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Outline

◮ Finite dimensional linear systems (FDLSs)

◮ State stability

◮ State controllability and state observability

◮ The impulse response (IR) and the transfer function (TF)

◮ Minimal realizations & the state space isomorphism thm

◮ Realizability conditions based on the Hankel matrix

◮ Realization algorithms

◮ System norms
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Finite dimensional linear systems

FDLSs
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FDLSs

The most studied class of dynamical systems are the FDLSs,
represented by:

continuous time:
d
dt

x = Ax+Bu, y = Cx+Du

discrete time: σx = Ax+Bu, y = Cx+Du

where σ is the left shift: σ f (t) := f (t +1).
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FDLSs

The most studied class of dynamical systems are the FDLSs,
represented by:

continuous time:
d
dt

x = Ax+Bu, y = Cx+Du

discrete time: σx = Ax+Bu, y = Cx+Du

where σ is the left shift: σ f (t) := f (t +1).

Informal notation:

d
dt

x(t)= Ax(t)+Bu(t), or x(t +1)= Ax(t)+Bu(t), y(t)=Cx(t)+Du(t)

The time axis depends on the application.

For the continuous-time case,T = R or T = R+ := [0,∞).
For the discrete-time case, T = Z or T = Z+ := {0,1,2, . . .}.
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The signal flow

u : T → Rm is the input (trajectory)
y : T → Rm is theoutput (trajectory)
x : T → R

n is thestate trajectory.

SYSTEM output  input    
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The signal flow

u : T → Rm is the input (trajectory)
y : T → Rm is theoutput (trajectory)
x : T → R

n is thestate trajectory.

SYSTEM output  input    

Often the states have a clear physical meaning, but in many
applications they are introduced principally in order to give
the equations a ‘recursive’ character.

In this lecture, we view states aslatent variables, internal to
the system, that serve to codify howexternal inputs are
recursively transformed to external outputs.
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Input and output space

Sometimes we denote the spaces where the input, output, and
state take on their values by

U (= R
m), Y (= R

p), X (= R
n)
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Input and output space

Sometimes we denote the spaces where the input, output, and
state take on their values by

U (= R
m), Y (= R

p), X (= R
n)

In the discrete-time case, the input spaceU , and output
space,Y , are taken to be

U = U
T and Y = Y

T,

but, in the continuous-time case, we have to be a bit more
conservative for the input. We can, for example, take

U = L local
1 (R,Rm) and Y = L local

1 (R,Rp)

or U = C ∞(R,Rm) and Y = C ∞(R,Rp)
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Notation

A ∈ R
n×n,B ∈ R

n×m,C ∈ R
p×n,D ∈ R

p×m

are thesystem matrices.

It is common to denote this system as

[

A B

C D

]

or (A,B,C,D)

depending on the typographical constraints.

The dimension of the state spaceX is called theorderof
[

A B

C D

]

. It is a reasonable measure of the dynamic

complexity of the system (important in lectures 7 and 8).
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The external behavior
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The input/output trajectories

The state trajectory corresponding to the inputu and the
initial state x(0) is given by

x(t) = eAtx(0)+

∫ t

0
eAt ′Bu(t − t ′)dt ′.

The output y depends on the inputu and the initial state x(0)
as follows

y(t) = CeAtx(0)+Du(t)+
∫ t

0
CeAt ′Bu(t − t ′)dt ′

Observe thatu ∈ C ∞ (R,Rw) (or L local
1 (R,Rm)) and x(0) ∈ R

n

yield a unique output y ∈ C ∞ (R,Rp) (or L local
1 (R,Rp)).
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The corresponding LTIDS

It follows immediately from the elimination theorem that th e
set of(u,y) trajectories obtained this way is exactlyequal to
the solution set of a LTIDS

R

(
d
dt

)[

u
y

]

= 0

for a suitable R ∈ R [ξ ]•×(m+p).
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From LTIDS to (A,B,C,D)

The converse is also true, in the following precise sense. For
eachB ∈ L w, there exists an permutation matrix Π ∈ R

w×w

and matrices A ∈ R
n×n,B ∈ R

n×m,C ∈ R
p×n,D ∈ R

p×m such
that the w-behavior of

d
dt

x(t) = Ax(t)+Bu(t), y(t) = Cx(t)+Du(t),w = Π

[

u
y

]

is equal to the givenB.
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From LTIDS to (A,B,C,D)

The permutation matrix Π corresponds to changing the order
of the components ofw. Hence everyB ∈ L • allows a

representation as an input/state/output system
[

A B

C D

]

, up to

reordering of the components ofw.

In LTIDSs input and outputs are always there
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From LTIDS to (A,B,C,D)

The permutation matrix Π corresponds to changing the order
of the components ofw. Hence everyB ∈ L • allows a

representation as an input/state/output system
[

A B

C D

]

, up to

reordering of the components ofw.

In LTIDSs input and outputs are always there

Algorithms R →
[

A B

C D

]

or M, or (R,M) →
[

A B

C D

]

are of much interest. (see lectures 2 and 12).
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The external behavior

L w, the LTIDSs, described by the
differential equations

R
(

d
dt

)
w = 0,

and the FDLSs, described by
[

A B

C D

]

model exactly the same class of systems.

Linear time-invariant differential
≡ linear time-invariant finite dimensionsal
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State stability
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State stability

Many notions of stability pertain to
[

A B

C D

]

.

In particular, it is said to be state stableif, for u = 0,
every state trajectoryx : R → R

n converges to zero:

x(t) → 0 ast → ∞

time

X
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State stability

Obviously, state stability is equivalent to

eAt → 0 ast → ∞.

It is easy to see that this holds iff

all the eigenvalues ofA have negative real part

Square matrices with this property are calledHurwitz.
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Hurwitz polynomials

The question of finding conditions on the coeff. ofp ∈ R [ξ ]

p(ξ ) = p0 + p1ξ + · · ·+ pn−1ξ n−1 + pnξ n

so that its roots have negative real part (such pol’s are called
Hurwitz), known as theRouth-Hurwitz problem, has been the
subject of countless articles ever since
Maxwell raised first the question in
1868. There exist effective tests on
p0, p1, · · · , pn−1, pn.

Edward Routh Adolf Hurwitz
1831 – 1907 1859 – 1919
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Hurwitz polynomials

The question of finding conditions on the coeff. ofp ∈ R [ξ ]

p(ξ ) = p0 + p1ξ + · · ·+ pn−1ξ n−1 + pnξ n

so that its roots have negative real part (such pol’s are called
Hurwitz), known as theRouth-Hurwitz problem, has been the
subject of countless articles ever since
Maxwell raised first the question in
1868. There exist effective tests on
p0, p1, · · · , pn−1, pn.

Edward Routh Adolf Hurwitz
1831 – 1907 1859 – 1919

Of course,A ∈ R
n×n is Hurwitz iff its characteristic

polynomial, det(Iξ −A), is Hurwitz.
In principle this gives a test for checking state stability.

The following test onA is more in the spirit of this course.
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The Lyapunov equation

– p. 19/119



The Lyapunov equation

Theorem

The following conditions onA ∈ R
n×n are equivalent:

1. A is Hurwitz
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The Lyapunov equation

Notation: ≻ positive definite, ≺ negative definite,
� positive semidefinite, � negative semidefinite.

Theorem

The following conditions onA ∈ R
n×n are equivalent:

1. A is Hurwitz

2. there exists a solutionX ∈ R
n×n to

X = X⊤ ≻ 0, A⊤X +XA ≺ 0
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The Lyapunov equation

Notation: ≻ positive definite, ≺ negative definite,
� positive semidefinite, � negative semidefinite.

