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Finite dimensional linear systems

FDLSS
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The most studied class of dynamical systems are the FDLSSs,
represented by:

. . d
continuous time: ax = AX+Bu, y=Cx+Du
discrete time: oX = AX+Bu, y=Cx+Du

where o is theleft shift: of(t) .= f(t+1).
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The most studied class of dynamical systems are the FDLSSs,
represented by:

. . d
continuous time: ax:AXJrBu, y =Cx—+Du

discrete time: oX = AX+Bu, y=Cx+Du
where o is theleft shift: of(t) .= f(t+1).

Informal notation:

%x(t):Ax(t)JrBu(t), or X(t+1) = Ax(t)+Bu(t), y(t) =Cx(t)+Du(t)
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The most studied class of dynamical systems are the FDLSSs,
represented by:

. . d
continuous time: ax:AXJrBu, y =Cx—+Du

discrete time: oX = AX+Bu, y=Cx+Du

where o is theleft shift: of(t) .= f(t+1).

Informal notation:

%x(t):Ax(t)JrBu(t), or X(t+1) = Ax(t)+Bu(t), y(t) =Cx(t)+Du(t)

The time axis depends on the application.

For the continuous-time caseT =R or T =R, := [0, ).
For the discrete-timecase, T=ZorT=27,:={0,1,2,...}.
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u: T —R"ist
y:THRmiSt
X'T—-R2ist

Input

ne input (trajectory)
ne output (trajectory)

ne state trajectory

SYSTEM

output
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u:T — R"is theinput (trajectory)
y . T — R™ Is the output (trajectory)
X: T — R" Is the state trajectory

input SYSTEM

Often the states have a clear physical meaning, but in many
applications they are introduced principally in order to give
the equations a ‘recursive’ character.

output

In this lecture, we view states asatent variables, internal to
the system, that serve to codify hovexternal inputs are
recursively transformed to external outputs.
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Sometimes we denote the spaces where the input, output, and
state take on their values by

U (=R"), Y (=RP), X (=R

—n. 7/1



Sometimes we denote the spaces where the input, output, and
state take on their values by

U (=R"), Y (=RP), X (=R

In the discrete-time case, the input spacé’/, and output
space,?/, are taken to be

% =U" and#% =Y",

but, in the continuous-time case, we have to be a bit more
conservative for the input. We can, for example, take

U = LP®NR,RY) and & = Z°@(R,RP)
or U =%¢"(R,R") and % =%¢*(R,RP)
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A E Ran) B 6 Rnijc E Ran) D E RpXm
are the system matrices

It iIs common to denote this system as

or (A/B,C,D)

depending on the typographical constraints.
The dimension of the state spac& is called theorder of

[%’%] . It is a reasonable measure of the dynamic

complexity of the system (important in lectures 7 and 8).
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The external behavior
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The state trajectory corresponding to the inputu and the
initial state x(0) is given by

X(t) = eMx( +/eAtBut—t)dt

The output y depends on the inputu and the initial state x(0)
as follows

y(t) = Ce™x(0) 4 Du(t) + /0 tCeAt’Bu(t —t)dt’

Observe thatu € € (R,R¥) (or .Z,°%(R,R®)) and x(0) € R®
yield a unique outputy € € (R, RP) (or .Z|°°?(R, RP)).
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It follows immediately from the elimination theorem that the
set of (u,y) trajectories obtained this way is exactlyequal to

the solution set of a LTIDS
(@) -
dt / |y

for a suitable R € R[£]**™"P),
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The converse is also true, in the following precise sense. Fo
each% € ¥, there exists an permutation matrix 1 € R"*¥

and matrices Ae R*** Be R**" C € RP*®, D € RP*™ such
that the w-behavior of

%x(t)zAx(tHBu(t), y(t) = Cx(t) + Du(t),w=rn ||

IS equal to the given&.
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The permutation matrix I corresponds to changing the order
of the components ofw. Hence every# € .Z* allows a

representation as an input/state/output systen{%’%] , up to
reordering of the components ofw.

In LTIDSs input and outputs are always there
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The permutation matrix I corresponds to changing the order
of the components ofw. Hence every# € .Z* allows a

representation as an input/state/output systen{%’%] , up to
reordering of the components ofw.

In LTIDSs input and outputs are always there

Algorithms R — [i’i or M, or (RM) — [iF]
C | D ] C|D

are of much interest. (see lectures 2 and 12).
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Z¥, the LTIDSs, described by the
differential equations

d
and the FDLSs, described by
A|lB ]
C|D ]

model exactly the same class of systems.

Linear time-invariant differential
= |inear time-invariant finite dimensionsal
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State stability




Many notions of stability pertain to [%’%] .

In particular, it is said to be state stablef, for u= 0,
every state trajectoryx : R — R™ converges to zero:

X(t) — 0ast — o

\\/\\ =

N\ — ——
\/\W
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Obviously, state stability is equivalent to

et . Dast — .

It Is easy to see that this holds iff
all the eigenvalues ofA have negative real part

Square matrices with this property are calledHurwitz.
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The question of finding conditions on the coeff. op € R [£]

P(E) =po+pié+- -+ Pa1E¥ T+ pué®

so that its roots have negative real part (such pol’s are cagld
Hurwitz), known as theRouth-Hurwitz problem has been the
subject of countless articles ever since
Maxwell raised first the question in
1868. There exist effective tests on

Po, P1,** ; Pa—1; Pn-

Edward Routh  Adolf Hurwitz
1831 — 1907 1859 — 1919
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The question of finding conditions on the coeff. op € R [£]

P(E) =po+pié+- -+ Pa1E¥ T+ pué®

so that its roots have negative real part (such pol’s are cagld
Hurwitz), known as theRouth-Hurwitz problem has been the
subject of countless articles ever since
Maxwell raised first the question in
1868. There exist effective tests on

Po, P1,** ; Pa—1; Pn-

e

Edward Routh Adolf Hurwitz
1831 — 1907 1859 - 1919

Of course,A € R**® is Hurwitz iff its characteristic
polynomial, det(l¢ — A), is Hurwitz.
In principle this gives a test for checking state stability.

