Digital Signal Processing

Chapter-1 : Introduction

Marc Moonen Dept. E.E./ESAT-STADIUS, KU Leuven marc.moonen@esat.kuleuven.be www.esat.kuleuven.be/stadius/

Chapter-1 : Introduction		
Aims/Scope Why study DSP ?		
DSP in applications : Mobile com DSP in applications : Hearing aid	munications example s example	
 Overview Filter design & implementation Optimal and adaptive filters Filter banks and subband systems 	s	
 Lectures/course material/literature Exercise sessions Exam 		
DSP 2016 / Chapter-1: Introduction	2 / 32	

DSP in app	olications: Mo	bile Com	nmunication	1S 6/10
• DSP Chall	enges: Channel	Estimatio	n/Compensat	tion
Channel o transmissi Problem to output (=o This leads t	coefficients (a,b,c,d,e) on of pre-defined trainir b be solved at receiver i bserved), compute cha co a <u>least-square</u>	are <u>identifie</u> ng sequences s: `Given chai nnel coefficier s parame t	<u>d</u> in receiver base (TS) nnel input (=TS) ar nts' ter estimatio r	ed on nd channel
^{min} a,b,c,d,e	$\begin{bmatrix} OUT[1] \\ OUT[2] \\ OUT[3] \\ OUT[4] \\ OUT[5] \\ \vdots \\ OUT[K] \end{bmatrix} = \begin{bmatrix} IN[1] \\ IN[2] \\ IN[3] \\ IN[4] \\ IN[5] \\ \vdots \\ 0 \end{bmatrix}$	0 0 IN[1] 0 IN[2] IN[1] IN[3] IN[2] I IN[4] IN[3] I : : 0 0	$\begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ IN[1] & 0 \\ IN[2] & IN[1] \\ \vdots & \vdots \\ 0 & IN[K-4] \end{bmatrix} .$	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
See Cha	pter-6 on 'Optimal Fi	Itering'	C. F. Gaufs.	Carl Fr
DSP 2016 / Chapter-1: Intro	oduction	M	y services are bonnd.	10 / 32

DSP in applications: Mobile Communications 9/10 DSP Challenges: Speech Coding - Original PCM-signal has 64kbits/sec =8 ksamples/sec*8bits/sample - Aim is to reduce this to <11kbits/sec, while preserving quality! - Coding based on speech generation model (vocal tract,...), where model coefficient are identified for each new speech segment (e.g. 20 msec) This leads to a least-squares parameter estimation (again), executed +- 50 times per second. Fast algorithm is used, e.g. 'Levinson-Durbin' algorithm See Chapter-6 on 'Optimal Filtering' Then transmit model coefficients instead of signal samples (!!!) Synthesize speech segment at receiver (should `sound like' original speech segment) = SPECTACULAR !!

DSP in applications: Hearing Aids 3/10 →Hearing Aids (HAs) 921 Audio input/audio output (`microph 'Amplifier', but so much more that mp History: • Horns/trumpets/... • `Desktop' HAs (1900) • Wearable HAs (1930) ð • Digital HAs (1980) • State-of-the-art: • MHz's clock speed • Millions of arithmetic operations/sec, ... • Multiple microphones = BOX FULL OF DSP/MATHEMATICS !!

DSP in applications: Hearing Aids 6/10

SŅR

20dB

OdE

30 50 70 90

- However: Audibility does not imply intelligibility
- Hearing impaired subjects need 5..10dB larger <u>signal-to-noise ratio</u> (SNR) for speech understanding in noisy environments
- Need for <u>noise reduction</u>
 Hearing loss (dB, 3-freq-average)
 (=speech enhancement) algorithms:
 - · State-of-the-art: monaural 2-microphone adaptive noise reduction
 - Near future: binaural noise reduction (see below)
 - Not-so-near future: cooperative HAs wih multi-node noise reduction

DSP 2016 / Chapter-1: Introduction

Aims/Scope

- <u>Basic</u> signal processing theory/principles Filter design, filter banks, optimal filters & adaptive filters ...as well as...
- Recent/<u>advanced</u> topics
 Robust filter realization, perfect reconstruction filter banks, fast adaptive algorithms, ...
- Often ` bird's-eye view ' Skip many mathematical details (if possible... ©) Selection of topics (non-exhaustive)

• Prerequisites: Signals & Systems (sampling, transforms,..)

DSP 2016 / Chapter-1: Introduction

Overview	
• <u>Part IV</u> : Filter Banks & Subband Systems Chapter-8: Filter Bank Preliminaries/Applications Chapter-9: Filter Bank Design	
H1(z) 3 Subband processing 13 G1(z) H2(z) 13 Subband processing 13 G2(z) H3(z) 13 Subband processing 13 G3(z) H4(z) 13 Subband processing 13 G4(z)	
DSP 2016 / Chapter-1: Introduction	30 / 32

Literature
A. Oppenheim & R. Schafer (*) `Digital Signal Processing' (Prentice Hall 1977)
 L. Jackson `Digital Filters and Signal Processing' (Kluwer 1986)
Simon Haykin `Adaptive Filter Theory' (Pearson Education 2014)
P.P. Vaidyanathan `Multirate Systems and Filter Banks' (Dorling Kindersley 1993)
M. Bellanger `Digital Processing of Signals' (Kluwer 1986)
• etc
(*) MOOC www.edx.org/course/discrete-time-signal-processing-mitx-6-341x-1 32/32