Theorem

The following conditions onA ∈ R
n×n are equivalent:

1. A is Hurwitz

2. there exists a solutionX ∈ R
n×n to

X = X⊤ ≻ 0, A⊤X +XA ≺ 0

3. ∀ Y = Y⊤ ≺ 0,∃ X = X⊤ ≻ 0 s.t. A⊤X +XA = Y

The equation in 3. is calledthe Lyapunov equation
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The Lyapunov equation

The Lyapunov equation A⊤X +XA = Y

Alexandr Lyapunov
1857 – 1918

is a special case of theSylvester equationAX +XB = Y .

James Sylvester
1814 – 1897
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The Lyapunov equation

2. is what is called an‘LMI’ feasibility test (see lecture 6).
It may be considered as an algorithm for verifying state
stability.

3. can be used with, e.g.Y = −I, to computeX , and then
verify definiteness ofX (also considered an algorithm).

– p. 22/119



The Lyapunov equation

2. is what is called an‘LMI’ feasibility test (see lecture 6).
It may be considered as an algorithm for verifying state
stability.

3. can be used with, e.g.Y = −I, to computeX , and then
verify definiteness ofX (also considered an algorithm).

Important in algorithms:

A Hurwitz implies that the map
X ∈ R

n×n 7→ A⊤X +XA ∈ R
n×n

is bijective (surjective & injective).
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Proof of the Lyapunov theorem

1. ⇒ 3. A Hurwitz implies that −∫ +∞
0 eA⊤tYeAt dt = X

converges, and yields a sol’nX of the Lyapunov eq’n for a
givenY . Hence the mapM ∈ R

n×n 7→ A⊤M +MA ∈ R
n×n is

surjective, and therefore injective. So,X is the only sol’n.
Conclude thatY = Y⊤ ≺ 0 implies X = X⊤ ≻ 0.
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Proof of the Lyapunov theorem

1. ⇒ 3. A Hurwitz implies that −∫ +∞
0 eA⊤tYeAt dt = X

converges, and yields a sol’nX of the Lyapunov eq’n for a
givenY . Hence the mapM ∈ R

n×n 7→ A⊤M +MA ∈ R
n×n is

surjective, and therefore injective. So,X is the only sol’n.
Conclude thatY = Y⊤ ≺ 0 implies X = X⊤ ≻ 0.

3. ⇒ 2. is trivial.

2. ⇒ 1. Let 0 6= a ∈ C
n be an eigenvector ofA with eigenvalue

λ . ∗ denotes complex conjugate transpose. Then

0 > a∗A⊤Xa+a∗XAa = (λ̄ +λ )a∗Xa.

Sincea∗Xa > 0, this implies (λ̄ +λ ) < 0. Therefore,A is
Hurwitz.
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State controllability
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Definition of state controllability

The system
[

A B

C D

]

is said to bestate controllableif

for every x1,x2 ∈ Rn, there existsT ≥ 0 and u : [0,T ] → Rm

(sayu ∈ L1([0,T ],Rm) or C ∞([0,T ],Rm)), such that the
solution of

d
dt

x = Ax+Bu, x(0) = x1

satisfiesx(T ) = x2.
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Definition of state controllability

The system
[

A B

C D

]

is said to bestate controllableif

for every x1,x2 ∈ Rn, there existsT ≥ 0 and u : [0,T ] → Rm
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x 1

x2X
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Definition of state controllability

The system
[

A B

C D

]

is said to bestate controllableif

for every x1,x2 ∈ Rn, there existsT ≥ 0 and u : [0,T ] → Rm

(sayu ∈ L1([0,T ],Rm) or C ∞([0,T ],Rm)), such that the
solution of

d
dt

x = Ax+Bu, x(0) = x1

satisfiesx(T ) = x2.

2

x 1

x2X

Observe: state controllability is equivalent to behavioral
controllability, as defined in lecture 2, applied to

d
dt

x = Ax+Bu both with w = (x,u) or w = x.
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Test for state controllability

Theorem
[

A B

C D

]

is state controllable iff

rank

([

B AB A2B · · ·Adimension(X)−1B
])

= dimension(X)

Rudolf E. Kalman
born 1930
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Proof of the controllability test

We give only an outline of the proof.

First observe that it suffices to consider the casex1 = 0.

Denote the set of states reachable fromx(0) = 0 over all u and
T ≥ 0 by R. R is obviously a linear subspace ofRn.

Define

Lk = image

([

B AB A2B · · ·Ak−1B
])

,k = 1,2, . . .

The rank test in the controllability thm requires Ln = R
n.

We therefore need to prove thatR = R
n iff Ln = R

n.
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Proof of controllability theorem

(if) All trajectories x of d
dt x = Ax+Bu and hence their

derivatives lie entirely in R. This implies that R is
A-invariant and contains image(B). HenceR contains
image(AkB) for all k ∈ Z+, and thereforeR containsLn.
Conclude that the rank test implies controllability.
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Proof of controllability theorem

(if) All trajectories x of d
dt x = Ax+Bu and hence their

derivatives lie entirely in R. This implies that R is
A-invariant and contains image(B). HenceR contains
image(AkB) for all k ∈ Z+, and thereforeR containsLn.
Conclude that the rank test implies controllability.

(only if) Clearly Lk ⊆ Lk+1, and Lk+1 = Lk implies
Lk′ = Lk for k′ ≥ k. The dimension of theLk’s must go up by
at least1, or stay fixed forever. ThereforeLn′ = Ln for n′ ≥ n.

If the rank condition is not satisfied, there exists0 6= f ∈ R
n

such that f⊤B = f⊤AB = · · · = f⊤An−1B = 0. SinceLn′ = Ln

for n′ ≥ n, this implies f⊤AkB = 0 for all k ∈ Z+. Therefore
f⊤eAtB = 0 for all t ∈ R, hence f⊤R = 0. Therefore the system
is not state controllable if the rank test is not satisfied.
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State observability
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Definition of state observability

Define the ‘internal’ behavior Binternalof
[

A B

C D

]

by

Binternal := {(u,y,x) ∈ C
∞ (R,Rm×R

p×R
n) |

d
dt

x = Ax+Bu,y = Cx+Du}
[

A B

C D

]

said to bestate observableif

(u,y,x1) ,(u,y,x2) ∈ Binternal implies x1 = x2.

In other words, if knowledge of (u,y) (and of the system
dynamics) implies knowledge ofx.

– p. 30/119



Definition of state observability

Define the ‘internal’ behavior Binternalof
[

A B

C D

]

by

Binternal := {(u,y,x) ∈ C
∞ (R,Rm×R

p×R
n) |

d
dt

x = Ax+Bu,y = Cx+Du}
[

A B

C D

]

said to bestate observableif

(u,y,x1) ,(u,y,x2) ∈ Binternal implies x1 = x2.

In other words, if knowledge of (u,y) (and of the system
dynamics) implies knowledge ofx.

State observability is a special case of observability
as defined in lecture 2, with(u,y) the observed, and
x the to-be-reconstructed variable.
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Definition of state observability

There are numerous variations of this definition, the most
prevalent one that there existsT > 0 such that

(u(t),y(t)) for 0≤ t ≤ T determinesx(0) uniquely.

It is easily seen that this variation, and many others, are
equivalent to the definition given.
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Test for state observability

Theorem
[

A B

C D

]

is state observable iff

rank(











C
CA
CA2

...
CAdimension(X)−1











) = dimension(X)
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Proof of the observability test

We give only an outline of the proof.

