

Chapter-2 : Signals & Systems Review

Marc Moonen & Toon van Waterschoot Dept. E.E./ESAT-STADIUS, KU Leuven marc.moonen@esat.kuleuven.be www.esat.kuleuven.be/stadius/

Chapter-2 : Signals & Systems Review

- **Discrete-Time/Digital Signals** (10 slides) Sampling, quantization, reconstruction
- Discrete-Time Systems (13 slides)
 LTI, impulse response, convolution, z-transform, frequency response, frequency spectrum, IIR/FIR
- Discrete Fourier Transform (4 slides) DFT-IDFT, FFT
- Multi-Rate Systems (11 slides)

2/40

Discrete-Time Systems 4/13							
Convolution u[0],u[1],u[2],u[3]							
	<pre>[y[0] y[1] y[2] y[3] y[4] y[5]</pre>	<i>h</i> [0] <i>h</i> [1] <i>h</i> [2] 0 0 0 0	0 h[0] h[1] h[2] 0 0	0 0 h[0] h[1] h[2] 0	0 0 0 <i>h</i> [0] <i>h</i> [1] <i>h</i> [2]	<i>u</i> [0] <i>u</i> [1] <i>u</i> [2] <i>u</i> [3]	h[0],h[1],h[2],0,0,
DS	$y[k] = \sum_{\overline{k}} h[k - \overline{k}] . u[\overline{k}]^{\Delta} = h[k] * u[k]$ DSP 2016 / Chapter-2: Signals & Systems Review						Convolution sum ' (+more convenient than Toeplitz matrix notation when considering (infinitely) long input and impulse response sequences

