Summer Course

Linear System Theory
 Control
 \&

Matrix Computations

Lecture 7

Rational Symbols

Lecturer: Jan C. Willems

Outline

- Motivation
- Factorization of polynomial matrices
- Behaviors defined by rational symbols
- Distance between systems
- Model reduction without stability or i/o partition
- Left prime representations

Aim of this lecture

System theory is well developed for ODEs, especially LTIDSs

$$
R\left(\frac{d}{d t}\right) w=0 \quad \text { or } \quad R\left(\frac{d}{d t}\right) w=M\left(\frac{d}{d t}\right) \ell
$$

and FDLSs

$$
\frac{d}{d t} x=A x+B u, y=C x+D u \quad w \cong\left[\begin{array}{l}
u \\
y
\end{array}\right]
$$

Aim of this lecture

Recently, we have been able to incorporate

$$
G\left(\frac{d}{d t}\right)=0 \quad \text { with } G \in \mathbb{R}(\xi)^{\bullet \times \mathrm{w}} \quad \text { rational }
$$

firmly in the behavioral setting.

Aim of this lecture

Recently, we have been able to incorporate

$$
G\left(\frac{d}{d t}\right)=0 \quad \text { with } G \in \mathbb{R}(\xi)^{\bullet \times w} \quad \text { rational }
$$

firmly in the behavioral setting.

Rational representations occur frequently in control, signal processing, etc. They play a very important role in recent research.

Joint research with

Yutaka Yamamoto Kyoto University, Japan born 1950

Rational symbols

Motivation

In system theory, it is customary to think of dynamical models in terms of inputs and outputs, viz.

e.g. in linear time-invariant case,

Motivation

In system theory, it is customary to think of dynamical models in terms of inputs and outputs, viz.

e.g. in linear time-invariant case,

$$
P\left(\frac{d}{d t}\right) y=Q\left(\frac{d}{d t}\right) u, \quad \text { or } \quad \hat{y}(s)=F(s) \hat{u}(s)
$$

with P, Q polynomial matr., or F a matrix of rational f'ns.

Motivation

In system theory, it is customary to think of dynamical models in terms of inputs and outputs, viz.

e.g. in linear time-invariant case,

$$
P\left(\frac{d}{d t}\right) y=Q\left(\frac{d}{d t}\right) u, \quad \text { or } \quad \hat{y}(s)=F(s) \hat{u}(s)
$$

with P, Q polynomial matr., or F a matrix of rational f'ns.
In the present lecture, we

- do not use an input/output partition
- interpret F, not in terms of Laplace transforms, but in terms of differential equations.

LTIDSs

$\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}, \mathscr{B}\right)$ where

- $\mathbb{T}=\mathbb{R}$ 'time'
- $\mathbb{W}=\mathbb{R}^{W}$ 'signal space'
- and 'behavior' $\mathscr{B}=$ the set of solutions of a system of
linear constant coefficient ODEs
$\mathscr{B}=$ the $\mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right)$-solutions of

$$
\begin{gathered}
R_{0} w+R_{1} \frac{d}{d t} w+\cdots+R_{\mathrm{L}} \frac{d^{\mathrm{L}}}{d t^{\mathrm{L}}} w=0 \\
R\left(\frac{d}{d t}\right) w=0
\end{gathered}
$$

$R \in \mathbb{R}[\xi]^{\bullet \times \mathrm{w}}$ a matrix of real polynomials

Differential equations with rational symbols

In signal processing, control, system ID, etc., we often meet models that involve rational functions. Cfr. transfer functions,

$$
y=F\left({ }^{\prime} \mathbf{s}^{\prime}\right) u, \quad w \cong\left[\begin{array}{l}
u \\
y
\end{array}\right]
$$

Differential equations with rational symbols

In signal processing, control, system ID, etc., we often meet models that involve rational functions. Cfr. transfer functions,

$$
y=F\left(\cdot \mathbf{s}^{\prime}\right) u, \quad w \cong\left[\begin{array}{l}
u \\
y
\end{array}\right]
$$

Defining what a solution is for ODEs such as

$$
R\left(\frac{d}{d t}\right) w=0 \text { or } \frac{d}{d t} x=A x+B u, y=C x+D u, w=\left[\begin{array}{l}
u \\
y
\end{array}\right]
$$

poses no difficulties worth mentioning, but rational functions \leadsto Laplace transforms with domains of convergence, etc.

Differential equations with rational symbols

Let $G \in \mathbb{R}(\xi)^{\bullet \times \mathrm{W}}$, and consider the 'differential equation'

$$
G\left(\frac{d}{d t}\right) w=0 \quad G \text { is called the associated symbol }
$$

What do we mean by its solutions, i.e. by the behavior?

Differential equations with rational symbols

Let $G \in \mathbb{R}(\xi)^{\bullet \times \mathrm{W}}$, and consider the 'differential equation'

$$
G\left(\frac{d}{d t}\right) w=0 \quad G \text { is called the associated symbol }
$$

What do we mean by its solutions, i.e. by the behavior?
Let (P, Q) be a left coprime polynomial factorization of G. Then

$$
\llbracket G\left(\frac{d}{d t}\right) w=0 \rrbracket \Leftrightarrow \llbracket P^{-1} Q\left(\frac{d}{d t}\right) w=0 \rrbracket: \Leftrightarrow \llbracket Q\left(\frac{d}{d t}\right) w=0 \rrbracket
$$

Differential equations with rational symbols

Let $G \in \mathbb{R}(\xi)^{\bullet \times \mathrm{w}}$, and consider the 'differential equation'

$$
G\left(\frac{d}{d t}\right) w=0 \quad G \text { is called the associated symbol }
$$

What do we mean by its solutions, i.e. by the behavior?
Let (P, Q) be a left coprime polynomial factorization of G. Then

$$
\llbracket G\left(\frac{d}{d t}\right) w=0 \rrbracket \Leftrightarrow \llbracket P^{-1} Q\left(\frac{d}{d t}\right) w=0 \rrbracket: \Leftrightarrow \llbracket Q\left(\frac{d}{d t}\right) w=0 \rrbracket
$$

By definition therefore, the behavior of $G\left(\frac{d}{d t}\right) w=0$ is equal to the behavior of $Q\left(\frac{d}{d t}\right) w=0$. P is only of secondary importance.

Justification

1. G proper. Let (A, B, C, D) be a controllable realization of the transfer function G. Consider the 'output nulling' inputs

$$
\frac{d}{d t} x=A x+B w, 0=C x+D w
$$

This set of w 's are exactly those that satisfy $G\left(\frac{d}{d t}\right) w=0$.
Analogous for $\frac{d}{d t} x=A x+B w, 0=C x+D\left(\frac{d}{d t}\right) w, D \in \mathbb{R}[\xi]^{\bullet \bullet \bullet}$.

Justification

1. G proper. Let (A, B, C, D) be a controllable realization of the transfer function G. Consider the 'output nulling' inputs

$$
\frac{d}{d t} x=A x+B w, 0=C x+D w
$$

This set of w 's are exactly those that satisfy $G\left(\frac{d}{d t}\right) w=0$.
Analogous for $\frac{d}{d t} x=A x+B w, 0=C x+D\left(\frac{d}{d t}\right) w, \quad D \in \mathbb{R}[\xi]^{\bullet \bullet \bullet}$.
2. View $G(s)$ as a transfer f'n.

Take your favorite definition of input/output pairs.
The output nulling inputs exactly those that satisfy
$G\left(\frac{d}{d t}\right) w=0$.
3. ...

Justification

Note! With this definition, we can deal with transfer functions,

$$
y=F\left(\frac{d}{d t}\right) u, \text { i.e. }\left[\begin{array}{lll}
F\left(\frac{d}{d t}\right) & \vdots & -I
\end{array}\right]\left[\begin{array}{l}
u \\
y
\end{array}\right]=0
$$

with F a matrix of rational functions, and completely avoid Laplace transforms, domains of convergence, and such cumbersome, but largely irrelevant, mathematical traps.

