Summer Course

Linear System Theory Control & Matrix Computations

Monopoli

September 8–12, 2008

Lecture 2: Linear differential systems

Lecturer: Paolo Rapisarda

Part I: Representations

Outline

Kernel and image representations

The Smith form

Surjectivity/injectivity of polynomial differential operators

Inputs and outputs

Controllability

Observability

A linear differential system is a triple (ℝ, ℝ^w, ℬ) with ℬ linear

 $w_1, w_2 \in \mathcal{B} \text{ and } \alpha_1, \alpha_2 \in \mathbb{R} \Longrightarrow \alpha_1 w_1 + \alpha_2 w_2 \in \mathcal{B}$

A linear differential system is a triple (ℝ, ℝ^w, B) with B
linear

 $w_1, w_2 \in \mathcal{B} \text{ and } \alpha_1, \alpha_2 \in \mathbb{R} \Longrightarrow \alpha_1 w_1 + \alpha_2 w_2 \in \mathcal{B}$

time-invariant

 $w \in \mathcal{B} ext{ and } au \in \mathbb{R} \Longrightarrow \sigma^{ au} w \in \mathcal{B}$ where $(\sigma^{ au} w)(t) = w(t + au)$ for all $t \in \mathbb{R}$

A linear differential system is a triple (ℝ, ℝ^w, B) with B
linear

 $w_1, w_2 \in \mathcal{B} \text{ and } \alpha_1, \alpha_2 \in \mathbb{R} \Longrightarrow \alpha_1 w_1 + \alpha_2 w_2 \in \mathcal{B}$

time-invariant

$$w \in \mathcal{B} \text{ and } \tau \in \mathbb{R} \Longrightarrow \sigma^{ au} w \in \mathcal{B}$$

where $(\sigma^{\tau} w)(t) = w(t + \tau)$ for all $t \in \mathbb{R}$

• differential i.e. \mathcal{B} is the solution set of a system of differential equations.

A linear differential system is a triple (ℝ, ℝ^w, B) with B
linear

 $w_1, w_2 \in \mathcal{B} \text{ and } \alpha_1, \alpha_2 \in \mathbb{R} \Longrightarrow \alpha_1 w_1 + \alpha_2 w_2 \in \mathcal{B}$

time-invariant

$$w \in \mathcal{B} \text{ and } \tau \in \mathbb{R} \Longrightarrow \sigma^{\tau} w \in \mathcal{B}$$

where $(\sigma^{\tau} w)(t) = w(t + \tau)$ for all $t \in \mathbb{R}$

• differential i.e. \mathcal{B} is the solution set of a system of differential equations.

B consists of the solutions of a system of linear, constant-coefficient differential equations.

Differential systems can be effectively represented by one-variable polynomial matrices

Differential systems can be effectively represented by one-variable polynomial matrices

Linear differential behavior \mathcal{B} with:

- w variables w_i , $i = 1, \ldots, w$
- differentiated at most L times
- in g equations

Differential systems can be effectively represented by one-variable polynomial matrices

Linear differential behavior \mathcal{B} with:

- w variables w_i , $i = 1, \ldots, w$
- differentiated at most L times
- in g equations

represented as the solution space of

$$R\left(\frac{d}{dt}\right)w=0$$

where

$$\boldsymbol{R}(\xi) := \boldsymbol{R}_0 + \boldsymbol{R}_1 \xi + \ldots + \boldsymbol{R}_L \xi^L$$

Differential systems can be effectively represented by one-variable polynomial matrices

$$\mathcal{B} = \{ w \mid \mathcal{R}\left(\frac{d}{dt}\right) w = 0 \} = \ker \mathcal{R}\left(\frac{d}{dt}\right)$$

where

$$oldsymbol{R}\left(rac{oldsymbol{d}}{oldsymbol{d}t}
ight):\mathfrak{C}^{\infty}(\mathbb{R},\mathbb{R}^{w})
ightarrow\mathfrak{C}^{\infty}(\mathbb{R},\mathbb{R}^{g})$$

Differential systems can be effectively represented by one-variable polynomial matrices

$$\mathcal{B} = \{ w \mid R\left(\frac{d}{dt}\right) w = 0 \} = \ker R\left(\frac{d}{dt}\right)$$

where

$$oldsymbol{R}\left(rac{oldsymbol{d}}{oldsymbol{d} t}
ight):\mathfrak{C}^{\infty}(\mathbb{R},\mathbb{R}^{w})
ightarrow\mathfrak{C}^{\infty}(\mathbb{R},\mathbb{R}^{g})$$

Differential equations as differential operator equations

Outline

Kernel and image representations

The Smith form

Surjectivity/injectivity of polynomial differential operators

Inputs and outputs

Controllability

Observability

$U \in \mathbb{R}^{p \times p}[\xi]$ is nonsingular if det $(U) \in \mathbb{R}[\xi]$ is not the zero polynomial.

$U \in \mathbb{R}^{p \times p}[\xi]$ is nonsingular if det $(U) \in \mathbb{R}[\xi]$ is not the zero polynomial.

In general, if $U \in \mathbb{R}^{p \times p}[\xi]$ is nonsingular, then U^{-1} is a matrix of *rational functions*.

 $U \in \mathbb{R}^{p \times p}[\xi]$ is nonsingular if det $(U) \in \mathbb{R}[\xi]$ is not the zero polynomial.

In general, if $U \in \mathbb{R}^{p \times p}[\xi]$ is nonsingular, then U^{-1} is a matrix of *rational functions*.

 $U \in \mathbb{R}^{p \times p}[\xi]$ is unimodular if $U^{-1} \in \mathbb{R}^{p \times p}[\xi]$. Equivalent with det(U) = c, with $c \in \mathbb{R}$, $c \neq 0$.

Let $R \in \mathbb{R}^{p \times w}[\xi]$. There exist unimodular matrices $U \in \mathbb{R}^{p \times p}[\xi]$ and $V \in \mathbb{R}^{w \times w}[\xi]$ such that

$$\boldsymbol{\textit{URV}} = \begin{bmatrix} \mathsf{diag}(\delta_i)_{i=1,\dots,r} & \mathbf{0}_{r \times (w-r)} \\ \mathbf{0}_{(p-r) \times r} & \mathbf{0}_{(p-r) \times (w-r)} \end{bmatrix}$$

with δ_i monic, i = 1, ..., r, and such that δ_i divides δ_{i+1} , i = 1, ..., r.

Let $R \in \mathbb{R}^{p \times w}[\xi]$. There exist unimodular matrices $U \in \mathbb{R}^{p \times p}[\xi]$ and $V \in \mathbb{R}^{w \times w}[\xi]$ such that

$$URV = \underbrace{\begin{bmatrix} diag(\delta_i)_{i=1,...,r} & \mathbf{0}_{r \times (w-r)} \\ \mathbf{0}_{(p-r) \times r} & \mathbf{0}_{(p-r) \times (w-r)} \end{bmatrix}}_{=:\Delta}$$

with δ_i monic, i = 1, ..., r, and such that δ_i divides δ_{i+1} , i = 1, ..., r.

 Δ is the Smith form of *R*, and δ_i the *i*-th invariant polynomial of *R*. r equals the rank of $R(\xi)$.

Let $R \in \mathbb{R}^{p \times w}[\xi]$. There exist unimodular matrices $U \in \mathbb{R}^{p \times p}[\xi]$ and $V \in \mathbb{R}^{w \times w}[\xi]$ such that

$$URV = \underbrace{\begin{bmatrix} diag(\delta_i)_{i=1,\dots,r} & \mathbf{0}_{r \times (w-r)} \\ \mathbf{0}_{(p-r) \times r} & \mathbf{0}_{(p-r) \times (w-r)} \end{bmatrix}}_{=:\Delta}$$

with δ_i monic, i = 1, ..., r, and such that δ_i divides δ_{i+1} , i = 1, ..., r.

 Δ is the Smith form of *R*, and δ_i the *i*-th invariant polynomial of *R*. r equals the rank of $R(\xi)$.

R is unimodular iff $\delta_i = 1, i = 1, \dots, r$.

