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Outline

◮ Motivation

◮ Factorization of polynomial matrices

◮ Behaviors defined by rational symbols

◮ Distance between systems

◮ Model reduction without stability or i/o partition

◮ Left prime representations
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Aim of this lecture

System theory is well developed for ODEs, especially LTIDSs

R

(

d
dt

)

w = 0 or R

(

d
dt

)

w = M

(

d
dt

)

ℓ

and FDLSs

d
dt

x = Ax +Bu, y = Cx +Du w ∼=
[

u
y

]
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Aim of this lecture

Recently, we have been able to incorporate

G
(

d
dt

)

= 0 with G ∈ R(ξ )•×w rational

firmly in the behavioral setting.
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Aim of this lecture

Recently, we have been able to incorporate

G
(

d
dt

)

= 0 with G ∈ R(ξ )•×w rational

firmly in the behavioral setting.

Rational representations occur frequently
in control, signal processing, etc.
They play a very important role
in recent research.

Joint research with

Yutaka Yamamoto
Kyoto University, Japan

born 1950
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Rational symbols
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Motivation

In system theory, it is customary to think of dynamical models
in terms of inputs and outputs, viz.

SYSTEM output  input    

e.g. in linear time-invariant case,
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e.g. in linear time-invariant case,
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)y = Q(
d
dt

)u, or ŷ(s) = F(s)û(s)

with P,Q polynomial matr., or F a matrix of rational f’ns.
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Motivation

In system theory, it is customary to think of dynamical models
in terms of inputs and outputs, viz.

SYSTEM output  input    

e.g. in linear time-invariant case,

P(
d
dt

)y = Q(
d
dt

)u, or ŷ(s) = F(s)û(s)

with P,Q polynomial matr., or F a matrix of rational f’ns.

In the present lecture, we

◮ do not use an input/output partition

◮ interpret F , not in terms of Laplace transforms,
but in terms of differential equations.
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LTIDSs

(R,Rw,B) where

T = R ‘time’

W = Rw ‘signal space’

and ‘behavior’ B = the set of solutions of a system of

linear constant coefficient ODEs

B = the C ∞ (R,Rw)-solutions of

R0w+R1
d
dt

w+ · · ·+RL

dL

dtL
w = 0

R
(

d
dt

)

w = 0

R ∈ R [ξ ]•×w a matrix of real polynomials
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Differential equations with rational symbols

In signal processing, control, system ID, etc., we often meet
models that involve rational functions. Cfr. transfer functions,

y = F(‘s’)u, w ∼=
[

u
y

]
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Differential equations with rational symbols

In signal processing, control, system ID, etc., we often meet
models that involve rational functions. Cfr. transfer functions,

y = F(‘s’)u, w ∼=
[

u
y

]

Defining what a solution is for ODEs such as

R

(

d
dt

)

w = 0 or
d
dt

x = Ax +Bu, y = Cx +Du,w =

[

u
y

]

poses no difficulties worth mentioning, but rational functions
; Laplace transforms with domains of convergence, etc.
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Differential equations with rational symbols

Let G ∈ R(ξ )•×w, and consider the ‘differential equation’

G
(

d
dt

)

w = 0 G is called the associatedsymbol

What do we mean by its solutions, i.e. by the behavior?
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Differential equations with rational symbols

Let G ∈ R(ξ )•×w, and consider the ‘differential equation’

G
(

d
dt

)

w = 0 G is called the associatedsymbol

What do we mean by its solutions, i.e. by the behavior?

Let (P,Q) be a left coprime polynomial factorization of G.
Then

[[G(
d
dt

)w = 0]] ⇔ [[P−1Q(
d
dt

)w = 0]] :⇔ [[ Q
(

d
dt

)

w = 0 ]]
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Differential equations with rational symbols

Let G ∈ R(ξ )•×w, and consider the ‘differential equation’

G
(

d
dt

)

w = 0 G is called the associatedsymbol

What do we mean by its solutions, i.e. by the behavior?

Let (P,Q) be a left coprime polynomial factorization of G.
Then

[[G(
d
dt

)w = 0]] ⇔ [[P−1Q(
d
dt

)w = 0]] :⇔ [[ Q
(

d
dt

)

w = 0 ]]

By definition therefore, the behavior ofG( d
dt )w = 0 is equal

to the behavior ofQ( d
dt )w = 0.

P is only of secondary importance.
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Justification

1. G proper. Let (A,B,C,D) be a controllable realization of the
transfer function G. Consider the ‘output nulling’ inputs

d
dt

x = Ax+Bw, 0 = Cx+Dw

This set ofw’s are exactly those that satisfyG
(

d
dt

)

w = 0.

Analogous for d
dt x = Ax+Bw,0 = Cx+D

(

d
dt

)

w, D ∈ R [ξ ]•×•.
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Justification

1. G proper. Let (A,B,C,D) be a controllable realization of the
transfer function G. Consider the ‘output nulling’ inputs

d
dt

x = Ax+Bw, 0 = Cx+Dw

This set ofw’s are exactly those that satisfyG
(

d
dt

)

w = 0.