The following test onA is more in the spirit of this course.
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The Lyapunov equation




The following conditions onA € R**" are equivalent:

1. Ais Hurwitz

Theorem
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Notation: > positive definite < negative definite
>~ positive semidefinite< negative semidefinite

Theorem

The following conditions onA € R**® are equivalent:
1. Ais Hurwitz
2. there exists a solutionX € R*** to

X=X"+=0 A'X+XA<0
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Notation: > positive definite < negative definite
>~ positive semidefinite< negative semidefinite

Theorem

The following conditions onA € R**® are equivalent:
1. Ais Hurwitz
2. there exists a solutionX € R*** to

X=X"+=0 A'X4+XA=<0

3.VY=Y'<0,3X=X">0st|A'X+XA=Y

The equation in 3. Is calledthe Lyapunov equation
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The Lyapunov equation

HEAWKHH PYCCKIH MATEMATHK
..f:, A M AUV h’OB :

The Lyapunov equation ATX +XA=Y

Ilull r\

Alexandr Lyapunov
1857 — 1918

IS a special case of th&ylvester equatiol AX+ XB=Y .

James Sylveter
1814 — 1897
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The Lyapunov equation

HEAWKHH PYCCKIH MATEMATHK
..f:, A M AUV h’OB :

The Lyapunov equation ATX +XA=Y

Ilull r\

Alexandr Lyapunov
1857 — 1918

IS a special case of th&ylvester equatiol AX+ XB=Y .

James Sylveter
1814 — 1897
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2. 1swhat is called an'LMI’ feasibility test (see lecture 6).
It may be considered as an algorithm for verifying state
stability.

3. can be used with, e.gY = —I, to computeX, and then
verify definiteness ofX (also considered an algorithm).
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2. 1swhat is called an'LMI’ feasibility test (see lecture 6).
It may be considered as an algorithm for verifying state
stability.

3. can be used with, e.gY = —I, to computeX, and then
verify definiteness ofX (also considered an algorithm).

Important in algorithms:

A Hurwitz implies that the map

X € R0 — AT X 4+ XA € Rvx®
IS bijective (surjective & injective).

—n. 22/1



1. = 3. AHurwitz implies that — [;*e* tYeM dt = X
converges, and yields a sol'iX of the Lyapunov eg’'n for a

givenY. Hence the mapM € R**® — A'M + MA € R**® js
surjective, and therefore injective. SoX is the only sol'n.

Conclude thatY =Y ' < 0impliesX =X" >~ 0.
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1. = 3. AHurwitz implies that — [;*e* tYeM dt = X
converges, and yields a sol'iX of the Lyapunov eg’'n for a

givenY. Hence the mapM € R**® — A'M + MA € R**® js
surjective, and therefore injective. SoX is the only sol'n.

Conclude thatY =Y ' < 0impliesX =X" >~ 0.

3. = 2. Is trivial.
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1. = 3. AHurwitz implies that — [;*e* tYeM dt = X
converges, and yields a sol'iX of the Lyapunov eg’'n for a

givenY. Hence the mapM € R**® — A'M + MA € R**® js
surjective, and therefore injective. SoX is the only sol'n.

Conclude thatY =Y ' < 0impliesX =X" >~ 0.

3. = 2. Is trivial.

2.= 1. Let0+# ac C" be an eigenvector ofA with eigenvalue
A. * denotes complex conjugate transpose. Then

0> a‘ATXa+a*XAa= (A +A)a*Xa.

Sincea*Xa > 0, this implies (A +A) < 0. Therefore, Ais
Hurwitz.
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State controllability
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The system [%’%] IS said to bestate controllablaf

for every x;,xo € R®, there existsT > 0andu: [0,T] — R"
(sayu e A ([0, T],R™) or (|0, T],R™)), such that the
solution of

%x = Ax+Bu, x(0)=x1

satisfiesx(T) = xo.
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The system [%’%] IS said to bestate controllablaf

for every x;,xo € R®, there existsT > 0andu: [0,T] — R"

(sayu e A ([0, T],R*®) or (|0, T]|,R™)), such that the

solution of

%x = Ax+Bu, x(0)=x1

satisfiesx(T) = xo.

X 2

|
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The system [%’%] IS said to bestate controllablaf

for every x;,xo € R®, there existsT > 0andu: [0,T] — R"
(sayu e A ([0, T],R*®) or (|0, T]|,R™)), such that the
solution of

X X5

%x = Ax+Bu, x(0)=x1

satisfiesx(T) = xo.

|

Observe: state controllability is equivalent to behaviora
controllability, as defined in lecture 2, applied to

%X:AX—I— Bu both with w= (x,u) or w=x.
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Theorem

IS state controllable iff

Rudolf E. Kalman
born 1930
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We give only an outline of the proof.
First observe that it suffices to consider the casrg; = 0.

Denote the set of states reachable from(0) = 0 over all u and
T>0by Z. % is obviously a linear subspace oR".

Define
gk:image([e AB A2B ---Ak_lBD,kzl,Z,...

The rank test in the controllability thm requires £, = R".
We therefore need to prove thatZ = R* iff £, = R".
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(ify All trajectories x of $x = Ax+ Buand hence their

derivatives lie entirely in #Z. This implies that % is
A-invariant and contains image(B). HenceZ contains

image(A*B) for all k € Z., and therefore #Z contains.%,.
Conclude that the rank test implies controllability.
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(ify All trajectories x of $x = Ax+ Buand hence their

derivatives lie entirely in #Z. This implies that % is
A-invariant and contains image(B). HenceZ contains

image(A*B) for all k € Z., and therefore #Z contains.%,.
Conclude that the rank test implies controllability.

(only if) Clearly % C %11, and %11 = % implies

Yo = L for ¥’ > k. The dimension of the.%’s must go up by
at least1, or stay fixed forever. Therefore.Z, = %, for n’ > n.

If the rank condition is not satisfied, there exists0 # f € R®
suchthatf'B=f'AB=...= fTA"1B=0. Since.Z, = %,
for o’ > n, this implies f ' AxB=0for all k € Z... Therefore

f'eB=0forall t € R, hencef'# = 0. Therefore the system
IS not state controllable if the rank test is not satisfied.
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State observabillity




Define the ‘internal’ behavior %interna Of [%’%] by

PBinternal:= { (U, Y, X) € €7 (R,R" x RP x R") |

%x: Ax+ Bu,y = Cx+ Du}

[%’%] sald to bestate observabld
(Uay7 Xl) ; (Uay7 X2) € PBintemal IMplies X1 = Xo.

