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Definition

A linear differential system is a triple (R,Rw,B) with B
• linear

w1,w2 ∈ B and α1, α2 ∈ R =⇒ α1w1 + α2w2 ∈ B

• time-invariant

w ∈ B and τ ∈ R =⇒ στw ∈ B

where (στw) (t) = w(t + τ ) for all t ∈ R

• differential i.e. B is the solution set of a system
of differential equations.

B consists of the solutions
of a system of linear, constant-coefficient

differential equations.
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Polynomial differential operators

Differential systems can be effectively
represented by one-variable polynomial matrices

Linear differential behavior B with:
• w variables wi , i = 1, . . . , w
• differentiated at most L times
• in g equations

represented as the solution space of

R
(

d
dt

)
w = 0

where
R(ξ) := R0 + R1ξ + . . . + RLξ

L



Polynomial differential operators

Differential systems can be effectively
represented by one-variable polynomial matrices

B = {w | R
(

d
dt

)
w = 0} = ker R

(
d
dt

)
where

R
(

d
dt

)
: C∞(R,Rw)→ C∞(R,Rg)



Polynomial differential operators

Differential systems can be effectively
represented by one-variable polynomial matrices

B = {w | R
(

d
dt

)
w = 0} = ker R

(
d
dt

)
where

R
(

d
dt

)
: C∞(R,Rw)→ C∞(R,Rg)

Differential equations as differential operator equations
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U ∈ Rp×p[ξ] is nonsingular if det(U) ∈ R[ξ] is not the
zero polynomial.
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matrix of rational functions.



The Smith form of a polynomial matrix

U ∈ Rp×p[ξ] is nonsingular if det(U) ∈ R[ξ] is not the
zero polynomial.

In general, if U ∈ Rp×p[ξ] is nonsingular, then U−1 is a
matrix of rational functions.

U ∈ Rp×p[ξ] is unimodular if U−1 ∈ Rp×p[ξ].
Equivalent with det(U) = c, with c ∈ R, c 6= 0.



The Smith form of a polynomial matrix

Let R ∈ Rp×w[ξ]. There exist unimodular matrices
U ∈ Rp×p[ξ] and V ∈ Rw×w[ξ] such that

URV =

[
diag(δi)i=1,...,r 0r×(w−r)

0(p−r)×r 0(p−r)×(w−r)

]
with δi monic, i = 1, . . . , r, and such that δi di-
vides δi+1, i = 1, . . . , r.



The Smith form of a polynomial matrix



The Smith form of a polynomial matrix

Let R ∈ Rp×w[ξ]. There exist unimodular matrices
U ∈ Rp×p[ξ] and V ∈ Rw×w[ξ] such that

URV =

[
diag(δi)i=1,...,r 0r×(w−r)

0(p−r)×r 0(p−r)×(w−r)

]
︸ ︷︷ ︸

=:∆

with δi monic, i = 1, . . . , r, and such that δi di-
vides δi+1, i = 1, . . . , r.

∆ is the Smith form of R, and δi the i-th invariant
polynomial of R. r equals the rank of R(ξ).



The Smith form of a polynomial matrix

Let R ∈ Rp×w[ξ]. There exist unimodular matrices
U ∈ Rp×p[ξ] and V ∈ Rw×w[ξ] such that

URV =

[
diag(δi)i=1,...,r 0r×(w−r)

0(p−r)×r 0(p−r)×(w−r)

]
︸ ︷︷ ︸

=:∆

with δi monic, i = 1, . . . , r, and such that δi di-
vides δi+1, i = 1, . . . , r.

∆ is the Smith form of R, and δi the i-th invariant
polynomial of R. r equals the rank of R(ξ).

R is unimodular iff δi = 1, i = 1, . . . , r.



The Smith form of a polynomial matrix

Let R ∈ Rp×w[ξ]. There exist unimodular matrices
U ∈ Rp×p[ξ] and V ∈ Rw×w[ξ] such that

URV =

[
diag(δi)i=1,...,r 0r×(w−r)

0(p−r)×r 0(p−r)×(w−r)

]
︸ ︷︷ ︸

=:∆

with δi monic, i = 1, . . . , r, and such that δi di-
vides δi+1, i = 1, . . . , r.