Let $R \in \mathbb{R}^{p \times w}[\xi]$. There exist unimodular matrices $U \in \mathbb{R}^{p \times p}[\xi]$ and $V \in \mathbb{R}^{w \times w}[\xi]$ such that

$$URV = \underbrace{\begin{bmatrix} diag(\delta_i)_{i=1,\dots,r} & \mathbf{0}_{r \times (w-r)} \\ \mathbf{0}_{(p-r) \times r} & \mathbf{0}_{(p-r) \times (w-r)} \end{bmatrix}}_{=:\Delta}$$

with δ_i monic, i = 1, ..., r, and such that δ_i divides δ_{i+1} , i = 1, ..., r.

 Δ is the Smith form of *R*, and δ_i the *i*-th invariant polynomial of *R*. r equals the rank of $R(\xi)$.

R is unimodular iff $\delta_i = 1, i = 1, \dots, r$.

det(R) is the product of the diagonal elements of Δ .

Outline

Kernel and image representations

The Smith form

Surjectivity/injectivity of polynomial differential operators

Inputs and outputs

Controllability

Observability

¿When is $P\left(\frac{d}{dt}\right): \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{w}) \to \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{g})$ surjective?

¿When is $P\left(\frac{d}{dt}\right): \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{w}) \to \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{g})$ surjective?

; Given arbitrary $g \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{g})$, is there $w \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{w})$ s.t. $P\left(\frac{d}{dt}\right) w = g$?

¿When is $P\left(\frac{d}{dt}\right): \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{w}) \to \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{g})$ surjective?

; Given arbitrary
$$g \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{g})$$
,
is there $w \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{w})$ s.t. $P\left(\frac{d}{dt}\right) w = g$?

Scalar case: given arbitrary $g \in \mathfrak{C}^{\infty}(\mathbb{R},\mathbb{R})$, there exists *w* such that

$$p\left(rac{d}{dt}
ight)w=g$$

if and only if $p \neq 0$. Just integrate LHS!

¿When is $P\left(\frac{d}{dt}\right): \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{w}) \to \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{g})$ surjective?

; Given arbitrary $g \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{g})$, is there $w \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{w})$ s.t. $P\left(\frac{d}{dt}\right) w = g$?

If $P \in \mathbb{R}^{w \times w}[\xi]$ is *unimodular*, i.e. invertible in $\mathbb{R}^{w \times w}[\xi]$, then $w := P(\frac{d}{dt})^{-1} g!$

¿When is $P\left(\frac{d}{dt}\right): \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{w}) \to \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{g})$ surjective?

; Given arbitrary $g \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{g})$, is there $w \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{w})$ s.t. $P\left(\frac{d}{dt}\right) w = g$?

General case: use Smith form of $P = U \Delta V$

$$P\left(rac{d}{dt}
ight)w = U\left(rac{d}{dt}
ight)\Delta\left(rac{d}{dt}
ight)V\left(rac{d}{dt}
ight)w = g$$

¿When is $P\left(\frac{d}{dt}\right): \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{w}) \to \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{g})$ surjective?

; Given arbitrary $g \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{g})$, is there $w \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{w})$ s.t. $P\left(\frac{d}{dt}\right) w = g$?

General case: use Smith form of $P = U\Delta V$:

$$P\left(\frac{d}{dt}\right) w = U\left(\frac{d}{dt}\right) \Delta\left(\frac{d}{dt}\right) \underbrace{V\left(\frac{d}{dt}\right) w}_{=:w'}$$
$$= U\left(\frac{d}{dt}\right) \Delta\left(\frac{d}{dt}\right) w' = g$$

¿When is $P\left(\frac{d}{dt}\right): \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{w}) \to \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{g})$ surjective?

; Given arbitrary
$$g \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{g})$$
,
is there $w \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{w})$ s.t. $P\left(\frac{d}{dt}\right) w = g$?

Given g, solution w exists iff solution w' to

$$\Delta\left(rac{d}{dt}
ight)w'=g'$$

exists, with $g' := U \left(\frac{d}{dt} \right)^{-1} g$

¿When is $P\left(\frac{d}{dt}\right): \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{w}) \to \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{g})$ surjective?

; Given arbitrary
$$g \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{g})$$
,
is there $w \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{w})$ s.t. $P\left(\frac{d}{dt}\right) w = g$?

Given g, solution w exists iff solution w' to

$$\Delta\left(\frac{d}{dt}\right)w'=g'$$

exists, with $g' := U\left(\frac{d}{dt}\right)^{-1}g$

g' arbitrary, because $oldsymbol{U}\left(rac{d}{dt}
ight)$ bijective and $oldsymbol{g}$ arbitrary

¿When is $P\left(\frac{d}{dt}\right): \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{w}) \to \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{g})$ surjective?

; Given arbitrary
$$g \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{g})$$
,
is there $w \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{w})$ s.t. $P\left(\frac{d}{dt}\right) w = g$?

Given g, solution w exists iff solution w' to

$$\Delta\left(rac{d}{dt}
ight)w'=g'$$

exists, with $g' := U \left(\frac{d}{dt} \right)^{-1} g$

;w scalar problems $\delta_i \left(\frac{d}{dt}\right) w'_i = g'_i!$

¿When is $P\left(\frac{d}{dt}\right): \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{w}) \to \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{g})$ surjective?

; Given arbitrary
$$g \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{g})$$
,
is there $w \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{w})$ s.t. $P\left(\frac{d}{dt}\right) w = g$?

Given g, solution w exists iff solution w' to

$$\Delta\left(\frac{d}{dt}\right)w'=g'$$

exists, with $g' := U \left(\frac{d}{dt} \right)^{-1} g$

iw scalar problems $\delta_i \left(\frac{d}{dt}\right) w'_i = g'_i!$ Always solvable as long as $\delta_i \neq 0...$

¿When is $P\left(\frac{d}{dt}\right): \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{w}) \to \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{g})$ surjective?

; Given arbitrary $g \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{g})$, is there $w \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{w})$ s.t. $P\left(\frac{d}{dt}\right) w = g$?

We proved

 $P\left(\frac{d}{dt}\right)w = g$ solvable for all g iff P has full row rank as a polynomial matrix

Injectivity

; w solves
$$P\left(rac{d}{dt}
ight)$$
 w = g. When is it the only one?

Injectivity

¿w solves $P(\frac{d}{dt}) w = g$. When is it the only one?

Scalar case: assuming w satisfies

$$p\left(rac{d}{dt}
ight)w=g,$$

such *w* is unique iff p = 1. Sufficiency is evident. Necessity holds since otherwise $\ker \left(p\left(\frac{d}{dt}\right)\right) \neq \{0\}$.
¿w solves $P\left(\frac{d}{dt}\right) w = g$. When is it the only one? General case: Use Smith form of $P = U\Delta V$ to write

$$\Delta\left(rac{d}{dt}
ight)w'=g'$$

with $w' := V\left(\frac{d}{dt}\right) w$, $g' := U\left(\frac{d}{dt}\right)^{-1} g$

¿w solves $P\left(\frac{d}{dt}\right) w = g$. When is it the only one?

General case: Use Smith form of $P = U\Delta V$ to write

$$\Delta\left(rac{d}{dt}
ight)w'=g'$$

with $w' := V\left(\frac{d}{dt}\right) w, g' := U\left(\frac{d}{dt}\right)^{-1} g$

Scalar equation $\delta_i \left(\frac{d}{dt}\right) w'_i = g'_i$ has only one solution iff $\delta_i = 1$

¿w solves $P\left(\frac{d}{dt}\right) w = g$. When is it the only one?

We proved

w is the only solution to $P\left(\frac{d}{dt}\right)w = g$ iff all nonzero invariant polynomials of *P* are unity

 $\mathcal{L}w$ solves $P\left(\frac{d}{dt}\right)w = g$. When is it the only one?

We proved

w is the only solution to $P\left(\frac{d}{dt}\right)w = g$ iff all nonzero invariant polynomials of P are unity

Equivalently: $P(\lambda)$ has full column rank for all $\lambda \in \mathbb{C}$

¿w solves $P(\frac{d}{dt}) w = g$. When is it the only one?