In other words, if knowledge of (u,y) (and of the system
dynamics) implies knowledge ok.
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Define the ‘internal’ behavior %interna Of [%’%] by

PBinternal:= { (U, Y, X) € €7 (R,R" x RP x R") |

%x: Ax+ Bu,y = Cx+ Du}

[%’%] sald to bestate observabld
(Uay7 Xl) ; (Uay7 X2) € PBintemal IMplies X1 = Xo.

In other words, if knowledge of (u,y) (and of the system
dynamics) implies knowledge ok.

State observabillity is a special case of observability
as defined in lecture 2, with(u,y) the observed, and
X the to-be-reconstructed variable.
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There are numerous variations of this definition, the most
prevalent one that there existsI > 0 such that

(u(t),y(t)) for 0 <t < T determinesx(0) uniquely.

It is easily seen that this variation, and many others, are
equivalent to the definition given.
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Theorem

Al B |. .
‘ IS state observable iff
C|D
- - -
CA
rank( CA? ) = dimension(X)

CAdimension(X) -1
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We give only an outline of the proof.

Observe that state observability requires to find conditiors for
[Cex1(0) = Cex,(0) for all t € R] < [x1(0) = x2(0)]
Equivalently, for injectivity of the map
acR®— L(a) e €°(R,RP) with L(a) :t € R — Cetac RP.
Now prove, using arguments as in the controllability case fat
[CeMf =0forall t € R] < [CAEf =0for k=0,1,2,- -]
& [Cf =CAf =CA*f =CA* 1f =0].

Conclude thata— L(a) is injective iff the rank test of the
observabllity theorem holds.
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System decomposition

S
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Consider [%’%] . Its trajectories are described by

d
ax: Ax+ Bu,y = Cx+ Du.

A change of basis in the state space means introducing
Z= X, with S€ R**" nonsingular. The dynamics become

d
az:SAST12+ Bu, y=CS1z+Du

Hence a change of basis corresponds to the transformation

(A,B,C,D) —> (SAS"L, SB.CS ™1, D)
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Consider [%’%] . Its trajectories are described by

d
ax: Ax+ Bu,y = Cx+ Du.

A change of basis in the state space means introducing
Z= X, with S€ R**" nonsingular. The dynamics become

d
az:SAST12+ Bu, y=CS1z+Du

Hence a change of basis corresponds to the transformation

(A,B,C,D) —> (SAS"L, SB.CS ™1, D)

A change of basis does not change the external behavior, and
comes in handy to put certain system properties in evidence.

—n. 35/1



Decompose the state space = R" into
X=ZP.
with Z = image([B AB A?B --- A*"!B]) and.” any

complement. Note thatZ is ‘intrinsically’ defined, but . is
not, any complement will do.
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Decompose the state space = R" into

X=Z%DS

with Z = image([B AB A?B --- A*"!B]) and.” any
complement. Note thatZ is ‘intrinsically’ defined, but . is
not, any complement will do.

Now choose the basis in the state space such that the first
basis vectors sparZ, and the last basis vectors spar.
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In this new basis the system dynamics take the form

321 = Auz+ Az+Bu, y=Ciz1+Cyz+Du

d
w2 = A22Z;

with &z = A1z +Byu controllable.

This decomposition brings out the controllability structure.

output

Input Controllable -
part

Uncontrollable
part
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Decompose the state space = R" into

X=ANDS
e
| CA
with ./ = kernel( | ) and . any complement.
- cAr

Note that /" Is ‘intrinsically7 defined, but . Is not, any
complement will do.
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Decompose the state space = R" into

X=ANDS
e
| CA
with ./ = kernel( | ) and . any complement.
- cAr

Note that /" Is ‘intrinsically7 defined, but . Is not, any
complement will do.

Now choose the basis in the state space such that the first
basis vectors span/” and the last basis vectors span”.
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In this new basis the system dynamics take the form

%21 = A1z + A2z + B,

%Zz = Aoo7, + Bou, y =Cyz + Du

with %22 = Ay + Bou,y = Cyz 4 Du observable.

This decomposition brings out the observability structure

Unobservable
part

input output

Observable
part
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We can combine the controllable / uncontrollable with the
unobservable / observable decomposition,

74
X = .4 @\%HC/V\@ S D Sa,
)

Again it should be noted that the#Z N.4",%#, and &% are
‘Intrinsic’. The complements .¥;,.73,.%4 are not.
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Choose the basis conformably, Sx=z= ~

_24_
321 = Auz + Apzs + Bpu
Q7 = Apz + Aps + Aoizs + Auzs + B
dz5 = Azzzz + Azaz
4z, = A2424
y = Cizy + C4zz + Du

with, in particular,

d
azl = A1121 +B1u, y=Cyz;1 +Du

controllable and observable.
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This leads to the 4-way decomposition (often called the
Kalman decomposition) in the

1. controllable / observable part (co)

2. controllable / unobservable part (©)

3. uncontrollable / unobservable part €o)
4. uncontrollable / observable part €0)

For systems that are controllable & observable, only the firs
part is present.
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input

Controllable
observable part

Controllable
unobservable part

Uncontrollable
unobservable part

Uncontrollable
observable part

output
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The most studied representation of LTIDSs are the
FDLSs [%’%] . It combines the convenience of a state

representation and an input/output partition.

A LTIDS can be represented as an FDLS, up to
reordering of the sighal components.

State stability < A is Hurwitz.
A central equation in stability questions is the Lyapunov
equation.

There exist explicit tests for state controllability and sate
observability.

By choosing the basis in the state space appropriately,
the controllable/uncontrollable and the
observable/unobservable parts are put in evidence.



Discrete time
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The notions of state stabillity, state controllability, andstate
observabllity apply, mutatis mutandis to discrete-time
systems.
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The notions of state stabillity, state controllability, andstate
observabllity apply, mutatis mutandis to discrete-time
systems.

State stability in the discrete-time case requires that

all eigenvalues ofA should be inside the unit circle

Matrices with this property
are called Schur matrices

Issal Schur
1875 -1941
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The analogue of the Lyapunov equation isA' XA—X =Y of
called the‘discrete-time Lyapunov equationor the ‘Stein

equation’. It is actually a special case of the Stein equation
which iIs A; XA, — X =Y.