∆ is the Smith form of R, and δi the i-th invariant
polynomial of R. r equals the rank of R(ξ).

R is unimodular iff δi = 1, i = 1, . . . , r.

det(R) is the product of the diagonal elements of ∆.
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: C∞(R,Rw)→ C∞(R,Rg) surjective?

¿Given arbitrary g ∈ C∞(R,Rg),
is there w ∈ C∞(R,Rw) s.t. P

( d
dt

)
w = g?

Scalar case: given arbitrary g ∈ C∞(R,R), there
exists w such that

p
(

d
dt

)
w = g

if and only if p 6= 0. Just integrate LHS!



Surjectivity

¿When is P
( d

dt

)
: C∞(R,Rw)→ C∞(R,Rg) surjective?

¿Given arbitrary g ∈ C∞(R,Rg),
is there w ∈ C∞(R,Rw) s.t. P

( d
dt

)
w = g?

If P ∈ Rw×w[ξ] is unimodular, i.e. invertible in Rw×w[ξ],
then w := P

( d
dt

)−1
g!
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: C∞(R,Rw)→ C∞(R,Rg) surjective?

¿Given arbitrary g ∈ C∞(R,Rg),
is there w ∈ C∞(R,Rw) s.t. P

( d
dt

)
w = g?

General case: use Smith form of P = U∆V :

P
(

d
dt

)
w = U

(
d
dt

)
∆

(
d
dt

)
V
(

d
dt

)
w︸ ︷︷ ︸

=:w ′

= U
(

d
dt

)
∆

(
d
dt

)
w ′ = g
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exists, with g′ := U
( d

dt

)−1
g
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( d

dt

)
bijective and g arbitrary
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¿Given arbitrary g ∈ C∞(R,Rg),
is there w ∈ C∞(R,Rw) s.t. P
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Given g, solution w exists iff solution w ′ to

∆

(
d
dt

)
w ′ = g′

exists, with g′ := U
( d

dt

)−1
g

¡w scalar problems δi
( d

dt

)
w ′i = g′i !

Always solvable as long as δi 6= 0...



Surjectivity

¿When is P
( d

dt

)
: C∞(R,Rw)→ C∞(R,Rg) surjective?

¿Given arbitrary g ∈ C∞(R,Rg),
is there w ∈ C∞(R,Rw) s.t. P

( d
dt

)
w = g?

We proved

P
( d

dt

)
w = g solvable for all g

iff

P has full row rank as a polynomial matrix



Injectivity

¿w solves P
( d

dt

)
w = g. When is it the only one?



Injectivity

¿w solves P
( d

dt

)
w = g. When is it the only one?

Scalar case: assuming w satisfies

p
(

d
dt

)
w = g,

such w is unique iff p = 1. Sufficiency is evident.
Necessity holds since otherwise ker

(
p
( d

dt

))
6= {0}.



Injectivity

¿w solves P
( d

dt

)
w = g. When is it the only one?

General case: Use Smith form of P = U∆V to write

∆

(
d
dt

)
w ′ = g′

with w ′ := V
( d

dt

)
w , g′ := U

( d
dt

)−1
g



Injectivity

¿w solves P
( d

dt

)
w = g. When is it the only one?

General case: Use Smith form of P = U∆V to write

∆

(
d
dt

)
w ′ = g′

with w ′ := V
( d

dt

)
w , g′ := U

( d
dt

)−1
g

Scalar equation δi
( d

dt

)
w ′i = g′i has only one solution

iff δi = 1



Injectivity

¿w solves P
( d

dt

)
w = g. When is it the only one?

We proved

w is the only solution to P
( d

dt

)
w = g

iff

all nonzero invariant polynomials of P are unity



Injectivity

¿w solves P
( d

dt

)
w = g. When is it the only one?