Pierre Simon Laplace
1749-1827

Caveats

Consider

$$
y=F\left(\frac{d}{d t}\right) u
$$

We now know what it means that $(u, y) \in \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\bullet}\right)$ satisfies this 'ODE'.

Given u, \exists solution y, but not unique, unless F is polynomial

Consider

$$
y=F\left(\frac{d}{d t}\right) u
$$

We now know what it means that $(u, y) \in \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\bullet}\right)$ satisfies this 'ODE'.

Given u, \exists solution y, but not unique, unless F is polynomial
$F=P^{-1} Q$ coprime fact. $\Leftrightarrow P^{-1}\left[\begin{array}{lll}P & \vdots & -Q\end{array}\right]$ coprime fact.

$$
F=P^{-1} Q \quad \leadsto \quad y=F\left(\frac{d}{d t}\right) u \Leftrightarrow P\left(\frac{d}{d t}\right) y=Q\left(\frac{d}{d t}\right) u
$$

If $P \neq I$ (better, not unimodular), there are many sol'ns y of this ODE for a given u.

$$
y=y_{\text {particular }}+y_{\text {homogeneous }} \quad P\left(\frac{d}{d t}\right) y_{\text {homogeneous }}=0
$$

$G_{1}\left(\frac{d}{d t}\right)$ and $G_{2}\left(\frac{d}{d t}\right)$ need not commute

$$
G_{1}(s)=\frac{1}{s} \text { and } G_{2}(s)=s
$$

do not commute.

$$
\begin{aligned}
& y=\frac{1}{\frac{d}{d t}} v, \quad v=\frac{d}{d t} u \Rightarrow y(t)=u(t)+\text { constant } \\
& y=\frac{d}{d t} v, \quad v=\frac{1}{\frac{d}{d t} u \quad} \quad \Rightarrow \quad y(t)=u(t)
\end{aligned}
$$

LTIDSs $\Sigma=\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}, \mathscr{B}\right)$ have a representation $\mathscr{B}=$ kernel $\left(R\left(\frac{d}{d t}\right)\right)$ for some $R \in \mathbb{R}[\xi]^{\bullet \times \mathrm{w}}$ by definition .

Representations

LTIDSs $\Sigma=\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}, \mathscr{B}\right)$ have a representation $\mathscr{B}=$ kernel $\left(R\left(\frac{d}{d t}\right)\right)$ for some $R \in \mathbb{R}[\xi]^{\bullet \times \mathrm{w}}$ by definition .

But we may as well take the representation $G\left(\frac{d}{d t}\right) w=0$ for some $G \in \mathbb{R}(\xi)^{\bullet \times \mathrm{w}}$ as the definition.

Representations

LTIDSs $\Sigma=\left(\mathbb{R}, \mathbb{R}^{\mathbf{w}}, \mathscr{B}\right)$ have a representation $\mathscr{B}=$ kernel $\left(R\left(\frac{d}{d t}\right)\right)$ for some $R \in \mathbb{R}[\xi]^{\bullet \times w}$ by definition .

But we may as well take the representation $G\left(\frac{d}{d t}\right) w=0$ for some $G \in \mathbb{R}(\xi)^{\bullet \times W}$ as the definition.

- R : all poles at ∞
- we can take G with no poles at ∞ (G proper)
- or all poles in some non-empty set - symmetric w.r.t. \mathbb{R}. 'proper stable rational'

Representations

In particular:

Theorem: Every LTIDS has a representation

$$
G\left(\frac{d}{d t}\right) w=0
$$

with $G \in \mathbb{R}(\xi)^{\bullet \times W}$ strictly proper stable rational.
Proof: Take $G(\xi)=\frac{R(\xi)}{(\xi+\lambda)^{n}}$, suitable $\lambda \in \mathbb{R}, \mathrm{n} \in \mathbb{N}$.

Controllability c.s.

Controllability

\mathscr{B} is said to be controllable $: \Leftrightarrow$

$\forall w_{1}, w_{2} \in \mathscr{B}, \exists T \geq 0$ and $w \in \mathscr{B}$ such that ...

\mathscr{B} is said to be stabilizable $: \Leftrightarrow$

$$
\forall w \in \mathscr{B}, \exists w^{\prime} \in \mathscr{B} \text { such that ... }
$$

\mathscr{B} is said to be autonomous : \Leftrightarrow

$$
\left.\forall w_{-} \in \mathscr{B}\right|_{\mathbb{R}_{-}},\left.\exists(!) w_{+} \in \mathscr{B}\right|_{\mathbb{R}_{+}} \text {such that ... }
$$

Stability

\mathscr{B} is said to be stable $: \Leftrightarrow \quad \llbracket w \in \mathscr{B} \rrbracket \Rightarrow \llbracket w(t) \rightarrow 0$ as $t \rightarrow \infty \rrbracket$

for LTIDSs, stable \Rightarrow autonomous
Stability in the sense of Lyapunov

Alexandr Lyapunov

$$
1857-1918
$$

Representations

What properties on G imply that the system with rational representation

$$
G\left(\frac{d}{d t}\right) w=0 \quad G \in \mathbb{R}(\xi)^{\bullet \times \mathrm{w}}
$$

has any of these properties?

Under what conditions on G does $G\left(\frac{d}{d t}\right) w=0$ define a controllable or a stabilizable system?

Representations

What properties on G imply that the system with rational representation

$$
G\left(\frac{d}{d t}\right) w=0 \quad G \in \mathbb{R}(\xi)^{\bullet \times w}
$$

has any of these properties?

Under what conditions on G does $G\left(\frac{d}{d t}\right) w=0$ define a controllable or a stabilizable system?

Can a rational representation be used to put one of these properties in evidence?

Test for controllability

Theorem: The LTIDS

$$
G\left(\frac{d}{d t}\right) w=0 \quad G \in \mathbb{R}(\xi)^{\bullet \times w}
$$

is controllable if and only if
$G(\lambda)$ has the same $\operatorname{rank} \forall \lambda \in \mathbb{C}$

Test for controllability

Theorem: The LTIDS

$$
G\left(\frac{d}{d t}\right) w=0 \quad G \in \mathbb{R}(\xi)^{\bullet \times \mathrm{w}}
$$

is controllable if and only if
$G(\lambda)$ has the same $\operatorname{rank} \forall \lambda \in \mathbb{C}$

Interpret carefully in cases like

$$
G(s)=\left[\begin{array}{cc}
s & 0 \\
0 & \frac{1}{s}
\end{array}\right], G(s)=\left[\begin{array}{c}
s \\
\frac{1}{s}
\end{array}\right], G(s)=\left[\begin{array}{ll}
s & \frac{1}{s}
\end{array}\right]
$$

Theorem: The LTIDS

$$
G\left(\frac{d}{d t}\right) w=0 \quad G \in \mathbb{R}(\xi)^{\bullet \times w}
$$

is stabilizable if and only if
$G(\lambda)$ has the same rank $\forall \lambda \in \mathbb{C}$ with \mathbb{R} ealpart $(\lambda) \geq 0$

Image representation

Theorem: A LTIDS is controllable if and only if its behavior allows an image representation

$$
w=M\left(\frac{d}{d t}\right) \ell \quad M \in \mathbb{R}(\xi)^{\mathrm{w} \times \bullet}
$$

Image representation

Theorem: A LTIDS is controllable if and only if its behavior allows an image representation

$$
w=M\left(\frac{d}{d t}\right) \ell \quad M \in \mathbb{R}(\xi)^{\mathrm{w} \times} \bullet
$$

For example,

$$
y=F\left(\frac{d}{d t}\right) u \quad \leadsto w=\left[\begin{array}{l}
u \\
y
\end{array}\right]=\left[\begin{array}{c}
\ell \\
F\left(\frac{d}{d t}\right) \ell
\end{array}\right]
$$

Systems defined by transfer functions are controllable

Transfer functions can only deal with controllable systems

Stabilizability

Theorem: A LTIDS is stabilizable if and only if its behavior allows a kernel representation

$$
G\left(\frac{d}{d t}\right) w=0
$$

with $G \in \mathbb{R}(\xi)^{\bullet \times w}$ left prime over the ring of (proper) stable rationals.