Observe that state observability requires to find conditions for

[[CeAtx1(0) = CeAtx2(0) for all t ∈ R]] ⇔ [[x1(0) = x2(0)]]

Equivalently, for injectivity of the map

a ∈ R
n 7→ L(a) ∈ C

∞ (R,Rp) with L(a) : t ∈ R 7→CeAta ∈ R
p.

Now prove, using arguments as in the controllability case, that

[[CeAt f = 0 for all t ∈ R]] ⇔ [[CAk f = 0 for k = 0,1,2, · · ·]]
⇔ [[C f = CA f = CA2 f = CAn−1 f = 0]].

Conclude that a 7→ L(a) is injective iff the rank test of the
observability theorem holds.
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System decompositions
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Change of basis in state space

Consider
[

A B

C D

]

. Its trajectories are described by

d
dt

x = Ax+Bu,y = Cx+Du.

A change of basis in the state space means introducing
z = Sx , with S ∈ R

n×n nonsingular. The dynamics become

d
dt

z = SAS−1z+SBu, y = CS−1z+Du

Hence a change of basis corresponds to the transformation

(A,B,C,D)
S−→ (SAS−1,SB,CS−1,D)
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Change of basis in state space

Consider
[

A B

C D

]

. Its trajectories are described by

d
dt

x = Ax+Bu,y = Cx+Du.

A change of basis in the state space means introducing
z = Sx , with S ∈ R

n×n nonsingular. The dynamics become

d
dt

z = SAS−1z+SBu, y = CS−1z+Du

Hence a change of basis corresponds to the transformation

(A,B,C,D)
S−→ (SAS−1,SB,CS−1,D)

A change of basis does not change the external behavior, and
comes in handy to put certain system properties in evidence.
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Controllable / uncontrollable decomposition

Decompose the state spaceX = Rn into

X = R⊕S

with R = image([ B AB A2B · · · An−1B ]) and S any
complement. Note thatR is ‘intrinsically’ defined, but S is
not, any complement will do.
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Controllable / uncontrollable decomposition

Decompose the state spaceX = Rn into

X = R⊕S

with R = image([ B AB A2B · · · An−1B ]) and S any
complement. Note thatR is ‘intrinsically’ defined, but S is
not, any complement will do.

Now choose the basis in the state space such that the first
basis vectors spanR, and the last basis vectors spanS .
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Controllable / uncontrollable decomposition

In this new basis the system dynamics take the form

d
dt z1 = A11z1 + A12z2 +B1u, y = C1z1 +C2z2 +Du
d
dt z2 = A22z2

with d
dt z1 = A11z1 +B1u controllable.

This decomposition brings out the controllability structure.

input    output  
         part

Controllable

          part
Uncontrollable
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Unobservable / observable decomposition

Decompose the state spaceX = Rn into

X = N ⊕S

with N = kernel(









C

CA
...

CAn−1









) and S any complement.

Note that N is ‘intrinsically’ defined, but S is not, any
complement will do.
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Unobservable / observable decomposition

Decompose the state spaceX = Rn into

X = N ⊕S

with N = kernel(









C

CA
...

CAn−1









) and S any complement.

Note that N is ‘intrinsically’ defined, but S is not, any
complement will do.

Now choose the basis in the state space such that the first
basis vectors spanN and the last basis vectors spanS .
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Unobservable / observable decomposition

In this new basis the system dynamics take the form

d
dt z1 = A11z1 + A12z2 +B1u,

d
dt z2 = A22z2 +B2u, y = C2z2 +Du

with d
dt z2 = A22z2 +B2u,y = C2z2 +Du observable.

This decomposition brings out the observability structure.

output  

Unobservable

 Observable
          part

input    

          part
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4-way decomposition

We can combine the controllable / uncontrollable with the
unobservable / observable decomposition,

X =

R
︷ ︸︸ ︷

S1 ⊕ R ∩N ⊕ S3
︸ ︷︷ ︸

N

⊕ S4,

Again it should be noted that theR ∩N ,R, and R are
‘intrinsic’. The complements S1,S3,S4 are not.
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4-way decomposition

Choose the basis conformably, Sx = z =






z1

z2

z3

z4




 ;

d
dt z1 = A11z1 + A24z4 + B1u
d
dt z2 = A21z1 + A22z2 + A23z3 + A24z4 + B2u
d
dt z3 = A33z3 + A34z4

d
dt z4 = A24z4

y = C1z1 + C4z4 + Du

with, in particular,

d
dt

z1 = A11z1 +B1u, y = C1z1 +Du

controllable and observable.
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4-way Kalman decomposition

This leads to the 4-way decomposition (often called the
Kalman decomposition) in the

1. controllable / observable part (co)

2. controllable / unobservable part (c̄o)

3. uncontrollable / unobservable part (̄cō)

4. uncontrollable / observable part (̄co)

For systems that are controllable & observable, only the first
part is present.
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Kalman decomposition

output  

  observable part

Uncontrollable

 observable part
Controllable

unobservable part

 Controllable
 unobservable part

input    

Uncontrollable
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Recapitulation

◮ The most studied representation of LTIDSs are the

FDLSs
[

A B

C D

]

. It combines the convenience of a state

representation and an input/output partition.

◮ A LTIDS can be represented as an FDLS, up to
reordering of the signal components.

◮ State stability⇔ A is Hurwitz.
A central equation in stability questions is the Lyapunov
equation.

◮ There exist explicit tests for state controllability and state
observability.

◮ By choosing the basis in the state space appropriately,
the controllable/uncontrollable and the
observable/unobservable parts are put in evidence.
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Discrete time
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Discrete-time systems

The notions of state stability, state controllability, andstate
observability apply, mutatis mutandis, to discrete-time
systems.

– p. 46/119



Discrete-time systems

The notions of state stability, state controllability, andstate
observability apply, mutatis mutandis, to discrete-time
systems.

State stability in the discrete-time case requires that

all eigenvalues ofA should be inside the unit circle

Matrices with this property
are calledSchur matrices

Issai Schur
1875 – 1941
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Discrete-time systems

The analogue of the Lyapunov equation isA⊤XA−X = Y of
called the‘discrete-time Lyapunov equationor the ‘Stein
equation’. It is actually a special case of the Stein equation
which is A1XA2−X = Y .

Theorem

The following conditions onA ∈ Rn×n are equivalent:

1. A is Schur

2. there exists a solutionX ∈ Rn×n to

X = X⊤ ≻ 0, A⊤XA−X ≺ 0

3. ∀ Y = Y⊤ ≺ 0,∃ X = X⊤ ≻ 0 s.t. A⊤XA−X = Y
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Discrete-time systems

The state controllability and state observability theorems and
the decompositions apply unchanged in the discrete-time case.
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The impulse response & transfer function
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The impulse response

Dδ +W

with δ the δ -‘function’ , and W : [0,∞) → Rp×m defined by

W : t 7→CeAtB

is called theimpulse response(IR) (matrix) of
[

A B

C D

]

.
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The impulse response

Dδ +W

with δ the δ -‘function’ , and W : [0,∞) → Rp×m defined by

W : t 7→CeAtB

is called theimpulse response(IR) (matrix) of
[

A B

C D

]

.