Analogous for d
dt x = Ax+Bw,0 = Cx+D

(

d
dt

)

w, D ∈ R [ξ ]•×•.

2. View G(s) as a transfer f’n.
Take your favorite definition of input/output pairs.

The output nulling inputs exactly those that satisfy
G

(

d
dt

)

w = 0.

3. ...
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Justification

Note! With this definition, we can deal with transfer
functions,

y = F(
d
dt

)u, i.e.
[

F( d
dt )

... − I
]

[

u
y

]

= 0

with F a matrix of rational functions, and
completely avoid Laplace transforms, domains
of convergence, and such cumbersome, but
largely irrelevant, mathematical traps.

Pierre Simon Laplace
1749 – 1827

– p. 12/72



Caveats
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F
(

d
dt

)

is not a map!

Consider

y = F
(

d
dt

)

u

We now know what it means that(u,y) ∈ C ∞ (R,R•) satisfies
this ‘ODE’.

Given u, ∃ solution y, but not unique, unlessF is polynomial
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F
(

d
dt

)

is not a map!

Consider

y = F
(

d
dt

)

u

We now know what it means that(u,y) ∈ C ∞ (R,R•) satisfies
this ‘ODE’.

Given u, ∃ solution y, but not unique, unlessF is polynomial

F = P−1Q coprime fact. ⇔ P−1
[

P
... −Q

]

coprime fact.

F = P−1Q ; y = F
(

d
dt

)

u ⇔ P(
d
dt

)y = Q(
d
dt

)u

If P 6= I (better, not unimodular), there are many sol’nsy of
this ODE for a given u.

y = yparticular + yhomogeneous P(
d
dt

)yhomogeneous= 0
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G1
(

d
dt

)

and G2
(

d
dt

)

need not commute

/= /ss 1/s
1 s

G1(s) =
1
s

and G2(s) = s

do not commute.

y =
1
d
dt

v, v =
d
dt

u ⇒ y(t) = u(t)+ constant

y =
d
dt

v, v =
1
d
dt

u ⇒ y(t) = u(t)
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Representations

LTIDSs Σ = (R,Rw,B) have a representation
B = kernel

(

R
(

d
dt

))

for someR ∈ R [ξ ]•×w by definition .
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Representations

LTIDSs Σ = (R,Rw,B) have a representation
B = kernel

(

R
(

d
dt

))

for someR ∈ R [ξ ]•×w by definition .

But we may as well take the representationG
(

d
dt

)

w = 0 for

someG ∈ R(ξ )•×w as the definition.
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Representations

LTIDSs Σ = (R,Rw,B) have a representation
B = kernel

(

R
(

d
dt

))

for someR ∈ R [ξ ]•×w by definition .

But we may as well take the representationG
(

d
dt

)

w = 0 for

someG ∈ R(ξ )•×w as the definition.

◮ R: all poles at ∞
◮ we can takeG with no poles at∞ (G proper)

◮ or all poles in some non-empty set - symmetric w.r.t.R.

‘proper stable rational’
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Representations

In particular:

Theorem: Every LTIDS has a representation

G
(

d
dt

)

w = 0

with G ∈ R(ξ )•×w strictly proper stable rational .

Proof: Take G(ξ ) = R(ξ )
(ξ+λ )n

, suitableλ ∈ R,n ∈ N.
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Controllability c.s.
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Controllability

B is said to be controllable :⇔
∀ w1,w2 ∈ B, ∃ T ≥ 0 and w ∈ B such that ...

w

1

w

w

w

w

2

1

0

2

T0

time

W

time

W W
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Stabilizability

B is said to be stabilizable :⇔

∀ w ∈ B, ∃ w′ ∈ B such that ...

w’

w

0

W

time
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Autonomous

B is said to be autonomous :⇔

∀ w− ∈ B|R−, ∃ (!) w+ ∈ B|R+ such that ...

future (unique!)

W

w
past

time
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Stability

B is said to be stable :⇔ [[w ∈ B]] ⇒ [[w(t) → 0 ast → ∞]]

W

time

for LTIDSs, stable ⇒ autonomous

Stability in the sense of Lyapunov
Alexandr Lyapunov

1857 – 1918
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Representations

What properties on G imply that the system with rational
representation

G
(

d
dt

)

w = 0 G ∈ R(ξ )•×w

has any of these properties?

Under what conditions onG doesG
(

d
dt

)

w = 0 define a
controllable or a stabilizable system?
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Representations

What properties on G imply that the system with rational
representation

G
(

d
dt

)

w = 0 G ∈ R(ξ )•×w

has any of these properties?

Under what conditions onG doesG
(

d
dt

)

w = 0 define a
controllable or a stabilizable system?