Theorem

The following conditions onA € R**" are equivalent:
1. Ais Schur

2. there exists a solutionX € R**™ to

X=X"+=0A'XA-X=<0

3. VY=Y'<03IX=X">=0st|A'XA—X=Y
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The state controllability and state observability theorens and
the decompositions apply unchanged in the discrete-time ea.
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The impulse response & transfer functior
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Do +W
with & the o-‘function’ ; andW : [0, ) — RP*" defined by

W :t— CeMNB

IS called theimpulse respons@R) (matrix) of [%’%] .
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Do +W
with & the o-‘function’ ; andW : [0, ) — RP*" defined by

W :t— CeMNB

IS called theimpulse respons@R) (matrix) of [%’%] .

The responsey: R, — RP to the input u: R, — R™ with zero
initial condition x(0) = 0is the convolution of the IR with u:

y(t) =Du(t) + /OtW(t’)u(t —t) dt’

Informally: initial state x(0~) = 0O, impulse input at 0", output
fort > 0.
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The entries of the IR matrix record channel-by-channel the
response fort > 0to an impulse input with initial state
X(0) =0.

input

les| B

time

€

¢ — O lllustrates an impulse
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The entries of the IR matrix record channel-by-channel the
response fort > 0to an impulse input with initial state
X(0) =0.

input

les| B

time

€

¢ — O lllustrates an impulse

Note that [;W(t")ug(t —t')dt’ — W(t) for t € R,

e—0
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A function f : R, — R of the form
fF(t) =y pe(t)e™ sin(axt + ¢y)
k=1
with n € Z ., the p,’s real polynomials, and theAy, wx, ¢,’s

real numbers is called aBohl function. The set of Bohl
functions is closed under addition and multiplication.
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A function f : R, — R of the form
fF(t) =y pe(t)e™ sin(axt + ¢y)
k=1
with n € Z ., the p,’s real polynomials, and theAy, wx, ¢,’s

real numbers is called aBohl function. The set of Bohl
functions is closed under addition and multiplication.

Theorem
Do +W with D € RP*" andW : R, — RP*" s the IR of a
A|B |,
system Iff
C|D

W is a matrix of Bohl functions
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(Outline) only if Observe thatt € R — e ¢ R**® js a
matrix of Bohl functions. Hencet € R — Ce™B ¢ RP*™® js.
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(Outline) only if Observe thatt € R — e ¢ R**® js a

matrix of Bohl functions. Hencet € R — Ce*B € RP*" js.
If First observe that the IR of ([Al O] : [81] ,|c1 c2|,D1+ Dy)

0O A B>
IS the sum of the IRs of(A1,B1,Cq,D1) and (Az,B2,Co, D2).
This implies that it suffices to consider the case =p = 1.
Next prove thatt — t¥*e* cogwt) andt — t*e* sin(wt) are IRs
of FDLSs by considering

A Iy 0 -+ 07
0 A lpp - O - T
2x2 | / A W
A= : with A =
—w A
0 0 Al . i
Lo - 0 0 A _

and choosingB and C appropriately.
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The matrix of rational functions

G(&):=D+C(IE —A)1B cR(&)P*"

IS called thetransfer function (TF) of [%’%] .
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The matrix of rational functions

G(&):=D+C(IE —A)1B cR(&)P*"

IS called thetransfer function (TF) of [%’%] .

Consider a complex numbers € C, not an eigenvalue ofA.
Corresponding to the exponential inputt € R — e¥,u € C®,
u € C", there is a unigue exponential output

t € R— e,y € CP with y € CP given in terms ofu € C*® by

y(8) = G(s)u(s)

—n. 54/1



The matrix of rational functions

G(&):=D+C(IE —A)1B cR(&)P*"

IS called thetransfer function (TF) of [%’%] .

Consider a complex numbers € C, not an eigenvalue ofA.
Corresponding to the exponential inputt € R — e¥,u € C®,
u € C", there is a unigue exponential output

t € R— e,y € CP with y € CP given in terms ofu € C*® by

y(8) = G(s)u(s)

This holds not only for thoses € C that are not eigenvalues of
A, but for se C that are not poles ofG. Poles ofG are
eigenvalues ofA, but the converse is not necessarily trues
(unless the system is state controllable and state obseniab
We return to this later.
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The transfer function and Laplace tfms

Let y: R, — RP be the output of [%’%] for the input

u: R, — R™andx(0) = 0. Assume thatu is Laplace
transformable.

—pn. 55/1



Let y: R, — RP be the output of [%’%] for the input

u: R, — R™andx(0) = 0. Assume thatu is Laplace
transformable.

Theny s also Laplace transformable with domain of
convergence the intersection of the domain of convergencé o
u and the half plane to the right of the poles onG. The
Laplace transforms(,y of u andy are related by

y(s) = G(s)d(s)
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The impulse response and the transfer function as Laplaceitfis

Let DO +W be the IR and G be the TF of [%’%] .
G is the Laplace transform of Do + W:

G(s) =D+ /O ooW(t)e‘St dt

for all se C to the right of the poles ofG.
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Let DO +W be the IR and G be the TF of [%’%] .
G is the Laplace transform of Do +W:

G(s) =D+ /O ooW(t)e_St dt

for all s< C to the right of the poles ofG. Conversely,

1 [fy+io
D = G(o0) andW(t) = 271 )y i (G(s) —G())ds

where the integration is along a vertical line InC to the right
of the poles ofG. G() is the ‘constant term’, or the
non-strictly proper term of G, say,G(w) :=1imj_,G(A).
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Theorem

The TF of the system [%’%] IS

a matrix of proper real rational functions

Conversely, for anyp x m matrix G of proper real rational

functions, there exists a systerr{%’%] that has TF G.
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(Outline) onlyif Since (1& —A)~1is a matrix of proper real
rational functions, so isD+C(1& —A)~1B.
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(Outline) onlyif Since (1& —A)~1is a matrix of proper real
rational functions, so isD+C(1& —A)~'B.
If Use the addition property, explained in the proof of the

IR case, to show that it suffices to consideti = p = 1.
Use partial fraction expansion to reduce to the cases

1 ) 1 - £
Erar T @ e S T @ o

Series connection- k = 1. Finally, contemplate the TFs of
single-input / single-output system with
—A W

G(¢) =

A= —-A and A=

—w —A

and suitableB,C.
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Minimal realizations
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A system [%’%] IS called arealizationof

its IR DO +W, W : t €R+ —>CeAtB€Rp><m
and of its TF G,G(§) =D +C(1&€ —A)~'B.
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A system [%’%] IS called arealizationof

its IR DO +W, W : t €R+ —>CeAtB€Rp><m
and of its TF G,G(§) =D +C(1&€ —A)~'B.

