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This text provides an introduction to the problem of acoustic feedback con-
trol, and details on the use of adaptive notch filters to tackle the acoustic feed-
back problem. A more detailed treatment of the state of the art in acoustic
feedback control can be found in [1].

1 The Acoustic Feedback Problem

A Public Address (P.A.) system typically consists of one or more microphones,
an amplifier and several loudspeakers. Acoustic feedback occurs when loud-
speaker sound is picked up again by a microphone. Even when direct sound
transmission from loudspeaker to microphone is avoided, sound is fed back due
to reflections against walls and other objects. A closed loop is thus born and
gives rise to system instability.

Considering a simple 1-microphone/1-loudspeaker setup in Figure 1, the
closed loop transfer function from source signal V (z) to feedback signal X(z) at
the microphone is given in the z-domain by

X(z)

V (z)
=

G(z)F (z)

1−G(z)F (z)
(1)

System stability depends on both the forward path amplification transfer func-
tion G(z) and the acoustic feedback path transfer function F (z). Nyquist’s
stability criterion says that if there exists a frequency ω for which

|G(eiω)F (eiω)| ≥ 1 and ∠G(eiω)F (eiω) = n2π, n ∈ Z (2)

the system will be unstable and start oscillating at frequency ω. From this
criterion it is clear that the peaks in the room’s frequency response F (eiω) are
particularly apt to give rise to system instability. Oscillation will be perceived
as a sharp, narrow-band howling sound. Even before the onset of oscillation the
sound quality may be severely degraded by distortion and ringing effects. This
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Figure 1: The acoustic feedback problem in a 1-microphone/1-loudspeaker setup

howling is often referred to as “acoustic feedback”. We prefer though to point
to the complete feedback signal X(z) when using the term “acoustic feedback”,
even when no oscillation occurs.

2 A survey of existing solutions

The problem of acoustic feedback has been a challenge for many researchers
over the past few decades. In the early days acoustic feedback was a typical
P.A. problem but more recently, with the advent of hearing aids, research has
focused especially on the latter application. The following list gives a non-
exhaustive overview of proposed feedback remedies in both P.A. and hearing
aid applications (see [1] for a more in-depth literature study):

1. careful microphone and/or loudspeaker selection and positioning [2]
2. manual equalization and/or gain reduction [3]
3. inclusion of frequency shifter in G(z) [4]
4. automatic gain reduction [5]
5. inclusion of fixed phase shift in G(z) [6]
6. inclusion of time-varying delay in G(z) [7]
7. adaptive inverse filtering [7]
8. beam dithering [8]
9. inclusion of notch filters (NF) in G(z)

10. adaptive feedback cancellation (AFC)

The first two manual techniques are conceptually straightforward but in
practice quite elaborate operations. Several other techniques (e.g. 4 and 9) are
an attempt to automate these manual procedures. Translating sound engineer-
ing skills into an algorithm is not an easy task though. Many sound engineers
prefer even today to control feedback manually.

Frequency shifting [4] causes a signal that enters the microphone at frequency
ω to be shifted to ω+ ∆ω before being played back. In this way buildup of the
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microphone signal at a single frequency is avoided. With a frequency shift of
∆ω = 5 Hz an amount of 10 dB in added stable gain can be obtained. This
means the use of the frequency shifter allows the amplifier gain to be raised
by 10 dB (relative to the maximum stable gain of the system without feed-
back control) before the stability limit is reached. The major drawback of this
technique is the auditive distortion. Schroeder [4] suggests a 5 Hz shift will
be “hardly perceptible for speech and many types of music, too”. We believe
this is an understatement because, among other reasons, the frequency shift
alters the relationship between the harmonics of the signal thereby causing har-
monic distortion. This distortion can be avoided by making the frequency shift
proportional to the frequency of the component being shifted. This frequency
compression/expansion is desribed in more detail in [9] as a decorrelation tech-
nique for adaptive feedback cancellation in hearing aids.

Automatic Gain Reduction as proposed in [5] is not frequency-selective, i.e.
reduces the overall gain, and therefore has become obsolete. Techniques 5 and 6
try to overcome system instability by avoiding the phase of the feedback signal
to approach a multiple of 2π at the microphone. Including a fixed phase shift
[6] may work as long as the acoustic feedback path does not change, a condition
which is obviously not satisfied in a P.A. system. Another way of altering the
phase response is the inclusion of a time-varying delay resulting in a time-varying
phase response. This introduces a “warbling” sound in the loudspeaker signal
though, and not more than 1 or 2 dB in added stable gain can be obtained [7].