We explain what this means later, and give a number of related results.

Recapitulation

LTIDSs are defined in terms of polynomial symbols
$R\left(\frac{d}{d t}\right) w=0 \quad R \in \mathbb{R}[\xi]^{\bullet \times w}$,
but can also be represented by rational symbols
$G\left(\frac{d}{d t}\right) w=0 \quad G \in \mathbb{R}(\xi)^{\bullet \times w}$
Sol'ns are defined in terms of a left coprime factorization of G

This added flexibility is better adapted to certain applications
e.g. distance between behaviors
e.g. behavioral model reduction
e.g. characterizing stabilizability

Distance between systems

Motivation

What is a good, computable, definition for the distance between two (LTID) systems?

Basic issue underlying model simplification, robustness, etc.

Motivation

What is a good, computable, definition for the distance between two (LTID) systems?

Basic issue underlying model simplification, robustness, etc.

- Approximate a system by a simpler one.

If a system has a particular property (e.g., stabilized by a controller), will this also hold for close-by systems?

- Does a sequence of systems converge?

What is meant
by 'approximate', by ‘close-by', by 'converge'?

A model is a behavior, a subset. Hence distance between models translates into distance between sets.

The common measure for distance between the subsets $\mathscr{B}_{1}, \mathscr{B}_{2} \subset \mathscr{U}$, with \mathscr{U} a metric space, is the Hausdorff distance defined as

$$
d_{H}\left(\mathscr{B}_{1}, \mathscr{B}_{2}\right)=\max \left(\vec{d}_{H}\left(\mathscr{B}_{1}, \mathscr{B}_{2}\right), \vec{d}_{H}\left(\mathscr{B}_{2}, \mathscr{B}_{1}\right)\right)
$$

with

$$
\vec{d}_{H}\left(S_{1}, S_{2}\right)=\sup _{w_{1} \in S_{1} w_{2} \in S_{2}} \inf _{1} d\left(w_{1}, w_{2}\right)
$$

d_{H} is a distance function on compact sets

Distance from a point to a set: closest distance

Distance between sets

Distance from a point to a set: closest distance

Distance between sets

Distance small \Leftrightarrow close to every point of S_{1}, there is one of S_{2} close to every point of S_{2}, there is one of S_{1}

The gap

Distance between linear subspaces

In the behavioral theory, we identify a dynamical system with its behavior, that is, with a subspace $\mathscr{B} \subseteq \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right)$.

Distance between LTIDSs
\cong distance between linear subspaces.

Linear subspaces of \mathbb{R}^{n}

$\mathscr{L}_{1}, \mathscr{L}_{2} \subseteq \mathbb{R}^{\mathrm{n}}$, linear subspaces

$$
\vec{d}\left(\mathscr{L}_{1}, \mathscr{L}_{2}\right):=\max _{x_{1} \in \mathscr{L}_{1},\left\|x_{1}\right\|=1} \min _{x_{2} \in \mathscr{L}_{2}}\left\|x_{1}-x_{2}\right\|
$$


```
Linear subspaces of R}\mp@subsup{\mathbb{R}}{}{n
```


Note again asymmetry of directed gap

Linear subspaces of \mathbb{R}^{n}

Note again asymmetry of directed gap

$$
\begin{aligned}
& \operatorname{gap}\left(\mathscr{L}_{1}, \mathscr{L}_{2}\right):= \max \left(\left\{\vec{d}\left(\mathscr{L}_{1}, \mathscr{L}_{2}\right), \vec{d}\left(\mathscr{L}_{2}, \mathscr{L}_{1}\right)\right\}\right) \\
& 0 \leq \operatorname{gap}\left(\mathscr{L}_{1}, \mathscr{L}_{2}\right) \leq 1
\end{aligned}
$$

$=1$ if dimension $\left(\mathscr{L}_{1}\right) \neq \operatorname{dimension}\left(\mathscr{L}_{2}\right)$

Formula for the gap

$P_{\mathscr{L}} \perp$ projection onto \mathscr{L}
S_{1}, S_{2} matrices, columns orthonormal basis for $\mathscr{L}_{1}, \mathscr{L}_{2}$ Note: $S_{1} S_{1}^{\top}, S_{2} S_{2}^{\top}$ orthogonal projectors

Formula for the gap

$P_{\mathscr{L}} \perp$ projection onto \mathscr{L}
S_{1}, S_{2} matrices, columns orthonormal basis for $\mathscr{L}_{1}, \mathscr{L}_{2}$ Note: $S_{1} S_{1}^{\top}, S_{2} S_{2}^{\top}$ orthogonal projectors

$$
\begin{aligned}
\operatorname{gap}\left(\mathscr{L}_{1}, \mathscr{L}_{2}\right) & =\left\|P_{\mathscr{L}_{1}}-P_{\mathscr{L}_{2}}\right\| \quad \text { 'gap', 'aperture' } \\
& =\left\|S_{1} S_{1}^{\top}-S_{2} S_{2}^{\top}\right\| \\
& =\min _{\text {matrices } U}\left\|S_{1}-S_{2} U\right\| \\
& =\min _{U \text { such that } U \mathscr{L}_{1}=\mathscr{L}_{2}}\|I-U\|
\end{aligned}
$$

Formula for the gap

$P_{\mathscr{L}} \perp$ projection onto \mathscr{L}
S_{1}, S_{2} matrices, columns orthonormal basis for $\mathscr{L}_{1}, \mathscr{L}_{2}$ Note: $S_{1} S_{1}^{\top}, S_{2} S_{2}^{\top}$ orthogonal projectors

$$
\begin{aligned}
\operatorname{gap}\left(\mathscr{L}_{1}, \mathscr{L}_{2}\right) & =\left\|P_{\mathscr{L}_{1}}-P_{\mathscr{L}_{2}}\right\| \quad \text { 'gap', 'aperture' } \\
& =\left\|S_{1} S_{1}^{\top}-S_{2} S_{2}^{\top}\right\| \\
& =\min _{\text {matrices } U}\left\|S_{1}-S_{2} U\right\| \\
& =\min _{U \text { such that } U \mathscr{L}_{1}=\mathscr{L}_{2}}\|I-U\|
\end{aligned}
$$

Therefore, $\quad d\left(\mathscr{L}_{1}, \mathscr{L}_{2}\right)=\left\|S_{1} S_{1}^{\top}-S_{2} S_{2}^{\top}\right\| \leq\left\|S_{1}-S_{2}\right\|$

Distance between LTIDSs

Association of a Hilbert space to a controllable behavior

$\min \rightarrow$ inf, max \rightarrow sup, etc., readily generalized to linear subspaces of Hilbert space, and to LTIDSs.

But, $\mathscr{B} \in \mathscr{L}^{\mathrm{w}}$ is not a subspace of a Hilbert space. Which subspace of which Hilbert space should we associate with a LTIDS with behavior $\mathscr{B} \subseteq \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right)$?
$\min \rightarrow$ inf, max \rightarrow sup, etc., readily generalized to linear subspaces of Hilbert space, and to LTIDSs.

