Summer Course

Linear System Theory Control
 \& Matrix Computations

Lecture 2: Linear differential systems

Lecturer: Paolo Rapisarda

Part I: Representations

Outline

Kernel and image representations

The Smith form

Surjectivity/injectivity of polynomial differential operators

Inputs and outputs

Controllability

Observability

Definition

A linear differential system is a triple $\left(\mathbb{R}, \mathbb{R}^{\mathbf{w}}, \mathcal{B}\right)$ with \mathcal{B}

- linear

$$
w_{1}, w_{2} \in \mathcal{B} \text { and } \alpha_{1}, \alpha_{2} \in \mathbb{R} \Longrightarrow \alpha_{1} w_{1}+\alpha_{2} w_{2} \in \mathcal{B}
$$

Definition

A linear differential system is a triple $\left(\mathbb{R}, \mathbb{R}^{\mathbf{w}}, \mathcal{B}\right)$ with \mathcal{B}

- linear

$$
w_{1}, w_{2} \in \mathcal{B} \text { and } \alpha_{1}, \alpha_{2} \in \mathbb{R} \Longrightarrow \alpha_{1} w_{1}+\alpha_{2} w_{2} \in \mathcal{B}
$$

- time-invariant

$$
\boldsymbol{w} \in \mathcal{B} \text { and } \tau \in \mathbb{R} \Longrightarrow \sigma^{\tau} \boldsymbol{w} \in \mathcal{B}
$$

where $\left(\sigma^{\tau} w\right)(t)=w(t+\tau)$ for all $t \in \mathbb{R}$

Definition

A linear differential system is a triple $\left(\mathbb{R}, \mathbb{R}^{\mathbf{w}}, \mathcal{B}\right)$ with \mathcal{B}

- linear

$$
w_{1}, w_{2} \in \mathcal{B} \text { and } \alpha_{1}, \alpha_{2} \in \mathbb{R} \Longrightarrow \alpha_{1} w_{1}+\alpha_{2} w_{2} \in \mathcal{B}
$$

- time-invariant

$$
\boldsymbol{w} \in \mathcal{B} \text { and } \tau \in \mathbb{R} \Longrightarrow \boldsymbol{\sigma}^{\tau} \boldsymbol{w} \in \mathcal{B}
$$

where $\left(\sigma^{\tau} w\right)(t)=w(t+\tau)$ for all $t \in \mathbb{R}$

- differential i.e. \mathcal{B} is the solution set of a system of differential equations.

Definition

A linear differential system is a triple $\left(\mathbb{R}, \mathbb{R}^{\mathbf{w}}, \mathcal{B}\right)$ with \mathcal{B}

- linear

$$
w_{1}, w_{2} \in \mathcal{B} \text { and } \alpha_{1}, \alpha_{2} \in \mathbb{R} \Longrightarrow \alpha_{1} w_{1}+\alpha_{2} w_{2} \in \mathcal{B}
$$

- time-invariant

$$
\boldsymbol{w} \in \mathcal{B} \text { and } \tau \in \mathbb{R} \Longrightarrow \boldsymbol{\sigma}^{\tau} \boldsymbol{w} \in \mathcal{B}
$$

where $\left(\sigma^{\tau} w\right)(t)=w(t+\tau)$ for all $t \in \mathbb{R}$

- differential i.e. \mathcal{B} is the solution set of a system of differential equations.
\mathcal{B} consists of the solutions
of a system of linear, constant-coefficient
differential equations.

Polynomial differential operators

Differential systems can be effectively represented by one-variable polynomial matrices

Polynomial differential operators

Differential systems can be effectively represented by one-variable polynomial matrices

Linear differential behavior \mathcal{B} with:

- w variables $w_{i}, i=1, \ldots$, w
- differentiated at most L times
- in g equations

Polynomial differential operators

Differential systems can be effectively represented by one-variable polynomial matrices

Linear differential behavior \mathcal{B} with:

- w variables $w_{i}, i=1, \ldots$, w
- differentiated at most L times
- in g equations
represented as the solution space of

$$
R\left(\frac{d}{d t}\right) w=0
$$

where

$$
R(\xi):=R_{0}+R_{1} \xi+\ldots+R_{L} \xi^{L}
$$

Polynomial differential operators

Differential systems can be effectively represented by one-variable polynomial matrices

$$
\mathcal{B}=\left\{w \left\lvert\, R\left(\frac{d}{d t}\right) w=0\right.\right\}=\operatorname{ker} R\left(\frac{d}{d t}\right)
$$

where

$$
\boldsymbol{R}\left(\frac{\boldsymbol{d}}{\boldsymbol{d} \boldsymbol{d}}\right): \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\boldsymbol{w}}\right) \rightarrow \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\boldsymbol{g}}\right)
$$

Polynomial differential operators

Differential systems can be effectively

 represented by one-variable polynomial matrices$$
\mathcal{B}=\left\{w \left\lvert\, R\left(\frac{d}{d t}\right) w=0\right.\right\}=\operatorname{ker} R\left(\frac{d}{d t}\right)
$$

where

$$
\boldsymbol{R}\left(\frac{\boldsymbol{d}}{\boldsymbol{d} \boldsymbol{t}}\right): \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right) \rightarrow \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\boldsymbol{g}}\right)
$$

Differential equations as differential operator equations

Outline

Kernel and image representations

The Smith form

Surjectivity/injectivity of polynomial differential operators

Inputs and outputs

Controllability

Observability

The Smith form of a polynomial matrix $U \in \mathbb{R}^{p \times p}[\xi]$ is nonsingular if $\operatorname{det}(U) \in \mathbb{R}[\xi]$ is not the zero polynomial.