We proved

w is the only solution to P
( d

dt

)
w = g

iff

all nonzero invariant polynomials of P are unity

Equivalently: P(λ) has full column rank for all λ ∈ C



Injectivity

¿w solves P
( d

dt

)
w = g. When is it the only one?

We proved

w is the only solution to P
( d

dt

)
w = g

iff

all nonzero invariant polynomials of P are unity

If all nonzero invariant polynomials of P are unity,
then P admits a left inverse on C∞(R):

P = U
[
Im
0

]
V =⇒ V−1 [Im 0

]
U−1is left inverse



Summary

• Polynomial differential operator equations;

• Surjectivity: P full row rank over R•×•[ ξ], as a
polynomial matrix

• Injectivity: P(λ) full column rank for all λ ∈ C, as
a matrix over R•×•
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Free variables

Given B ∈ Lw and I := {i1, . . . , ik} ⊆ {1, . . . , w}, let

ΠIB := {(wi1, . . . ,wik) ∈ C∞(R,Rk) | ∃ w ∈ B
s.t. w = (w1, . . . ,wi1, . . . ,wik, . . . ,ww) ∈ B}

projection of B onto the variables wij , j = 1, . . . , k



Free variables

Given B ∈ Lw and I := {i1, . . . , ik} ⊆ {1, . . . , w}, let

ΠIB := {(wi1, . . . ,wik) ∈ C∞(R,Rk) | ∃ w ∈ B
s.t. w = (w1, . . . ,wi1, . . . ,wik, . . . ,ww) ∈ B}

projection of B onto the variables wij , j = 1, . . . , k

Variables wij , j = 1, . . . , k are free if

ΠIB = C∞(R,Rk)



Free variables

Example:

p1

(
d
dt

)
w1 + p2

(
d
dt

)
w2 + p3

(
d
dt

)
w3 = 0

Assume pi 6= 0, i = 1, . . . , 3.

Let I = {1}; since
[
p2(ξ) p3(ξ)

]
is full row rank,

for every w1 ∈ C∞(R,R) there exist w2,w3 satisfying
equation.

w1 is free.



Free variables

Example:

p1

(
d
dt

)
w1 + p2

(
d
dt

)
w2 + p3

(
d
dt

)
w3 = 0

Assume pi 6= 0, i = 1, . . . , 3.

Let I = {1}; since
[
p2(ξ) p3(ξ)

]
is full row rank,

for every w1 ∈ C∞(R,R) there exist w2,w3 satisfying
equation.

w1 is free.

w1,w2 (and w2,w3, and w1,w3) are also free.



Maximally free sets

Let I = {i1, . . . , ik} ⊆ {1, . . . , w}. The variables
wi1, . . . ,wik form a maximally free set if

• they are free; and
• for every I ′ = {i ′1, . . . , i ′k} ⊂6=

{1, . . . , w} such that

I ⊂
6=

I ′ it holds

ΠI′B ⊂
6=

C∞(R,R|I′|)



Maximally free sets

Let I = {i1, . . . , ik} ⊆ {1, . . . , w}. The variables
wi1, . . . ,wik form a maximally free set if

• they are free; and
• for every I ′ = {i ′1, . . . , i ′k} ⊂6=

{1, . . . , w} such that

I ⊂
6=

I ′ it holds

ΠI′B ⊂
6=

C∞(R,R|I′|)

Maximally free: it’s free, and any added variable is not
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Maximally free sets

Example:

p1

(
d
dt

)
w1 + p2

(
d
dt

)
w2 + p3

(
d
dt

)
w3 = 0

Assume pi 6= 0, i = 1, . . . , 3.

w1 (and w2, and w3) is free, but not maximally so.

{w1,w2} (and {w2,w3}, and {w1,w3}) are maximally
free.

Note nonunicity of maximally free sets!



Inputs and outputs

Let B ∈ Lw. Assume (if necessary, after permutation
of the variables) w partitioned as

w =

[
w1
w2

]
with w1 a set of maximally free variables.

Then w1 are inputs and w2 outputs.



Inputs and outputs

Let B ∈ Lw. Assume (if necessary, after permutation
of the variables) w partitioned as

w =

[
w1
w2

]
with w1 a set of maximally free variables.