The responsey : R+ → Rp to the input u : R+ → Rm with zero
initial condition x(0) = 0 is the convolution of the IR with u:

y(t) = Du(t)+

∫ t

0
W (t ′)u(t − t ′)dt ′

Informally: initial state x(0−) = 0, impulse input at 0+, output
for t ≥ 0.
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An impulse

The entries of the IR matrix record channel-by-channel the
response fort ≥ 0 to an impulse input with initial state
x(0) = 0.
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1/ε

ε

input

time

ε → 0 illustrates an impulse
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An impulse

The entries of the IR matrix record channel-by-channel the
response fort ≥ 0 to an impulse input with initial state
x(0) = 0.
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1/ε

ε

input

time

ε → 0 illustrates an impulse

Note that
∫ t

0W (t ′)uε(t − t ′)dt ′ −→
ε→0

W (t) for t ∈ R+
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The impulse response is Bohl

A function f : R+ → R of the form

f (t) =
n

∑
k=1

pk(t)e
λkt sin(ωkt +ϕk)

with n ∈ Z+, the pk’s real polynomials, and theλk,ωk,ϕk’s
real numbers is called aBohl function. The set of Bohl
functions is closed under addition and multiplication.
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The impulse response is Bohl

A function f : R+ → R of the form

f (t) =
n

∑
k=1

pk(t)e
λkt sin(ωkt +ϕk)

with n ∈ Z+, the pk’s real polynomials, and theλk,ωk,ϕk’s
real numbers is called aBohl function. The set of Bohl
functions is closed under addition and multiplication.

Theorem

Dδ +W with D ∈ R
p×m and W : R+ → R

p×m is the IR of a

system

[

A B

C D

]

iff

W is a matrix of Bohl functions
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Proof of the Bohl function theorem

(Outline) only if Observe that t ∈ R 7→ eAt ∈ R
n×n is a

matrix of Bohl functions. Hencet ∈ R 7→CeAtB ∈ R
p×m is.
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Proof of the Bohl function theorem

(Outline) only if Observe that t ∈ R 7→ eAt ∈ R
n×n is a

matrix of Bohl functions. Hencet ∈ R 7→CeAtB ∈ R
p×m is.

if First observe that the IR of (

[
A1 0

0 A2

]

,

[
B1

B2

]

,
[

C1 C2

]
,D1 +D2)

is the sum of the IRs of(A1,B1,C1,D1) and (A2,B2,C2,D2).
This implies that it suffices to consider the casem = p = 1.
Next prove that t 7→ tkeλ t cos(ωt) and t 7→ tkeλ t sin(ωt) are IRs
of FDLSs by considering

A =







A′ I2×2 0 ··· 0
0 A′ I2×2 ··· 0

...
0 ··· 0 A′ I2×2

0 ··· 0 0 A′







with A′ =

[

λ ω

−ω λ

]

and choosingB and C appropriately.
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The transfer function

The matrix of rational functions

G(ξ ) := D+C(Iξ −A)−1B ∈ R(ξ )p×m

is called thetransfer function (TF) of
[

A B

C D

]

.
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The transfer function

The matrix of rational functions

G(ξ ) := D+C(Iξ −A)−1B ∈ R(ξ )p×m

is called thetransfer function (TF) of
[

A B

C D

]

.

Consider a complex numbers ∈ C, not an eigenvalue ofA.
Corresponding to the exponential inputt ∈ R 7→ est ,u ∈ C

m,
u ∈ C

m, there is a unique exponential output
t ∈ R 7→ est ,y ∈ Cp with y ∈ Cp given in terms ofu ∈ Cm by

y(s) = G(s)u(s)
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The transfer function

The matrix of rational functions

G(ξ ) := D+C(Iξ −A)−1B ∈ R(ξ )p×m

is called thetransfer function (TF) of
[

A B

C D

]

.

Consider a complex numbers ∈ C, not an eigenvalue ofA.
Corresponding to the exponential inputt ∈ R 7→ est ,u ∈ C

m,
u ∈ C

m, there is a unique exponential output
t ∈ R 7→ est ,y ∈ Cp with y ∈ Cp given in terms ofu ∈ Cm by

y(s) = G(s)u(s)

This holds not only for thoses ∈ C that are not eigenvalues of
A, but for s ∈ C that are not poles ofG. Poles ofG are
eigenvalues ofA, but the converse is not necessarily trues
(unless the system is state controllable and state observable)
We return to this later.
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The transfer function and Laplace tfms

Let y : R+ → R
p be the output of

[
A B

C D

]

for the input

u : R+ → Rm and x(0) = 0. Assume thatu is Laplace
transformable.
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The transfer function and Laplace tfms

Let y : R+ → R
p be the output of

[
A B

C D

]

for the input

u : R+ → Rm and x(0) = 0. Assume thatu is Laplace
transformable.
Then y is also Laplace transformable with domain of
convergence the intersection of the domain of convergence of
u and the half plane to the right of the poles onG. The
Laplace transforms û, ŷ of u and y are related by

ŷ(s) = G(s)û(s)
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The impulse response and the transfer function as Laplace tfms

Let Dδ +W be the IR and G be the TF of
[

A B

C D

]

.

G is the Laplace transform ofDδ +W :

G(s) = D+

∫ ∞

0
W (t)e−st dt

for all s ∈ C to the right of the poles ofG.
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The impulse response and the transfer function as Laplace tfms

Let Dδ +W be the IR and G be the TF of
[

A B

C D

]

.

G is the Laplace transform ofDδ +W :

G(s) = D+

∫ ∞

0
W (t)e−st dt

for all s ∈ C to the right of the poles ofG. Conversely,

D = G(∞) and W (t) =
1

2πi

∫ γ+i∞

γ−i∞
(G(s)−G(∞))ds

where the integration is along a vertical line inC to the right
of the poles ofG. G(∞) is the ‘constant term’, or the
non-strictly proper term of G, say,G(∞) := limλ→∞ G(λ ).
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The transfer function

Theorem

The TF of the system
[

A B

C D

]

is

a matrix of proper real rational functions

Conversely, for anyp×m matrix G of proper real rational

functions, there exists a system
[

A B

C D

]

that has TF G.
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Proof of the rational function theorem

(Outline) only if Since (Iξ −A)−1 is a matrix of proper real

rational functions, so isD+C(Iξ −A)−1B.
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Proof of the rational function theorem

(Outline) only if Since (Iξ −A)−1 is a matrix of proper real

rational functions, so isD+C(Iξ −A)−1B.

if Use the addition property, explained in the proof of the
IR case, to show that it suffices to considerm = p = 1.
Use partial fraction expansion to reduce to the cases

G(ξ ) =
1

(ξ +λ )k
,G(ξ ) =

1
((ξ +λ )2 +ω2)k

,G(ξ ) =
ξ

((ξ +λ )2 +ω2)k
.

Series connection; k = 1. Finally, contemplate the TFs of
single-input / single-output system with

A = −λ and A =

[

−λ ω

−ω −λ

]

and suitableB,C.
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Minimal realizations
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Definition of minimal realization

A system
[

A B

C D

]

is called arealizationof

its IR Dδ +W , W : t ∈ R+ →CeAtB ∈ R
p×m

and of its TF G,G(ξ ) = D+C(Iξ −A)−1B.
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Definition of minimal realization

A system
[

A B

C D

]

is called arealizationof

its IR Dδ +W , W : t ∈ R+ →CeAtB ∈ R
p×m

and of its TF G,G(ξ ) = D+C(Iξ −A)−1B.

