal projection of desired signal vector 
onto subspace 

x̂ = w0y0 + w1y1 + . . .+ wP�1yP�1

{y0,y1, . . . ,yP�1}

) x̂ = x, e = 0

) x̂ 6= x, e 6= 0



Geometrical interpretation (3) 
•  Vector space interpretation 
－  example:  N = 3, P = 2

INTERPRETATION OF WIENER FILTER AS PROJECTION IN VECTOR SPACE 283

In Equation (8.30) the Wiener filter output x̂ is expressed as a linear combination of P basis vectors
!y0" y1" # # # " yP−1$, and hence it can be said that the estimate x̂ is in the vector subspace formed by the
input signal vectors !y0" y1" # # # " yP−1$.

In general, the N -dimensional input signal vectors !y0" y1" # # # " yP−1$ in Equation (8.30) define the
basis vectors for a subspace in an N -dimensional signal space. If the number of basis vectors P is
equal to the vector dimension N , then the subspace encompasses the entire N -dimensional signal space
and includes the desired signal vector x. In this case, the signal estimate x̂ = x and the estimation
error is zero. However, in practice, N > P, and the signal space defined by the P input signal vectors
of Equation (8.30) is only a subspace of the N -dimensional signal space. In this case, the estimation
error is zero only if the desired signal x happens to be in the subspace of the input signal, otherwise
the best estimate of x is the perpendicular projection of the vector x onto the vector space of the input
signal !y0" y1" # # # " yP−1$, as explained in the following example.

Example 8.1 Figure 8.3 illustrates a vector space interpretation of a simple least square error
estimation problem, where yT = !y%m&"y%m− 1&"y%m− 2&"y%m− 3&$ is the input observation signal,
xT = !x%m&"x%m−1&"x%m−2&$ is the desired signal and wT = !w0"w1$ is the filter coefficient vector.
As in Equation (8.26), the filter output can be written as

⎛

⎝
x̂%m&

x̂%m−1&
x̂%m−2&

⎞

⎠= w0

⎛
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⎞
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⎛
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⎞

⎠ (8.31)

In Equation (8.29), the filter input signal vectors yT
1 = !y%m&"y%m−1&"y%m−2&$ and yT

2 = !y%m−1&"
y%m − 2&"y%m − 3&$ are 3-dimensional vectors. The subspace defined by the linear combinations of
the two input vectors !y1" y2$ is a 2-dimensional plane in a 3-dimensional space. The filter output is a
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Figure 8.3 The least square error projection of a desired signal vector x onto a plane containing the input signal
vectors y1 and y2 is the perpendicular projection of x shown as the shaded vector.
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Least-squares and Wiener filter estimation 
•  Stochastic Wiener filter estimation 
•  Deterministic least squares estimation 
•  Computational aspects 
•  Geometrical interpretation 
•  Performance analysis 
•  Frequency domain formulation 



Performance analysis (1) 
•  Variance of Wiener filter estimate 
－  substituting Wiener filter esimate                         into MSE 

criterion gives error variance 

－  variance of Wiener filter output signal is  

so error variance can be written as 
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Performance analysis (2) 
•  Variance of Wiener filter estimate 
－  in general, observed data can be decomposed as 

•              = part of observation correlated with desired signal 
•            = random noise signal 

－  Wiener filter error signal can be decomposed accordingly 

－  error variance is then  

y(m) = xc(m) + n(m)
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Least-squares and Wiener filter estimation 
•  Stochastic Wiener filter estimation 
•  Deterministic least squares estimation 
•  Computational aspects 
•  Geometrical interpretation 
•  Performance analysis 
•  Frequency domain formulation 



Frequency domain formulation (1) 
•  Frequency domain MSE criterion 
－  frequency domain Wiener filter output and error signal: 

－  frequency domain MSE criterion: 

－  Parseval’s theorem: sum of squared errors in time domain = 
integral of squared error power spectrum 

X̂(f) = W (f)Y (f)