Can a rational representation be used to put one of these
properties in evidence?
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Test for controllability

Theorem: The LTIDS

G
(

d
dt

)

w = 0 G ∈ R(ξ )•×w

is controllable if and only if

G(λ ) has the same rank∀λ ∈ C
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Test for controllability

Theorem: The LTIDS

G
(

d
dt

)

w = 0 G ∈ R(ξ )•×w

is controllable if and only if

G(λ ) has the same rank∀λ ∈ C

Interpret carefully in cases like

G(s) =





s 0

0
1
s



 ,G(s) =





s
1
s



 ,G(s) =

[

s
1
s

]
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Test for stabilizability

Theorem: The LTIDS

G
(

d
dt

)

w = 0 G ∈ R(ξ )•×w

is stabilizable if and only if

G(λ ) has the same rank∀λ ∈ C with Realpart(λ ) ≥ 0
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Image representation

Theorem: A LTIDS is controllable if and only if its behavior
allows an image representation

w = M( d
dt )ℓ M ∈ R(ξ )w×•
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Image representation

Theorem: A LTIDS is controllable if and only if its behavior
allows an image representation

w = M( d
dt )ℓ M ∈ R(ξ )w×•

For example,

y = F(
d
dt

)u ; w =

[

u
y

]

=

[

ℓ

F( d
dt )ℓ

]

Systems defined by transfer functions are controllable

Transfer functions can only deal with controllable systems
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Stabilizability

Theorem: A LTIDS is stabilizable if and only if its behavior
allows a kernel representation

G( d
dt )w = 0

with G ∈ R(ξ )•×w left prime
over the ring of (proper) stable rationals.

We explain what this means later, and give a number of
related results.
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Recapitulation

◮ LTIDSs are defined in terms of polynomial symbols
R

(

d
dt

)

w = 0 R ∈ R [ξ ]•×w,

◮ but can also be represented by rational symbols
G

(

d
dt

)

w = 0 G ∈ R(ξ )•×w

◮ Sol’ns are defined in terms of a left coprime factorization
of G

◮ This added flexibility is better adapted to certain
applications

e.g. (series, parallel, ...) interconnections
e.g. distance between behaviors
e.g. behavioral model reduction
e.g. parametrization of the stabilizing controllers
e.g. characterizing stabilizability
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Distance between systems
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Motivation

What is a good, computable, definition for the distance
between two (LTID) systems?

Basic issue underlying model simplification, robustness, etc.

– p. 30/72



Motivation

What is a good, computable, definition for the distance
between two (LTID) systems?

Basic issue underlying model simplification, robustness, etc.

◮ Approximate a system by a simpler one.

◮ If a system has a particular property (e.g., stabilized by a
controller), will this also hold for close-by systems?

◮ Does a sequence of systems converge?

What is meant
by ‘approximate’, by ‘close-by’, by ‘converge’?
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Distance between sets

A model is a behavior, a subset. Hence distance between
models translates into distance between sets.

The common measure for distance between the subsets
B1,B2 ⊂ U , with U a metric space,
is the Hausdorff distance defined as

dH(B1,B2) = max

(−→
d H(B1,B2),

−→
d H(B2,B1)

)

with −→
d H(S1,S2) = sup

w1∈S1

inf
w2∈S2

d(w1,w2)

dH is a distance function on compact sets

– p. 31/72



Distance between sets

a

S

Distance from a point to a set:
closest distance
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Distance between sets

a

S

S1

S2

Distance from a point to a set: Distance between sets
closest distance

Distance small⇔ close to every point ofS1, there is one ofS2
close to every point ofS2, there is one ofS1
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The gap
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Distance between linear subspaces

In the behavioral theory, we identify a dynamical system with
its behavior, that is, with a subspaceB ⊆ C ∞ (R,Rw).

Distance between LTIDSs
∼= distance between linear subspaces.
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Linear subspaces ofRn

L1,L2 ⊆ R
n, linear subspaces

−→
d (L1,L2) := max

x1∈L1,||x1||=1
min

x2∈L2
||x1− x2||

L1

L2
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Linear subspaces ofRn

L1

L2

L1

L2

Note again asymmetry of directed gap
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Linear subspaces ofRn

L1

L2

L1

L2

Note again asymmetry of directed gap

gap(L1,L2) := max
({−→

d (L1,L2),
−→
d (L2,L1)

})

0≤ gap(L1,L2) ≤ 1

= 1 if dimension(L1) 6= dimension(L2)
– p. 36/72



Formula for the gap

PL ⊥ projection onto L

S1,S2 matrices, columns orthonormal basis forL1,L2

Note: S1S⊤1 ,S2S⊤2 orthogonal projectors
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Formula for the gap

PL ⊥ projection onto L

S1,S2 matrices, columns orthonormal basis forL1,L2

Note: S1S⊤1 ,S2S⊤2 orthogonal projectors

gap(L1,L2) = ||PL1 −PL2|| ‘ gap ’, ‘aperture’

= ||S1S⊤1 −S2S⊤2 ||
= min

matricesU
||S1−S2U ||

= min
U such that UL1=L2

||I −U ||

– p. 37/72



Formula for the gap

PL ⊥ projection onto L

S1,S2 matrices, columns orthonormal basis forL1,L2

Note: S1S⊤1 ,S2S⊤2 orthogonal projectors

gap(L1,L2) = ||PL1 −PL2|| ‘ gap ’, ‘aperture’

= ||S1S⊤1 −S2S⊤2 ||
= min

matricesU
||S1−S2U ||

= min
U such that UL1=L2

||I −U ||

Therefore, d(L1,L2) = ||S1S⊤1 −S2S⊤2 || ≤ ||S1−S2||

– p. 37/72



Distance between LTIDSs
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Association of a Hilbert space to a controllable behavior

min→ inf,max→ sup, etc., readily generalized to linear
subspaces of Hilbert space, ...... and to LTIDSs.