Adaptive inverse filtering implies an adaptive filter is included in the forward
path G(z) (i.e. in series with G(z) in contrast to the AFC technique where an
adaptive filter is placed in parallel). Depending on the filter order, different
results are obtained. A low filter order (N ∼ 10) gives the filter a notch filter
behavior since only sharp frequency peaks in the input spectrum Y (ejω) are
compensated for [7]. We will come back to this in Section 3.1. A high filter
order (N ∼ 103 or more) turns the feedback problem into an equalization prob-
lem (see e.g. [10], [11], [12]), which is however difficult to solve if the “desired”
signal V (z) is not available.

Beam dithering is a loudspeaker array beamforming technique in which the
radiation pattern (and hence the room excitation) will vary in time. An addition
of 6 dB in stable gain was reported in [8]. Spatial constraints are quite hard
to accomplish though: the public should be seated in the main lobe while all
microphones should be positioned in side lobes.

Finally, techniques 9 and 10 are the most popular approaches to acoustic
feedback control, on which more details can be found in [1] and references
therein. Notch filters (NF) are the state of the art in P.A. feedback con-
trollers that are commercially available. Adaptive feedback cancellation (AFC)
is a promising research topic for P.A. systems, given its success in hearing aid
feedback control.
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Figure 2: The concept of notch filtering for increasing the overall stable gain in
a P.A. system

3 Notch Filtering (NF)

When a frequency exists for which the amplitude and phase conditions (2) are
both met, a very fast signal buildup will occur at this frequency. The system in-
stability is thus perceived as a narrow-band interference, more frequently called
“howling” or “screeching”. The notch filtering idea is to detect these sinusoid-
like components in the microphone signal and subsequently filter them out with
a very narrow bandstop filter. Even before the system becomes unstable a notch
filter can be applied to filter out “candidate” feedback frequencies. In this way
the P.A. system can operate at a higher overall gain without decreasing the gain
margin. The gain margin is defined as the magnitude difference between the
stability limit and the highest peak in the system’s frequency response. This is
illustrated in Figure 2.

In the following we distinguish between two types of notch filter implemen-
tations. The first one, the Adaptive Notch Filter (ANF), was developed in the
1980’s as an early application of adaptive filter theory [13]. It is a relatively
autonomous algorithm with few parameters to be adjusted by the user. The
second one is an attempt to automate the sound engineer’s manual operations
to detect and eliminate howling. Different implementations of this idea are de-
scribed in a dozen patents and have led to various commercial audio products.
Although in these patents the technique is often called “adaptive”, we prefer
to call it Self-Adjusting Notch Filter (SANF) to emphasize the difference with
the Adaptive Notch Filter. The ANF is described in more detail in Section 3.1
below, whereas details on the SANF can be found in [1] and [14].
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Figure 3: Pole-zero map (left) and Bode plot (right) of an 2nd order ANF with
zeros zi = rie

±jωi and poles pi = αrie
±jωi

3.1 Adaptive Notch Filter (ANF)

3.1.1 Overview of the literature

The ANF filter structure. The Adaptive Notch Filter (ANF) was first
conceived by Rao et al. [15] as a means for retrieving sinusoids or narrow-band
signals buried in broadband noise. Their idea was based on Widrow’s Adaptive
Line Enhancer (ALE, Widrow et al. [16]), implemented as an adaptive FIR
filter preceded by a decorrelating delay. This implementation was copied by
Bustamante et al. [7] for suppressing acoustic feedback in hearing aids but
provided a smaller increase in stable gain than desired.

Rao et al. believed though that a constrained IIR filter would suit the
problem better than an unconstrained FIR filter. Their constraint was that
poles and zeros should lie on the same radial lines, both inside the unit circle,
with the zeros lying between the poles and the unit circle, see Figure 3 on
the left. Intuitively this constraint can be understood as follows: a zero zi =
rie

jωi close to the unit circle (0 � ri ≤ 1) attenuates all frequencies in the
neighbourhood of ωi. A pole pi = αrie

jωi lying on the same radial line causes a
resonance at frequency ωi, thereby narrowing the bandwidth of the notch. This
is probably the reason Bustamante et al. [7] found that the FIR adaptive notch
filter (i.e. without poles) produced very broad notches.

