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Motivation

Factorization of polynomial matrices
Behaviors defined by rational symbols
Distance between systems

Model reduction without stability or i/o partition
Left prime representations
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System theory is well developed for ODEs, especially LTIDSs

d
R _
(dt
and FDLSs

d

dt

d
)W—O or R(a

X=Ax+Bu, y=Cx+Du

>W:M<t

12
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Recently, we have been able to incorporate

G(&) =0 with GER (&)™ rational

firmly in the behavioral setting.
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Recently, we have been able to incorporate

G(&) =0 with GER (&)™ rational

firmly in the behavioral setting.

Rational representations occur frequently Joint research with
In control, signal processing, etc.
They play a very important role

In recent research.

Yutaka Yamamoto
Kyoto University, Japan

born 1950
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Rational symbols

—n. 6/



In system theory, it is customary to think of dynamical modes
In terms of inputs and outputs, viz.

input SYSTEM

e.g. in linear time-invariant case,

output
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In system theory, it is customary to think of dynamical modes
In terms of inputs and outputs, viz.

input SYSTEM

e.g. in linear time-invariant case,

output

P(SY=Q(SIu o (9 =F(9a(9

with P, Q polynomial matr., or F a matrix of rational f'ns.
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In system theory, it is customary to think of dynamical modes
In terms of inputs and outputs, viz.

input SYSTEM

e.g. in linear time-invariant case,

output

P(y=Q(u or (9 =F(9)as

with P, Q polynomial matr., or F a matrix of rational f'ns.

In the present lecture, we
» do not use an input/output partition

» Interpret F, notin terms of Laplace transforms,
but in terms of differential equations.
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(R,R¥, &) where

® T =R ‘time

o W =R ‘sighal space’

# and ‘behavior’ % = the set of solutions of a system of

linear constant coefficient ODES
%A =the ¢* (R,R")-solutions of

Row+ R EW—I— + R d—Lw—O
Lt Lotk

R(&)w=0

Re R[&]*"" a matrix of real polynomials
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In signal processing, control, system ID, etc., we often mee
models that involve rational functions. Cfr. transfer functions,

y=F('s’)u, w=
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In signal processing, control, system ID, etc., we often mee
models that involve rational functions. Cfr. transfer functions,

u
y

y=F('s’)u, w=

Defining what a solution is for ODEs such as

d d u
R(ﬁ)"V_O or ax_AXJrBu,y_CerDu,W_ v

poses no difficulties worth mentioning, but rational functions
~+» Laplace transforms with domains of convergence, etc.
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Let Ge R (&)*™", and consider the ‘differential equation’

G(S)w=0 Gis called the associategsymbol

What do we mean by its solutionsi.e. by the behavior?
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Let Ge R (&)*™", and consider the ‘differential equation’

G(S)w=0 Gis called the associategsymbol

What do we mean by its solutionsi.e. by the behavior?

Let (P, Q) be a left coprime polynomial factorization of G.
Then

G(Sw=0] & [PAQ(Lw=0]: [Q($)w=0]
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Let Ge R (&)*™", and consider the ‘differential equation’

G(S)w=0 Gis called the associategsymbol

What do we mean by its solutionsi.e. by the behavior?

Let (P, Q) be a left coprime polynomial factorization of G.
Then

d B d
|Gl )w=0] « [P 1Q(E)W= 0] : = [Q(§F)w=0]
By definition therefore, the behavior of G(&)w = 0is equal

to the behavior of Q(&)w = 0.
P is only of secondary importance.
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1. G proper. Let (A,B,C,D) be a controllable realization of the
transfer function G. Consider the ‘output nulling’ inputs

%X:AX—I— Bw, O0=Cx+Dw

This set ofw's are exactly those that satisfyG (&) w=0.
Analogous for $x = Ax-+Bw,0=Cx+D ($)w, DeR[E]**".
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1. G proper. Let (A,B,C,D) be a controllable realization of the
transfer function G. Consider the ‘output nulling’ inputs

%X:AX—I— Bw, O0=Cx+Dw

This set ofw's are exactly those that satisfyG (&) w=0.
Analogous for $x = Ax-+Bw,0=Cx+D ($)w, DeR[E]**".