It is called a minimal realizationof its IR if the dimension of
Its state space is as small as possible among all realizatsaf
its IR, and of its TF if the dimension of its state space is as
small as possible among all realizations of its TF.
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Theorem

The following conditions on [%’%] are equivalent:

» itis a minimal realization of its impulse response
» Itis a minimal realization of its transfer function
» Itis

state controllable and state observable

The essence of this theorem is that minimality of a realizatin
correspondsexactlyto
state controllability & state observability combined.
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1. If (A,B,C,D) is not contr. + obs., then(A11,B1,Cq,D) from
the Kalman dec. gives a lower order realization with the same
IR and TF. Hence minimality implies contr. + obs.
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1. If (A,B,C,D) is not contr. + obs., then(A11,B1,Cq,D) from
the Kalman dec. gives a lower order realization with the same
IR and TF. Hence minimality implies contr. + obs.

2. Assume that(A,B,C, D), of order n, is a min. real. of its IR
Let (A1,B1,Cq,D), of order ny, have the same IR. Hence
Ce'B = C,M!B; for t > 0. This implies CAXB = C, A¥B; for

k € Z,.. Hence

o o
CA CiA1L

B AB AvBl=| | ||B AB - ATBY
CAPL CIAT

The LHS is the product of an injective x a surjective matrix.
= rank = N. The RHS Is the product of two matrices with
‘inner dimension’ n;. = rank < n;. Therefore,n < ny.
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3. If [%’%] realizes the TFG, then

CB+CAB+CAZB
é &2 &3

Hence(A,B,C,D) and (A1,B1,Cq,D) have the same TF iff
CA*B = C1A%B; for k € Z.,. The proof now follows 2.

G(§) =D+
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|f [%’%] IS a minimal realization of its TF, G, then the

eigenvalues ofA are identical to the poles ofG (including
multiplicity).

This may be used to show that corresponding to the
exponential inputt € R — e¥u € C*, u € C®, there is a unique
exponential outputt € R — €'y € CP with y = G(s)u for all

s e C that are not poles ofG.
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It is easy to see that the IR and TF of[%’%] IS equal to that

of [ A | BDl ] , the controllable / observable part of the Kalman

Gt |
decomposition. The latter, being controllable and obsenrvale,
IS a minimal realization of the IR and TF.

This gives a method of obtaining a system that is a minimal
realization of the IR or the TF of a non-minimal one.
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Theorem

Assume that [%’%] IS a minimal realization of its IR,

equivalently, of its TF. Let n be the dimension of its state
space. Denote the set of invertible elements @&"*" by

¢/ (n). Then all minimal realizations are obtained by the
transformation group

Sc¥/l(n)
(A,B,C,D) . (SAS1,SB,CS 1, D)

In other words, after fixing the IR or the TF, the choice of
basis in the state space is all that remains in minimal
realizations.
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Proof of the state isomorphism theoren

All systems(SAS1,SB,CS 1, D) obviously have the same IR.
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All systems(SAS 1, SB,CS 1, D) obviously have the same IR.

Let (Aq,Bq,Cq,D),q = 1,2 both be minimal n dim. realizations
of the same IR or TF. Then

C1A1i81:C2Al2{BZ for xeZ.,.
Define
o

CaAq
. aRq=[Bq A.B, ---Ag_qu},qzl,Z.

CoA

By controllability and observability, W, is injective and R,
surjective for g =1, 2.
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Let W) be a left inverse oW, and R} a right inverse of Ro.
Define S:WZTW1 . Then

WiR; = WoRo] = [WOWARIR) = 1] HenceS = RiRY.
MOWLR; = Ro] = [B2 = SB1]

MARIR) = W] = [Co = C1S Y]

MAAIR; = WoAoRo] = [Ar = WJWiAIRIR) = SA1 S
This implies that

vV vV v V¥V

Sc4/l(n)
(A,B,C,D) . (SAS1,SB,CS 1 D)

generates all minimal realizations from one.
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Relations with behavioral systems

The behavior respec# the uncontrollable parﬂ of the system.
The impulse response and the transfer function ignore it.
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We have seen that any# € .Z¥ allows a representation

[AE] In the following sense. There exista,p € Z. with

m+p = w, & componentwise partition ofw into w= [y], an
n € Z., and matricesA, B,C, D such that the external behavior
equals#.

With componentwise partitionve mean that there exists a
permutation M such thatw = M[y].
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The external behavior of (A,B,C,D) is governed by

d d
°()7-(a)e )
with P € R[&]P*P,Q € R[E]P*", P nonsingular, P~1Q proper.

It is easy to seetha G=P Q.
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The external behavior of (A,B,C,D) is governed by
d d
°()7-(a)e )
with P € R[&]P*P,Q € R[E]P*", P nonsingular, P~1Q proper.

Itis easy to see tha G = P~1Q. However, (P,Q) contains

more information than G = P~1Q. SinceP and Q in (%) may
not be left coprime polynomial matrices (see lecture 2), soe

E8

The uncontrollable part is important in many applications.

the system ) also models the uncontrollable part of

IRs and TFs do not capture the uncontrollable part

State construction for . £" Is covered In lecture 12.
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Aq

B1

Two systems

C1

D;

and

Ay

B,

Co

D>

can have the same

IR and TF, but can differ drastically because of the
non-controllable part.
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A1 | Br Ao | By
Two systems and can have the same
C1| D1 C2 | D2
IR and TF, but can differ drastically because of the
non-controllable part.

Example: Autonomous systems are very important in

applications. In particular, all systems %x = AX+0u,y = Cx
have the same TF function0.
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FDLS < IR is Bohl < TF Is proper rational.

A realization {%}%} of a TF or an IR is minimal
& 1t IS state controllable + state observable.

All minimal realizations are equivalent up to a
choice of basis In the state space.

The IR and the TF capture only the controllable
part of a system.



Discrete-time convolutions
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We now look at a particular class of systems for which very
concrete realization algorithms have been derived. Notaly|
discrete-time systems

ZH ut—t"y forteZz,.
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CallH : Z, — RP*™ the IR (matrix).