Rao et al. called α the debiasing parameter, since for α → 1 the “ideal”
unbiased notch filter is approached. “Ideal” here means that the frequency re-
sponse magnitude equals 0 dB at all frequencies, except at the notch frequencies
where it equals −∞ dB. Taking into account the proposed filter structure, the
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ANF transfer function in the z-domain looks like

H(z−1) =

2n∏
i=1

(1− ziz−1)

2n∏
i=1

(1− αziz−1)

where 0 ≤ α < 1 (3)

=
1 + a1z

−1 + a2z
−2 + ...+ a2nz

−2n

1 + αa1z−1 + α2a2z−2 + ...+ α2na2nz−2n
(4)

=
A(z−1)

A(αz−1)
(5)

With this structure a filter of order 2n has 2n unknown parameters and may
suppress at most n narrow-band components. A Bode plot of a 2nd order ANF
is shown on the right in Figure 3.

Nehorai [17] proposed an adaptive notch filter with half as much parameters
by imposing a second constraint : the zeros zi should lie on the unit circle. A
necessary condition to meet this constraint is that the numerator coefficients
have a mirror symmetric form (i.e. when zi is a zero, 1

zi
will also be a zero). A

2nth order ANF with n unknown parameters thus has a transfer function

H(z−1) =
1 + a1z

−1 + ...+ anz
−n + ...+ a1z

−2n+1 + z−2n

1 + ρa1z−1 + ...+ ρnanz−n + ...+ ρ2n−1a1z−2n+1 + ρ2nz−2n
(6)

=
A(z−1)

A(ρz−1)
(7)

where the debiasing parameter α has been replaced by the “pole radius ρ”.

Estimating the filter coefficients. Including an adaptive notch filter in the
forward path of the 1-microphone/1-loudspeaker setup results in the scheme
depicted in Figure 4. An estimate of parameter vector θ = [a1 a2 ... an]T is
obtained by minimizing the cost function VN (θ):

θ̂ = arg min
θ
VN (θ) (8)

= arg min
θ

N∑
t=1

e2(θ, t) (9)

= arg min
θ

N∑
t=1

[
A(θ, z−1)

A(θ, ρz−1)
y(t)

]2
(10)

When the ANF order is chosen approximately twice the number of expected
narrow-band components, minimizing the square of the filter output e(θ, t) with
the filter stucture as defined in (6) results in a filter with n notches at the desired
frequencies. As for the bandwidth of the notches, the pole radius ρ plays a
crucial role: the closer ρ is to 1, the narrower the notches will be. Choosing ρ
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Figure 4: Including an adaptive notch filter in the 1-microphone/1-loudspeaker
setup

too close to 1 can result in an unstable filter though. For optimal convergence a
time-varying pole radius ρ(t) could be applied, starting at a smaller value ρ(0)
(i.e. wider notches) and exponentially growing towards a final value ρ(∞):

ρ(t+ 1) = λρ(t) + (1− λ)ρ(∞) (11)

where λ corresponds to an exponential decay time constant [17]. For more
details about the ANF’s convergence and stability properties we refer to [18]
and [19].

3.1.2 The ANF-LMS algorithm

A 2nd order ANF of the type described above was applied to hearing aids
by Kates [20], only to detect oscillations due to acoustic feedback. Later on,
Maxwell et al. [21] employed Kates’ algorithm to suppress feedback oscillations
for comparison with adaptive feedback cancellation techniques. Their imple-
mentation in Direct Form II follows directly from the ANF tranfer function
(6):

x(t) = y(t) + ρ(t)a(t− 1)x(t− 1)− ρ2(t)x(t− 2) (12)

e(t) = x(t)− a(t− 1)x(t− 1) + x(t− 2) (13)

where y(t) and e(t) represent the ANF input resp. output as before, x(t) is
introduced as an auxiliary variable and some signs have been changed. This
2nd order ANF has only one parameter a(t) that appears in both transfer func-
tion numerator and denominator. Instead of solving the nonlinear minimization
problem (10) the filter coefficient update is done in an approximate way as sug-
gested by Travassos-Romano et al. [19]. Only the FIR portion of the filter is
adapted to track the frequency of the narrow-band components and the coef-
ficients are then copied to the IIR portion of the filter. The filter coefficient
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update can thus be calculated as follows:

aupd(t) = arg min
a

(e2(t)) (14)

= arg

(
d

da
e2(t) = 0

)
(15)

= arg

(
2e(t)

d

da
e(t) = 0

)
(16)

= arg
(

2e(t)(−x(t− 1)) = 0
)

(17)

where the last equality follows from (13). In this way we obtain an LMS filter
update which completes the filter implementation given by (12)-(13):

a(t) = a(t− 1) + 2µe(t)x(t− 1) (18)

The 2nd order ANF-LMS algorithm is summarized in Algorithm 1.