2. View G(s) as a transfer f'n.
Take your favorite definition of input/output pairs.

The output nulling inputs exactly those that satisfy
d

3. ...
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Note! With this definition, we can deal with transfer
functions,

y:F(%)u, .e. [F(%) ; _@ —0

with F a matrix of rational functions, and
completely avoid Laplace transforms, domains  E=gesee
of convergence, and such cumbersome, but A
largely irrelevant, mathematical traps.

LAPLACE
i G -

Pierre Simon Laplace
1749 — 1827
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Caveats
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Consider
y="F (§)u

We now know what it means that(u,y) € ” (R,R*®) satisfies
this ‘ODE".

Given u, dsolutiony, but not unique, unlessF is polynomial
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Consider
y="F (§)u

We now know what it means that(u,y) € ” (R,R*®) satisfies
this ‘ODE".

Given u, dsolutiony, but not unique, unlessF is polynomial

F = P~1Q coprime fact. < P~1 [p : _Q} coprime fact.
FoPIQ ~ y=F($)u P y=a)
il dt dt

If P=~1 (better, not unimodular), there are many sol’'nsy of
this ODE for a given u. ;

Y = Yparticular T Yhomogeneous P(a)ymmogeneous: 0
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Gy(s) =
do not commute.
y = iv, V= Eu
& dt
y = Ev V= 1 u

’ d
dt 5

=

y(t) = u(t) + constant
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LTIDSs 2 = (R,RY, #) have a representation
% = kernel (R(&)) for someRe R[E]**" by definition .

—n. 16/



LTIDSs 2 = (R,RY, #) have a representation
% = kernel (R(&)) for someRe R[E]**" by definition .

But we may as well take the representatiorG () w = 0 for
someG c R(&)*™" as the definition.
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LTIDSs 2 = (R,RY, #) have a representation
% = kernel (R(&)) for someRe R[E]**" by definition .

But we may as well take the representatiorG () w = 0 for
someG c R(&)*™" as the definition.

» R all polesatem
» we can takeG with no poles ato (G proper)

» or all polesin some non-empty set - symmetric w.r.tR.

‘proper stable rational’
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In particular:

Theorem: Every LTIDS has a representation
G(§)w=0
dt
with G € R (&)**" strictly proper stable rational .

Proof: Take G(¢) = %, suitableA € R,n € N.
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Controllabllity c.s.
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A 1S said to be controllable &
Vwi,Wo e A, 4T >0andw e £ such that ...
W M/""

m“. ““/

0 time




A 1S said to be stabilizable &

Ywe £, 3w € %4 such that ...

/W\ E'ffffffflcwe

W’
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2 1S said to be autonomous ;<

Vw_eABlr ,3 (1) wy € ZB|r, suchthat...

future (unique!)

V\w‘\_/\

time




% is said to be stable (& [we #Z] = [w(t) — 0ast — o]

for LTIDSSs, stable = autonomous

Stability in the sense of Lyapunov

Alexandr Lyapunov
1857 — 1918
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What properties on G imply that the system with rational
representation

G(&)w=0 GeR(E)™™™

has any of these properties?

Under what conditions onG doesG (%) w = 0 define a
controllable or a stabilizable system?
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What properties on G imply that the system with rational
representation

G(&)w=0 GeR(&)*

has any of these properties?

Under what conditions onG doesG (%) w = 0 define a
controllable or a stabilizable system?

Can a rational representation be used to put one of these
properties in evidence?