We proved

w is the only solution to $P\left(\frac{d}{dt}\right)w = g$ iff all nonzero invariant polynomials of *P* are unity

If all nonzero invariant polynomials of P are unity, then P admits a left inverse on $\mathfrak{C}^{\infty}(\mathbb{R})$:

$$P = U \begin{bmatrix} I_m \\ 0 \end{bmatrix} V \Longrightarrow V^{-1} \begin{bmatrix} I_m & 0 \end{bmatrix} U^{-1}$$
 is left inverse

Polynomial differential operator equations;

Summary

- Polynomial differential operator equations;
- Surjectivity: *P* full row rank over ℝ^{•ו}[ξ], as a polynomial matrix

Summary

- Polynomial differential operator equations;
- Surjectivity: *P* full row rank over ℝ^{•ו}[ξ], as a polynomial matrix
- Injectivity: P(λ) full column rank for all λ ∈ C, as a matrix over ℝ^{•ו}

Outline

Kernel and image representations

The Smith form

Surjectivity/injectivity of polynomial differential operators

Inputs and outputs

Controllability

Observability

Given $\mathcal{B} \in \mathfrak{L}^w$ and $I := \{i_1, \ldots, i_k\} \subseteq \{1, \ldots, w\}$, let

$$\begin{aligned} \Pi_{l}\mathcal{B} &:= \quad \{(\textbf{\textit{w}}_{i_{1}},\ldots,\textbf{\textit{w}}_{i_{k}}) \in \mathfrak{C}^{\infty}(\mathbb{R},\mathbb{R}^{k}) \mid \exists \textbf{\textit{w}} \in \mathcal{B} \\ \text{ s.t. } \textbf{\textit{w}} &= (\textbf{\textit{w}}_{1},\ldots,\textbf{\textit{w}}_{i_{1}},\ldots,\textbf{\textit{w}}_{i_{k}},\ldots,\textbf{\textit{w}}_{w}) \in \mathcal{B} \} \end{aligned}$$

projection of \mathcal{B} onto the variables $w_{i_i}, j = 1, \ldots, k$

Given $\mathcal{B} \in \mathfrak{L}^w$ and $I := \{i_1, \ldots, i_k\} \subseteq \{1, \ldots, w\}$, let

$$\begin{aligned} \Pi_{l}\mathcal{B} &:= \quad \{(\textbf{\textit{w}}_{i_{1}},\ldots,\textbf{\textit{w}}_{i_{k}}) \in \mathfrak{C}^{\infty}(\mathbb{R},\mathbb{R}^{k}) \mid \exists \textbf{\textit{w}} \in \mathcal{B} \\ \text{ s.t. } \textbf{\textit{w}} &= (\textbf{\textit{w}}_{1},\ldots,\textbf{\textit{w}}_{i_{1}},\ldots,\textbf{\textit{w}}_{i_{k}},\ldots,\textbf{\textit{w}}_{w}) \in \mathcal{B} \} \end{aligned}$$

projection of \mathcal{B} onto the variables $w_{i_i}, j = 1, \ldots, k$

Variables
$$w_{i_j}$$
, $j = 1, ..., k$ are free if
 $\Pi_l \mathcal{B} = \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^k)$

Example:

$$p_1\left(\frac{d}{dt}\right)w_1+p_2\left(\frac{d}{dt}\right)w_2+p_3\left(\frac{d}{dt}\right)w_3=0$$

Assume $p_i \neq 0, i = 1, ..., 3$.

Let $I = \{1\}$; since $[p_2(\xi) \ p_3(\xi)]$ is full row rank, for every $w_1 \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R})$ there exist w_2, w_3 satisfying equation.

w₁ is free.

Example:

$$p_1\left(\frac{d}{dt}\right)w_1+p_2\left(\frac{d}{dt}\right)w_2+p_3\left(\frac{d}{dt}\right)w_3=0$$

Assume $p_i \neq 0, i = 1, ..., 3$.

Let $I = \{1\}$; since $[p_2(\xi) \ p_3(\xi)]$ is full row rank, for every $w_1 \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R})$ there exist w_2, w_3 satisfying equation.

w₁ is free.

 w_1 , w_2 (and w_2 , w_3 , and w_1 , w_3) are also free.

Let $I = \{i_1, \ldots, i_k\} \subseteq \{1, \ldots, w\}$. The variables w_{i_1}, \ldots, w_{i_k} form a maximally free set if

- they are free; and
- for every $I' = \{i'_1, \dots, i'_k\} \underset{\neq}{\subseteq} \{1, \dots, w\}$ such that $I \underset{\neq}{\subseteq} I'$ it holds

$$\Pi_{l'}\mathcal{B} \underset{
eq}{\subset} \mathfrak{C}^{\infty}(\mathbb{R},\mathbb{R}^{|l'|})$$

Let $I = \{i_1, \ldots, i_k\} \subseteq \{1, \ldots, w\}$. The variables w_{i_1}, \ldots, w_{i_k} form a maximally free set if

- they are free; and
- for every $I' = \{i'_1, \dots, i'_k\} \underset{\neq}{\subseteq} \{1, \dots, w\}$ such that $I \underset{\neq}{\subseteq} I'$ it holds

$$\mathsf{\Pi}_{l'}\mathcal{B} \underset{\neq}{\subset} \mathfrak{C}^\infty(\mathbb{R},\mathbb{R}^{|l'|})$$

Maximally free: it's free, and any added variable is not

Example:

$$p_1\left(\frac{d}{dt}\right)w_1+p_2\left(\frac{d}{dt}\right)w_2+p_3\left(\frac{d}{dt}\right)w_3=0$$

Assume $p_i \neq 0, i = 1, ..., 3$.

Example:

$$p_1\left(\frac{d}{dt}\right)w_1+p_2\left(\frac{d}{dt}\right)w_2+p_3\left(\frac{d}{dt}\right)w_3=0$$

Assume $p_i \neq 0, i = 1, ..., 3$.

 w_1 (and w_2 , and w_3) is free, but not maximally so.

Example:

$$p_1\left(\frac{d}{dt}\right)w_1+p_2\left(\frac{d}{dt}\right)w_2+p_3\left(\frac{d}{dt}\right)w_3=0$$

Assume $p_i \neq 0, i = 1, ..., 3$.

 w_1 (and w_2 , and w_3) is free, but not maximally so.

 $\{w_1, w_2\}$ (and $\{w_2, w_3\}$, and $\{w_1, w_3\}$) are maximally free.

Example:

$$p_1\left(\frac{d}{dt}\right)w_1+p_2\left(\frac{d}{dt}\right)w_2+p_3\left(\frac{d}{dt}\right)w_3=0$$

Assume $p_i \neq 0, i = 1, ..., 3$.

 w_1 (and w_2 , and w_3) is free, but not maximally so.

 $\{w_1, w_2\}$ (and $\{w_2, w_3\}$, and $\{w_1, w_3\}$) are maximally free.

Note nonunicity of maximally free sets!

Inputs and outputs

Let $\mathcal{B} \in \mathfrak{L}^w$. Assume (if necessary, after permutation of the variables) *w* partitioned as

$$w = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$$

with w_1 a set of maximally free variables.

Then w_1 are inputs and w_2 outputs.

Inputs and outputs

Let $\mathcal{B} \in \mathfrak{L}^w$. Assume (if necessary, after permutation of the variables) *w* partitioned as

$$\mathbf{w} = \begin{bmatrix} \mathbf{w}_1 \\ \mathbf{w}_2 \end{bmatrix}$$

with w_1 a set of maximally free variables.

Then w_1 are inputs and w_2 outputs.

Example: for $p_1\left(\frac{d}{dt}\right) w_1 + p_2\left(\frac{d}{dt}\right) w_2 + p_3\left(\frac{d}{dt}\right) w_3 = 0$ and assuming $p_i \neq 0$ for i = 1, ..., 3, we can choose

- *w*₁, *w*₂ or
- *W*₂, *W*₃ or
- W₁, W₃

as inputs.

Remarks

Nonunicity an issue? What about (linear) resistors

$$\mathcal{B} = \{(V, I) \mid V = R \cdot I\}?$$

Is it voltage- or current-controlled?

Remarks

Nonunicity an issue? What about (linear) resistors

$$\mathcal{B} = \{(V, I) \mid V = R \cdot I\}?$$

Is it voltage- or current-controlled?

'Causality' an issue? What about

$$w_1 = \frac{d}{dt}w_2?$$

Don't w_1 and w_2 'happen' at the same time?