But, B ∈ L w is not a subspace of a Hilbert space. Which
subspace of which Hilbert space should we associate with a
LTIDS with behavior B ⊆ C ∞ (R,Rw)?
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Association of a Hilbert space to a controllable behavior

min→ inf,max→ sup, etc., readily generalized to linear
subspaces of Hilbert space, ...... and to LTIDSs.

But, B ∈ L w is not a subspace of a Hilbert space. Which
subspace of which Hilbert space should we associate with a
LTIDS with behavior B ⊆ C ∞ (R,Rw)?

B 7→ BL2 := (B∩L2(R,Rw))closure

For kernel representations, corresponds to

BL2 = {w ∈ L2(R,Rw) | R

(

d
dt

)

w = 0, distributionally }
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Association of a Hilbert space to a controllable behavior

B 7→ BL2

defines a1↔ 1 relation between controllable systems and
certain closed subspaces ofL2(R,Rw).

Moreover,

[[B1controllable= B2controllable]] ⇔ [[B1L2
= B2L2

]]
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Distance between controllable behaviors

Define the distance between two controllable behaviors as

d(B1,B2) := gap

(

B1L2
,B2L2

)

So, we consider theL2-trajectories for measuring distance.

Henceforth, keep notationB for BL2 = (B∩L2(R,Rw))closure
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Distance between controllable behaviors

Define the distance between two controllable behaviors as

d(B1,B2) := gap

(

B1L2
,B2L2

)

So, we consider theL2-trajectories for measuring distance.

Henceforth, keep notationB for BL2 = (B∩L2(R,Rw))closure

∀w1 ∈ B1,∃w2 ∈ B2 such that ||w1−w2|| ≤ gap(B1,B2)||w1||

∀w2 ∈ B2,∃w1 ∈ B1 such that ||w1−w2|| ≤ gap(B1,B2)||w2||

Small gap⇒ the LTIDSs are ‘close’.
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Distance between controllable behaviors

Define the distance between two controllable behaviors as

d(B1,B2) := gap

(

B1L2
,B2L2

)

So, we consider theL2-trajectories for measuring distance.

Henceforth, keep notationB for BL2 = (B∩L2(R,Rw))closure

∀w1 ∈ B1,∃w2 ∈ B2 such that ||w1−w2|| ≤ gap(B1,B2)||w1||

∀w2 ∈ B2,∃w1 ∈ B1 such that ||w1−w2|| ≤ gap(B1,B2)||w2||

Small gap⇒ the LTIDSs are ‘close’.

◮ How to compute the gap?

◮ Model reduce according to the gap!
– p. 41/72



Norm-preserving representations

Let B be the behavior of a controllable LTIDS. Then it allows
a rational symbol based image representation

w = M(
d
dt

)ℓ with M ∈ R(ξ )w×• & M(−ξ )⊤M(ξ ) = I

i.e., ||ℓ||2
L2(R,R•) = ||w||2

L2(R,Rw) norm preserving image repr.
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Norm-preserving representations

Let B be the behavior of a controllable LTIDS. Then it allows
a rational symbol based image representation

w = M(
d
dt

)ℓ with M ∈ R(ξ )w×• & M(−ξ )⊤M(ξ ) = I

i.e., ||ℓ||2
L2(R,R•) = ||w||2

L2(R,Rw) norm preserving image repr.

∫ +∞

−∞
||w(t)||2dt =

1
2π

∫ +∞

−∞
||ŵ(iω)||2dω =

1
2π

∫ +∞

−∞
||M(iω)ℓ̂(iω)||2dω =

1
2π

∫ +∞

−∞
||ℓ̂(iω)||2dω =

∫ +∞

−∞
||ℓ(t)||2dt
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Norm-preserving representations

Let B be the behavior of a controllable LTIDS. Then it allows
a rational symbol based image representation

w = M(
d
dt

)ℓ with M ∈ R(ξ )w×• & M(−ξ )⊤M(ξ ) = I

i.e., ||ℓ||2
L2(R,R•) = ||w||2

L2(R,Rw) norm preserving image repr.