—n. 23/



Theorem: The LTIDS
G(&)w=0 GeR(&)*

Is controllable if and only if

G(A) has the same rankvA € C
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Theorem: The LTIDS
G(&)w=0 GeR(E)™™™
Is controllable if and only if

G(A) has the same rankvA € C

Interpret carefully in cases like

G(s) = ,G(s) =

nwlik o

'S
0

nwik v
G
VR
NC2S
|

1



Theorem: The LTIDS
G(&)w=0 GeR(&)*

Is stabilizable if and only if

G(A) has the same rankvA € C with Realpart(A) >0
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Theorem: ALTIDS is controllable if and only if its behavior
allows an image representation

w=M($)/ MeR(E)"
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Theorem: ALTIDS is controllable if and only if its behavior
allows an image representation

w=M(&)¢ MeR(E)"

For example,

y:F(a)U ~ W= vl =

14
()1

Systems defined by transfer functions are controllabl#

Transfer functions can only deal with controllable systems
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Theorem: ALTIDS is stabilizableif and only if its behavior
allows a kernel representation

G(F)w=0

with Ge R (&)*™" left prime
over the ring of (proper) stable rationals.

We explain what this means later, and give a number of
related results.
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LTIDSs are defined in terms of polynomial symbols

R(&)w=0  ReR[]",

but can also be represented by rational symbols

G(§)w=0  GeR(&)*

Sol'ns are defined in terms of a left coprime factorization
of G

This added flexibility is better adapted to certain
applications

e.g.| distance between behaviors
e.g. behavioral model reduction

e.g. characterizing stabilizability



Distance between systems
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What is a good, computable, definition for the distance
between two (LTID) systems?

Basic issue underlying model simplification, robustnessje
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What is a good, computable, definition for the distance
between two (LTID) systems?

Basic issue underlying model simplification, robustnessje

» Approximate a system by a simpler one.

» If asystem has a particular property (e.g., stabilized by a
controller), will this also hold for close-by systems?

» Does a sequence of systems converge?

What is meant
by ‘approximate’, by ‘close-by’, by ‘converge’?
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A model is a behavior, a subset. Hence distance between
models translates into distance between sets.

The common measure for distance between the subsets
B, P> C U, With %/ a metric space,

IS the Hausdorff distance defined as

dH (55’1, 95’2) — max (E)H (931, 932), a)H (%27 931))

with
d H(Sl,Sz) — sup 1inft d(Wl,Wz)

W]_ES]_WZESZ

dy Is a distance function on compact sets
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Distance from a point to a set:
closest distance
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S

Distance from a point to a set: Distance between sets
closest distance

Distance small< close to every point ofS;, there is one ofS
close to every point ofS, there is one ofS
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The gap



In the behavioral theory, we identify a dynamical system wih
its behavior, that is, with a subspaceZ C €“ (R,R").

Distance between LTIDSs
= distance between linear subspaces.
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2,22 C

Linear subspaces ofR™

R*, linear subspaces

?(%1,92”2) = max min ||xg — X2||
X1€L7,|[xa[|=1 X2€22
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Linear subspaces ofR™

A

Note again asymmetry of directed gap
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Linear subspaces ofR™

A

Note again asymmetry of directed gap

gap(. L1, %) = max({?(gl,gz),ﬁ(gz,gl)})

0< gap(gl,gz) <1

= 1if dimension(.%1) # dimension(.%?)
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P, L projection onto .2

S, S matrices, columns orthonormal basis for#, %
Note: $S],SS, orthogonal projectors
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P, L projection onto .2

S, S matrices, columns orthonormal basis for#, %
Note: $S],SS, orthogonal projectors

gap(-£1,-%2) = ||Py —Pgx| ‘ gap ’, ‘aperture’
= ||SiS] -S|
= min [|§—-SU||
matricesU
= min [ —U]|

U suchthat U4 =%
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P, L projection onto .2

S, S matrices, columns orthonormal basis for#, %
Note: $S],SS, orthogonal projectors

gap(-£1,-%2) = ||Py —Pgx| ‘ gap ’, ‘aperture’
= ||SiS] -S|
= min [|§—-SU||
matricesU
= min [ —U]|

U suchthat U4 =%

Therefore, d(£, %) =SS —SS || <||S1— S|

—n. 37/



Distance between LTIDSSs



min — inf, max— sup etc., readily generalized to linear
subspaces of Hilbert space, ...... and to LTIDSs.