It is called a minimal realizationof its IR if the dimension of
its state space is as small as possible among all realizations of
its IR, and of its TF if the dimension of its state space is as
small as possible among all realizations of its TF.
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Conditions for minimality

Theorem

The following conditions on
[

A B

C D

]

are equivalent:

◮ it is a minimal realization of its impulse response

◮ it is a minimal realization of its transfer function

◮ it is

state controllable and state observable

The essence of this theorem is that minimality of a realization
correspondsexactlyto

state controllability & state observability combined.
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Proof of the minimal realization theorem

1. If (A,B,C,D) is not contr. + obs., then(A11,B1,C1,D) from
the Kalman dec. gives a lower order realization with the same
IR and TF. Hence minimality implies contr. + obs.
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Proof of the minimal realization theorem

1. If (A,B,C,D) is not contr. + obs., then(A11,B1,C1,D) from
the Kalman dec. gives a lower order realization with the same
IR and TF. Hence minimality implies contr. + obs.

2. Assume that(A,B,C,D), of order n, is a min. real. of its IR
Let (A1,B1,C1,D), of order n1, have the same IR. Hence
CeAtB = C1eA1tB1 for t ≥ 0. This impliesCAkB = C1Ak

1B1 for
k ∈ Z+. Hence











C

CA

...

CAn−1











[

B AB · · ·An−1B
]

=











C1

C1A1

...

C1An−1
1











[

B1 A1B1 · · ·An−1
1 B1

]

The LHS is the product of an injective× a surjective matrix.
⇒ rank = n. The RHS is the product of two matrices with
‘inner dimension’ n1. ⇒ rank≤ n1. Therefore,n ≤ n1.
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Proof of the minimal realization theorem

3. If
[

A B

C D

]

realizes the TFG, then

G(ξ ) = D+
CB
ξ

+
CAB
ξ 2 +

CA2B
ξ 3 + · · ·

Hence(A,B,C,D) and (A1,B1,C1,D) have the same TF iff
CAkB = C1Ak

1B1 for k ∈ Z+. The proof now follows 2.
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The exponential response

If
[

A B

C D

]

is a minimal realization of its TF, G, then the

eigenvalues ofA are identical to the poles ofG (including
multiplicity).

This may be used to show that corresponding to the
exponential input t ∈ R 7→ estu ∈ Cm, u ∈ Cm, there is a unique
exponential output t ∈ R → esty ∈ C

p with y = G(s)u for all
s ∈ C that are not poles ofG.
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Reduction algorithm

It is easy to see that the IR and TF of
[

A B

C D

]

is equal to that

of
[

A11 B1

C1 D

]

, the controllable / observable part of the Kalman

decomposition. The latter, being controllable and observable,
is a minimal realization of the IR and TF.

This gives a method of obtaining a system that is a minimal
realization of the IR or the TF of a non-minimal one.
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State isomorphism theorem

Theorem

Assume that
[

A B

C D

]

is a minimal realization of its IR,

equivalently, of its TF. Let n be the dimension of its state
space. Denote the set of invertible elements ofRn×n by
G ℓ(n). Then all minimal realizations are obtained by the
transformation group

(A,B,C,D)
S∈G ℓ(n)
−−−−→ (SAS−1,SB,CS−1,D)

In other words, after fixing the IR or the TF, the choice of
basis in the state space is all that remains in minimal
realizations.
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Proof of the state isomorphism theorem

All systems(SAS−1,SB,CS−1,D) obviously have the same IR.
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Proof of the state isomorphism theorem

All systems(SAS−1,SB,CS−1,D) obviously have the same IR.

Let (Aq,Bq,Cq,D),q = 1,2 both be minimal n dim. realizations
of the same IR or TF. Then

C1Ak
1 B1 = C2Ak

2 B2 for k ∈ Z+.

Define

Wq =











Cq

CqAq

...

CqAn−1
q











, Rq =
[

Bq AqBq · · ·An−1
q Bq

]

,q = 1,2.

By controllability and observability, Wq is injective andRq

surjective for q = 1,2.
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Proof of the isomorphism theorem

Let W †
2 be a left inverse ofW2 and R†

2 a right inverse of R2.

Define S = W †
2 W1 . Then

◮ [[W1R1 = W2R2]]⇒ [[W †
2 W1R1R†

2 = In×n]]. HenceS−1 = R1R†
2.

◮ [[W †
2 W1R1 = R2]] ⇒ [[B2 = SB1]]

◮ [[W1R1R†
2 = W2]] ⇒ [[C2 = C1S−1]]

◮ [[W1A1R1 = W2A2R2]] ⇒ [[A2 = W †
2 W1A1R1R†

2 = SA1S−1]]

This implies that

(A,B,C,D)
S∈G ℓ(n)
−−−−→ (SAS−1,SB,CS−1,D)

generates all minimal realizations from one.
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Relations with behavioral systems

The behavior respectsthe uncontrollable part of the system.

The impulse response and the transfer function ignore it.
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The external behavior

We have seen that anyB ∈ L w allows a representation
[

A B

C D

]

in the following sense. There existsm,p ∈ Z+ with

m+p = w, a componentwise partition ofw into w = [u
y ], an

n ∈ Z+, and matricesA,B,C,D such that the external behavior
equalsB.

With componentwise partitionwe mean that there exists a
permutation Π such that w = Π [u

y ].
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The external behavior

The external behavior of(A,B,C,D) is governed by

P

(
d
dt

)

y = Q

(
d
dt

)

u (∗)

with P ∈ R [ξ ]p×p
,Q ∈ R [ξ ]p×m, P nonsingular, P−1Q proper.

It is easy to see thatG = P−1Q .
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The external behavior

The external behavior of(A,B,C,D) is governed by

P

(
d
dt

)

y = Q

(
d
dt

)

u (∗)

with P ∈ R [ξ ]p×p
,Q ∈ R [ξ ]p×m, P nonsingular, P−1Q proper.

It is easy to see thatG = P−1Q . However,(P,Q) contains

more information than G = P−1Q. SinceP and Q in (∗) may
not be left coprime polynomial matrices (see lecture 2), since

the system (∗) also models the uncontrollable part of
[

A B

C D

]

.

IRs and TFs do not capture the uncontrollable part

The uncontrollable part is important in many applications.

State construction forL w is covered in lecture 12.
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The external behavior

Two systems




A1 B1

C1 D1



 and




A2 B2

C2 D2



 can have the same

IR and TF, but can differ drastically because of the
non-controllable part.
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The external behavior

Two systems




A1 B1

C1 D1



 and




A2 B2

C2 D2



 can have the same

IR and TF, but can differ drastically because of the
non-controllable part.

Example: Autonomous systems are very important in

applications. In particular, all systems d
dt x = Ax+0u,y = Cx

have the same TF function0.
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Recapitulation

◮ FDLS ⇔ IR is Bohl ⇔ TF is proper rational.

◮ A realization
[

A B

C D

]

of a TF or an IR is minimal

⇔ it is state controllable + state observable.

◮ All minimal realizations are equivalent up to a

choice of basis in the state space.

◮ The IR and the TF capture only the controllable

part of a system.
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Discrete-time convolutions
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The impulse response matrix

We now look at a particular class of systems for which very
concrete realization algorithms have been derived. Notably,
discrete-time systems

y(t) =
t

∑
t′=0

H(t ′)u(t − t ′) for t ∈ Z+.
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The impulse response matrix

Call H : Z+ → R
p×m the IR (matrix).

Origin: consider the ‘impulse’ input uk : Z+ → Rm uk = δek
with ek the k-th basis vector inRm, and δ : Z+ → R the ‘pulse’

δ (t) :=

{

1 for t = 0
0 for t > 0

The corresponding outputyk = the k−th column of H.
Arrange as a matrix ; the ‘IR’ matrix.
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The realization question

The question studied now:

Go from the IR to a minimal state representation

i.e. to a recursive model.
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The realization question

The question studied now:

Go from the IR to a minimal state representation

i.e. to a recursive model.