Remarks

Nonunicity an issue? What about (linear) resistors

$$\mathcal{B} = \{(V, I) \mid V = R \cdot I\}?$$

Is it voltage- or current-controlled?

· 'Causality' an issue? What about

$$w_1 = \frac{d}{dt}w_2?$$

Don't w_1 and w_2 'happen' at the same time?

'Smoothness' may be relevant...

$$\mathcal{B} = \{(u, y) \mid P\left(\frac{d}{dt}\right)y = Q\left(\frac{d}{dt}\right)u\}$$

with P square and nonsingular. Then y is output and u is input.

$$\mathcal{B} = \{(u, y) \mid P\left(\frac{d}{dt}\right)y = Q\left(\frac{d}{dt}\right)u\}$$

with P square and nonsingular. Then y is output and u is input.

Surjectivity of $P\left(\frac{d}{dt}\right) \Longrightarrow u$ is free.

$$\mathcal{B} = \{(u, y) \mid P\left(\frac{d}{dt}\right)y = Q\left(\frac{d}{dt}\right)u\}$$

with P square and nonsingular. Then y is output and u is input.

Surjectivity of
$$P\left(\frac{d}{dt}\right) \Longrightarrow u$$
 is free.

u maximally free: add one component of *y* to those of *u*, resulting set satisfies differential equation \implies it is not free.

Let $\mathcal{B} \in \mathfrak{L}^{w}$. There exists (possibly after permuting components) a partition of w = (u, y) and $P \in \mathbb{R}^{y \times y}[\xi]$ nonsingular, $Q \in \mathbb{R}^{y \times u}[\xi]$ such that

$$\mathcal{B} = \{(u, y) \mid P\left(\frac{d}{dt}\right) y = Q\left(\frac{d}{dt}\right) u\}$$

The partition can be chosen so that $P^{-1}Q$ is proper.

Let $\mathcal{B} \in \mathfrak{L}^{w}$. There exists (possibly after permuting components) a partition of w = (u, y) and $P \in \mathbb{R}^{y \times y}[\xi]$ nonsingular, $Q \in \mathbb{R}^{y \times u}[\xi]$ such that

$$\mathcal{B} = \{(u, y) \mid P\left(\frac{d}{dt}\right) y = Q\left(\frac{d}{dt}\right) u\}$$

The partition can be chosen so that $P^{-1}Q$ is proper.

Proof: Assume w.l.o.g. that $\mathcal{B} = \ker R\left(\frac{d}{dt}\right)$ with R of full row rank p.

Since *R* of full row rank, there exists a nonsingular submatrix *P*.

For $P^{-1}Q$ proper, select *P* to be a maximal determinantal degree (nonsingular) submatrix of *R*.

¿What is an 'input', and what an 'output' in this case?

¿What is an 'input', and what an 'output' in this case?

Any selection of a 2 \times 2 nonsingular submatrix of *R* yields output variables- the rest is inputs

¿What is an 'input', and what an 'output' in this case?

Any selection of a 2 \times 2 nonsingular submatrix of *R* yields output variables- the rest is inputs

$$R(\xi) = \begin{bmatrix} m_1\xi^2 + c_1\xi + k_1 & -c_1\xi - k_1 & -1 \\ -c_1\xi - k_1 & m_2\xi^2 + (c_1 + c_2)\xi + k_1 + k_2 & 0 \end{bmatrix}$$

¿What is an 'input', and what an 'output' in this case?

Any selection of a 2 \times 2 nonsingular submatrix of *R* yields output variables- the rest is inputs

$$R(\xi) = \begin{bmatrix} m_1\xi^2 + c_1\xi + k_1 & -c_1\xi - k_1 & -1 \\ -c_1\xi - k_1 & m_2\xi^2 + (c_1 + c_2)\xi + k_1 + k_2 & 0 \end{bmatrix}$$

 w_1 and w_2 outputs, F input; $P^{-1}Q$ strictly proper

¿What is an 'input', and what an 'output' in this case?

Any selection of a 2 \times 2 nonsingular submatrix of *R* yields output variables- the rest is inputs

$$R(\xi) = \begin{bmatrix} m_1\xi^2 + c_1\xi + k_1 & -c_1\xi - k_1 & -1 \\ -c_1\xi - k_1 & m_2\xi^2 + (c_1 + c_2)\xi + k_1 + k_2 & 0 \end{bmatrix}$$

 w_1 and F outputs, w_2 input; $P^{-1}Q$ not proper

¿What is an 'input', and what an 'output' in this case?

Any selection of a 2 \times 2 nonsingular submatrix of *R* yields output variables- the rest is inputs

$$R(\xi) = \begin{bmatrix} m_1\xi^2 + c_1\xi + k_1 & -c_1\xi - k_1 & -1 \\ -c_1\xi - k_1 & m_2\xi^2 + (c_1 + c_2)\xi + k_1 + k_2 & 0 \end{bmatrix}$$

 w_2 and F outputs, w_1 input; $P^{-1}Q$ proper
Notion of transfer function, dependent on input/output partition;

- Notion of transfer function, dependent on input/output partition;
- Number of outputs fixed, output cardinality p(B);

- Notion of transfer function, dependent on input/output partition;
- Number of outputs fixed, output cardinality p(B);
- p(B) equals rank(R) for every R such that ker $R\left(\frac{d}{dt}\right) = B$;

- Notion of transfer function, dependent on input/output partition;
- Number of outputs fixed, output cardinality p(B);
- p(B) equals rank(R) for every R such that ker $R\left(\frac{d}{dt}\right) = B$;
- Number of inputs fixed, input cardinality m(B);

- Notion of transfer function, dependent on input/output partition;
- Number of outputs fixed, output cardinality p(B);
- p(B) equals rank(R) for every R such that ker $R\left(\frac{d}{dt}\right) = B$;
- Number of inputs fixed, input cardinality m(B);
- m(\mathcal{B}) equals w rank(R) for every R such that ker $R\left(\frac{d}{dt}\right) = \mathcal{B}$.

No inputs: autonomous systems

$\boldsymbol{\mathcal{B}}$ is called autonomous if

 $w_1, w_2 \in \mathcal{B}$ and $w_1 \mid_{(-\infty,0]} = w_2 \mid_{(-\infty,0]}$ $\implies w_1 = w_2$

No inputs: autonomous systems

$\boldsymbol{\mathcal{B}}$ is called autonomous if

 $w_1, w_2 \in \mathcal{B}$ and $w_1 \mid_{(-\infty,0]} = w_2 \mid_{(-\infty,0]}$ $\implies w_1 = w_2$

Equivalent with

- m(B) = 0 (no inputs);
- there exists $R \in \mathbb{R}^{w \times w}[\xi]$ nonsingular such that $\mathcal{B} = \ker R\left(\frac{d}{dt}\right)$

Classical mechanics: motion depends only on 'initial conditions'

$$R(\xi) = \begin{bmatrix} m_1\xi^2 + c_1\xi + k_1 & -c_1\xi - k_1 \\ -c_1\xi - k_1 & m_2\xi^2 + (c_1 + c_2)\xi + k_1 + k_2 \end{bmatrix}$$

R nonsingular ~> autonomous system

Scalar case:

$$\boldsymbol{p}\left(\frac{d}{dt}\right)\boldsymbol{w}=\boldsymbol{0} \Longleftrightarrow \boldsymbol{w}(t)=\sum_{i=1}^{n}\sum_{j=0}^{n_{i}}\alpha_{ij}t^{j}\boldsymbol{e}^{\lambda_{i}t}$$

- *n* is number of distinct roots of $p(\xi)$;
- λ_i is *i*-th root of *p*(ξ);
- *n_i* multiplicity of λ_i;
- $\alpha_{ij} \in \mathbb{C}$.

Scalar case:

$$\boldsymbol{p}\left(\frac{d}{dt}\right)\boldsymbol{w}=\boldsymbol{0} \Longleftrightarrow \boldsymbol{w}(t)=\sum_{i=1}^{n}\sum_{j=0}^{n_{i}}\alpha_{ij}t^{j}\boldsymbol{e}^{\lambda_{i}t}$$

- *n* is number of distinct roots of $p(\xi)$;
- λ_i is *i*-th root of *p*(ξ);
- *n_i* multiplicity of λ_i;
- $\alpha_{ij} \in \mathbb{C}$.