But, Z € .Z" is not a subspace of a Hilbert space. Which
subspace of which Hilbert space should we associate with a
LTIDS with behavior 4 C ¢* (R,R¥)?

—pn. 39/



min — inf, max— sup etc., readily generalized to linear
subspaces of Hilbert space, ...... and to LTIDSs.

But, Z € .Z" is not a subspace of a Hilbert space. Which
subspace of which Hilbert space should we associate with a
LTIDS with behavior 4 C ¢* (R,R¥)?

B %32 - (%’ﬂfz (RyRW))closure
For kernel representations, corresponds to

By, =We L (R,RY)|R (%) w = 0, distributionally }
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Association of a Hilbert space to a controllable behavio

P — B,

defines al « 1 relation between controllable systems and
certain closed subspaces of% (R, R").

Moreover,

H‘%lcontrollable: ‘%Zcontrollableﬂ A4 [[%132 - %2'22]]
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Define the distance between two controllable behaviors as
d(%1,%2) = gap (1, P, )

So, we consider the#s-trajectories for measuring distance.

Henceforth, keep notationZ for B, = (BN % (R,R¥))0re
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Define the distance between two controllable behaviors as
d(%1,%2) = gap (1, P, )

S0, we consider the¥,-trajectories for measuring distance.

Henceforth, keep notationZ for B, = (BN % (R,R¥))0re

YWy € H1,IWo € H> such that ||wy —Ws|| < gap(H1, Bo)||wa|

YWo € Ao, IWy € H1 such that ||wy —Ws|| < gap(A1, Bo)||Wa||

Small gap=- the LTIDSs are ‘close’.
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Define the distance between two controllable behaviors as
d(%1,%2) = gap (1, P, )

So, we consider the#s-trajectories for measuring distance.

Henceforth, keep notationZ for B, = (BN % (R,R¥))0re

YWy € H1,IWo € H> such that ||wy —Ws|| < gap(H1, Bo)||wa|

YWo € Ao, IWy € H1 such that ||wy —Ws|| < gap(A1, Bo)||Wa||

Small gap=- the LTIDSs are ‘close’.

» How to compute the gap?
» Model reduce according to the gap!
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Let # be the behavior of a controllable LTIDS. Then it allows
a rational symbol based image representation

W:M(%)E with M € R(E)™° & M(—&)TM(&) =

l.e.,

|€|@2(R7R.) = HWH?%(R,RW) norm preserving image repr.
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Let # be the behavior of a controllable LTIDS. Then it allows
a rational symbol based image representation

WMD) with MeR(E) & M(—&)TM(E) = |

dt
e, |€|@2(R7R.) = HWH?%(R,RW) norm preserving image repr.
+oo 1 [t
24t _ & A N2 Ay —
[ IwPdt= o [ o) Pde

1 e I e
o | IM(w)iw)|Pdw= o [ |liiw)2do= [ )2
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Let # be the behavior of a controllable LTIDS. Then it allows
a rational symbol based image representation

WMD) with MeR(E) & M(—&)TM(E) = |

dt
e, |€|@2(R7R.) = HWH?%(R,RW) norm preserving image repr.
+oo 1 [t
24t _ & A N2 Ay —
[ IwPdt= o [ o) Pde

1 e I e
o | IM(w)iw)|Pdw= o [ |liiw)2do= [ )2

Note: M cannot be polynomial, it must be rational
Obviously M must be proper. Can also make it stable.
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Proof of existence of a norm-preserving image representains

Let & € ¥ be controllable. Then it allows an image

representation
d
—M [ —
W (dt> 14

with M € R [E]""° right prime.
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Let B € ¥ be controllable. Then it allows an image

representation
d
— M| —
W (dt) 14

with M € R[&]"° right prime.
ConsiderM(—£&) "M(&). Note that

M(—iw) ' M(iw) is Hermitian and > Ofor all w € R.
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Let B € ¥ be controllable. Then it allows an image

representation
d
— M| —
W (dt) 14

with M € R[&]"° right prime.
ConsiderM(—£&) "M(&). Note that

M(—iw) ' M(iw) is Hermitian and > Ofor all w € R.