But, $\mathscr{B} \in \mathscr{L}^{\text {w }}$ is not a subspace of a Hilbert space. Which subspace of which Hilbert space should we associate with a LTIDS with behavior $\mathscr{B} \subseteq \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right)$?

$$
\mathscr{B} \mapsto \mathscr{B}_{\mathscr{L}_{2}}:=\left(\mathscr{B} \cap \mathscr{L}_{2}\left(\mathbb{R}, \mathbb{R}^{w}\right)\right)^{\text {closure }}
$$

For kernel representations, corresponds to

$$
\mathscr{B}_{\mathscr{L}_{2}}=\left\{w \in \mathscr{L}_{2}\left(\mathbb{R}, \mathbb{R}^{w}\right) \left\lvert\, R\left(\frac{d}{d t}\right) w=0\right., \text { distributionally }\right\}
$$

Association of a Hilbert space to a controllable behavior

$$
\mathscr{B} \mapsto \mathscr{B} \mathscr{L}_{2}
$$

defines a $1 \leftrightarrow 1$ relation between controllable systems and certain closed subspaces of $\mathscr{L}_{2}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right)$.

Moreover,

$$
\llbracket \mathscr{B}_{1_{\text {controllable }}}=\mathscr{B}_{2_{\text {controllable }}} \rrbracket \Leftrightarrow \llbracket \mathscr{B}_{\mathscr{L}_{2}}=\mathscr{B}_{2_{\mathscr{L}}} \rrbracket
$$

Distance between controllable behaviors

Define the distance between two controllable behaviors as

$$
d\left(\mathscr{B}_{1}, \mathscr{B}_{2}\right):=\operatorname{gap}\left(\mathscr{B}_{\mathscr{L}_{2}}, \mathscr{B}_{\mathscr{L}_{2}}\right)
$$

So, we consider the \mathscr{L}_{2}-trajectories for measuring distance.
Henceforth, keep notation \mathscr{B} for $\mathscr{B}_{\mathscr{L}_{2}}=\left(\mathscr{B} \cap \mathscr{L}_{2}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right)\right)^{\text {closure }}$

Distance between controllable behaviors

Define the distance between two controllable behaviors as

$$
d\left(\mathscr{B}_{1}, \mathscr{B}_{2}\right):=\operatorname{gap}\left(\mathscr{B}_{\mathscr{L}_{2}}, \mathscr{B}_{\mathscr{L}_{2}}\right)
$$

So, we consider the \mathscr{L}_{2}-trajectories for measuring distance.
Henceforth, keep notation \mathscr{B} for $\mathscr{B}_{\mathscr{L}_{2}}=\left(\mathscr{B} \cap \mathscr{L}_{2}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right)\right)^{\text {closure }}$
$\forall w_{1} \in \mathscr{B}_{1}, \exists w_{2} \in \mathscr{B}_{2}$ such that $\left\|w_{1}-w_{2}\right\| \leq \operatorname{gap}\left(\mathscr{B}_{1}, \mathscr{B}_{2}\right)\left\|w_{1}\right\|$
$\forall w_{2} \in \mathscr{B}_{2}, \exists w_{1} \in \mathscr{B}_{1}$ such that $\left\|w_{1}-w_{2}\right\| \leq \operatorname{gap}\left(\mathscr{B}_{1}, \mathscr{B}_{2}\right)\left\|w_{2}\right\|$
Small gap \Rightarrow the LTIDSs are 'close'.

Distance between controllable behaviors

Define the distance between two controllable behaviors as

$$
d\left(\mathscr{B}_{1}, \mathscr{B}_{2}\right):=\operatorname{gap}\left(\mathscr{B}_{\mathscr{L}_{2}}, \mathscr{B}_{\mathscr{L}_{2}}\right)
$$

So, we consider the \mathscr{L}_{2}-trajectories for measuring distance.
Henceforth, keep notation \mathscr{B} for $\mathscr{B}_{\mathscr{L}_{2}}=\left(\mathscr{B} \cap \mathscr{L}_{2}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right)\right)^{\text {closure }}$
$\forall w_{1} \in \mathscr{B}_{1}, \exists w_{2} \in \mathscr{B}_{2}$ such that $\left\|w_{1}-w_{2}\right\| \leq \operatorname{gap}\left(\mathscr{B}_{1}, \mathscr{B}_{2}\right)\left\|w_{1}\right\|$
$\forall w_{2} \in \mathscr{B}_{2}, \exists w_{1} \in \mathscr{B}_{1}$ such that $\left\|w_{1}-w_{2}\right\| \leq \operatorname{gap}\left(\mathscr{B}_{1}, \mathscr{B}_{2}\right)\left\|w_{2}\right\|$
Small gap \Rightarrow the LTIDSs are 'close'.

- How to compute the gap?
- Model reduce according to the gap!

Norm-preserving representations

Let \mathscr{B} be the behavior of a controllable LTIDS. Then it allows a rational symbol based image representation

$$
w=M\left(\frac{d}{d t}\right) \ell \quad \text { with } M \in \mathbb{R}(\xi)^{\mathrm{w} \times \bullet} \& M(-\xi)^{\top} M(\xi)=I
$$

i.e., $\|\ell\|_{\mathscr{L}_{2}(\mathbb{R}, \mathbb{R} \bullet)}^{2}=\|w\|_{\mathscr{L}_{2}\left(\mathbb{R}, \mathbb{R}^{w}\right)}^{2}$
norm preserving image repr.

Norm-preserving representations

Let \mathscr{B} be the behavior of a controllable LTIDS. Then it allows a rational symbol based image representation

$$
w=M\left(\frac{d}{d t}\right) \ell \quad \text { with } M \in \mathbb{R}(\xi)^{\mathrm{w} \times \bullet} \boldsymbol{\&} M(-\xi)^{\top} M(\xi)=I
$$

i.e., $\|\ell\|_{\mathscr{L}_{2}\left(\mathbb{R}, \mathbb{R}^{\bullet}\right)}^{2}=\|w\|_{\mathscr{L}_{2}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right)}^{2} \quad$ norm preserving image repr.

$$
\int_{-\infty}^{+\infty}\|w(t)\|^{2} d t=\frac{1}{2 \pi} \int_{-\infty}^{+\infty}\|\hat{w}(i \omega)\|^{2} d \omega=
$$

$\frac{1}{2 \pi} \int_{-\infty}^{+\infty}\|M(i \omega) \hat{\ell}(i \omega)\|^{2} d \omega=\frac{1}{2 \pi} \int_{-\infty}^{+\infty}\|\hat{\ell}(i \omega)\|^{2} d \omega=\int_{-\infty}^{+\infty}\|\ell(t)\|^{2} d t$

Norm-preserving representations

Let \mathscr{B} be the behavior of a controllable LTIDS. Then it allows a rational symbol based image representation

$$
w=M\left(\frac{d}{d t}\right) \ell \text { with } M \in \mathbb{R}(\xi)^{\mathrm{w} \times} \bullet \& M(-\xi)^{\top} M(\xi)=I
$$

i.e., $\|\ell\|_{\mathscr{L}_{2}\left(\mathbb{R}, \mathbb{R}^{\bullet}\right)}^{2}=\|w\|_{\mathscr{L}_{2}\left(\mathbb{R}, \mathbb{R}^{v}\right)}^{2} \quad$ norm preserving image repr.

$$
\int_{-\infty}^{+\infty}\|w(t)\|^{2} d t=\frac{1}{2 \pi} \int_{-\infty}^{+\infty}\|\hat{w}(i \omega)\|^{2} d \omega=
$$

$\frac{1}{2 \pi} \int_{-\infty}^{+\infty}\|M(i \omega) \hat{\ell}(i \omega)\|^{2} d \omega=\frac{1}{2 \pi} \int_{-\infty}^{+\infty}\|\hat{\ell}(i \omega)\|^{2} d \omega=\int_{-\infty}^{+\infty}\|\ell(t)\|^{2} d t$
Note: M cannot be polynomial, it must be rational
Obviously M must be proper. Can also make it stable.

Proof of existence of a norm-preserving image representations

Let $\mathscr{B} \in \mathscr{L}^{\text {w }}$ be controllable. Then it allows an image representation

$$
w=M\left(\frac{d}{d t}\right) \ell
$$

with $M \in \mathbb{R}[\xi]^{\mathrm{w} \times \bullet}$ right prime.