When and how can the convolution

y(t) =
t

∑
t′=0

H(t ′)u(t − t ′)

be represented by

x(t +1) = Ax(t)+Bu(t), y(t) = Cx(t)+Du(t), x(0) = 0 ?
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Realizability equations

¡¡ Construct
[

A B

C D

]

from H, such that for all inputs

u : Z+ → Rm, the output responsesy : Z+ → Rp are equal !!

H : Z+ → R
p×m is given, and the matricesA,B,C,D

(!! including n = dim(X) = dim(A)) are the unknowns.
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Realizability equations

¡¡ Construct
[

A B

C D

]

from H, such that for all inputs

u : Z+ → Rm, the output responsesy : Z+ → Rp are equal !!

H : Z+ → R
p×m is given, and the matricesA,B,C,D

(!! including n = dim(X) = dim(A)) are the unknowns.

The IR matrix of
[

A B

C D

]

is equal to

D,CB,CAB, . . . ,CAt−1B, . . .

; realization iff

D = H(0) and CAt−1B = H(t) for t ∈ N

Given H, find (A,B,C,D)! ; nonlinear equations, there may
not be a sol’n, if there is one, not unique!

– p. 78/119



Realizability equations

Notation:
[

A B

C D

]

or (A,B,C,D) ⇒ H
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Realizability equations

Notation:
[

A B

C D

]

or (A,B,C,D) ⇒ H

nmin(H) := min{n | ∃
[

A B

C D

]

of order n,
[

A B

C D

]

⇒ H}

The corr.
[

A B

C D

]

is called aminimal realizationof H.

The central role in this theory and the related algorithms is
played by the Hankel matrix .
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The Hankel matrix

HH :=














H(1) H(2) H(3) · · · H(t ′′) · · ·
H(2) H(3) H(4) · · · H(t ′′ +1) · · ·
H(3) H(4) H(5) · · · H(t ′′ +2) · · ·

...
...

... ... ... . ..

H(t ′) H(t ′ +1) H(t ′ +2) · · · H(t ′ + t ′′−1) · · ·
...

...
... ... ... . ..














plays the lead role in realization theory and model reduction.
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Toeplitz and Hankel: close cousins

– p. 81/119



The Toeplitz matrix

We show how the Hankel matrix arises, by contrasting it with
the Toeplitz matrix. Considery(t) = ∑t

t ′=0H(t ′)u(t − t ′).
Write the input and output as ‘long’ column vectors

u+ =








u(0)
u(1)

...
u(t)
...








y+ =








y(0)
y(1)

...
y(t)
...








.
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The Toeplitz matrix

We show how the Hankel matrix arises, by contrasting it with
the Toeplitz matrix. Considery(t) = ∑t

t ′=0H(t ′)u(t − t ′).
Write the input and output as ‘long’ column vectors

u+ =








u(0)
u(1)

...
u(t)
...








y+ =








y(0)
y(1)

...
y(t)
...








.

; y+ =









H(0) 0 0 ··· 0 ···
H(1) H(0) 0 ··· 0 ···
H(2) H(1) H(0) ··· 0 ···

...
...

... ... ... ...
H(t) H(t−1) H(t−2) ··· H(0) ···

...
...

... ... ... ...









u+. In shorthand,
y+ = THu+
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The Toeplitz matrix

The matrix TH has special structure: the elements in lines
parallel to the diagonalare identical block matrices.

Such (finite or infinite) matrices are called Toeplitz
— block Toeplitzperhaps being more appropriate.

Otto Toeplitz
1881 – 1940
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The Toeplitz matrix

The matrix TH has special structure: the elements in lines
parallel to the diagonalare identical block matrices.

Such (finite or infinite) matrices are called Toeplitz
— block Toeplitzperhaps being more appropriate.

Otto Toeplitz
1881 – 1940

The Toeplitz matrix tells what
the output corresponding to an input is.

That it comes up
in linear system theory is evident:
it codifies convolution.
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Toeplitz and Hankel maps

input  

output        

input  

Hankel map      

output        

Toeplitz map      
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The Hankel matrix

Consider an input that starts at some time in the past and
‘ends’ at t = 0. We are only interested in the response for
t ≥ 0.
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The Hankel matrix

Consider an input that starts at some time in the past and
‘ends’ at t = 0. We are only interested in the response for
t ≥ 0. Then

y(t) = Σt ′∈Z+
H(t ′)u(t − t ′), t ∈ Z+.

Write the past input and future output as ‘long’ column
vectors

u− =








u(−1)
u(−2)

...
u(−t)

...








y+ =








y(0)
y(1)

...
y(t)
...








.
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The Hankel matrix

The relation between the ‘past’ input u− and the ‘future’
output y+ is

y+ =










H(1) H(2) H(3) ··· H(t ′′) ···
H(2) H(3) H(4) ··· H(t ′′+1) ···
H(3) H(4) H(5) ··· H(t ′′+2) ···

...
...

... ... ... ...
H(t ′) H(t ′+1) H(t ′+2) ··· H(t ′+t ′′−1) ···

...
...

... ... ... ...










u−.

Note: sinceu has ‘compact support’, no convergence pbms.
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The Hankel matrix

In shorthand, in terms of the (infinite) Hankel matrix HH ,

y+ = HHu−
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The Hankel matrix

In shorthand, in terms of the (infinite) Hankel matrix HH ,

y+ = HHu−

The matrix HH has special structure: the elements in lines
parallel to the anti-diagonalare identical matrices.
Such matrices (finite or infinite)
are called Hankel — block Hankel
being perhaps more appropriate.

Herman Hankel
1839 – 1873

Hankel matrices: central role in realization problems and in
model reduction
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Toeplitz and Hankel matrices

* * * *** * * *** * *
*** * * *** * * *** * *
*** * * *** * * *** * *
*** * * *** * * *** * *
*** * * *** * * *** * *
*** * * *** * * *** * *
*** * * *** * * *** * *
*** * * *** * * *** * *
*** * * *** * * *** * *

Toeplitz pattern   

*

Hankel pattern   

*
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The shifted Hankel matrix

We will also meet theshifted Hankel matrix

HσH :=










H(2) H(3) H(4) ··· H(t ′′+1) ···
H(3) H(4) H(5) ··· H(t ′′+2) ···
H(4) H(5) H(6) ··· H(t ′′+3) ···

...
...

... ... ... ...
H(t ′+1) H(t ′+2) H(t ′+3) ··· H(t ′+t ′′) ···

...
...

... ... ... ...










,

obtained by deleting the first block row (equivalently, block
column) from HH ,
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The truncated Hankel matrix

and the truncated Hankel matrix

H
t ′,t ′′

H :=







H(1) H(2) H(3) ··· H(t ′′)
H(2) H(3) H(4) ··· H(t ′′+1)
H(3) H(4) H(5) ··· H(t ′′+2)

...
...

... ... ...
H(t ′) H(t ′+1) H(t ′+2) ··· H(t ′+t ′′−1)






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The rank of a Hankel matrix

Define therank of an infinite matrix in the obvious way:
as the supremum of the ranks of its submatrices.
The rank of an infinite matrix can hence be∞.

Note that

rank(HH) = supt ′,t ′′∈N{rank(H t ′,t ′′
H )}.
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Realizability
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The realization theorem

Theorem
Let H : Z+ → R

p×m be an IR matrix.