Then w1 are inputs and w2 outputs.

Example: for p1
( d

dt

)
w1 +p2

( d
dt

)
w2 +p3

( d
dt

)
w3 = 0 and

assuming pi 6= 0 for i = 1, . . . , 3, we can choose
• w1,w2 or
• w2,w3 or
• w1,w3

as inputs.



Remarks

• Nonunicity an issue? What about (linear)
resistors

B = {(V , I) | V = R · I}?

Is it voltage- or current-controlled?

• ‘Causality’ an issue? What about

w1 =
d
dt

w2?

Don’t w1 and w2 ’happen’ at the same time?

• ’Smoothness’ may be relevant...
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Input-output representations

B = {(u, y) | P
(

d
dt

)
y = Q

(
d
dt

)
u}

with P square and nonsingular. Then y is output
and u is input.

Surjectivity of P
( d

dt

)
=⇒ u is free.

u maximally free: add one component of y to those of
u, resulting set satisfies differential equation =⇒ it is
not free.



Input-output representations

Let B ∈ Lw. There exists (possibly after permuting
components) a partition of w = (u, y) and P ∈ Ry×y[ξ]
nonsingular, Q ∈ Ry×u[ξ] such that

B = {(u, y) | P
(

d
dt

)
y = Q

(
d
dt

)
u}

The partition can be chosen so that P−1Q is proper.



Input-output representations

Let B ∈ Lw. There exists (possibly after permuting
components) a partition of w = (u, y) and P ∈ Ry×y[ξ]
nonsingular, Q ∈ Ry×u[ξ] such that

B = {(u, y) | P
(

d
dt

)
y = Q

(
d
dt

)
u}

The partition can be chosen so that P−1Q is proper.

Proof: Assume w.l.o.g. that B = ker R
( d

dt

)
with R of

full row rank p.

Since R of full row rank, there exists a nonsingular
submatrix P.

For P−1Q proper, select P to be a maximal
determinantal degree (nonsingular) submatrix of R.
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−k1w1 + m2
d2w2

dt2
+ c2

d

dt
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dt
w2 −

d

dt
w1

«
+ (k1 + k2)w2 = 0
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+ c1

„ d

dt
w1 −

d

dt
w2

«
+ k1(w1 − w2)− F = 0
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B is called autonomous if

w1,w2 ∈ B and w1 |(−∞,0]= w2 |(−∞,0]

=⇒ w1 = w2

Equivalent with

• m(B) = 0 (no inputs);

• there exists R ∈ Rw×w[ξ] nonsingular such that
B = ker R

( d
dt

)
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Classical mechanics: motion depends only
on ‘initial conditions’
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R(ξ) =

[
m1ξ

2 + c1ξ + k1 −c1ξ − k1
−c1ξ − k1 m2ξ

2 + (c1 + c2)ξ + k1 + k2

]

R nonsingular ; autonomous system
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where
• n is number of distinct roots of p(ξ);

• λi is i-th root of p(ξ);

• ni multiplicity of λi;

• αij ∈ C.
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On autonomous system trajectories

Scalar case:

p
(

d
dt

)
w = 0⇐⇒ w(t) =

n∑
i=1

ni∑
j=0

αijt jeλi t

where
• n is number of distinct roots of p(ξ);

• λi is i-th root of p(ξ);

• ni multiplicity of λi;

• αij ∈ C.

λi are called characteristic frequencies of p.



On autonomous system trajectories

For w > 1, resort to Smith form R = U∆V :

R
(

d
dt

)
w = 0⇐⇒ ∆

(
d
dt

)
V
(

d
dt

)
w︸ ︷︷ ︸

=:w ′

= 0



On autonomous system trajectories

For w > 1, resort to Smith form R = U∆V :

R
(

d
dt

)
w = 0⇐⇒ ∆

(
d
dt

)
V
(

d
dt

)
w︸ ︷︷ ︸

=:w ′

= 0

w ′ = col(w ′i )i=1,...,w ∈ ker∆

(
d
dt

)
iff w ′i ∈ ker δi

(
d
dt

)
with δi the i-th invariant polynomial. Scalar case!