∫ +∞

−∞
||w(t)||2dt =

1
2π

∫ +∞

−∞
||ŵ(iω)||2dω =

1
2π

∫ +∞

−∞
||M(iω)ℓ̂(iω)||2dω =

1
2π

∫ +∞

−∞
||ℓ̂(iω)||2dω =

∫ +∞

−∞
||ℓ(t)||2dt

Note: M cannot be polynomial, it must be rational
Obviously M must be proper. Can also make it stable.
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Proof of existence of a norm-preserving image representations

Let B ∈ L w be controllable. Then it allows an image
representation

w = M

(

d
dt

)

ℓ

with M ∈ R [ξ ]w×• right prime.
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Proof of existence of a norm-preserving image representations

Let B ∈ L w be controllable. Then it allows an image
representation

w = M

(

d
dt

)

ℓ

with M ∈ R [ξ ]w×• right prime.

Consider M(−ξ )⊤M(ξ ). Note that

M(−iω)⊤M(iω) is Hermitian and ≻ 0 for all ω ∈ R.
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Proof of existence of a norm-preserving image representations

Let B ∈ L w be controllable. Then it allows an image
representation

w = M

(

d
dt

)

ℓ

with M ∈ R [ξ ]w×• right prime.

Consider M(−ξ )⊤M(ξ ). Note that

M(−iω)⊤M(iω) is Hermitian and ≻ 0 for all ω ∈ R.

Hence (‘spectral factorization’) there existsH ∈ R [ξ ]w×w with
determinant(H) Hurwitz, such that

M(−ξ )⊤M(ξ ) = H(−ξ )⊤H(ξ )
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Proof of existence of a norm-preserving image representations

DefineM̃ := MH−1, and observe that

w = M̃
(

d
dt

)

ℓ

is
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Proof of existence of a norm-preserving image representations

DefineM̃ := MH−1, and observe that

w = M̃
(

d
dt

)

ℓ

is

◮ a rational symbol based image representation ofB, since

image

(

M̃

(

d
dt

))

= image

(

M

(

d
dt

))
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Proof of existence of a norm-preserving image representations

DefineM̃ := MH−1, and observe that

w = M̃
(

d
dt

)

ℓ

is

◮ a rational symbol based image representation ofB, since

image

(

M̃

(

d
dt

))

= image

(

M

(

d
dt

))

◮ and norm preserving, since

M̃⊤(−iω)M̃(iω) = I.

– p. 44/72



Norm-preserving representations

B1 7→ M1,B2 7→ M2, both norm preserving & stable, then

gap(B1,B2) = ||M1(iω)M1(−iω)⊤−M2(iω)M2(−iω)⊤||L∞

≤ ||M1(iω)−M2(iω)||H∞

– p. 45/72



Model reduction
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Reducing the state dimension of input/output systems

There is an elegant theory (explained in lecture 8) for
reducing the state space dimension ofstable LTI
input/output systems.
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Reducing the state dimension of input/output systems

There is an elegant theory (explained in lecture 8) for
reducing the state space dimension ofstable LTI
input/output systems.

Let B (state contr. + state obs.) be described by

d
dt x = Ax +Bu, y = Cx+Du w ∼=

[

u
y

]

with A Hurwitz ( :⇔ eigenvalues in left half plane).
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Reducing the state dimension of input/output systems

There is an elegant theory (explained in lecture 8) for
reducing the state space dimension ofstable LTI
input/output systems.

Let B (state contr. + state obs.) be described by

d
dt x = Ax +Bu, y = Cx+Du w ∼=

[

u
y

]

with A Hurwitz ( :⇔ eigenvalues in left half plane).

There are effective methods (balancing, AAK)
with good error bounds (in terms of the
H∞ norm) for approximating B

by a (stable) system with a
lower dimensional state space.

Keith Glover
born in 1945
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Error bound

Let F be the transfer function of the original system, and
Freducedof the reduced system.

Balanced model reduction⇒

||F(iω)−Freduced(iω)||H∞ ≤ 2 (∑neglected Hankel SVsσk)
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Error bound

Let F be the transfer function of the original system, and
Freducedof the reduced system.

Balanced model reduction⇒

||F(iω)−Freduced(iω)||H∞ ≤ 2 (∑neglected Hankel SVsσk)

F(s) proper stable rational⇒ reducible

with an H∞ error bound.

¡¡ Extend this to situations where we do not make a distinction
between inputs and outputs, and to unstable systems.
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Model reduction by balancing for behavioral systems

Start with B. Take representatation

w = M(
d
dt

)ℓ with M ∈ R(ξ )w×• norm preserving, stable
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Model reduction by balancing for behavioral systems

Start with B. Take representatation

w = M(
d
dt

)ℓ with M ∈ R(ξ )w×• norm preserving, stable

Now model reducew = M( d
dt )ℓ (viewed as a stable

input/output system) using, for example, balancing

; w = Mreduced(
d
dt

)ℓ

and an error bound

||M−Mreduced||H∞ ≤ 2
(

∑neglected SVs ofM σk

)
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Behavioral error bound

Start with stable norm preserving representation ofB

w = M(
d
dt

)ℓ with M ∈ R(ξ )w×•

Model reduce using balancing; w = Mreduced(
d
dt )ℓ.

Call behavior Breduced.
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Behavioral error bound

Start with stable norm preserving representation ofB

w = M(
d
dt

)ℓ with M ∈ R(ξ )w×•

Model reduce using balancing; w = Mreduced(
d
dt )ℓ.