Proof of existence of a norm-preserving image representations

Let $\mathscr{B} \in \mathscr{L}^{\text {w }}$ be controllable. Then it allows an image representation

$$
w=M\left(\frac{d}{d t}\right) \ell
$$

with $M \in \mathbb{R}[\xi]^{\mathrm{W} \times \bullet}$ right prime.
Consider $M(-\xi)^{\top} M(\xi)$. Note that

$$
M(-i \omega)^{\top} M(i \omega) \text { is Hermitian and } \succ 0 \text { for all } \omega \in \mathbb{R}
$$

Proof of existence of a norm-preserving image representations

Let $\mathscr{B} \in \mathscr{L}^{\text {w }}$ be controllable. Then it allows an image representation

$$
w=M\left(\frac{d}{d t}\right) \ell
$$

with $M \in \mathbb{R}[\xi]^{w \times \bullet}$ right prime.
Consider $M(-\xi)^{\top} M(\xi)$. Note that

$$
M(-i \omega)^{\top} M(i \omega) \text { is Hermitian and } \succ 0 \text { for all } \omega \in \mathbb{R} .
$$

Hence ('spectral factorization') there exists $H \in \mathbb{R}[\xi]^{W \times w}$ with determinant (H) Hurwitz, such that

$$
M(-\xi)^{\top} M(\xi)=H(-\xi)^{\top} H(\xi)
$$

Proof of existence of a norm-preserving image representations

Define $\tilde{M}:=M H^{-1}$, and observe that

$$
w=\tilde{M}\left(\frac{d}{d t}\right) \ell
$$

is

Define $\tilde{M}:=M H^{-1}$, and observe that

$$
w=\tilde{M}\left(\frac{d}{d t}\right) \ell
$$

is

- a rational symbol based image representation of \mathscr{B}, since

$$
\operatorname{image}\left(\tilde{M}\left(\frac{d}{d t}\right)\right)=\operatorname{image}\left(M\left(\frac{d}{d t}\right)\right)
$$

Define $\tilde{M}:=M H^{-1}$, and observe that

$$
w=\tilde{M}\left(\frac{d}{d t}\right) \ell
$$

is

- a rational symbol based image representation of \mathscr{B}, since

$$
\operatorname{image}\left(\tilde{M}\left(\frac{d}{d t}\right)\right)=\operatorname{image}\left(M\left(\frac{d}{d t}\right)\right)
$$

- and norm preserving, since

$$
\tilde{M}^{\top}(-i \omega) \tilde{M}(i \omega)=I
$$

Norm-preserving representations

$\mathscr{B}_{1} \mapsto M_{1}, \mathscr{B}_{2} \mapsto M_{2}$, both norm preserving \& stable, then

$$
\begin{aligned}
\operatorname{gap}\left(\mathscr{B}_{1}, \mathscr{B}_{2}\right) & =\left\|M_{1}(i \omega) M_{1}(-i \omega)^{\top}-M_{2}(i \omega) M_{2}(-i \omega)^{\top}\right\|_{\mathscr{L}_{\infty}} \\
& \leq\left\|M_{1}(i \omega)-M_{2}(i \omega)\right\|_{\mathscr{H}_{\infty}}
\end{aligned}
$$

Model reduction

Reducing the state dimension of input/output systems

There is an elegant theory (explained in lecture 8) for reducing the state space dimension of stable LTI input/output systems.

Reducing the state dimension of input/output systems

There is an elegant theory (explained in lecture 8) for reducing the state space dimension of stable LTI input/output systems.

Let \mathscr{B} (state contr. + state obs.) be described by

$$
\frac{d}{d t} x=A x+B u, y=C x+D u \quad w \cong\left[\begin{array}{l}
u \\
y
\end{array}\right]
$$

with A Hurwitz ($: \Leftrightarrow$ eigenvalues in left half plane).

Reducing the state dimension of input/output systems

There is an elegant theory (explained in lecture 8) for reducing the state space dimension of stable LTI input/output systems.

Let \mathscr{B} (state contr. + state obs.) be described by

$$
\frac{d}{d t} x=A x+B u, y=C x+D u \quad w \cong\left[\begin{array}{l}
u \\
y
\end{array}\right]
$$

with A Hurwitz ($: \Leftrightarrow$ eigenvalues in left half plane).
There are effective methods (balancing, AAK) with good error bounds (in terms of the
\mathscr{H}_{∞} norm) for approximating \mathscr{B}
by a (stable) system with a lower dimensional state space.

Keith Glover born in 1945

Error bound

Let F be the transfer function of the original system, and $F_{\text {reduced }}$ of the reduced system.

Balanced model reduction \Rightarrow
$\left\|F(i \omega)-F_{\text {reduced }}(i \omega)\right\|_{\mathscr{H} \infty} \leq 2\left(\sum_{\text {neglected Hankel }}\right.$ SVs $\left.\sigma_{\mathrm{k}}\right)$

Let F be the transfer function of the original system, and $F_{\text {reduced }}$ of the reduced system.

Balanced model reduction \Rightarrow

$$
\left\|F(i \omega)-F_{\text {reduced }}(i \omega)\right\|_{\mathscr{H}_{\infty}} \leq 2\left(\sum_{\text {neglected Hankel SVs }} \sigma_{\mathrm{kk}}\right)
$$

$F(s)$ proper stable rational \Rightarrow reducible
with an \mathscr{H}_{∞} error bound.
ii Extend this to situations where we do not make a distinction between inputs and outputs, and to unstable systems.

```
Model reduction by balancing for behavioral systems
```

Start with \mathscr{B}. Take representatation
$w=M\left(\frac{d}{d t}\right) \ell$ with $M \in \mathbb{R}(\xi)^{w \times \bullet}$ norm preserving, stable

Model reduction by balancing for behavioral systems

Start with \mathscr{B}. Take representatation

$$
w=M\left(\frac{d}{d t}\right) \ell \text { with } M \in \mathbb{R}(\xi)^{\mathrm{w} \times \bullet} \text { norm preserving, stable }
$$

Now model reduce $w=M\left(\frac{d}{d t}\right) \ell$ (viewed as a stable input/output system) using, for example, balancing

$$
\leadsto \quad w=M_{\text {reduced }}\left(\frac{d}{d t}\right) \ell
$$

and an error bound

$$
\left\|M-M_{\text {reduced }}\right\|_{\mathscr{H} \infty} \leq 2\left(\sum_{\text {neglected } S V s ~ o f ~}^{M} \text { } \sigma_{\mathrm{k}}\right)
$$

Behavioral error bound

Start with stable norm preserving representation of \mathscr{B}

$$
w=M\left(\frac{d}{d t}\right) \ell \quad \text { with } M \in \mathbb{R}(\xi)^{\mathrm{w} \times \bullet}
$$

Model reduce using balancing $\leadsto \quad w=M_{\text {reduced }}\left(\frac{d}{d t}\right) \ell$.
Call behavior $\mathscr{B}_{\text {reduced }}$.