Hence (‘spectral factorization’) there existsH € R[&]"*" with
determinant(H) Hurwitz, such that

M(—=&) 'M(&) =H(-&) H(¢&)

—n. 43/



Proof of existence of a norm-preserving image representains

DefineM := MH 1, and observe that
w=M (3)¢
at

IS

_p. 44/



Proof of existence of a norm-preserving image representains

DefineM := MH 1, and observe that
w=M (3)¢
at
IS

» arational symbol based image representation af%, since

e (3(3)) - (4 (2)

_p 44/



DefineM := MH 1, and observe that
5
w=M ()
IS

» arational symbol based image representation af%, since

inage (i ( 5 ) ) = inage (M ()

» and norm preserving, since

~

M (—iw)M(iw) =1.
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P11 — M1, B> — Mo, both norm preserving & stable, then
gap(#1,%2) = |IMiiw)M1(—iw)" —Ma(iw)Ma(—iw)' |z,

< [[M1(iw) — M2(iw)]|| .
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Model reduction

—n. 46/



Reducing the state dimension of input/output system

There is an elegant theory (explained in lecture 8) for
reducing the state space dimension cstable LTI

Input/output systems.
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There is an elegant theory (explained in lecture 8) for
reducing the state space dimension cstable LTI

Input/output systems.

Let & (state contr. + state obs.) be described by

u
Qx=AX+Bu, y=Cx+Du w=

with A Hurwitz ( ;< eigenvalues in left half plane).



There is an elegant theory (explained in lecture 8) for
reducing the state space dimension cstable LTI
Input/output systems.

Let & (state contr. + state obs.) be described by

u
Qx=AX+Bu, y=Cx+Du w=

with A Hurwitz ( ;< eigenvalues in left half plane).

There are effective methods (balancing, AAK)
with good error bounds (in terms of the

% norm) for approximating %

by a (stable) system with a

lower dimensional state space.

Keith Glover
born in 1945

—n. 47/



Let F be the transfer function of the original system, and
FreducedOf the reduced system.

Balanced model reduction=-

HF (iw) - Freduce&iw)H%”oo <?2 (Zneglected Hankel SVsUk)
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Let F be the transfer function of the original system, and
FreducedOf the reduced system.

Balanced model reduction=-

HF (iw) - Freduce&iw)H%”oo <?2 (Zneglected Hankel SVsUk)

F(s) proper stable rational = reducible

with an 7%, error bound.

ii Extend this to situations where we do not make a distinctin
between inputs and outputs, and to unstable systems.
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Model reduction by balancing for behavioral systems

Start with . Take representatation

w=M(=-)¢ with MeR(&)"® norm preserving, stable
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Start with . Take representatation

W= M(%)é with M eR(&)"* norm preserving, stable

Now model reducew =M (%)é (viewed as a stable
Input/output system) using, for example, balancing

d
~ W= Mreduced(a)é

and an error bound

HI\/I — Mreduced‘ |jfoo <2 (Zneglected SVs o Uk)
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Start with stable norm preserving representation of %

W:M(%)é with M € R(&)"*®

Model reduce using balancing~ W = Myequcea (5 )¢
Ca” behaV|Or %reduced
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Start with stable norm preserving representation of %

W:M(%)é with M € R(&)"*®

Model reduce using balancing~ W = Myequcea (5 )¢
Call behavior Z,equceq Error bound

IMM " — MieguceaM, s qucea |2

reduced

gap(‘%a %reducea

VAN

||h4'_'hﬂreduced|Lﬁﬁ£

VAN

2 (Zneglected SVs oM Jk)
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Start with stable norm preserving representation of %

W:M(%)é with M € R(&)"*®

Model reduce using balancing~ W = Myequcea (5 )¢
Call behavior Z,equceq Error bound

IMM " — MieguceaM, s qucea |2

reduced

gap(‘%a %reducea

VAN

||h4'_'hﬂreduced|Lﬁﬁ£

VAN

2 (Zneglected SVs oM Jk)

VW E BIW € Hregsuch that [jw—w|| < 2(Y neglected sveTi) | |W||

and vice-versa.
> neglected Svs oM Ok SMall = good approximation in the gap.
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position (

force F

_ d?
F_Wq’ W =
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Norm preserving, stable

12
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Norm preserving, stable

reduced model

12

12
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Norm preserving, stable

T
12
I\
N
_|_
N
_|_

reduced model

12

F = gTzzq first order approximation %F =
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The gap is a measure of the distance between closed
linear subspaces of a Hilbert space.