Call behavior Breduced. Error bound

gap(B,Breduced) = ||MM⊤−MreducedM⊤
reduced

||L∞

≤ ||M−Mreduced||H∞

≤ 2
(

∑neglected SVs ofM σk

)
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Behavioral error bound

Start with stable norm preserving representation ofB

w = M(
d
dt

)ℓ with M ∈ R(ξ )w×•

Model reduce using balancing; w = Mreduced(
d
dt )ℓ.

Call behavior Breduced. Error bound

gap(B,Breduced) = ||MM⊤−MreducedM⊤
reduced

||L∞

≤ ||M−Mreduced||H∞

≤ 2
(

∑neglected SVs ofM σk

)

∀w∈B∃w′ ∈Bred such that ||w−w′|| ≤ 2(∑neglected SVsσk)||w||
and vice-versa.
∑neglected SVs ofM σk small ⇒ good approximation in the gap.
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Example

+

force   F   

position  q
F = d2

dt2 q, w =

[

F
q

]
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force   F   

position  q
F = d2

dt2 q, w =

[

F
q

]

Norm preserving, stable

[

F
q

]

∼=





ξ 2

ξ 2+
√

2ξ+1

1
ξ 2+

√
2ξ+1



ℓ
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√
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√
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reduced model
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F
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∼=
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ℓ
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Example

+

force   F   

position  q
F = d2

dt2 q, w =

[

F
q

]

Norm preserving, stable

[

F
q

]

∼=





ξ 2

ξ 2+
√

2ξ+1

1
ξ 2+

√
2ξ+1



ℓ

reduced model

[

F
q

]

∼=









ξ−1
2

ξ+ 1√
2

1
2

ξ+ 1√
2









ℓ

F = d2

dt2q first order approximation 1
2F = d

dt q− 1
2q
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Recapitulation

◮ The gap is a measure of the distance between closed
linear subspaces of a Hilbert space.

◮ Through the L2 behavior, the gap gives a good measure
of distance between controllable LTIDSs.

◮ A controllable LTIDS admits a stable norm preserving
image representation.

◮ Norm preserving image representations of LTIDSs allow
to compute that gap,

◮ and lead to a model reduction algorithm for a
controllable B ∈ L w.
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R(ξ ) and some of its other subrings
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Relevant rings

Field of (real) rationals

Subrings of interest

polynomials

proper rationals

stable rationals

proper stable rationals

Each of these rings hasR(ξ ) as its field of fractions !
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Relevant rings

unimodularity :⇔ invertibility in the ring

Field of (real) rationals nonzero

Subrings of interest

polynomials nonzero constant

proper rationals biproper

stable rationals miniphase
:= poles and zeros inReal(λ ) < 0

proper stable rationals biproper & miniphase

Each of these rings hasR(ξ ) as its field of fractions !
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Unimodularity

unimodularity of square matrices over rings
⇔ determinant unimodular
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Unimodularity

unimodularity of square matrices over rings
⇔ determinant unimodular

left primeness of matrices over rings

:⇔ [[[[M = FM′]] ⇒ [[F unimodular ]]]]
⇔ ∃ matrix M such that FM = I
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Unimodularity

unimodularity of square matrices over rings
⇔ determinant unimodular

left primeness of matrices over rings

:⇔ [[[[M = FM′]] ⇒ [[F unimodular ]]]]
⇔ ∃ matrix M such that FM = I

Left coprime factorizability of G ∈ R(ξ )n1×n2 holds over each
of these rings
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Representability

The LTIDS B admits a representation that is left prime over

◮ rationals: always

◮ proper rationals: always

◮ stable rationals: iff B is stabilizable

◮ proper stable rationals: iff B is stabilizable

◮ polynomials: iff B is controllable

Left prime representations over subrings allow to express
certain system properties...
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Stabilizality

The LTIDS B admits a representation that is left prime over

stable rationals: iff B is stabilizable

proper stable rationals: iff B is stabilizable

B stabilizable⇔∃G, matrix of rational functions, such that

(i) B = kernel
(

G
(

d
dt

))

(ii) G is proper (no poles at∞)

(iii) G∞ := limitλ→∞G(λ ) has full row rank (no zeros at∞)

(iv) G has no poles inC+ := {λ ∈ C | real(λ ≥ 0}
(v) G(λ ) has full row rank ∀ λ ∈ C+ (no zeros inC+)
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Controllability

The LTIDS B admits a representation that is left prime over

polynomials: iff B is controllable

B controllable ⇔∃R, matrix of polynomials, such that

(i) B = kernel
(

R
(

d
dt

))

(ii) R(λ ) full row rank ∀ λ ∈ C
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Autonomy, stability

The LTIDS B admits a representation that is unimodular in
the ring of (proper) rational functions ⇔ it is autonomous.
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Autonomy, stability

The LTIDS B admits a representation that is unimodular in
the ring of (proper) rational functions ⇔ it is autonomous.