E(f) = X(f)� X̂(f) = X(f)�W (f)Y (f)

E{|E(f)|2} = E
�
(X(f)�W (f)Y (f))⇤ (X(f)�W (f)Y (f))

 

N�1X

m=0

e2(m) =

Z fs/2

�fs/2
|E(f)|2df



Frequency domain formulation (2) 
•  Frequency domain Wiener filter estimate 
－  minimum MSE solution is obtained at point with zero gradient 

－  power and cross-power spectra: 

－  frequency domain Wiener filter estimate: 

@E{|E(f)|2}
@W (f)

= 2W (f)PY Y (f)� 2PXY (f) = 0

PY Y (f) = E{Y (f)Y ⇤(f)}
PXY (f) = E{X(f)Y ⇤(f)}

W (f) =
PXY (f)

PY Y (f)



Les 7: Optimale filtering 
•  Introduction 

 
•  Least-squares and Wiener filter estimation 

stochastic & deterministic estimation, computational aspects, 
geometrical interpretation, performance analysis, frequency 
domain formulation, … 

 
•  Wiener filtering applications  

noise reduction, time alignment of multi-channel/-sensor signals, 
channel equalization, … 

 
•  Wiener filter implementation 

filter order, filter-bank implementation, … 
 
 
 



Wiener filtering applications  
•  Application 1: noise reduction 
•  Application 2: channel equalization 
•  Application 3: time-alignment of multi-channel/-sensor 

signals 



Application 1: noise reduction (1) 
•  Time domain Wiener filter 
－  data model 

－  main assumption: desired signal and noise are uncorrelated 
－  time domain Wiener filter: 

－  noise correlation matrix is estimated during noise-only periods, 
which requires signal activity detection 

y(m) = x(m) + n(m)

R
yy

= R
xx

+R
nn

r
xy

= r
xx

w = (R
xx

+R
nn

)�1r
xx



Application 1: noise reduction (2) 
•  Frequency domain Wiener filter 
－  data model 

－  main assumption: desired signal and noise are uncorrelated 
－  frequency domain Wiener filter: 

－  interpretation in terms of signal-to-noise ratio (SNR): 

Y (f) = X(f) +N(f)

W (f) =
PXX(f)

PXX(f) + PNN (f)

W (f) =
SNR(f)

SNR(f) + 1



Application 1: noise reduction (3) 
•  Frequency domain Wiener filter 

－  Wiener filter attenuates each frequency component in 
proportion to SNR 

W (f) =
SNR(f)

SNR(f) + 1
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Figure 8.5 Illustration of the variation of Wiener frequency response with signal spectrum for additive white
noise. The Wiener filter response broadly follows the signal spectrum.

8.6.2 Wiener Filter and Separability of Signal and Noise

In single-input noise reduction applications, where only one sensor is available (for example for speech
enhancement on a mobile phone), the signal and noise cannot be perfectly separated unless their spectra
are non-overlapping. A stochastic signal is completely recoverable from noise if and only if the spectra
of the signal and the noise do not overlap.

An example of a noisy signal with separable signal and noise spectra is shown in Figure 8.6(a).
In this case, the signal and the noise occupy different parts of the frequency spectrum, and can be
separated with a low-pass or a high-pass filter. Figure 8.6(b) illustrates a more common example of
a signal and noise process with overlapping spectra. For this case, it is not possible to completely
separate the signal from the noise. However, the effects of the noise can be reduced by using a Wiener
filter that attenuates each noisy signal frequency in proportion to an estimate of the signal-to-noise
ratio as described by Equation (8.55).



Application 1: noise reduction (4) 
•  Frequency domain Wiener filter 
－  noise can only be removed completely when desired signal 

and noise spectra are separable SOME APPLICATIONS OF WIENER FILTERS 289
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Figure 8.6 Illustration of separability: (a) the signal and noise spectra do not overlap, the signal can be recovered
by a low-pass filter, (b) the signal and noise spectra overlap, the noise can be reduced but not completely removed.