Behavioral error bound

Start with stable norm preserving representation of \mathscr{B}

$$
w=M\left(\frac{d}{d t}\right) \ell \quad \text { with } M \in \mathbb{R}(\xi)^{\mathrm{w} \times \bullet}
$$

Model reduce using balancing $\leadsto \quad w=M_{\text {reduced }}\left(\frac{d}{d t}\right) \ell$.
Call behavior $\mathscr{B}_{\text {reduced }}$. Error bound

$$
\begin{aligned}
\operatorname{gap}\left(\mathscr{B}, \mathscr{B}_{\text {reduced }}\right) & =\left\|M M^{\top}-M_{\text {reduced }} M_{\text {reduced }}^{\top}\right\|_{\mathscr{L}_{\infty}} \\
& \leq\left\|M-M_{\text {reduced }}\right\|_{\mathscr{H}_{\infty}} \\
& \leq 2\left(\sum_{\text {neglected } \mathbf{S V s} \text { of } M} \sigma_{\mathrm{k}}\right)
\end{aligned}
$$

Behavioral error bound

Start with stable norm preserving representation of \mathscr{B}

$$
w=M\left(\frac{d}{d t}\right) \ell \quad \text { with } M \in \mathbb{R}(\xi)^{\mathrm{w} \times \bullet}
$$

Model reduce using balancing $\leadsto \quad w=M_{\text {reduced }}\left(\frac{d}{d t}\right) \ell$.
Call behavior $\mathscr{B}_{\text {reduced }}$. Error bound

$$
\begin{aligned}
\operatorname{gap}\left(\mathscr{B}, \mathscr{B}_{\text {reduced }}\right) & =\left\|M M^{\top}-M_{\text {reduced }} M_{\text {reduced }}^{\top}\right\|_{\mathscr{L}_{\infty}} \\
& \leq\left\|M-M_{\text {reduced }}\right\|_{\mathscr{H}} \\
& \leq 2\left(\sum_{\text {neglected SVs of } M} \sigma_{\mathrm{k}}\right)
\end{aligned}
$$

$\forall w \in \mathscr{B} \exists w^{\prime} \in \mathscr{B}_{\text {red }}$ such that $\left\|w-w^{\prime}\right\| \leq 2\left(\sum_{\text {neglected } \mathbf{S v s}} \sigma_{\mathrm{k}}\right)\|w\|$ and vice-versa.
$\sum_{\text {neglected }}$ SVs of M 的 small \Rightarrow good approximation in the gap.

Example

Example

position $\underset{\text { force }}{ } \mathrm{F} \quad F=\frac{d^{2}}{d t^{2}} q, \quad w=\left[\begin{array}{l}F \\ q\end{array}\right]$

+ Norm preserving, stable

$$
\begin{aligned}
& {\left[\begin{array}{l}
F \\
q
\end{array}\right] \cong\left[\begin{array}{c}
\frac{\xi^{2}}{\xi^{2}+\sqrt{2} \xi+1} \\
\frac{1}{\xi^{2}+\sqrt{2} \xi+1}
\end{array}\right] \ell} \\
& {\left[\begin{array}{l}
F \\
q
\end{array}\right] \cong\left[\begin{array}{c}
\frac{\xi-\frac{1}{2}}{\xi+\frac{1}{\sqrt{2}}} \\
\frac{\frac{1}{2}}{\xi+\frac{1}{\sqrt{2}}}
\end{array}\right]}
\end{aligned}
$$

Example

$F=\frac{d^{2}}{d t^{2}} q$ first order approximation $\frac{1}{2} F=\frac{d}{d t} q-\frac{1}{2} q$

Recapitulation

The gap is a measure of the distance between closed linear subspaces of a Hilbert space.
Through the \mathscr{L}_{2} behavior, the gap gives a good measure of distance between controllable LTIDSs.
A controllable LTIDS admits a stable norm preserving image representation.
Norm preserving image representations of LTIDSs allow to compute that gap,
and lead to a model reduction algorithm for a controllable $\mathscr{B} \in \mathscr{L}^{w}$.
$\mathbb{R}(\xi)$ and some of its other subrings

Relevant rings

Field of (real) rationals
Subrings of interest

polynomials
proper rationals
stable rationals

proper stable rationals

Each of these rings has $\mathbb{R}(\xi)$ as its field of fractions !

Relevant rings

unimodularity $: \Leftrightarrow$ invertibility in the ring
Field of (real) rationals
nonzero
Subrings of interest

$$
\begin{array}{lc}
\begin{array}{lc}
\text { polynomials } & \text { nonzero constant } \\
\text { proper rationals } & \text { biproper } \\
\text { stable rationals } & \text { miniphase } \\
& :=\text { poles and zeros in } \mathbb{R} \text { eal }(\lambda)<0 \\
\text { proper stable rationals } & \text { biproper } \& \text { miniphase }
\end{array}
\end{array}
$$

Each of these rings has $\mathbb{R}(\xi)$ as its field of fractions !
unimodularity of square matrices over rings
\Leftrightarrow determinant unimodular

Unimodularity

unimodularity of square matrices over rings
\Leftrightarrow determinant unimodular
left primeness of matrices over rings

$$
\begin{aligned}
& : \Leftrightarrow \llbracket \llbracket M=F M^{\prime} \rrbracket \Rightarrow \llbracket F \text { unimodular } \rrbracket \rrbracket \\
& \Leftrightarrow \exists \text { matrix } M \text { such that } F M=I
\end{aligned}
$$

Unimodularity

unimodularity of square matrices over rings
\Leftrightarrow determinant unimodular
left primeness of matrices over rings

$$
\begin{aligned}
& : \Leftrightarrow \llbracket \llbracket M=F M^{\prime} \rrbracket \Rightarrow \llbracket F \text { unimodular } \rrbracket \rrbracket \\
& \Leftrightarrow \exists \text { matrix } M \text { such that } F M=I
\end{aligned}
$$

Left coprime factorizability of $G \in \mathbb{R}(\xi)^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$ holds over each of these rings

Representability

The LTIDS \mathscr{B} admits a representation that is left prime over

- rationals: always
- proper rationals: always
- stable rationals: iff \mathscr{B} is stabilizable
- proper stable rationals: iff \mathscr{B} is stabilizable
- polynomials: iff \mathscr{B} is controllable

Left prime representations over subrings allow to express certain system properties...

Stabilizality

The LTIDS \mathscr{B} admits a representation that is left prime over

- stable rationals: iff \mathscr{B} is stabilizable
- proper stable rationals: iff \mathscr{B} is stabilizable
\mathscr{B} stabilizable $\Leftrightarrow \exists G$, matrix of rational functions, such that
(i) $\mathscr{B}=\operatorname{kernel}\left(G\left(\frac{d}{d t}\right)\right)$
(ii) G is proper (no poles at ∞)
(iii) $G^{\infty}:=\operatorname{limit}_{\lambda \rightarrow \infty} G(\lambda)$ has full row rank (no zeros at ∞)
(iv) G has no poles in $\mathbb{C}_{+}:=\{\lambda \in \mathbb{C} \mid \operatorname{real}(\lambda \geq 0\}$
(v) $G(\lambda)$ has full row rank $\forall \lambda \in \mathbb{C}_{+}\left(\right.$no zeros in $\left.\mathbb{C}_{+}\right)$

Controllability

The LTIDS \mathscr{B} admits a representation that is left prime over

- polynomials: iff \mathscr{B} is controllable
\mathscr{B} contirollable $\Leftrightarrow \exists R$, matrix of polynomials, such that
(i) $\mathscr{B}=$ kernel $\left(R\left(\frac{d}{d t}\right)\right)$
(ii) $R(\lambda)$ full row rank $\forall \lambda \in \mathbb{C}$

Autonomy, stability

The LTIDS \mathscr{B} admits a representation that is unimodular in the ring of (proper) rational functions \Leftrightarrow it is autonomous.

Autonomy, stability

The LTIDS \mathscr{B} admits a representation that is unimodular in the ring of (proper) rational functions $\Leftrightarrow \mathrm{it}$ is autonomous.

The LTIDS \mathscr{B} admits a representation that is unimodular in the ring of stable (proper) rational functions \Leftrightarrow it is stable.

Summary of Lecture 7

- $G\left(\frac{d}{d t}\right) w=0$ defined in terms left-coprime polynomial factorization of rational G.
- $\quad G\left(\frac{d}{d t}\right) w=0$ defined in terms left-coprime polynomial factorization of rational G.
- $y=G\left(\frac{d}{d t}\right) u$ does not require Laplace transform.

The main points

- $\quad G\left(\frac{d}{d t}\right) w=0$ defined in terms left-coprime polynomial factorization of rational G.
- $y=G\left(\frac{d}{d t}\right) u$ does not require Laplace transform.
- Controllability, stabilizability, etc. of $G\left(\frac{d}{d t}\right) w=0$ decidable from G.