Through the %, behavior, the gap gives a good measure
of distance between controllable LTIDSs.

A controllable LTIDS admits a stable norm preserving
Image representation.

Norm preserving image representations of LTIDSs allow
to compute that gap,

and lead to a model reduction algorithm for a
controllable % € .£~.



R (&) and some of its other subrings



Field of (real) rationals

Subrings of interest

polynomials
proper rationals

stable rationals

proper stable rationals

Each of these rings haR (¢) as its field of fractions'!
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unimodularity :< invertibility in the ring
Field of (real) rationals nonzero

Subrings of interest

polynomials nonzero constant
proper rationals biproper
stable rationals miniphase

.= poles and zeros inReal(A) < 0

proper stable rationals biproper & miniphase

Each of these rings haR (£) as its field of fractions'!
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unimodularity of square matrices over rings
& det er m nant unimodular
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unimodularity of square matrices over rings
& det er m nant unimodular

left primeness of matrices over rings
= [[[[M =FM']| = [F unimodular]]]]
< dmatrix M such thatFM = |
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unimodularity of square matrices over rings
& det er m nant unimodular

left primeness of matrices over rings
= [[[[M =FM']| = [F unimodular]]]]
< dmatrix M such thatFM = |

Left coprime factorizability of G € R (&)""2 holds over each
of these rings

—pn. 55/



The LTIDS & admits a representation that is left prime over

» rationals: always
» proper rationals: always

» stable rationals: iff £ Is stabilizable
» proper stable rationals: iff £ Is stabilizable

» polynomials: iff # is controllable

Left prime representations over subrings allow to express
certain system properties...
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The LTIDS & admits a representation that is left prime over

# stable rationals: iff & is stabilizable
#® proper stable rationals: iff £ Is stabilizable

A stabilizable & 4G, matrix of rational functions, such that

() % =kernel (G (%))

(i) Gis proper (no poles atw)
(i) G :=1limit)_,G(A) has full row rank (no zeros at )
(iv) Ghasno polesinC, :={A € C|real(A >0}

(V) G(A) has fullrow rank ¥V A € C, (no zeros inC,)
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The LTIDS & admits a representation that is left prime over

# polynomials: iff # is controllable

2% controllable < dR, matrix of polynomials, such that
() % =xernel (R(&))
(i) R(A) fullrowrank VA €C
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The LTIDS £ admits a representation that is unimodular in
the ring of (proper) rational functions < it is autonomous
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The LTIDS £ admits a representation that is unimodular in
the ring of (proper) rational functions < it is autonomous

The LTIDS £ admits a representation that is unimodular in
the ring of stable (proper) rational functions < it is stable

—pn. 59/



Summary of Lecture 7



> G(%)W = 0 defined in terms left-coprime polynomial
factorization of rational G.
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> G(%)W = 0 defined in terms left-coprime polynomial
factorization of rational G.

> Y= G(%)u does not require Laplace transform.
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> G(%)W = 0 defined in terms left-coprime polynomial
factorization of rational G.

y = G(&)u does not require Laplace transform.

Controllability, stabilizability, etc. of G(%)W: 0
decidable from G.
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G(%)W — O defined in terms left-coprime polynomial
factorization of rational G.

y= G(%)u does not require Laplace transform.
Controllability, stabilizability, etc. of G(%)W: 0
decidable from G.

Norm preserving representation w= M ()¢
achievable only with rational M.
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G(%)W — O defined in terms left-coprime polynomial
factorization of rational G.

y= G(%)u does not require Laplace transform.
Controllability, stabilizability, etc. of G(%)W: 0
decidable from G.