The LTIDS B admits a representation that is unimodular in
the ring of stable (proper) rational functions ⇔ it is stable.
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Summary of Lecture 7
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The main points

◮ G( d
dt )w = 0 defined in terms left-coprime polynomial

factorization of rational G.
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dt )ℓ

achievable only with rational M.

◮ Stable norm preserving representation w = M( d
dt )ℓ

leads to model reduction of unstable systems and systems
without input/output partition.

◮ ∃ numerous other applications of rational symbols.

– p. 61/72



The main points

◮ G( d
dt )w = 0 defined in terms left-coprime polynomial

factorization of rational G.

◮ y = G( d
dt )u does not require Laplace transform.

◮ Controllability, stabilizability, etc. of G( d
dt )w = 0

decidable from G.

◮ Norm preserving representation w = M( d
dt )ℓ

achievable only with rational M.

◮ Stable norm preserving representation w = M( d
dt )ℓ

leads to model reduction of unstable systems and systems
without input/output partition.

◮ ∃ numerous other applications of rational symbols.

End of lecture 7
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Mathematical Appendix
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Factorization of rational matrices

A bit of mathematics
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Polynomials

A (one-variable) polynomial over the ring R is an expression
as

p(ξ ) = p0 + p1ξ + · · ·+ pnξ n

with the pk’s elements ofR. The variable ξ is called the
indeterminate. Its power ξ k should in first instance be viewed
as a placeholder to specify the elementpk ∈ R.
We can think of a polynomial as a sequence

p ∼= (p0, p1, . . . , pn, . . .)

of elements ofR such that only a finite number of elements of
the sequence are non-zero.
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Polynomials

Addition and multiplication of polynomials over R are defined
in the obvious way, the latter by multiplying term by term,
multiplying the corresponding coefficients, adding the
corresponding powers of the indeterminate, and collecting
equal powers. Note that this corresponds toconvolution of the
corresponding coefficient sequences.
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Polynomials

Addition and multiplication of polynomials over R are defined
in the obvious way, the latter by multiplying term by term,
multiplying the corresponding coefficients, adding the
corresponding powers of the indeterminate, and collecting
equal powers. Note that this corresponds toconvolution of the
corresponding coefficient sequences.

The set of polynomials over the ringR is denoted asR[ξ ].

When R = R, we call a corresponding polynomialreal, and
complex if R = C.

R [ξ ] and C[ξ ] are clearly commutative rings.
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A polynomial induces a map

The elementp ∈ R [ξ ] , p(ξ ) = p0 + p1ξ + · · ·+ pnξ n ∈ R

stands in one-to-one relation with polynomial maps
x ∈ R 7→ p0 + p1x+ · · ·+ pnxn ∈ R. The one-to-one relation
follows from the derivatives of the map atx = 0.

Similarly p ∈ C[ξ ], p(ξ ) = p0 + p1ξ + · · ·+ pnξ n, stands in
one-to-one relation with the map
x ∈ C 7→ p0 + p1x+ · · ·+ pnxn ∈ C.

Often, therefore, a polynomial is viewed as a map.
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Do not think of a polynomial as a map

Thinking of p as a formal expression (rather than as a map)
and of ξ as an indeterminate (rather than as a real or
complex number) is exceedingly important.
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Do not think of a polynomial as a map

Thinking of p as a formal expression (rather than as a map)
and of ξ as an indeterminate (rather than as a real or
complex number) is exceedingly important.

To illustrate this point, consider p ∈ R [ξ ]. Then we can
substitute for ξ any expression such that real scalar multiples
of its powers and their sums are well defined. This holds, for
example, for any element of a real algebra.
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Do not think of a polynomial as a map

Thinking of p as a formal expression (rather than as a map)
and of ξ as an indeterminate (rather than as a real or
complex number) is exceedingly important.

To illustrate this point, consider p ∈ R [ξ ]. Then we can
substitute for ξ any expression such that real scalar multiples
of its powers and their sums are well defined. This holds, for
example, for any element of a real algebra.

This implies in particular that for A ∈ R
n×n, p(A) is a

well-defined element ofRn×n. Similarly, p
(

d
dt

)

becomes a
differential operator, p induces a map fromC to C, etc.

This point of view is used very frequently, for example, in the
Cayley-Hamilton theorem, in the fundamental theorem of
algebra, in our discussion of LTIDSs, etc.
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Rational functions

R(ξ ) denotes the field of rational functions with real
coefficients. InR(ξ ), ξ denotes again an indeterminate.
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Rational functions

R(ξ ) denotes the field of rational functions with real
coefficients. InR(ξ ), ξ denotes again an indeterminate.

Formally R(ξ ) is defined asthe field of fractions of R [ξ ]

This means the following.

Consider the set
(R [ξ ]−{0})×R [ξ ]

with the equivalence relation

[[(d1,n1) ∼ (d2,n2]] :⇔ [[d1n2 = d2n1]]

Then R(ξ ) is defined as the set of equivalence classes obtained
this way. With the obvious definition of addition and
multiplication, R(ξ ) becomes a field.
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Rational functions

◮ The equivalence relation suggests and justifies the

notation f =
n
d

instead of[(d,n)]∼.
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notation f =
n
d

instead of[(d,n)]∼.