Scalar case:

$$p\left(\frac{d}{dt}\right)w = 0 \iff w(t) = \sum_{i=1}^{n} \sum_{j=0}^{n_i} \alpha_{ij} t^j e^{\lambda_i t}$$

- *n* is number of distinct roots of $p(\xi)$;
- λ_i is *i*-th root of $p(\xi)$;
- *n_i* multiplicity of λ_i;
- $\alpha_{ij} \in \mathbb{C}$.

Scalar case:

$$\boldsymbol{p}\left(\frac{d}{dt}\right)\boldsymbol{w}=\boldsymbol{0} \Longleftrightarrow \boldsymbol{w}(t)=\sum_{i=1}^{n}\sum_{j=0}^{n_{i}}\alpha_{ij}t^{j}\boldsymbol{e}^{\lambda_{i}t}$$

- *n* is number of distinct roots of $p(\xi)$;
- λ_i is *i*-th root of *p*(ξ);
- *n_i* multiplicity of λ_i;
- $\alpha_{ij} \in \mathbb{C}$.

Scalar case:

$$p\left(\frac{d}{dt}\right)w=0 \iff w(t)=\sum_{i=1}^{n}\sum_{j=0}^{n_{i}}\alpha_{ij}t^{j}e^{\lambda_{i}t}$$

- *n* is number of distinct roots of $p(\xi)$;
- λ_i is *i*-th root of *p*(ξ);
- *n_i* multiplicity of λ_i;
- $\alpha_{ij} \in \mathbb{C}$.

Scalar case:

$$p\left(\frac{d}{dt}\right)w = 0 \iff w(t) = \sum_{i=1}^{n} \sum_{j=0}^{n_i} \alpha_{ij} t^j e^{\lambda_i t}$$

where

- *n* is number of distinct roots of $p(\xi)$;
- λ_i is *i*-th root of *p*(ξ);
- *n_i* multiplicity of λ_i;
- $\alpha_{ij} \in \mathbb{C}$.

 λ_i are called characteristic frequencies of *p*.

For w > 1, resort to Smith form $R = U\Delta V$:

$$R\left(\frac{d}{dt}\right)w = 0 \Longleftrightarrow \Delta\left(\frac{d}{dt}\right)\underbrace{V\left(\frac{d}{dt}\right)w}_{=:w'} = 0$$

For w > 1, resort to Smith form $R = U\Delta V$:

$$R\left(\frac{d}{dt}\right)w = 0 \Longleftrightarrow \Delta\left(\frac{d}{dt}\right)\underbrace{V\left(\frac{d}{dt}\right)w}_{=:w'} = 0$$

$$w' = \operatorname{col}(w'_i)_{i=1,...,w} \in \ker \Delta\left(rac{d}{dt}
ight) ext{ iff } w'_i \in \ker \delta_i\left(rac{d}{dt}
ight)$$

with δ_i the *i*-th invariant polynomial. Scalar case!

For w > 1, resort to Smith form $R = U\Delta V$:

$$R\left(\frac{d}{dt}\right)w = 0 \Longleftrightarrow \Delta\left(\frac{d}{dt}\right)\underbrace{V\left(\frac{d}{dt}\right)w}_{=:w'} = 0$$

$$w' = \operatorname{col}(w'_i)_{i=1,...,w} \in \ker \Delta\left(rac{d}{dt}
ight) ext{ iff } w'_i \in \ker \delta_i\left(rac{d}{dt}
ight)$$

with δ_i the *i*-th invariant polynomial. Scalar case! Assume for simplicity all roots of det(*R*) are simple:

$$w = V\left(\frac{d}{dt}\right)^{-1} w' \iff w(t) = \sum_{i=1}^{n} \alpha_i e^{\lambda_i t}$$

with $\alpha_i \in \mathbb{C}^w$ such that $R(\lambda_i)\alpha_i = 0, i = 1, ..., n$.

 Linear combinations of polynomial exponential vector trajectories

$$\sum_{i=1}^n \sum_{j=0}^{n_i} \alpha_{ij} t^j e^{\lambda_i t}$$

with $\alpha_{ij} \in \mathbb{C}^{w}$.

Linear combinations of polynomial exponential vector trajectories

$$\sum_{i=1}^n \sum_{j=0}^{n_i} \alpha_{ij} t^j e^{\lambda_i t}$$

with $\alpha_{ij} \in \mathbb{C}^{w}$.

• Characteristic frequencies λ_i are roots of det(*R*).

 Linear combinations of polynomial exponential vector trajectories

$$\sum_{i=1}^n \sum_{j=0}^{n_i} \alpha_{ij} t^j e^{\lambda_i t}$$

with $\alpha_{ij} \in \mathbb{C}^{w}$.

- Characteristic frequencies λ_i are roots of det(*R*).
- \mathcal{B} is finite-dimensional subspace of $\mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{w})$.

Linear combinations of polynomial exponential vector trajectories

$$\sum_{i=1}^n \sum_{j=0}^{n_i} \alpha_{ij} t^j e^{\lambda_i t}$$

with $\alpha_{ij} \in \mathbb{C}^{w}$.

- Characteristic frequencies λ_i are roots of det(*R*).
- \mathcal{B} is finite-dimensional subspace of $\mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{w})$.
- If real part of λ_i is negative, i = 1, ..., n, then \mathcal{B} is asymptotically stable: $\lim_{t\to\infty} w(t) = 0 \ \forall \ w \in \mathcal{B}$.

Outline

Kernel and image representations

The Smith form

Surjectivity/injectivity of polynomial differential operators

Inputs and outputs

Controllability

Observability

\mathcal{B} controllable if for all $w_1, w_2 \in \mathcal{B}$ there exists $w \in \mathcal{B}$ and $T \geq 0$ such that

$$w(t) = \begin{cases} w_1(t) & \text{for } t < 0\\ w_2(t) & \text{for } t \ge T \end{cases}$$

 \mathcal{B} controllable if for all $w_1, w_2 \in \mathcal{B}$ there exists $w \in \mathcal{B}$ and $T \geq 0$ such that

$$w(t) = \begin{cases} w_1(t) & \text{for } t < 0\\ w_2(t) & \text{for } t \ge T \end{cases}$$

 \mathcal{B} controllable if for all $w_1, w_2 \in \mathcal{B}$ there exists $w \in \mathcal{B}$ and $T \geq 0$ such that

$$w(t) = \begin{cases} w_1(t) & \text{for } t < 0\\ w_2(t) & \text{for } t \ge T \end{cases}$$

 \mathcal{B} controllable if for all $w_1, w_2 \in \mathcal{B}$ there exists $w \in \mathcal{B}$ and $T \geq 0$ such that

$$w(t) = \begin{cases} w_1(t) & \text{for } t < 0\\ w_2(t) & \text{for } t \ge T \end{cases}$$

Past of any trajectory can be "patched up" with future of any trajectory

$$r\left(rac{d}{dt}
ight)w=0$$

where $0 \neq r \in \mathbb{R}[\xi]$ has degree *n*.

System autonomous: every solution uniquely determined by 'initial conditions' $\frac{d^i w}{dt^i}(t)$, i = 0, ..., n - 1, so no patching possible among different trajectories.

Past of trajectory uniquely determines its future.

Classical state-space system

$$\frac{d}{dt}x = Ax + Bu$$
$$y = Cx + Du$$

Classical state-space system

$$\frac{d}{dt}x = Ax + Bu$$
$$y = Cx + Du$$

$$\mathcal{B}_{s} := \{(u, y, x) \mid \text{ s.t. } \frac{d}{dt}x = Ax + Bu, y = Cx + Du\}$$
$$\mathcal{B} := \{(u, y) \mid \exists x \text{ s.t. } \frac{d}{dt}x = Ax + Bu, y = Cx + Du\}$$
$$\mathcal{B}_{x} := \{x \mid \exists (u, y) \text{ s.t. } \frac{d}{dt}x = Ax + Bu, y = Cx + Du\}$$

Classical state-space system

$$\frac{d}{dt}x = Ax + Bu$$
$$y = Cx + Du$$

$$\mathcal{B}_{s} := \{(u, y, x) \mid \text{ s.t. } \frac{d}{dt}x = Ax + Bu, y = Cx + Du\}$$
$$\mathcal{B} := \{(u, y) \mid \exists x \text{ s.t. } \frac{d}{dt}x = Ax + Bu, y = Cx + Du\}$$
$$\mathcal{B}_{x} := \{x \mid \exists (u, y) \text{ s.t. } \frac{d}{dt}x = Ax + Bu, y = Cx + Du\}$$

 \mathcal{B}_s controllable iff \mathcal{B}_x controllable $\Longrightarrow \mathcal{B}$ controllable.