8.6.3 The Square-Root Wiener Filter

In the frequency domain, the Wiener filter output X̂!f " is the product of the input frequency Y!f "
and the filter response W!f " as expressed in Equation (8.41). Taking the expectation of the squared
magnitude of both sides of Equation (8.41) yields the power spectrum of the filtered signal as

E #!X̂!f "!2$ = !W!f "!2 E #!Y!f "!2$
= !W!f "!2 PYY !f "

(8.56)

Substitution of W!f " from Equation (8.46) in Equation (8.56) yields

E #!X̂!f "!2$ = P2
XY !f "

PYY !f "
(8.57)

Now, for a signal observed in an uncorrelated additive noise we have

PYY !f " = PXX!f "+PNN !f " (8.58)

and

PXY !f " = PXX!f " (8.59)

Substitution of Equations (8.58) and (8.59) in Equation (8.57) yields

E #!X̂!f "!2$ = P2
XX!f "

PXX!f "+PNN !f "
(8.60)

Now, in Equation (8.41) if instead of the Wiener filter, the square root of the Wiener filter magnitude
frequency response is used, the result is

X̂!f " = !W!f "!1/2 Y!f " (8.61)

and the power spectrum of the signal, filtered by the square-root Wiener filter, is given by

E #!X̂!f "!2$ =
(
!W!f "!1/2

)2
E#!Y!f "!2$ = PXY !f "

PYY !f "
PYY !f " = PXY !f " (8.62)



Wiener filtering applications  
•  Application 1: noise reduction 
•  Application 2: channel equalization 
•  Application 3: time-alignment of multi-channel/-sensor 

signals 



Application 2: channel equalization 
•  Frequency domain Wiener filter 
－  data model 

－  frequency domain Wiener filter = compromise between 
channel equalization & noise reduction 

Y (f) = X(f)H(f) +N(f)

W (f) =
PXX(f)H⇤(f)

PXX(f)|H(f)|2 + PNN (f)
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Now, for uncorrelated signal and noise Equation (8.62) becomes

E !!X̂"f #!2$ = PXX"f # (8.63)

Thus, for additive noise the power spectrum of the output of the square-root Wiener filter is the same
as the power spectrum of the desired signal.

8.6.4 Wiener Channel Equaliser

The distortions in a communication channel may be modelled by a combination of a linear filter and
an additive random noise source as shown in Figure 8.7. The input/output signals of a linear time
invariant channel can be modelled as

y"m# =
P−1∑

k=0

hkx"m−k#+n"m# (8.64)

where x"m# and y"m# are the transmitted and received signals, !hk$ is the impulse response of a
linear filter model of the channel, and n"m# models the channel noise. In the frequency domain
Equation((8.64) becomes

Y"f # = X"f #H"f #+N"f # (8.65)

where X"f #%Y"f #, H"f # and N"f # are the signal, noisy signal, channel and noise spectra respectively.
To remove the channel distortions, the receiver is followed by an equaliser. The input to the equaliser
is the distorted signal from the channel output, and the desired signal is the clean signal at the
channel input. Using Equation (8.46) it is easy to show that the frequency domain Wiener equaliser
is given by

W"f # = PXX"f #H∗"f #

PXX"f # !H"f #!2 +PNN "f #
(8.66)

where it is assumed that the signal and the channel noise are uncorrelated. In the absence of channel
noise, PNN "f # = 0, and the Wiener filter is simply the inverse of the channel distortion model
W"f # = H−1"f #. The equalisation problem is treated in detail in Chapter 17.

8.6.5 Time-Alignment of Signals in Multichannel/Multi-sensor
Systems

In multi-channel/multi-sensor signal processing there are a array of noisy and distorted versions of
a signal x"m#, and the objective is to use all the observations in estimating x"m#, as illustrated in

noise n (m)

y(m)x (m) x (m)^Distortion

f

Equaliser
H 

–1
 ( f ) 

f

H( f )

Figure 8.7 Illustration of a channel model followed by an equaliser.