The main points

- $\quad G\left(\frac{d}{d t}\right) w=0$ defined in terms left-coprime polynomial factorization of rational G.
- $y=G\left(\frac{d}{d t}\right) u$ does not require Laplace transform.
- Controllability, stabilizability, etc. of $G\left(\frac{d}{d t}\right) w=0$ decidable from G.
- Norm preserving representation $\quad w=M\left(\frac{d}{d t}\right) \ell$ achievable only with rational M.

The main points

- $\quad G\left(\frac{d}{d t}\right) w=0$ defined in terms left-coprime polynomial factorization of rational G.
- $y=G\left(\frac{d}{d t}\right) u$ does not require Laplace transform.
- Controllability, stabilizability, etc. of $G\left(\frac{d}{d t}\right) w=0$ decidable from G.
- Norm preserving representation $\quad w=M\left(\frac{d}{d t}\right) \ell$ achievable only with rational M.
- Stable norm preserving representation $\quad w=M\left(\frac{d}{d t}\right) \ell$ leads to model reduction of unstable systems and systems without input/output partition.

The main points

- $\quad G\left(\frac{d}{d t}\right) w=0$ defined in terms left-coprime polynomial factorization of rational G.
- $y=G\left(\frac{d}{d t}\right) u$ does not require Laplace transform.
- Controllability, stabilizability, etc. of $G\left(\frac{d}{d t}\right) w=0$ decidable from G.
- Norm preserving representation $\quad w=M\left(\frac{d}{d t}\right) \ell$ achievable only with rational M.
- Stable norm preserving representation $\quad w=M\left(\frac{d}{d t}\right) \ell$ leads to model reduction of unstable systems and systems without input/output partition.
- \exists numerous other applications of rational symbols.

The main points

- $\quad G\left(\frac{d}{d t}\right) w=0$ defined in terms left-coprime polynomial factorization of rational G.
- $y=G\left(\frac{d}{d t}\right) u$ does not require Laplace transform.
- Controllability, stabilizability, etc. of $G\left(\frac{d}{d t}\right) w=0$ decidable from G.
- Norm preserving representation $\quad w=M\left(\frac{d}{d t}\right) \ell$ achievable only with rational M.
- Stable norm preserving representation $\quad w=M\left(\frac{d}{d t}\right) \ell$ leads to model reduction of unstable systems and systems without input/output partition.
- $\quad \exists$ numerous other applications of rational symbols.
\square
End of lecture 7

Mathematical Appendix

Factorization of rational matrices

A bit of mathematics

Polynomials

A (one-variable) polynomial over the ring R is an expression as

$$
p(\xi)=p_{0}+p_{1} \xi+\cdots+p_{\mathrm{n}} \xi^{\mathrm{n}}
$$

with the p_{k} 's elements of R. The variable ξ is called the indeterminate. Its power ξ^{k} should in first instance be viewed as a placeholder to specify the element $p_{\mathrm{k}} \in R$. We can think of a polynomial as a sequence

$$
p \cong\left(p_{0}, p_{1}, \ldots, p_{\mathrm{n}}, \ldots\right)
$$

of elements of R such that only a finite number of elements of the sequence are non-zero.

Polynomials

Addition and multiplication of polynomials over R are defined in the obvious way, the latter by multiplying term by term, multiplying the corresponding coefficients, adding the corresponding powers of the indeterminate, and collecting equal powers. Note that this corresponds to convolution of the corresponding coefficient sequences.

Polynomials

Addition and multiplication of polynomials over R are defined in the obvious way, the latter by multiplying term by term, multiplying the corresponding coefficients, adding the corresponding powers of the indeterminate, and collecting equal powers. Note that this corresponds to convolution of the corresponding coefficient sequences.

The set of polynomials over the ring R is denoted as $R[\xi]$.
When $R=\mathbb{R}$, we call a corresponding polynomial real, and complex if $R=\mathbb{C}$.
$\mathbb{R}[\xi]$ and $\mathbb{C}[\xi]$ are clearly commutative rings.

A polynomial induces a map

The element $p \in \mathbb{R}[\xi], p(\xi)=p_{0}+p_{1} \xi+\cdots+p_{\mathrm{n}} \xi^{\mathrm{n}} \in \mathbb{R}$ stands in one-to-one relation with polynomial maps $x \in \mathbb{R} \mapsto p_{0}+p_{1} x+\cdots+p_{\mathrm{n}} x^{\mathrm{n}} \in \mathbb{R}$. The one-to-one relation follows from the derivatives of the map at $x=0$. Similarly $p \in \mathbb{C}[\xi], p(\xi)=p_{0}+p_{1} \xi+\cdots+p_{\mathrm{n}} \xi^{\mathrm{n}}$, stands in one-to-one relation with the map
$x \in \mathbb{C} \mapsto p_{0}+p_{1} x+\cdots+p_{\mathrm{n}} x^{\mathrm{n}} \in \mathbb{C}$.
Often, therefore, a polynomial is viewed as a map.

Do not think of a polynomial as a map

Thinking of p as a formal expression (rather than as a map) and of ξ as an indeterminate (rather than as a real or complex number) is exceedingly important.

Do not think of a polynomial as a map

Thinking of p as a formal expression (rather than as a map) and of ξ as an indeterminate (rather than as a real or complex number) is exceedingly important.

To illustrate this point, consider $p \in \mathbb{R}[\xi]$. Then we can substitute for ξ any expression such that real scalar multiples of its powers and their sums are well defined. This holds, for example, for any element of a real algebra.

Do not think of a polynomial as a map

Thinking of p as a formal expression (rather than as a map) and of ξ as an indeterminate (rather than as a real or complex number) is exceedingly important.

To illustrate this point, consider $p \in \mathbb{R}[\xi]$. Then we can substitute for ξ any expression such that real scalar multiples of its powers and their sums are well defined. This holds, for example, for any element of a real algebra.

This implies in particular that for $A \in \mathbb{R}^{\mathrm{n} \times \mathrm{n}}, p(A)$ is a well-defined element of $\mathbb{R}^{\mathrm{n} \times \mathrm{n}}$. Similarly, $p\left(\frac{d}{d t}\right)$ becomes a differential operator, p induces a map from \mathbb{C} to \mathbb{C}, etc.
This point of view is used very frequently, for example, in the Cayley-Hamilton theorem, in the fundamental theorem of algebra, in our discussion of LTIDSs, etc.

Rational functions

$\mathbb{R}(\xi)$ denotes the field of rational functions with real coefficients. In $\mathbb{R}(\xi), \xi$ denotes again an indeterminate.

Rational functions

$\mathbb{R}(\xi)$ denotes the field of rational functions with real coefficients. In $\mathbb{R}(\xi), \xi$ denotes again an indeterminate.

Formally $\mathbb{R}(\xi)$ is defined as the field of fractions of $\mathbb{R}[\xi]$ This means the following.

Consider the set

$$
(\mathbb{R}[\xi]-\{0\}) \times \mathbb{R}[\xi]
$$

with the equivalence relation

$$
\llbracket\left(d_{1}, n_{1}\right) \sim\left(d_{2}, n_{2} \rrbracket: \Leftrightarrow \llbracket d_{1} n_{2}=d_{2} n_{1} \rrbracket\right.
$$

Then $\mathbb{R}(\xi)$ is defined as the set of equivalence classes obtained this way. With the obvious definition of addition and multiplication, $\mathbb{R}(\xi)$ becomes a field.

Rational functions

The equivalence relation suggests and justifies the notation $f=\frac{n}{d}$ instead of $[(d, n)]_{\sim}$.

Rational functions

The equivalence relation suggests and justifies the notation $f=\frac{n}{d}$ instead of $[(d, n)]_{\sim}$.
By definition, we can ad libitum cancel or add common factors in n and d, without changing the rational function $f=\frac{n}{d}$.