Norm preserving representation w= M ()¢
achievable only with rational M.

Stable norm preserving representation w= M(%)é

leads to model reduction of unstable systems and systems
without input/output partition.
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G(%)W — O defined in terms left-coprime polynomial
factorization of rational G.

y= G(%)u does not require Laplace transform.
Controllability, stabilizability, etc. of G(%)W: 0
decidable from G.

Norm preserving representation w= M ()¢
achievable only with rational M.
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G(%)W — O defined in terms left-coprime polynomial
factorization of rational G.

y= G(%)u does not require Laplace transform.
Controllability, stabilizability, etc. of G(%)W: 0
decidable from G.

Norm preserving representation w= M ()¢
achievable only with rational M.

Stable norm preserving representation w= M(%)é

leads to model reduction of unstable systems and systems
without input/output partition.

4 numerous other applications of rational symbols.

End of lecture 7
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Mathematical Appendix




Factorization of rational matrices

A bit of mathematics
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A (one-variable) polynomial over the ring Ris an expression
as

P(§) =po+ P1& + -+ Pué™

with the p,’s elements ofR. The variable ¢ is called the

indeterminate. Its power ¥ should in first instance be viewed
as a placeholder to specify the element, € R.
We can think of a polynomial as a sequence

P= (Po, P1;---,Pn,---)

of elements ofRkR such that only a finite number of elements of
the sequence are non-zero.
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Addition and multiplication of polynomials over R are defined
In the obvious way, the latter by multiplying term by term,
multiplying the corresponding coefficients, adding the

corres
equal
corres

ponding powers of the indeterminate, and collecting

powers. Note that this corresponds t@onvolution of the

ponding coefficient sequences.
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Addition and multiplication of polynomials over R are defined
In the obvious way, the latter by multiplying term by term,
multiplying the corresponding coefficients, adding the
corresponding powers of the indeterminate, and collecting
equal powers. Note that this corresponds taonvolution of the
corresponding coefficient sequences.

The set of polynomials over the ringR is denoted asR[¢].

When R= R, we call a corresponding polynomialeal, and
complex if R=C.

R [&] and C[¢] are clearly commutative rings.
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The elementpe R[&],p(é) = po+ P1é + -+ Pué™ € R
stands in one-to-one relation with polynomial maps

XE R — pg+ P1X+ - -+ puX* € R. The one-to-one relation
follows from the derivatives of the map atx = 0.

Similarly pe C[é],p(é) = po+ p1é + -+ pné™, Stands in
one-to-one relation with the map

XeCr po+ p1X+---+ puXt € C.

Often, therefore, a polynomial is viewed as a map.
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Thinking of p as a formal expression (rather than as a map)
and of ¢ as an indeterminate (rather than as a real or
complex number) is exceedingly important.
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and of ¢ as an indeterminate (rather than as a real or
complex number) is exceedingly important.

To illustrate this point, consider p € R[&]. Then we can

substitute for ¢ any expression such that real scalar multiples
of its powers and their sums are well defined. This holds, for
example, for any element of a real algebra.
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Thinking of p as a formal expression (rather than as a map)
and of ¢ as an indeterminate (rather than as a real or
complex number) is exceedingly important.

To illustrate this point, consider p € R[&]. Then we can

substitute for ¢ any expression such that real scalar multiples
of its powers and their sums are well defined. This holds, for
example, for any element of a real algebra.

This implies in particular that for A€ R**"*, p(A) is a

well-defined element ofR**®, Similarly, p (%) becomes a
differential operator, p induces a map fromC to C, etc.

This point of view is used very frequently, for example, In the
Cayley-Hamilton theorem, in the fundamental theorem of
algebra, in our discussion of LTIDSs, etc.
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R (&) denotes the field of rational functions with real
coefficients. InR (¢), ¢ denotes again an indeterminate.
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R (&) denotes the field of rational functions with real
coefficients. InR (¢), ¢ denotes again an indeterminate.