Wiener filtering applications  
•  Application 1: noise reduction 
•  Application 2: channel equalization 
•  Application 3: time-alignment of multi-channel/-sensor 

signals 



Application 3: time-alignment of multi-
channel/-sensor signals (1) 
•  Multi-channel/-sensor signals: 
－  sensor array = collection of multiple sensors observing same 

source signal x at different positions in space 
－  each sensor signal is filtered & noisy version of source signal 

(linear filter hk, additive noise nk) 
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Figure 8.8 Illustration of a multi-channel system where Wiener filters are used to time-align the signals from
different channels.

Figure 8.8, where the phase and frequency characteristics of each channel is modelled by a linear filter
h!m".

As a simple example, consider the problem of time-alignment of two noisy records of a signal
given as

y1!m" = x!m"+n1!m" (8.67)

y2!m" = Ax!m−D"+n2!m" (8.68)

where y1!m" and y2!m" are the noisy observations from channels 1 and 2, n1!m" and n2!m" are
uncorrelated noise in each channel, D is the relative time delay of arrival of the two signals, and A is
an amplitude scaling factor. Now assume that y1!m" is used as the input to a Wiener filter and that, in
the absence of the signal x!m", y2!m" is used as the ‘desired’ signal. The error signal is given by

e!m" = y2!m"−
P−1∑

k=0

wky1!m"

=
(

Ax!m−D"−
P−1∑

k=0

wkx!m"

)

+
(

P−1∑

k=0

wkn1!m"

)

+n2!m"

(8.69)

The Wiener filter strives to minimise the terms shown inside the square brackets in Equation (8.69).
Using the Wiener filter Equation (8.10), we have

w = R−1
y1y1

ry1y2

=
(
Rxx +Rn1n1

)−1
Arxx!D"

(8.70)

where rxx!D" = E#x!m − D"x!m"$. The frequency-domain equivalent of Equation (8.70) can be
derived as

W!f " = PXX!f "

PXX!f "+PN1N1
!f "

Ae−j%D (8.71)

Note that in the absence of noise, the Wiener filter becomes a pure phase (or a pure delay) filter,
W!f " = Ae−j%D, with a flat magnitude response.



Application 3: time-alignment of multi-
channel/-sensor signals (2) 
•  Wiener filter 
－  data model for simple example (K = 2, h1 = 1, h2 = Az-D):  

－  Wiener filter error signal (y1 = input, y2 = desired signal): 

－  time domain Wiener filter: 
－  frequeny domain Wiener filter: 

y1(m) = x(m) + n1(m)

y2(m) = Ax(m�D) + n2(m)

w = (R
xx

+R
n1n1)

�1Ar
xx

(D)

e(m) = y2(m)�
P�1X

k=0

wky1(m)

W (f) =
PXX(f)

PXX(f) + PN1N1(f)
Ae�j!D



Les 7: Optimale filtering 
•  Introduction 

 
•  Least-squares and Wiener filter estimation 

stochastic & deterministic estimation, computational aspects, 
geometrical interpretation, performance analysis, frequency 
domain formulation, … 

 
•  Wiener filtering applications  

noise reduction, time alignment of multi-channel/-sensor signals, 
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•  Wiener filter implementation 
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Wiener filter implementation (1) 
•  Estimation of noise and noisy signal spectra 
－  use of signal activity detector 
－  see Les 5: Detectieproblemen 
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8.7 Implementation of Wiener Filters

The implementation of a Wiener filter for additive noise reduction, using Equation (8.52) or (8.54),
requires the autocorrelation functions, or equivalently the power spectra, of the signal and noise. In
speech recognition the power spectra, or autocorrelation functions of signal and noise can be obtained
from speech and noise models see Chapter 11 and Chapter 15.