Rational functions

The equivalence relation suggests and justifies the notation $f=\frac{n}{d}$ instead of $[(d, n)]_{\sim}$.

By definition, we can ad libitum cancel or add common factors in n and d, without changing the rational function $f=\frac{n}{d}$.

- Each rational function $f \in \mathbb{R}(\xi)$ equals $f=\frac{n}{d}$, for some $n, d \in \mathbb{R}[\xi]$ coprime (meaning that n and d have no common roots), and d monic (meaning that the highest power in ξ with a non-zero coefficient has coefficient 1.

Prime polynomial matrices

$M \in \mathbb{R}[\xi]^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$ is said to be left prime if $M=F M^{\prime}$ with $F \in \mathbb{R}[\xi]^{\mathrm{n}_{1} \times \mathrm{n}_{1}}, M^{\prime} \mathbb{R}[\xi]^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$ implies that F is unimodular.

Prime polynomial matrices

$M \in \mathbb{R}[\xi]^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$ is said to be left prime if $M=F M^{\prime}$ with
$F \in \mathbb{R}[\xi]^{\mathrm{n}_{1} \times \mathrm{n}_{1}}, M^{\prime} \mathbb{R}[\xi]^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$ implies that F is unimodular.
In the scalar case, with $M=\left[\begin{array}{llll}m_{1} & m_{2} & \cdots & m_{\mathrm{n}}\end{array}\right]$, left prime means that $m_{1}, m_{2}, \cdots, m_{\mathrm{n}}$ have no common root.

Prime polynomial matrices

$M \in \mathbb{R}[\xi]^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$ is said to be left prime if $M=F M^{\prime}$ with $F \in \mathbb{R}[\xi]^{\mathrm{n}_{1} \times \mathrm{n}_{1}}, M^{\prime} \mathbb{R}[\xi]^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$ implies that F is unimodular.

In the scalar case, with $M=\left[\begin{array}{llll}m_{1} & m_{2} & \cdots & m_{\mathrm{n}}\end{array}\right]$, left prime means that $m_{1}, m_{2}, \cdots, m_{\mathrm{n}}$ have no common root.

The following are equivalent for $M \in \mathbb{R}[\xi]^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$:

- M is left prime
- $M(\lambda)$ has full row rank (i.e. its rank is n_{1}) for all $\lambda \in \mathbb{C}$. there exists $N \in \mathbb{R}[\xi]^{\mathrm{n}_{2} \times \mathrm{n}_{1}}$ such that $M N=I_{\mathrm{n}_{1} \times \mathrm{n}_{1}}$.

Prime polynomial matrices

$M \in \mathbb{R}[\xi]^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$ is said to be left prime if $M=F M^{\prime}$ with $F \in \mathbb{R}[\xi]^{\mathrm{n}_{1} \times \mathrm{n}_{1}}, M^{\prime} \mathbb{R}[\xi]^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$ implies that F is unimodular.

In the scalar case, with $M=\left[\begin{array}{llll}m_{1} & m_{2} & \cdots & m_{\mathrm{n}}\end{array}\right]$, left prime means that $m_{1}, m_{2}, \cdots, m_{\mathrm{n}}$ have no common root.

The following are equivalent for $M \in \mathbb{R}[\xi]^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$:

- M is left prime
- $M(\lambda)$ has full row rank (i.e. its rank is n_{1}) for all $\lambda \in \mathbb{C}$.
- there exists $N \in \mathbb{R}[\xi]^{\mathrm{n}_{2} \times \mathrm{n}_{1}}$ such that $M N=I_{\mathrm{n}_{1} \times \mathrm{n}_{1}}$.

Right prime is defined and characterized completely analogously.

Prime polynomial matrices

The equivalence of $M \in \mathbb{R}[\xi]^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$:

- M is left prime
- there exists $N \in \mathbb{R}[\xi]^{\mathrm{n}_{2} \times \mathrm{n}_{1}}$ such that $M N=I_{\mathrm{n}_{1} \times \mathrm{n}_{1}}$.

is sometimes called the Bézout identity

Prime polynomial matrices

The equivalence of $M \in \mathbb{R}[\xi]^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$:

- M is left prime
- there exists $N \in \mathbb{R}[\xi]^{\mathrm{n}_{2} \times \mathrm{n}_{1}}$ such that $M N=I_{\mathrm{n}_{1} \times \mathrm{n}_{1}}$.
is sometimes called the Bézout identity
For $\mathrm{n}_{1}=1, \mathrm{n}_{2}=2$ this states: given $m_{1}, m_{2} \in \mathbb{R}[\xi]$, there exist $x_{1}, x_{2} \in \mathbb{R}[\xi]$

1730-1783 such that

$$
m_{1} x_{1}+m_{2} x_{2}=1
$$

iff m_{1} and m_{2} have no common root.

Factorization of matrices of rational functions

A left coprime polynomial factorization (or a left coprime factorization over $\mathbb{R}[\xi]$) of $M \in \mathbb{R}(\xi)^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$ is a pair (P, Q) such that

- $P \in \mathbb{R}[\xi]^{\mathrm{n}_{1} \times \mathrm{n}_{1}}, Q \in \mathbb{R}[\xi]^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$
- determinant $(P) \neq 0$
- $\left[\begin{array}{ll}P & Q\end{array}\right]$ is left prime
- $\quad P^{-1} Q=M$

Every $M \in \mathbb{R}(\xi)^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$ admits a left coprime fact. over $\mathbb{R}[\xi]$

Factorization of matrices of rational functions

A left coprime polynomial factorization (or a left coprime
factorization over $\mathbb{R}[\xi]$) of $M \in \mathbb{R}(\xi)^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$ is a pair (P, Q) such that

- $P \in \mathbb{R}[\xi]^{\mathrm{n}_{1} \times \mathrm{n}_{1}}, Q \in \mathbb{R}[\xi]^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$
- determinant $(P) \neq 0$
- $\left[\begin{array}{ll}P & Q\end{array}\right]$ is left prime
- $\quad P^{-1} Q=M$

Every $M \in \mathbb{R}(\xi)^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$ admits a left coprime fact. over $\mathbb{R}[\xi]$
$\left(P_{1}, Q_{1}\right)$ and $\left(P_{2}, Q_{2}\right)$ are both left coprime factorizations of M over $\mathbb{R}[\xi]$ iff \exists a unimodular $U \in \mathbb{R}[\xi]^{\mathrm{n}_{1} \times \mathrm{n}_{1}}$ such that

$$
P_{2}=U P_{1}, Q_{1}=U Q_{2}
$$

Factorization of matrices of rational functions

For example, in the scalar case,

$$
M=\left[\begin{array}{ll}
m_{1} & m_{2} \cdots m_{\mathrm{n}}
\end{array}\right], \text { with the } m_{\mathrm{k}}^{\prime} \mathbf{s} \in \mathbb{R}(\xi)
$$

is factored as

$$
M=\frac{1}{p}\left[\begin{array}{ll}
q_{1} & q_{2} \cdots q_{\mathrm{n}}
\end{array}\right]
$$

with $p, q_{1}, q_{2}, \ldots, q_{\mathrm{n}} \in \mathbb{R}[\xi]$ coprime polynomials (that is, they have no common roots).

Factorization of matrices of rational functions

For example, in the scalar case,

$$
M=\left[\begin{array}{ll}
m_{1} & m_{2} \cdots m_{\mathrm{n}}
\end{array}\right], \text { with the } m_{\mathrm{k}}^{\prime} \mathbf{s} \in \mathbb{R}(\xi)
$$

is factored as

$$
M=\frac{1}{p}\left[\begin{array}{ll}
q_{1} & q_{2} \cdots q_{\mathrm{n}}
\end{array}\right]
$$

with $p, q_{1}, q_{2}, \ldots, q_{\mathrm{n}} \in \mathbb{R}[\xi]$ coprime polynomials (that is, they have no common roots).