Algorithm 1 : 2nd order ANF-LMS algorithm

Input step size µ, initial pole radius ρ(0), final pole radius ρ(∞), expo-
nential decay time constant λ, input data {y(t)}Nt=1, initial conditions
x(0), x(−1), a(0)

Output 2nd order ANF parameter {a(t)}Nt=1

1: for t = 1, . . . , N do
2: ρ(t) = λρ(t− 1) + (1− λ)ρ(∞)
3: x(t) = y(t) + ρ(t)a(t− 1)x(t− 1)− ρ2(t)x(t− 2)
4: e(t) = x(t)− a(t− 1)x(t− 1) + x(t− 2)
5: a(t) = a(t− 1) + 2µe(t)x(t− 1)
6: end for

Higher order ANF’s can be implemented in a similar way. As an example
we give the difference equations describing an 8th order ANF with LMS update:

x(t) = y(t) + ρa1(t− 1)x(t− 1)− ρ2a2(t− 1)x(t− 2) + ρ3a3(t− 1)x(t− 3)

− ρ4a4(t− 1)x(t− 4) + ρ5a3(t− 1)x(t− 5)− ρ6a2(t− 1)x(t− 6)

+ ρ7a1(t− 1)x(t− 7)− ρ8x(t− 8)

e(t) = x(t)− a1(t− 1)x(t− 1) + a2(t− 1)x(t− 2)− a3(t− 1)x(t− 3)

+ a4(t− 1)x(t− 4)− a3(t− 1)x(t− 5) + a2(t− 1)x(t− 6)

− a1(t− 1)x(t− 7) + x(t− 8)

θ̂(t) =


a1(t)
a2(t)
a3(t)
a4(t)

 =


a1(t− 1)
a2(t− 1)
a3(t− 1)
a4(t− 1)

+ 2µe(t)


x(t− 1) + x(t− 7)
−x(t− 2)− x(t− 6)
x(t− 3) + x(t− 5)
−x(t− 4)



(19)
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3.1.3 Experiments

Experimental setup. Computer simulations with the proposed ANF-LMS
algorithm were done in Matlab/Simulink, using a prerecorded speech signal
for V (z) (8 kHz, 16 bit). The forward path G(z) was a simple amplifier model
consisting of a user-adjustable gain K and a saturation. The acoustic feedback
path transfer function F (z) was assumed time-invariant and was calculated with
the Image Source Method [22] for an empty room of dimensions 4.20 m × 3.70
m × 3.20 m with strongly reflective walls, floor and ceiling. Microphone and
loudspeaker were assumed to be omnidirectional, be at fixed positions and have
an ideally flat frequency response.

Simulations. For stability reasons the pole radius ρ and the adaptation step
size µ were assigned fixed values. A pole radius ρ = 0.9 gives sufficiently narrow
notches while ensuring a stable filter. The adaptation step size µ has to be cho-
sen small enough to minimize the effect of changes in the input speech spectrum
V (ejω) on the adaptation. Moreover a µ chosen too large will threaten the ANF
stability. We found µ = 10−6 to be an optimal choice in most cases.

Without feedback control the system reaches its stability limit when the
amplifier gain is set to K = 9 dB. This means the system does not become un-
stable but on the other hand there is a continuous ringing sound which does not
disappear. A 2nd order ANF succeeds at suppressing this feedback oscillation
although not immediately. When raising the gain to K = 11 dB several oscillat-
ing feedback frequencies arise making the need for a higher filter order obvious.
An 8th order ANF can do the job, but not in an efficient way. We notice that,
when a new oscillating feedback frequency arises, all four filter coefficients move
in its direction instead of only one coefficient. As we raise the gain to K = 15
dB the system has become fundamentally unstable and even a 32th order ANF
does not succeed in suppressing all oscillating feedback frequencies.

Conclusions. An adaptive notch filter can be applied very efficiently to re-
move “soft” ringing sounds in a system at the edge of instability. Once the
gain is raised beyond this point the number of oscillating feedback frequencies
increases rapidly, requiring a higher ANF order. There is a limit to this though:
a gain increase of 5 dB (relative to the maximum stable gain of the system
without feedback control) does not allow the ANF to converge, no matter how
high the order is chosen. For systems that require an addition in stable gain of
more than 5 dB, another feedback control solution has to be sought (e.g. AFC).

Moreover we noticed that a higher order ANF (≥ 8) suffers from the fact
that several filter coefficients try to converge to the same oscillating feedback
frequency. As suggested in [23] this problem could be tackled by introducing
subband filtering, assigning one 2nd order ANF to each subband. Simulations
showed that subband filtering can improve convergence but at high gains leads
to broadband attenuation of the microphone signal.
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