On autonomous system trajectories

For w > 1, resort to Smith form R = U∆V :
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w = 0⇐⇒ ∆

(
d
dt

)
V
(

d
dt

)
w︸ ︷︷ ︸

=:w ′

= 0

w ′ = col(w ′i )i=1,...,w ∈ ker∆

(
d
dt

)
iff w ′i ∈ ker δi

(
d
dt

)
with δi the i-th invariant polynomial. Scalar case!

Assume for simplicity all roots of det(R) are simple:

w = V
(

d
dt

)−1

w ′ ⇐⇒ w(t) =
n∑

i=1

αieλi t

with αi ∈ Cw such that R(λi)αi = 0, i = 1, . . . , n.



Remarks

• Linear combinations of polynomial exponential
vector trajectories

n∑
i=1

ni∑
j=0

αijt jeλi t

with αij ∈ Cw.

• Characteristic frequencies λi are roots of det(R).

• B is finite-dimensional subspace of C∞(R,Rw).

• If real part of λi is negative, i = 1, . . . , n, then B is
asymptotically stable: limt→∞w(t) = 0 ∀ w ∈ B.
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Controllability

B controllable if for all w1,w2 ∈ B there exists w ∈ B
and T ≥ 0 such that

w(t) =

{
w1(t) for t < 0
w2(t) for t ≥ T

Past of any trajectory can be “patched up”
with future of any trajectory



Examples

r
(

d
dt

)
w = 0

where 0 6= r ∈ R[ξ] has degree n.

System autonomous: every solution uniquely deter-
mined by ‘initial conditions’ d i w

dt i (t), i = 0, . . . , n − 1,
so no patching possible among different trajectories.

Past of trajectory uniquely determines its future.

Bs controllable iff Bx controllable =⇒B controllable.
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Examples

Classical state-space system

d
dt

x = Ax + Bu

y = Cx + Du

Bs controllable iff Bx controllable =⇒B controllable.

“State point-controllability": for all x1, x2 ∈ Rn ∃ x ∈
Bx and T ≥ 0 s.t. x(0) = x0 and x(T ) = x1.

If x minimal, then B controllable iff Bs controllable
⇐⇒Bs state point-controllable.
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Algebraic characterization of controllability
B = ker R

( d
dt

)
is controllable

iff

rank(R(λ)) is constant for all λ ∈ C

Proof: Compute Smith form

R = U
[

∆ 0
0 0

]
V ∈ Rp×w[ξ]

U
( d

dt

)
, V
( d

dt

)
bijective =⇒ ker R

( d
dt

)
controllable iff

ker ∆
( d

dt

)
is.

Change variables w ; w ′ := V
( d

dt

)
w , define

B′ := V
( d

dt

)
B = ker ∆

( d
dt

)
.



Algebraic characterization of controllability
B = ker R

( d
dt

)
is controllable

iff

rank(R(λ)) is constant for all λ ∈ C

Proof: Last p− rank(R) trajectories of
B′ = ker ∆

( d
dt

)
are free.

First rank(R) ones patchable if and only if δi = 1.
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dt

!
RC Iexternalport
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RLC circuit

Model the port behavior of
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by tearing, zooming, and linking.
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Case 2: CRC = L
RL

 
RC

RL
+ CRC

d

dt

!
Vexternalport =

„
1 + CRC

d

dt

«
RC Iexternalport

¿Is system controllable?[
RC
RL

+ CRCξ − (1 + CRCξ) RC

]
Are there common roots among the two polynomials?

If RC = RL yes =⇒ system is not controllable
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• Rank constancy test generalization of ‘Hautus
test’ for state-space systems.

• Trajectory-, not representation-based definition as
in state-space framework.
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Let B = ker R

( d
dt

)
, with R ∈ Rp×w[ξ] full row rank.

There exist Baut ⊆ B and Bcontr ⊆ B such that

B = Baut ⊕ Bcontr
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if and only if

R2(λ) has full column rank for all λ ∈ C
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