Origin: consider the ‘impulse’ input U, : Z, — R™ U, = 06,
with e, the k-th basis vector InR™, and o : Z, — R the ‘pulse’

lfort=0
o(t) :=
(t) {Ofort>0

The corresponding outputyy = the k—th column of H.
Arrange as a matrix ~ the ‘IR’ matrix.
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The question studied now:
Go from the IR to a minimal state representation

l.e. to a recursive model.
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The question studied now:

Go from the IR to a minimal state representation

l.e. to a recursive model.

When and how can the convolution

ZH u(t —t’)

be represented by

X(t+1) = AX(t) +Bu(t), y(t) =Cx(t) +Du(t), x(0)=0]|?
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ii Construct [%’% from H, such that for all inputs
u:Z, — R® the output responsey : Z. — RP are equal !!

H:7Z, — RP*™Is given, and the matricesA,B,C,D
("' including n = dim(X) = dim(A)) are the unknowns.
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ii Construct [%’% from H, such that for all inputs
u:Z, — R® the output responsey : Z. — RP are equal !!

H:7Z, — RP*™Is given, and the matricesA,B,C,D
("' including n = dim(X) = dim(A)) are the unknowns.

The IR matrix of [%’%] IS equal to

D.CB,CAB,... CA"!B....

~» realization iff
D=H(0) and CA"1B=H() forteN

GivenH, find (A,B,C,D)! ~ nonlinear equations, there may
not be a sol'n, if there is one, not unique!

—n. 78/1



Realizability equations

Notation: [%’%] or (A,B,C,.D) = H
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Notation: [%’%] or (A,B,C,D) =H
nmin(H) :=min{n| 3 [%’%] of order n, [%’%] = H}

The corr. [%’%] IS called aminimal realizationof H.

The central role in this theory and the related algorithms is
played by the Hankel matrix .
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H1) HE)  HE) - H(t")
H(2) H(3) H(4) H(t"+1)
H(3) H(4) H(5) -+  H({t"+2)
Ty = . . | E
H(t') Ht'+1) H({t'+2) --- H{'+t"-1)

plays the lead role in realization theory and model reductia.
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Toeplitz and Hankel: close cousin:
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We show how the Hankel matrix arises, by contrasting it with
the Toeplitz matrix Considery(t) = y1_oH (t")u(t —t’).
Write the input and output as ‘long’ column vectors
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We show how the Hankel matrix arises, by contrasting it with
the Toeplitz matrix Considery(t) = y1_oH (t")u(t —t’).
Write the input and output as ‘long’ column vectors

"H(0) O 0
H(1) HO) 0
) H(1 (0)

HL) H(EZD) H(E=2)

Y+

In

shorthand,
Y+ = Jhuy
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The matrix €y has special structure: the elements in lines
parallel to the diagonalare identical block matrices.

Such (finite or infinite) matrices are called Toeplitz
— block Toeplitzperhaps being more appropriate.

(282
Otto Toeplitz
1881 — 1940
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The matrix €y has special structure: the elements in lines
parallel to the diagonalare identical block matrices.

Such (finite or infinite) matrices are called Toeplitz
— block Toeplitzperhaps being more appropriate.

The Toeplitz matrix tells what
the output corresponding to an input is.

That it comes up i _
in linear system theory is evident: oo Tocrne
it codifies convolution.

e
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Toeplitz and Hankel maps

-------
- ~
-

S

A
: Toeplitz map
\\‘ ,
v output
1 input

-
.........
-

- ~s

“. Hankel map
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Consider an input that starts at some time in the past and
‘ends’ att = 0. We are only interested in the response for
t > 0.
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Consider an input that starts at some time in the past and
‘ends’ att = 0. We are only interested in the response for

t > 0. Then

Write the past input and future output as ‘long’ column

vectors

y(t) = Zvez HU)U(t =), teZy.

Y+ —
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The relation between the ‘past’ input u_ and the ‘future’

output y, IS

Y+ =

Note: sinceu has ‘compact support’, no convergence pbms.

H(t") H(

t’.+1) H (t"+2)
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In shorthand, in terms of the (infinite) Hankel matrix J#;,

y+ = HHu-
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In shorthand, in terms of the (infinite) Hankel matrix J#;,
y+ = HHu-

The matrix 574 has special structure: the elements in lines
parallel to the anti-diagonalare identical matrices.
Such matrices (finite or infinite)

are called Hankel — block Hankel
being perhaps more appropriate.

He'rm:an Hankel
1839 — 1873

Hankel matrices: central role in realization problems and in
model reduction
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/ Hankel pattern

* K %”#k* * ﬁk*‘x* Y

L4
¢

w*,* H K K Hek ok

Wk KMk kK :j:{'
R w& *
H % *%&* ***** b
He K.k He R K w»? * '
ﬁc* *#k* k’#k* * "% ‘.

#k*‘* 'Mk*’* 'Mk* :k

%k* *g* * wc* "% « \\

. Toeplitz pattern
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We will also meet theshifted Hankel matrix

obtained by deleting the first block row (equivalently, blodk

column) from 74,

H(2) H@E)  H4)
H(3) H(4)  H(5)
H H H

H(t’:+1) H(t’:+2) H(t’:+3)

H(t”+1)
H(t”—|—2)
.. H(t”_|_3)

H(t'+t") -
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and the truncated Hankel matrix

t/,t” .
PR

CH() H{E11) H(t42) -

H({t") 7
H(t"+1)
H(t"+2)

H(t'+t"—1) _

—n. 90/1



Define therank of an infinite matrix in the obvious way:

as the supremum of the ranks of its submatrices.
The rank of an infinite matrix can hence bec.

Note that
/ t//

rank(J) = Sup/,t//EN{rank(c%f_tl’ )}
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Realizability




Theorem
Let H : Z, — RP*" be an IR matrix.

» [J(AB,C,D)=H| < [rank(J4;) < o]
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Theorem

Let H : Z, — RP*" be an IR matrix.

>
>

[3 (A,B,C,D) = H| < [rank(J4;) < o]
nmin(H) = rank(J74;)
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Theorem

Let H : Z, — RP*" be an IR matrix.

>
>
>

[3 (A,B,C,D) = H| < [rank(J4;) < o]
nmin(H) = rank(J74;)

The order of the realization (A,B,C,D) is nmin(H)
Iff It IS controllable and observable
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Theorem

Let H : Z, — RP*" be an IR matrix.