◮ [[∃ (A,B,C,D) ⇒ H]] ⇔ [[rank(HH) < ∞]]
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The realization theorem

Theorem
Let H : Z+ → R

p×m be an IR matrix.

◮ [[∃ (A,B,C,D) ⇒ H]] ⇔ [[rank(HH) < ∞]]

◮ nmin(H) = rank(HH)
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Theorem
Let H : Z+ → R

p×m be an IR matrix.

◮ [[∃ (A,B,C,D) ⇒ H]] ⇔ [[rank(HH) < ∞]]

◮ nmin(H) = rank(HH)

◮ The order of the realization (A,B,C,D) is nmin(H)
iff it is controllable and observable
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The realization theorem

Theorem
Let H : Z+ → R

p×m be an IR matrix.

◮ [[∃ (A,B,C,D) ⇒ H]] ⇔ [[rank(HH) < ∞]]

◮ nmin(H) = rank(HH)

◮ The order of the realization (A,B,C,D) is nmin(H)
iff it is controllable and observable

◮ All minimal realizations of H are generated from
one by the transformation group

(A,B,C,D)
S∈G ℓ(nmin(H))
−−−−→ (SAS−1,SB,CS−1,D)
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Proof of the realization theorem
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Algorithms
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A general realization algorithm

Step 1:

Find a sub-matrix M of HH with

rank(M) = rank(HH) (= nmin(HH)).

SayM is formed by the elements in rowsr1,r2, . . . ,rn′

and columnsk1,k2, . . . ,kn′′. WhenceM ∈ R
n′×n′′.
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A general realization algorithm

Step 2:

Let σM ∈ R
n′×n′′ be the sub-matrix ofHσH formed by the

elements in rowsr1,r2, . . . ,rn′ and columnsk1,k2, . . . ,kn′′.

Equivalently, by the Hankel structure, the sub-matrix of HH
formed by the elements in rowsr1 +p,r2 +p, . . . ,rn′ +p and
columnsk1,k2, . . . ,kn′′.

Equivalently, by the Hankel structure, the sub-matrix of HH
formed by the elements in rowsr1,r2, . . . ,rn′ and columns
k1 +m,k2 +m, . . . ,kn′′ +m.
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Equivalently, by the Hankel structure, the sub-matrix of HH
formed by the elements in rowsr1 +p,r2 +p, . . . ,rn′ +p and
columnsk1,k2, . . . ,kn′′.

Equivalently, by the Hankel structure, the sub-matrix of HH
formed by the elements in rowsr1,r2, . . . ,rn′ and columns
k1 +m,k2 +m, . . . ,kn′′ +m.

Let R ∈ Rm×n′′ be the sub-matrix ofHH formed by the
elements in the firstp rows and columnsk1,k2, . . . ,kn′′.

– p. 97/119



A general realization algorithm

Step 2:

Let σM ∈ R
n′×n′′ be the sub-matrix ofHσH formed by the

elements in rowsr1,r2, . . . ,rn′ and columnsk1,k2, . . . ,kn′′.

Equivalently, by the Hankel structure, the sub-matrix of HH
formed by the elements in rowsr1 +p,r2 +p, . . . ,rn′ +p and
columnsk1,k2, . . . ,kn′′.

Equivalently, by the Hankel structure, the sub-matrix of HH
formed by the elements in rowsr1,r2, . . . ,rn′ and columns
k1 +m,k2 +m, . . . ,kn′′ +m.

Let R ∈ Rm×n′′ be the sub-matrix ofHH formed by the
elements in the firstp rows and columnsk1,k2, . . . ,kn′′.

Let K ∈ R
n′×p be the sub-matrix ofHH formed by the

elements in the rowsr1,r2, . . . ,rn′ and the first m columns.
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M,σM,R,K

*** * *
*** * * *** * * *** * *
*** * * *** * * *** * *
*** * * *** * * *** * *
*** * * *** * * *** * *
*** * * *** * * *** * *
*** * * *** * * *** * *
*** * * *** * * *** * *

*

M   

** * * *** * * *** * *
*** * * *** * * ���

���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

��
��
��
��
��
��
��
��

��
��
��
��

���
���
���

���
���
���

��
��
��
��

���
���
���
���

** * *
*** * * *** * * *** * *
*** * * *** * * *** * *
*** * * *** * * *** * *
*** * * *** * * *** * *
*** * * *** * * *** * *
*** * * *** * * *** * *
*** * * *** * * *** * *

M   

*

σ 

** * * *** * * *** * *
*** * * *** * * *
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* * *** * * *** * *
*** * * *** * * *** * *
*** * * *** * * *** * *
*** * * *** * * *** * *
*** * * *** * * *** * *
*** * * *** * * *** * *
*** * * *** * * *** * *
*** * * *** * * *** * *

*

R   

** * * *** * * *** * *
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* * * *** * * *** * *
*** * * *** * * *** * *
*** * * *** * * *** * *
*** * * *** * * *** * *
*** * * *** * * *** * *
*** * * *** * * *** * *
*** * * *** * * *** * *
*** * * *** * * *** * *

*

K   

** * * *** * * *** * *
**
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A general realization algorithm

Step 3: Find P ∈ Rn′×nmin(H) and Q ∈ R
nmin(H)×n′′ such that

PMQ = Inmin(H)
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A general realization algorithm

Step 3: Find P ∈ Rn′×nmin(H) and Q ∈ R
nmin(H)×n′′ such that

PMQ = Inmin(H)

Step 4: A minimal state representation
[

A B

C D

]

of H is

obtained as follows:

A = PσMQ
B = PR
C = KQ
D = H(0)
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Proof of the general algorithm
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Realization algorithms

Important special cases of this general algorithm:

1. The Ho-Kalman algorithm: of historical interest.

2. Silverman’s algorithm
M : a non-singular maximal rank (hencenmin(H)×nmin(H))
submatrix of H. ; minimal realizations:

A = σMM−1

B = R
C = KM−1

D = H(0)

A = M−1σM
B = M−1R
C = K
D = H(0)

Leonard Silverman
born 1939

Very efficient!
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SVD based realization algorithms

3. SVD - type algorithms SVD is the ‘tool’ that is called for
carrying out (approximately) steps 3 and 4 (see lecture 3).

– p. 102/119



SVD based realization algorithms

3. SVD - type algorithms SVD is the ‘tool’ that is called for
carrying out (approximately) steps 3 and 4 (see lecture 3).

Step 3’: Determine an SVD ofM ; M = UΣV⊤.

Σ =




Σreduced 0

0 0



 , Σreduced=











σ1 0 · · · 0

0 σ2 · · · 0
...

... . . . 0

0 0 · · · σnmin(H)










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SVD based realization algorithms

Step 4’:

A =
[√

Σ−1
reduced 0

]

U⊤σMV





√

Σ−1
reduced

0





B =
[√

Σ−1
reduced 0

]

U⊤R

C = K





√

Σ−1
reduced

0





D = H(0)
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Balanced realization algorithm

Our general algorithm also holds whenM is an infinite
sub-matrix of HH (or when M = HH). However, convergence
issues arise then when multiplying infinite matrices.

In the SVD case, for instance, we need to make some
assumptions that guarantee the existence of an SVD.
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Balanced realization algorithm

Our general algorithm also holds whenM is an infinite
sub-matrix of HH (or when M = HH). However, convergence
issues arise then when multiplying infinite matrices.

In the SVD case, for instance, we need to make some
assumptions that guarantee the existence of an SVD.