Formally R (&) is defined as the field of fractions of R [¢]
This means the following.

Consider the set
(R1§]—1{0}) xR[¢]
with the equivalence relation

[[(dl, nl) ~ (dz, nz]] R [[d1n2 — dznl]]

ThenR (&) is defined as the set of equivalence classes obtainec
this way. With the obvious definition of addition and
multiplication, R () becomes a field.
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» The equivalence relation suggests and justifies the

notation f = g instead of [(d,n)].
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The equivalence relation suggests and justifies the

notation f = g instead of [(d,n)].

By definition, we canad libitum cancel or add common

factors in n and d, without changing the rational function
n

f=-.
d
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» The equivalence relation suggests and justifies the

notation f = g instead of [(d,n)].

» By definition, we canad libitum cancel or add common
factors in n and d, without changing the rational function

n
f=-.
d

» Each rational function f € R(¢) equalsf = g for some

n,d € R[] coprime (meaning thatn and d have no
common roots), andd monic (meaning that the highest
power in ¢ with a non-zero coefficient has coefficient.
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M e R[&]™"™ is said to be left prime if M = FM’ with
F e R[E"™ MR [E]"" implies that F is unimodular.
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In the scalar case, withM = [my mp --- my], left prime
means thatmy, mp, - -- ,m, have no common root.
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M e R[&]™"™ is said to be left prime if M = FM’ with
F e R[E"™ MR [E]"" implies that F is unimodular.

In the scalar case, withM = [my mp --- my], left prime
means thatmy, mp, - -- ,m, have no common root.

nq Xny,

The following are equivalent forM € R [¢]
» Mis left prime

» M(A) has full row rank (i.e. its rank is nj) forall A € C.

» there existsN € R [£]"2"™ such thatMN = I, xy,.
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M e R[&]™"™ is said to be left prime if M = FM’ with
F e R[E"™ MR [E]"" implies that F is unimodular.

In the scalar case, withM = [my mp --- my], left prime
means thatmy, mp, - -- ,m, have no common root.

nq Xny,

The following are equivalent forM € R [¢]
» Mis left prime
» M(A) has full row rank (i.e. its rank is nj) forall A € C.

» there existsN € R [£]"2"™ such thatMN = I, xy,.

Right prime is defined and characterized completely
analogously.
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nq xXno,

The equivalence oM € R [€]
» Mis left prime

» there existsN € R[£]"2*" such that MN = I, p, .

IS sometimes called th¢ Bezout identity

%3}

Etienne Bézout
1730-1783
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nq xXno,

The equivalence oM € R[]
» Mis left prime

» there existsN € R[£]"2*" such that MN = I, p, .

is sometimes called th¢ Bezout identity

For n1 = 1,ny = 2 this states: , !L odnd
: : Etienne Bezout

givenmy,mp € R[], there existxy, X2 € R[€] 1730 — 1783

such that
MyXg +MpXxo =1

Iff m and my, have no common root.
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A left coprime polynomial factorization (or a left coprime

factorization over R[&]) of M € R (&)"*"2 is a pair (P,Q) such

that

> PeR[E]™W™, Qe R[E]™™

» determinant(P)#0

» [P Q]isleft prime

» P Q=M

Every M € R (&)™ "2 admits a left coprime fact. overR [£]
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A left coprime polynomial factorization (or a left coprime

factorization over R[&]) of M € R (&)"*"2 is a pair (P,Q) such
that

> PER[E™™, Qe R[E]™ ™

» determinant(P)#0

» [P Q]isleft prime

» P Q=M

Every M € R (&)™ "2 admits a left coprime fact. overR [£]

(P, Q1) and (P, Q) are both left coprime factorizations of M
over R[] iff 3 aunimodular U € R[&]"*™ such that

P=UP,Q =UQ;
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For example, in the scalar case,

M — [ml mzrnn} , with the m,’'s € R(&)

IS factored as
1

M — [ql qz---qn},

with p,Q1,02,...,0, € R[&] coprime polynomials (that is, they
have no common roots).
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