>
>
>

[3 (A,B,C,D) = H| < [rank(J4;) < o]
nmin(H) = rank(J74;)

The order of the realization (A,B,C,D) is nmin(H)
Iff It IS controllable and observable

All minimal realizations of H are generated from
one by the transformation group

SE%Z(nmin(H))
(A,B,C,D) . (SAS1,8B,CS 1. D)
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Proof of the realization theorem
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Algorithms




Step 1
Find a sub-matrix M of 7 with

rank(M) = rank(J4) (= nmin(J4))-

SayM is formed by the elements in rowsrq,rp, ...,y
and columnsky, ko, ... . k.». WhenceM ¢ R® *0",
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Step 2

Let oM € R**®" be the sub-matrix of 7%, formed by the
elements in rowsry,ro,...,ry and columnsky, ko, ... k.

Equivalently, by the Hankel structure, the sub-matrix of J#;
formed by the elements in rowsr; +p,r2+p,...,r+p and
columnsky, ko, ... k.

Equivalently, by the Hankel structure, the sub-matrix of J#;
formed by the elements in rowsrq,r2,...,ryy and columns

ki+mko+m,..., kv +m.
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Step 2

Let oM € R**®" be the sub-matrix of 7%, formed by the
elements in rowsry,ro,...,ry and columnsky, ko, ... k.

Equivalently, by the Hankel structure, the sub-matrix of J#;
formed by the elements in rowsr; +p,r2+p,...,r+p and
columnsky, ko, ... k.

Equivalently, by the Hankel structure, the sub-matrix of J#;
formed by the elements in rowsrq,r2,...,ryy and columns

ki+mko+m,..., kv +m.

Let Re R®™®" be the sub-matrix of 54, formed by the
elements in the firstp rows and columnskq, ko, ... k.
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Step 2

Let oM € R**®" be the sub-matrix of 7%, formed by the
elements in rowsry,ro,...,ry and columnsky, ko, ... k.

Equivalently, by the Hankel structure, the sub-matrix of J#;
formed by the elements in rowsr; +p,r2+p,...,r+p and
columnsky, ko, ... k.

Equivalently, by the Hankel structure, the sub-matrix of J#;
formed by the elements in rowsrq,r2,...,ryy and columns

ki+mko+m,..., kv +m.

Let Re R®™®" be the sub-matrix of 54, formed by the
elements in the firstp rows and columnskq, ko, ... k.

Let K € R**P be the sub-matrix of sty formed by the
elements in the rowsry,ro,...,ry and the first m columns.
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M, oM. R K

T

******w**
Rk b S S
- rH- Ak e @ APk @ >
Wekik Mk KMk K
Hek ik MR kMK K

Heok ok Mok KMk K
*%***%%*&
***w*****

: vy v M

A A A
*%**&‘w&c .............. >
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A general realization algorithm

Step3 Find P e R >amin(H) gnd Q e RAmin(H) " such that

PMQ = lain(H)
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Step 3 FIind P € R >amin(H) and Q e R2minH)*2" sych that

PMQ = loyi(r)

Step 4 A minimal state representation [%’%] of H is

obtained as follows:

A = PoMQ
B — PR

C = KQ

D H(0)
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Proof of the general algorithm
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Important special cases of this general algorithm:

1. The Ho-Kalman algorithm: of historical interest.

2. | Silverman’s algorithm
M : a non-singular maximal rank (hencenminH) X Rmin(H))
submatrix of H. ~» minimal realizations:

A oMM—1 A M—1loM
B =R B = M IR
C = KM C = K

D H(0) D H(0)

Very efficient!

Leonard Silverman
born 1939
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3.|SVD - type algorithms| SVD is the ‘tool’ that is called for
carrying out (approximately) steps 3 and 4 (see lecture 3).
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3.|SVD - type algorithms| SVD is the ‘tool’ that is called for
carrying out (approximately) steps 3 and 4 (see lecture 3).

Step 3% Determine an SVD ofM ~» M=U3xV'.

_O'l o ... 0 |
S 0 0 gy --- 0
2 = reduced ,  2reduced™— _ _
o) 0 , S 0)
0 0 Gﬂmin(H)
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Step 4.

reduced

[<—1
K zreduced

=

H(0)

0

0

[<—1
zreduced

0
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Our general algorithm also holds whenM is an infinite
sub-matrix of 7 (or when M = J#{;). However, convergence
Issues arise then when multiplying infinite matrices.

In the SVD case, for instance, we need to make some
assumptions that guarantee the existence of an SVD.
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Our general algorithm also holds whenM is an infinite
sub-matrix of 7 (or when M = J#{;). However, convergence
Issues arise then when multiplying infinite matrices.

In the SVD case, for instance, we need to make some
assumptions that guarantee the existence of an SVD.

Assume

S H)| <

This condition corresponds to input/output stability of the
convolution systems. It implies the existence of an SVD of;.
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4. An algorithm based on the SVD of.74;:
Step 3”: Determine a ‘partial’ SVD

_0'1 o ... 0 |

) gy --- 0

%—I =U zreducea/ T) Zreduced: 0
I 0 o -.. Unmin(H)_

U,V have anco number of rows, and columnse /¢».
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Step 4™

A = T bl AoV Zichice

B = /% ducek AT

C = HVy5e
= H(0)

This leads to a systew{%%] with nice properties: it is

balanced (see lecture 8).
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The Hankel matrix 7 plays the central role In
the realization of a discrete time convolution.

The rank of 774 Is equal to the dimension of a
minimal realization.

A realization {%%} can be computed from a

maximal rank su

matrix of 7

SVD based algorithms form an important special

case.



System norms
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| -| denotes the (Euclidean) norm orR™.
1. Time-domain signal norms.
1
> Zp(RRY) = {f R R [|f| g = (/72 [f(1)[Pdt)? < oo}
for l<p<o

> BRERY = (R R [[fllg = /12 T F(t)dt < oo}
> Zo(R,R*)={f:R—R*||f|. = essential sup|f|) < oo}

with suitable modifications for other domains (e.g.R, ) and
co-domains (e.g. complex- or matrix-valued functions).

If f e %(R,C")is the Fourier transform of f € %(R,R?), then
> fle=5lfls

—n. 109/1



2. Freqguency-domain norms.We only consider rational
functions. Let G be a matrix of rational functions.

» ||G||n < wiff G proper, no polesinC, :={se C|Real(s) > 0}.

|Gl 22 = SURYer Omax(G(1®W)) Omax:= Maximum SV

» ||G||ls < «iff Gis strictly proper and has no poles inC;..