Classical state-space system

$$\frac{d}{dt}x = Ax + Bu$$
$$y = Cx + Du$$

$$\mathcal{B}_{s} := \{(u, y, x) \mid \text{ s.t. } \frac{d}{dt}x = Ax + Bu, y = Cx + Du\}$$
$$\mathcal{B} := \{(u, y) \mid \exists x \text{ s.t. } \frac{d}{dt}x = Ax + Bu, y = Cx + Du\}$$
$$\mathcal{B}_{x} := \{x \mid \exists (u, y) \text{ s.t. } \frac{d}{dt}x = Ax + Bu, y = Cx + Du\}$$

 \mathcal{B}_s controllable iff \mathcal{B}_x controllable $\Longrightarrow \mathcal{B}$ controllable. If *x* minimal, then \mathcal{B} controllable $\Longrightarrow \mathcal{B}_s$ controllable.

Classical state-space system

$$\frac{d}{dt}x = Ax + Bu$$
$$y = Cx + Du$$

"State point-controllability": for all $x_1, x_2 \in \mathbb{R}^n \exists x \in \mathcal{B}_x$ and $T \ge 0$ s.t. $x(0) = x_0$ and $x(T) = x_1$.

Classical state-space system

$$\frac{d}{dt}x = Ax + Bu$$
$$y = Cx + Du$$

"State point-controllability": for all $x_1, x_2 \in \mathbb{R}^n \exists x \in \mathcal{B}_x$ and $T \ge 0$ s.t. $x(0) = x_0$ and $x(T) = x_1$.

If x minimal, then \mathcal{B} controllable iff \mathcal{B}_s controllable $\iff \mathcal{B}_s$ state point-controllable.

Algebraic characterization of controllability

 $\mathcal{B} = \ker R\left(\frac{d}{dt}\right)$ is controllable iff rank($R(\lambda)$) is constant for all $\lambda \in \mathbb{C}$
Algebraic characterization of controllability $\mathcal{B} = \ker R\left(\frac{d}{dt}\right)$ is controllable iff $\operatorname{rank}(R(\lambda))$ is constant for all $\lambda \in \mathbb{C}$

Proof: Compute Smith form

$$oldsymbol{R} = oldsymbol{U} egin{bmatrix} \Delta & 0 \ 0 & 0 \end{bmatrix} oldsymbol{V} \in \mathbb{R}^{\mathtt{p} imes \mathtt{w}}[\xi]$$

 $U\left(\frac{d}{dt}\right)$, $V\left(\frac{d}{dt}\right)$ bijective \Longrightarrow ker $R\left(\frac{d}{dt}\right)$ controllable iff ker $\Delta\left(\frac{d}{dt}\right)$ is.

Algebraic characterization of controllability $\mathcal{B} = \ker R\left(\frac{d}{dt}\right)$ is controllable iff $\operatorname{rank}(R(\lambda))$ is constant for all $\lambda \in \mathbb{C}$

Proof: Compute Smith form

$$oldsymbol{R} = oldsymbol{U} egin{bmatrix} \Delta & 0 \ 0 & 0 \end{bmatrix} oldsymbol{V} \in \mathbb{R}^{\mathtt{p} imes \mathtt{w}}[\xi]$$

 $U\left(\frac{d}{dt}\right)$, $V\left(\frac{d}{dt}\right)$ bijective \Longrightarrow ker $R\left(\frac{d}{dt}\right)$ controllable iff ker $\Delta\left(\frac{d}{dt}\right)$ is.

Change variables $w \rightsquigarrow w' := V\left(\frac{d}{dt}\right) w$, define $\mathcal{B}' := V\left(\frac{d}{dt}\right) \mathcal{B} = \ker \Delta\left(\frac{d}{dt}\right)$.

Algebraic characterization of controllability $\mathcal{B} = \ker R\left(\frac{d}{dt}\right)$ is controllable iff rank($R(\lambda)$) is constant for all $\lambda \in \mathbb{C}$

Proof: Last p - rank(R) trajectories of $\mathcal{B}' = \ker \Delta\left(\frac{d}{dt}\right)$ are free.

First rank(*R*) ones patchable if and only if $\delta_i = 1$.

Case 1: $CR_C \neq \frac{L}{R_L}$

$$\begin{pmatrix} \frac{R_C}{R_L} & + & \left(1 + \frac{R_C}{R_L}\right) CR_C \frac{d}{dt} + CR_C \frac{L}{R_L} \frac{d^2}{dt^2} \) V_{\text{external port}}$$

$$= & \left(1 + CR_C \frac{d}{dt}\right) \left(1 + \frac{L}{R_L} \frac{d}{dt}\right) R_C I_{\text{external port}}$$

$$\begin{pmatrix} \frac{R_C}{R_L} & + & \left(1 + \frac{R_C}{R_L}\right) CR_C \frac{d}{dt} + CR_C \frac{L}{R_L} \frac{d^2}{dt^2} \) V_{\text{external port}}$$

$$= & \left(1 + CR_C \frac{d}{dt}\right) \left(1 + \frac{L}{R_L} \frac{d}{dt}\right) R_C I_{\text{external port}}$$

¿Is system controllable?

Case 1: $CR_C \neq \frac{L}{R_l}$

$$\begin{pmatrix} \frac{R_C}{R_L} & + & \left(1 + \frac{R_C}{R_L}\right) CR_C \frac{d}{dt} + CR_C \frac{L}{R_L} \frac{d^2}{dt^2} \) V_{\text{external port}}$$

$$= & \left(1 + CR_C \frac{d}{dt}\right) \left(1 + \frac{L}{R_L} \frac{d}{dt}\right) R_C I_{\text{external port}}$$

¿Is system controllable?

$$\left[\left(\frac{R_c}{R_L} + \left(1 + \frac{R_c}{R_L} \right) CR_C \xi + CR_C \frac{L}{R_L} \xi^2 \right) - \left(1 + CR_C \xi \right) \left(1 + \frac{L}{R_L} \xi \right) R_C \right]$$

Are there common roots among the two polynomials?

Case 1: $CR_C \neq \frac{L}{R_l}$

$$\begin{pmatrix} \frac{R_C}{R_L} & + & \left(1 + \frac{R_C}{R_L}\right) CR_C \frac{d}{dt} + CR_C \frac{L}{R_L} \frac{d^2}{dt^2} \) V_{\text{external port}}$$

$$= & \left(1 + CR_C \frac{d}{dt}\right) \left(1 + \frac{L}{R_L} \frac{d}{dt}\right) R_C I_{\text{external port}}$$

¿Is system controllable?

$$\left[\left(\frac{R_c}{R_L} + \left(1 + \frac{R_c}{R_L} \right) CR_C \xi + CR_C \frac{L}{R_L} \xi^2 \right) - \left(1 + CR_C \xi \right) \left(1 + \frac{L}{R_L} \xi \right) R_C \right]$$

Are there common roots among the two polynomials?

 $No \Longrightarrow$ system is controllable

Case 2:
$$CR_C = \frac{L}{R_L}$$

$$\left(\frac{R_{C}}{R_{L}} + CR_{C}\frac{d}{dt}\right) V_{\text{external port}} = \left(1 + CR_{C}\frac{d}{dt}\right) R_{C} I_{\text{external port}}$$

Case 2:
$$CR_C = \frac{L}{R_c}$$

$$\left(\frac{R_{C}}{R_{L}} + CR_{C}\frac{d}{dt}\right) V_{\text{external port}} = \left(1 + CR_{C}\frac{d}{dt}\right) R_{C} I_{\text{external port}}$$

¿Is system controllable?

Case 2: $CR_C = \frac{L}{R_l}$

$$\left(\frac{R_{C}}{R_{L}} + CR_{C}\frac{d}{dt}\right) V_{\text{external port}} = \left(1 + CR_{C}\frac{d}{dt}\right) R_{C} l_{\text{external port}}$$

¿Is system controllable? $\begin{bmatrix} \frac{R_c}{R_L} + CR_c\xi & -(1 + CR_c\xi)R_c \end{bmatrix}$

Are there common roots among the two polynomials?