When statistical models of speech and noise are not available, the noise power spectrum can be
obtained from the signal-inactive, noise-only, periods. The assumption is that the noise is quasi-
stationary, and that its power spectra remain relatively stationary between the update periods. This is
a reasonable assumption for many noisy environments such as the noise inside a car emanating from
the engine and wind, aircraft noise, office noise from computer machines, etc.

The main practical problem in the implementation of a Wiener filter is that the desired signal is often
observed in noise, and that the autocorrelation or power spectra of the desired signal are not readily
available. Figure 8.9 illustrates the block-diagram configuration of a system for implementation of a
Wiener filter for additive noise reduction. The implementation of this filter requires estimates of the
spectral signal-to-noise ratio SNR!f ".

The estimate of spectral signal-to-noise ratio is obtained from the estimates of the power spectra of
the signal and noise. The noise estimate is obtained from speech-inactive periods. An estimate of the
clean signal power spectra may be obtained by subtracting an estimate of the noise spectra from that
of the noisy signal.

A filter bank implementation of the Wiener filter is shown in Figure 8.10, where the incoming
signal is divided into N sub-bands. A first-order integrator, placed at the output of each band-pass
filter, gives an estimate of the power spectra of the noisy signal. The power spectrum of the original
signal is obtained by subtracting an estimate of the noise power spectrum from the noisy signal.

In a Bayesian implementation of the Wiener filter, prior models of speech and noise, such as hidden
Markov models, are used to obtain the power spectra of speech and noise required for calculation of the
filter coefficients.

8.7.1 Choice of Wiener Filter Order

The choice of Wiener filter order affects:

(a) the ability of the filter to model and remove distortions and reduce the noise
(b) the computational complexity of the filter
(c) the numerical stability of the Wiener filter solution; a large filter may produce an ill-conditioned

large-dimensional correlation matrix in Equation (8.10).

Noisy  signal

Noise spectrum
estimator

Signal
activity
detector

Noisy  signal
spectrum estimator

W( f ) = 

Wiener  filter
coefficient
 vector

SNR(f) 

SNR(f)+1

Spectral
SNR Estimator

Figure 8.9 Configuration of a system for estimation of frequency Wiener filter.



Wiener filter implementation (2) 
•  Filterbank implementation (see DSP-1) 
－  downsampling in subbands leads to complexity reduction IMPLEMENTATION OF WIENER FILTERS 293
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Figure 8.10 A filter-bank implementation of a Wiener filter for additive noise reduction.

The choice of the filter length also depends on the application and the method of implementation of
the Wiener filter. For example, in a filter-bank implementation of the Wiener filter for additive noise
reduction, Figure 8.10, the number of filter coefficients is equal to the number of filter banks, and
typically the number of filter banks is between 16 to 64. On the other hand for many applications, a
direct implementation of the time-domain Wiener filter requires a larger filter length, say between 64
and 256 taps.

A reduction in the required length of a time-domain Wiener filter can be achieved by dividing the
time-domain signal into N sub-band signals. Each sub-band signal can then be down-sampled by a
factor of N . The down-sampling results in a reduction, by a factor of N , in the required length of each
sub-band Wiener filter. In Chapter 16, a sub-band echo canceller is described.

Improvements to Wiener Filters

The performance of Wiener filter can be limited by the following factors:

(a) The signal-to-noise ratio: generally the Wiener filter performance deteriorates with decreasing
SNR.

(b) The signal non-stationarity: the Wiener filter theory assumes that the signal processes are stationary
and any deviations from the assumption of stationarity will affect the ability of the filter to
estimate and track the correlation or power spectrum functions needed for computation of the filter
coefficients.

(c) The Wiener filter is a linear filter and the presence of significant non-linear distortion in the input
will affect the filter performance.



Wiener filter implementation (3) 
•  Choice of Wiener filter order 

－  Wiener filter order affects: 
1.  ability of filter to model and remove distortion and to reduce noise 
2.  computational complexity of filter 
3.  numerical stability of Wiener filter solution  

－  choice of model order is always trade-off between these three 
criteria 