Assume
∞

∑
t=1

||H(t)|| < ∞

This condition corresponds to input/output stability of the
convolution systems. It implies the existence of an SVD ofHH .
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Balanced realization algorithm

4. An algorithm based on the SVD ofHH :

Step 3”: Determine a ‘partial’ SVD

HH = UΣreducedV
⊤, Σreduced=











σ1 0 · · · 0

0 σ2 · · · 0
...

... . . . 0

0 0 · · · σnmin(H)











.

U,V have an∞ number of rows, and columns∈ ℓ2.
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Balanced realization algorithm

Step 4”:

A =
√

Σ−1
reducedU

⊤HσH V
√

Σ−1
reduced

B =
√

Σ−1
reducedU

⊤H
∞,1

H

C = H
1,∞

H V
√

Σ−1
reduced

D = H(0)

This leads to a system
[

A B

C D

]

with nice properties: it is

balanced (see lecture 8).
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Recapitulation

◮ The Hankel matrix HH plays the central role in

the realization of a discrete time convolution.

◮ The rank of HH is equal to the dimension of a

minimal realization.

◮ A realization
[

A B

C D

]

can be computed from a

maximal rank submatrix of HH

◮ SVD based algorithms form an important special

case.
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System norms
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Function spaces

| · | denotes the (Euclidean) norm onRn.

1. Time-domain signal norms.

◮ Lp(R,Rn) = { f : R → Rn | ‖ f‖Lp :=
(∫ +∞

−∞ | f (t)|p dt
) 1

p < ∞}
for 1≤ p < ∞

◮ L2(R,Rn) = { f : R → Rn | ‖ f‖L2 :=
√

∫ +∞
−∞ f⊤(t) f (t)dt < ∞}

◮ L∞(R,Rn) = { f : R → Rn | ‖ f‖L∞ := essential sup(| f |) < ∞}

with suitable modifications for other domains (e.g.R+) and

co-domains (e.g. complex- or matrix-valued functions).

If f̂ ∈ L2(R,Cn) is theFourier transform of f ∈ L2(R,Rn), then

◮ ‖ f‖L2 = 1√
2π ‖ f̂‖L2
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Four system norms

2. Frequency-domain norms.We only consider rational
functions. Let G be a matrix of rational functions.

◮ ‖G‖H∞ < ∞ iff G proper, no poles inC+ := {s ∈ C|Real(s) ≥ 0}.

‖G‖H∞ := supω∈Rσmax(G(iω)) σmax := maximum SV

◮ ‖G‖H2 < ∞ iff G is strictly proper and has no poles inC+.

‖G‖H2 =
√

1
2π

∫ +∞
−∞ trace(G⊤(−iω)G(iω))dω
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Four system norms

2. Frequency-domain norms.We only consider rational
functions. Let G be a matrix of rational functions.

◮ ‖G‖H∞ < ∞ iff G proper, no poles inC+ := {s ∈ C|Real(s) ≥ 0}.

‖G‖H∞ := supω∈Rσmax(G(iω)) σmax := maximum SV

◮ ‖G‖H2 < ∞ iff G is strictly proper and has no poles inC+.

‖G‖H2 =
√

1
2π

∫ +∞
−∞ trace(G⊤(−iω)G(iω))dω

◮ ‖G‖L∞ < ∞ iff G is proper no poles on the imaginary axis, and

‖G‖L∞ = supω∈Rσmax(G(iω))

◮ ‖G‖L2 < ∞ iff G is strictly proper, no poles on the im. axis, and

‖G‖L2 =
√

1
2π

∫ +∞
−∞ trace(G⊤(−iω)G(iω))dω
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Relation with the impulse response

The H∞,H2,L∞,L2 norms of a system
[

A B

C D

]

are defined

in terms of its TF G. In terms of the IR, the 2 norms are
infinite if D 6= 0. If D = 0, we have

‖W‖L2 = ‖G‖H2

However, one should be very careful in applying these norms
for uncontrollable systems, since they ignore the
uncontrollable part of a system!
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Input/output stability
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Lp stability

Consider
[

A B

C D

]

. The output y : R+ → R
p corresponding to

the input u : R+ → R
m with x(0) = 0 is

y(t) = Du(t)+

∫ ∞

0
CeAt ′Bu(t − t ′)dt ′.

The system is said to beLp-input/output stable if
u ∈ Lp(R+,Rm) implies that the corresponding output
y ∈ Lp(R+,Rp).
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C D
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. The output y : R+ → R
p corresponding to

the input u : R+ → R
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y(t) = Du(t)+

∫ ∞

0
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Lp stability

Consider
[

A B

C D

]

. The output y : R+ → R
p corresponding to

the input u : R+ → R
m with x(0) = 0 is

y(t) = Du(t)+

∫ ∞

0
CeAt ′Bu(t − t ′)dt ′.

The system is said to beLp-input/output stable if
u ∈ Lp(R+,Rm) implies that the corresponding output
y ∈ Lp(R+,Rp). The Lp-input/output gain is

sup06=u∈Lp(R+,Rm)

‖y‖Lp (R+,Rp)

‖u‖Lp(R+,Rm)

The Lp-input/output gain is bounded by |D|+ ||W ||L1

For p = 1,∞ this bound is sharp (for suitable choice of the
norm on Rm and Rp).
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L2-gain

The L2(R+,Rm) to L2(R+,Rp) induced norm is

‖G‖H∞ = sup06=u∈L2(R+,Rm)

‖y‖L2(R+,Rp)

‖u‖L2(R+,Rm)

with G the TF. Of course,‖G‖H∞ ≤ |D|+ ||W ||L1, and usually
this inequality is strict.

– p. 114/119



L2-gain

The L2(R+,Rm) to L2(R+,Rp) induced norm is

‖G‖H∞ = sup06=u∈L2(R+,Rm)

‖y‖L2(R+,Rp)

‖u‖L2(R+,Rm)

with G the TF. Of course,‖G‖H∞ ≤ |D|+ ||W ||L1, and usually
this inequality is strict.

If D = 0, and m = p = 1, then theL2(R+,Rm) to L∞(R+,Rp)
(and theL∞(R+,Rm) to L2(R+,Rp)) induced norm is

‖G‖H2 = ‖W‖L2 = sup06=u∈L2(R+,R)

‖y‖L∞ (R+,Rp)

‖u‖L2(R+,Rm)

In the multivariable case, there are stochastic interpretations
of the H2-norm, and at hocdeterministic interpretations, but
no induced norm interpretation.
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Input/output and state stability

Theorem

The following are equivalent for
[

A B

C D

]

, assumed con-

trollable and observable:

◮ it is state stable
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Input/output and state stability

Theorem

The following are equivalent for
[

A B

C D

]

, assumed con-

trollable and observable:

◮ it is state stable

◮ it is Lp-input/output stable

◮ ||W ||L1 < ∞
◮ ‖G‖H∞ < ∞
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Input/output and state stability

Theorem

The following are equivalent for
[

A B

C D

]

, assumed con-

trollable and observable:

◮ it is state stable

◮ it is Lp-input/output stable

◮ ||W ||L1 < ∞
◮ ‖G‖H∞ < ∞

◮ (assumingD = 0) ‖G‖H2 = ‖W‖L2 < ∞
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Proof of the input/output stability theorem
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Recapitulation

◮ The H∞-norm of the transfer function is the L2

induced norm.

◮ Boundedness of theH∞-norm and of the

H2-norm (assumingD = 0) are equivalent to

state stability or input/output stability of
[

A B

C D

]

,

assumed state controllable and observable.
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Summary of Lecture 4
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The main points

◮ Finite dimensional linear systems can be analyzed in
depth, with specific tests for state stability, state
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