Case 2: $CR_C = \frac{L}{R_l}$

$$\left(\frac{R_{C}}{R_{L}} + CR_{C}\frac{d}{dt}\right) V_{\text{external port}} = \left(1 + CR_{C}\frac{d}{dt}\right) R_{C} l_{\text{external port}}$$

¿Is system controllable? $\begin{bmatrix} \frac{R_c}{R_L} + CR_c\xi & -(1 + CR_c\xi)R_c \end{bmatrix}$

Are there common roots among the two polynomials?

If $R_C = R_L$ yes \implies system is not controllable

Remarks

B = ker R (^d/_{dt}), with R ∈ ℝ^{w×w}[ξ] nonsingular, is controllable ⇔ R is unimodular ⇔ B = {0}

Remarks

- B = ker R (^d/_{dt}), with R ∈ ℝ^{w×w}[ξ] nonsingular, is controllable ⇔ R is unimodular ⇔ B = {0}
- Rank constancy test generalization of 'Hautus test' for state-space systems.

Remarks

- B = ker R (^d/_{dt}), with R ∈ ℝ^{w×w}[ξ] nonsingular, is controllable ⇔ R is unimodular ⇔ B = {0}
- Rank constancy test generalization of 'Hautus test' for state-space systems.
- Trajectory-, not representation-based definition as in state-space framework.

Let $\mathcal{B} = \ker R\left(\frac{d}{dt}\right)$, with $R \in \mathbb{R}^{p \times w}[\xi]$ full row rank. There exist $\mathcal{B}_{aut} \subseteq \mathcal{B}$ and $\mathcal{B}_{contr} \subseteq \mathcal{B}$ such that

$$\mathcal{B} = \mathcal{B}_{aut} \oplus \mathcal{B}_{contr}$$

with \mathcal{B}_{contr} controllable and \mathcal{B}_{aut} autonomous.

Let $\mathcal{B} = \ker R\left(\frac{d}{dt}\right)$, with $R \in \mathbb{R}^{p \times w}[\xi]$ full row rank. There exist $\mathcal{B}_{aut} \subseteq \mathcal{B}$ and $\mathcal{B}_{contr} \subseteq \mathcal{B}$ such that

$$\mathcal{B} = \mathcal{B}_{aut} \oplus \mathcal{B}_{contr}$$

with \mathcal{B}_{contr} controllable and \mathcal{B}_{aut} autonomous.

Proof: Write Smith form of $R = U \begin{bmatrix} D & 0_{p \times (w-p)} \end{bmatrix} V$, define $\mathcal{B}' := V \begin{pmatrix} \frac{d}{dt} \end{pmatrix} \mathcal{B}$.

Let $\mathcal{B} = \ker R\left(\frac{d}{dt}\right)$, with $R \in \mathbb{R}^{p \times w}[\xi]$ full row rank. There exist $\mathcal{B}_{aut} \subseteq \mathcal{B}$ and $\mathcal{B}_{contr} \subseteq \mathcal{B}$ such that

$$\mathcal{B} = \mathcal{B}_{aut} \oplus \mathcal{B}_{contr}$$

with \mathcal{B}_{contr} controllable and \mathcal{B}_{aut} autonomous.

Proof: Write Smith form of $R = U \begin{bmatrix} D & 0_{p \times (w-p)} \end{bmatrix} V$, define $\mathcal{B}' := V \begin{pmatrix} \frac{d}{dt} \end{pmatrix} \mathcal{B}$.

$$\mathbf{w}' \in \mathcal{B}' \iff \mathbf{w}' = \begin{bmatrix} \mathbf{w}'_1 \\ \mathbf{w}'_2 \end{bmatrix}$$

with $w'_1 \in \ker D\left(\frac{d}{dt}\right)$, w'_2 free.

Let $\mathcal{B} = \ker R\left(\frac{d}{dt}\right)$, with $R \in \mathbb{R}^{p \times w}[\xi]$ full row rank. There exist $\mathcal{B}_{aut} \subseteq \mathcal{B}$ and $\mathcal{B}_{contr} \subseteq \mathcal{B}$ such that

 $\mathcal{B} = \mathcal{B}_{aut} \oplus \mathcal{B}_{contr}$

with \mathcal{B}_{contr} controllable and \mathcal{B}_{aut} autonomous.

$$\mathbf{w}' \in \mathcal{B}' \iff \mathbf{w}' = \begin{bmatrix} \mathbf{w}_1' \\ \mathbf{w}_2' \end{bmatrix}$$

with $w'_1 \in \ker D\left(\frac{d}{dt}\right)$, w'_2 free.

If $D = I_{p} \Longrightarrow$ take $\mathcal{B}'_{contr} = \mathcal{B}'$, $\mathcal{B}'_{aut} = \{0\}$.

Let $\mathcal{B} = \ker R\left(\frac{d}{dt}\right)$, with $R \in \mathbb{R}^{p \times w}[\xi]$ full row rank. There exist $\mathcal{B}_{aut} \subseteq \mathcal{B}$ and $\mathcal{B}_{contr} \subseteq \mathcal{B}$ such that

 $\mathcal{B} = \mathcal{B}_{aut} \oplus \mathcal{B}_{contr}$

with \mathcal{B}_{contr} controllable and \mathcal{B}_{aut} autonomous.

$$\mathbf{w}' \in \mathcal{B}' \iff \mathbf{w}' = \begin{bmatrix} \mathbf{w}_1' \\ \mathbf{w}_2' \end{bmatrix}$$

with $w'_1 \in \ker D\left(\frac{d}{dt}\right)$, w'_2 free. If $D \neq I_p$, define

$$\begin{split} \mathcal{B}_{\text{contr}}' &= \{ \begin{bmatrix} w_1' \\ 0 \end{bmatrix} \mid w_1' \in \ker D\left(\frac{d}{dt}\right) \} \\ \mathcal{B}_{\text{aut}}' &= \{ \begin{bmatrix} 0 \\ w_2' \end{bmatrix} \mid w_2' \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{\mathsf{w}-\mathsf{p}}) \} \end{split}$$

Let $\mathcal{B} = \ker R\left(\frac{d}{dt}\right)$, with $R \in \mathbb{R}^{p \times w}[\xi]$ full row rank. There exist $\mathcal{B}_{aut} \subseteq \mathcal{B}$ and $\mathcal{B}_{contr} \subseteq \mathcal{B}$ such that

 $\mathcal{B} = \mathcal{B}_{aut} \oplus \mathcal{B}_{contr}$

with \mathcal{B}_{contr} controllable and \mathcal{B}_{aut} autonomous.

$$\mathbf{w}' \in \mathcal{B}' \iff \mathbf{w}' = \begin{bmatrix} \mathbf{w}'_1 \\ \mathbf{w}'_2 \end{bmatrix}$$

with $w_1' \in \ker D\left(\frac{d}{dt}\right)$, w_2' free.

Then transform back to *w* variables.

There exists $M \in \mathbb{R}^{w \times \bullet}[\xi]$ such that $\mathcal{B} = \operatorname{im} M\left(\frac{d}{dt}\right)$ if and only if \mathcal{B} is controllable.

There exists $M \in \mathbb{R}^{w \times \bullet}[\xi]$ such that $\mathcal{B} = \operatorname{im} M\left(\frac{d}{dt}\right)$ if and only if \mathcal{B} is controllable.

Only if: Full behavior is controllable, since has kernel representation induced by

$$\begin{bmatrix} I_w & -M(\xi) \end{bmatrix}$$

with constant rank over \mathbb{C} .

There exists $M \in \mathbb{R}^{w \times \bullet}[\xi]$ such that $\mathcal{B} = \operatorname{im} M\left(\frac{d}{dt}\right)$ if and only if \mathcal{B} is controllable.

If: Take *R* for minimal kernel representation of \mathcal{B} . Apply constancy of rank to conclude Smith form of *R* is $R = U \begin{bmatrix} I_p & 0_{p \times m} \end{bmatrix} V$.