◮ By definition, we canad libitum cancel or add common
factors in n and d, without changing the rational function

f =
n
d

.
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Rational functions

◮ The equivalence relation suggests and justifies the

notation f =
n
d

instead of[(d,n)]∼.

◮ By definition, we canad libitum cancel or add common
factors in n and d, without changing the rational function

f =
n
d

.

◮ Each rational function f ∈ R(ξ ) equals f =
n
d

, for some

n,d ∈ R [ξ ] coprime (meaning thatn and d have no
common roots), andd monic (meaning that the highest
power in ξ with a non-zero coefficient has coefficient1.
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Prime polynomial matrices

M ∈ R [ξ ]n1×n2 is said to be left prime if M = FM′ with

F ∈ R [ξ ]n1×n1 ,M′R [ξ ]n1×n2 implies that F is unimodular.
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Prime polynomial matrices

M ∈ R [ξ ]n1×n2 is said to be left prime if M = FM′ with

F ∈ R [ξ ]n1×n1 ,M′R [ξ ]n1×n2 implies that F is unimodular.

In the scalar case, withM = [m1 m2 · · · mn], left prime
means thatm1,m2, · · · ,mn have no common root.
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Prime polynomial matrices

M ∈ R [ξ ]n1×n2 is said to be left prime if M = FM′ with

F ∈ R [ξ ]n1×n1 ,M′R [ξ ]n1×n2 implies that F is unimodular.

In the scalar case, withM = [m1 m2 · · · mn], left prime
means thatm1,m2, · · · ,mn have no common root.

The following are equivalent for M ∈ R [ξ ]n1×n2:

◮ M is left prime

◮ M(λ ) has full row rank (i.e. its rank is n1) for all λ ∈ C.

◮ there existsN ∈ R [ξ ]n2×n1 such that MN = In1×n1.
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Prime polynomial matrices

M ∈ R [ξ ]n1×n2 is said to be left prime if M = FM′ with

F ∈ R [ξ ]n1×n1 ,M′R [ξ ]n1×n2 implies that F is unimodular.

In the scalar case, withM = [m1 m2 · · · mn], left prime
means thatm1,m2, · · · ,mn have no common root.

The following are equivalent for M ∈ R [ξ ]n1×n2:

◮ M is left prime

◮ M(λ ) has full row rank (i.e. its rank is n1) for all λ ∈ C.

◮ there existsN ∈ R [ξ ]n2×n1 such that MN = In1×n1.

Right prime is defined and characterized completely
analogously.
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Prime polynomial matrices

The equivalence ofM ∈ R [ξ ]n1×n2:

◮ M is left prime

◮ there existsN ∈ R [ξ ]n2×n1 such that MN = In1×n1.

Étienne Bézout
1730 – 1783

is sometimes called theBézout identity
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Prime polynomial matrices

The equivalence ofM ∈ R [ξ ]n1×n2:

◮ M is left prime

◮ there existsN ∈ R [ξ ]n2×n1 such that MN = In1×n1.

Étienne Bézout
1730 – 1783

is sometimes called theBézout identity

For n1 = 1,n2 = 2 this states:
given m1,m2 ∈ R [ξ ], there existx1,x2 ∈ R [ξ ]
such that

m1x1 +m2x2 = 1

iff m1 and m2 have no common root.
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Factorization of matrices of rational functions

A left coprime polynomial factorization (or a left coprime

factorization over R [ξ ]) of M ∈ R(ξ )n1×n2 is a pair (P,Q) such
that

◮ P ∈ R [ξ ]n1×n1, Q ∈ R [ξ ]n1×n2

◮ determinant(P) 6= 0

◮ [ P Q ] is left prime

◮ P−1Q = M

Every M ∈ R(ξ )n1×n2 admits a left coprime fact. overR [ξ ]
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Factorization of matrices of rational functions

A left coprime polynomial factorization (or a left coprime

factorization over R [ξ ]) of M ∈ R(ξ )n1×n2 is a pair (P,Q) such
that

◮ P ∈ R [ξ ]n1×n1, Q ∈ R [ξ ]n1×n2

◮ determinant(P) 6= 0

◮ [ P Q ] is left prime

◮ P−1Q = M

Every M ∈ R(ξ )n1×n2 admits a left coprime fact. overR [ξ ]

(P1,Q1) and (P2,Q2) are both left coprime factorizations ofM
over R [ξ ] iff ∃ a unimodular U ∈ R [ξ ]n1×n1 such that

P2 = UP1,Q1 = UQ2
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Factorization of matrices of rational functions

For example, in the scalar case,

M =
[

m1 m2 · · ·mn

]

, with the mk’s ∈ R(ξ )

is factored as

M =
1
p

[

q1 q2 · · ·qn
]

,

with p,q1,q2, . . . ,qn ∈ R [ξ ] coprime polynomials (that is, they
have no common roots).
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