Gz = \/ 2 /' trace(GT (~iw)G(iw)) dw
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2. Freqguency-domain norms.We only consider rational
functions. Let G be a matrix of rational functions.

» ||G||n < wiff G proper, no polesinC, :={se C|Real(s) > 0}.

|Gl 22 = SURYer Omax(G(1®W)) Omax:= Maximum SV

» ||G||ls < «iff Gis strictly proper and has no poles inC;..

1G|les = \/%Tffoftrace(GT(—iw)G(iw))da)
» ||Gll¢, < «iff Gis proper no poles on the imaginary axis, and

|G|z, = SURyeR Omax(G(iw))

» |G|l < «iff Gis strictly proper, no poles on the im. axis, and

Gz, = /2 J > trace(GT (~iw)Gliw)) dw
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The J¢, 765, 4w, 2> NOrms of a system[%’%] are defined

In terms of its TF G. In terms of the IR, the » norms are
Infinite if D # 0. If D =0, we have

IWll.z, = Gl

However, one should be very careful in applying these norms
for uncontrollable systems, since they ignore the
uncontrollable part of a system!
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Input/output stability




Zp stability

Consider [%’%] . The outputy: R, — RP corresponding to

the input u: R, — R™ |with x(0) =0/ is

y(t) = Du(t) + /OooCeAt/Bu(t —t)dt’.

The system Is said to be¢_Zy-input/output stable if
uc Zp(R4,R") implies that the corresponding output
y € Zp(Ry,RP).
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Consider [%’%] . The outputy: R, — RP corresponding to

the input u: R, — R™ |with x(0) =0/ is

y(t) = Du(t) + /OooCeAt/Bu(t —t)dt’.

The system Is said to be¢_Zy-input/output stable if
uc Zp(R4,R") implies that the corresponding output
y € Zp(Ry,RP). The Zy-input/output gain is

IYl.2, (=, Re)

SUR 2ue (R %) T 0
p )
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Zp stability

Consider [%’%] . The outputy: R, — RP corresponding to

theinputu: R, — R"

with x(0) =0

1S

y(t) = Du(t) + /OooCeAt/Bu(t —t)dt’.

The system Is said to be¢_Zy-input/output stable if
uc Zp(R4,R") implies that the corresponding output
y € Zp(Ry,RP). The Zy-input/output gain is

Sup);éuezp(R+,

1Vl e )

Rm
ull e 2=

The Zy-input/output gain is bounded by |D|+ ||W|| #,
For p= 1,00 this bound is sharp (for suitable choice of the

norm on R™ and RP).
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Z»-gain
The % (R,,R") to £ (R, RP) induced norm is

IVl RP)
lull 2 r Rm)

|G|z, = SURLuc. 2R, R

with G the TF. Of course,
this inequality is strict.

G|z < |D|+||W||.#, and usually
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Z»-gain
The % (R,,R") to £ (R, RP) induced norm is

IVl RP)
lull 2 r Rm)

|G|z, = SURLuc. 2R, R

with G the TF. Of course,
this inequality is strict.

If D=0, andm =p =1, thenthe (R, ,R") t0 Zw(R,,RP)
(and the %, (R, ,R™) to % (R, RP)) induced norm is

G|z < |D|+||W||.#, and usually

IYll.2, & RP)
ull 2R Rm)

|Gl = [[WIl.2, = SURy Luc 2 (R, R)

In the multivariable case, there are stochastic interpretéions
of the %-norm, and at hocdeterministic interpretations, but
no induced norm interpretation.
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Input/output and state stability

Theorem

The following are equivalent for [%’%] , assumed con-

trollable and observable:

» It IS state stable
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Input/output and state stability

Theorem

The following are equivalent for [%’%] , assumed con-

trollable and observable:

» It IS state stable
> Itis Zp-Input/output stable

> [[W]lg <o
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Input/output and state stability

Theorem

The following are equivalent for [%’%] , assumed con-

trollable and observable:

It IS State stable
itis Zp-Input/output stable

W]z < oo

vV v Vv Y

|G, <o
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Input/output and state stability

Theorem

The following are equivalent for [%’%] , assumed con-

trollable and observable:

It IS State stable
itis Zp-Input/output stable

W]z < oo
|G, <o

vV v v VvV Y

(assumingD = 0) [|G]s; = W], < o3
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Proof of the input/output stability theorem
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The J%%-norm of the transfer function iIs the %
iInduced norm.

Boundedness of the’Zs,-norm and of the
Ft5-norm (assumingD = 0) are equivalent to
state stability or input/output stability of [%’%} :
assumed state controllable and observable.



Summary of Lecture 4
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The main points

» Finite dimensional linear systems can be analyzed in
depth, with specific tests for state stability, state
controllability, state observability, and input/output

stability.
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The main points

» Finite dimensional linear systems can be analyzed in
depth, with specific tests for state stability, state
controllability, state observability, and input/output

stability.

» The impulse response and the transfer function specify
the input/output behavior with zero initial state.
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The main points

» Finite dimensional linear systems can be analyzed in
depth, with specific tests for state stability, state
controllability, state observability, and input/output
stability.

» The impulse response and the transfer function specify
the input/output behavior with zero initial state.

» Minimality of a realization of an impulse response or a
transfer function corresponds to state controllability and
state observablility combined.
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The main points

Finite dimensional linear systems can be analyzed in
depth, with specific tests for state stability, state
controllability, state observability, and input/output
stability.

The impulse response and the transfer function specify
the input/output behavior with zero initial state.

Minimality of a realization of an impulse response or a
transfer function corresponds to state controllability and
state observablility combined.

There are very concrete algorithms for realizing a
discrete time impulse response. The Hankel matrix is the
key in these algorithms.
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The main points

Finite dimensional linear systems can be analyzed in
depth, with specific tests for state stability, state
controllability, state observability, and input/output
stability.

The impulse response and the transfer function specify
the input/output behavior with zero initial state.

Minimality of a realization of an impulse response or a
transfer function corresponds to state controllability and
state observablility combined.

There are very concrete algorithms for realizing a
discrete time impulse response. The Hankel matrix is the
key in these algorithms.

End of lecture 4
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