There exists $M \in \mathbb{R}^{w \times \bullet}[\xi]$ such that $\mathcal{B} = \operatorname{im} M\left(\frac{d}{dt}\right)$ if and only if \mathcal{B} is controllable.

If: Take *R* for minimal kernel representation of \mathcal{B} . Apply constancy of rank to conclude Smith form of *R* is $R = U \begin{bmatrix} I_p & 0_{p \times m} \end{bmatrix} V$.

Now
$$U\left(\frac{d}{dt}\right) \begin{bmatrix} I_{\mathbf{p}} & \mathbf{0}_{\mathbf{p} \times \mathbf{m}} \end{bmatrix} \underbrace{V\left(\frac{d}{dt}\right) w}_{=:w'} = 0$$
 if and only if $\begin{bmatrix} I_{\mathbf{p}} & \mathbf{0}_{\mathbf{p} \times \mathbf{m}} \end{bmatrix} w' = 0$ if and only if

$$\boldsymbol{w}' = \begin{bmatrix} \boldsymbol{0}_{\mathrm{p}} \\ \boldsymbol{I}_{\mathrm{m}} \end{bmatrix} \boldsymbol{\ell}$$

with $\ell \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^m)$ free.

There exists $M \in \mathbb{R}^{w \times \bullet}[\xi]$ such that $\mathcal{B} = \operatorname{im} M\left(\frac{d}{dt}\right)$ if and only if \mathcal{B} is controllable.

Consequently,

$$w' = V\left(rac{d}{dt}
ight)w = \begin{bmatrix} \mathbf{0}_{\mathrm{p}}\\ I_{\mathrm{m}} \end{bmatrix}\ell$$

from which

$$\boldsymbol{w} = \boldsymbol{V} \left(\frac{\boldsymbol{d}}{\boldsymbol{d}t}\right)^{-1} \begin{bmatrix} \boldsymbol{0}_{\mathrm{p}} \\ \boldsymbol{I}_{\mathrm{m}} \end{bmatrix} \boldsymbol{\ell} =: \boldsymbol{M} \left(\frac{\boldsymbol{d}}{\boldsymbol{d}t}\right) \boldsymbol{\ell}$$

There exists $M \in \mathbb{R}^{w \times \bullet}[\xi]$ such that $\mathcal{B} = \operatorname{im} M\left(\frac{d}{dt}\right)$ if and only if \mathcal{B} is controllable.

Consequently,

$$w' = V\left(rac{d}{dt}
ight)w = \begin{bmatrix} \mathbf{0}_{\mathrm{p}}\\ I_{\mathrm{m}} \end{bmatrix}\ell$$

from which

$$w = V\left(\frac{d}{dt}\right)^{-1} \begin{bmatrix} \mathbf{0}_{\mathbf{p}} \\ \mathbf{I}_{\mathbf{m}} \end{bmatrix} \ell =: M\left(\frac{d}{dt}\right) \ell$$

Note also that M can be chosen with m(B) columns.

Outline

Kernel and image representations

The Smith form

Surjectivity/injectivity of polynomial differential operators

Inputs and outputs

Controllability

Observability

Observability

Observability

¿Can w₂ be determine knowing w₁ and the system dynamics?

Observability

; Can w_2 be determine knowing w_1 and the system dynamics?

 $\mathcal{B} \in \mathfrak{L}^{w}, w = (w_1, w_2). w_2$ is observable from w_1 if

$$(\textit{w}_1,\textit{w}_2'),(\textit{w}_1,\textit{w}_2'')\in\mathcal{B}\Longrightarrow\textit{w}_2'=\textit{w}_2''$$

Assume \mathcal{B} represented in kernel form as

$$R_1\left(rac{d}{dt}
ight)w_1+R_2\left(rac{d}{dt}
ight)w_2=0$$

Assume $\ensuremath{\mathcal{B}}$ represented in kernel form as

$$R_1\left(rac{d}{dt}
ight)w_1+R_2\left(rac{d}{dt}
ight)w_2=0$$

¿Does

$$\boldsymbol{R_2}\left(\frac{\boldsymbol{d}}{\boldsymbol{dt}}\right)\boldsymbol{w_2} = \underbrace{-\boldsymbol{R_1}\left(\frac{\boldsymbol{d}}{\boldsymbol{dt}}\right)\boldsymbol{w_1}}_{\text{known}}$$

have a unique solution w_2 ?

Assume \mathcal{B} represented in kernel form as

$$R_1\left(rac{d}{dt}
ight)w_1+R_2\left(rac{d}{dt}
ight)w_2=0$$

¿Does

$$\boldsymbol{R_2}\left(\frac{\boldsymbol{d}}{\boldsymbol{dt}}\right)\boldsymbol{w_2} = \underbrace{-\boldsymbol{R_1}\left(\frac{\boldsymbol{d}}{\boldsymbol{dt}}\right)\boldsymbol{w_1}}_{\text{known}}$$

have a unique solution w_2 ?

It has iff $R_2(\frac{d}{dt})$ injective iff $R_2(\lambda)$ has full column rank for all $\lambda \in \mathbb{C}$

Assume \mathcal{B} represented in kernel form as

$$R_1\left(rac{d}{dt}
ight)w_1+R_2\left(rac{d}{dt}
ight)w_2=0$$

 w_2 observable from w_1 if and only if $R_2(\lambda)$ has full column rank for all $\lambda\in\mathbb{C}$

 $ls w_2$ observable from w_1 ?

 $ls w_2$ observable from w_1 ?

Can one determine w_2 from knowledge of w_1 and the system dynamics?

 $ls w_2$ observable from w_1 ?

$$\begin{bmatrix} m_1 \frac{d^2}{dt^2} + c_1 \frac{d}{dt} + k_1 \\ -c_1 \frac{d}{dt} - k_1 \end{bmatrix} w_1 = \begin{bmatrix} c_1 \frac{d}{dt} + k_1 \\ -m_2 \frac{d^2}{dt^2} - (c_2 + c_1) \frac{d}{dt} - (k_1 + k_2) \end{bmatrix} w_2$$

 $ls w_2$ observable from w_1 ?

$$\begin{bmatrix} m_1 \frac{d^2}{dt^2} + c_1 \frac{d}{dt} + k_1 \\ -c_1 \frac{d}{dt} - k_1 \end{bmatrix} w_1 = \begin{bmatrix} c_1 \frac{d}{dt} + k_1 \\ -m_2 \frac{d^2}{dt^2} - (c_2 + c_1) \frac{d}{dt} - (k_1 + k_2) \end{bmatrix} w_2$$

Is polynomial differential operator on RHS injective?

 $ls w_2$ observable from w_1 ?

$$\begin{bmatrix} m_1 \frac{d^2}{dt^2} + c_1 \frac{d}{dt} + k_1 \\ -c_1 \frac{d}{dt} - k_1 \end{bmatrix} w_1 = \begin{bmatrix} c_1 \frac{d}{dt} + k_1 \\ -m_2 \frac{d^2}{dt^2} - (c_2 + c_1) \frac{d}{dt} - (k_1 + k_2) \end{bmatrix} w_2$$

Is polynomial differential operator on RHS injective?

$$\begin{bmatrix} c_1\lambda + k_1 \\ -m_2\lambda^2 - (c_2 + c_1)\lambda - (k_1 + k_2) \end{bmatrix}$$

has full column rank $orall \lambda \in \mathbb{C}$ (\Longleftrightarrow observability) iff

$$-m_2k_1^2+c_1c_2k_1-k_2c_2^2\neq 0$$

 Rank constancy test generalization of 'Hautus test' for state-space systems.

Remarks

- Rank constancy test generalization of 'Hautus test' for state-space systems.
- Trajectory-, not representation-based definition as in state-space framework.

Polynomial differential operators and their properties are key;

- Polynomial differential operators and their properties are key;
- Inputs: free variables;

- Polynomial differential operators and their properties are key;
- Inputs: free variables;
- Autonomous systems;

- Polynomial differential operators and their properties are key;
- Inputs: free variables;
- Autonomous systems;
- Controllability and observability;

- Polynomial differential operators and their properties are key;
- Inputs: free variables;
- Autonomous systems;
- Controllability and observability;
- Algebraic characterizations;

- Polynomial differential operators and their properties are key;
- Inputs: free variables;
- Autonomous systems;
- Controllability and observability;
- Algebraic characterizations;
- Image representations.