The Smith form of a polynomial matrix
$U \in \mathbb{R}^{p \times p}[\xi]$ is nonsingular if $\operatorname{det}(U) \in \mathbb{R}[\xi]$ is not the zero polynomial.

In general, if $U \in \mathbb{R}^{\mathrm{p} \times \mathrm{P}}[\xi]$ is nonsingular, then U^{-1} is a matrix of rational functions.

The Smith form of a polynomial matrix

$U \in \mathbb{R}^{p \times p}[\xi]$ is nonsingular if $\operatorname{det}(U) \in \mathbb{R}[\xi]$ is not the zero polynomial.

In general, if $U \in \mathbb{R}^{\mathrm{p} \times \mathrm{p}}[\xi]$ is nonsingular, then \boldsymbol{U}^{-1} is a matrix of rational functions.
$U \in \mathbb{R}^{\mathrm{p} \times \mathrm{p}}[\xi]$ is unimodular if $\boldsymbol{U}^{-1} \in \mathbb{R}^{\mathrm{p} \times \mathrm{p}}[\xi]$. Equivalent with $\operatorname{det}(U)=c$, with $c \in \mathbb{R}, c \neq 0$.

The Smith form of a polynomial matrix
Let $R \in \mathbb{R}^{p \times w}[\xi]$. There exist unimodular matrices $U \in \mathbb{R}^{\mathbf{p} \times \mathrm{p}}[\xi]$ and $V \in \mathbb{R}^{w \times w}[\xi]$ such that

$$
U R V=\left[\begin{array}{cc}
\operatorname{diag}\left(\delta_{i}\right)_{i=1, \ldots, r} & 0_{r \times(w-r)} \\
0_{(\mathrm{p}-r) \times r} & 0_{(\mathrm{p}-r) \times(\mathrm{w}-\mathrm{r})}
\end{array}\right]
$$

with δ_{i} monic, $i=1, \ldots, r$, and such that δ_{i} divides $\delta_{i+1}, i=1, \ldots, r$.

The Smith form of a polynomial matrix

The Smith form of a polynomial matrix
Let $R \in \mathbb{R}^{p \times w}[\xi]$. There exist unimodular matrices $U \in \mathbb{R}^{\mathbf{p} \times \mathrm{p}}[\xi]$ and $V \in \mathbb{R}^{w \times w}[\xi]$ such that

$$
U R V=\underbrace{\left[\begin{array}{cc}
\operatorname{diag}\left(\delta_{i}\right)_{i=1, \ldots, r} & 0_{r \times(w-r)} \\
\mathbf{0}_{(\mathrm{p}-r) \times r} & \mathbf{0}_{(\mathrm{p}-\mathrm{x}) \times(\mathrm{w}-\mathrm{r})}
\end{array}\right]}_{=: \Delta}
$$

with δ_{i} monic, $i=1, \ldots, r$, and such that δ_{i} divides $\delta_{i+1}, i=1, \ldots, r$.
Δ is the Smith form of R, and δ_{i} the i-th invariant polynomial of R. r equals the rank of $R(\xi)$.

The Smith form of a polynomial matrix
Let $R \in \mathbb{R}^{p \times w}[\xi]$. There exist unimodular matrices $U \in \mathbb{R}^{\mathbf{p} \times \mathrm{p}}[\xi]$ and $V \in \mathbb{R}^{w \times w}[\xi]$ such that

$$
U R V=\underbrace{\left[\begin{array}{cc}
\operatorname{diag}\left(\delta_{i}\right)_{i=1, \ldots, r} & \mathbf{0}_{r \times(\mathrm{w}-\mathrm{r})} \\
\mathbf{0}_{(\mathrm{p}-r) \times r} & \mathbf{0}_{(\mathrm{p}-\mathrm{r}) \times(\mathrm{w}-\mathrm{r})}
\end{array}\right]}_{=: \Delta}
$$

with δ_{i} monic, $i=1, \ldots, r$, and such that δ_{i} divides $\delta_{i+1}, i=1, \ldots, r$.
Δ is the Smith form of R, and δ_{i} the i-th invariant polynomial of R. r equals the rank of $R(\xi)$.
R is unimodular iff $\delta_{i}=1, i=1, \ldots, r$.

The Smith form of a polynomial matrix
Let $R \in \mathbb{R}^{p \times w}[\xi]$. There exist unimodular matrices $\boldsymbol{U} \in \mathbb{R}^{\mathrm{p} \times \mathrm{p}}[\xi]$ and $V \in \mathbb{R}^{\mathbf{w} \times \mathrm{w}}[\xi]$ such that

$$
U R V=\underbrace{\left[\begin{array}{cc}
\operatorname{diag}\left(\delta_{i}\right)_{i=1, \ldots, \mathrm{r}} & \mathbf{0}_{\mathrm{r} \times(\mathrm{w}-\mathrm{r})} \\
\mathbf{0}_{(\mathrm{p}-\mathrm{r}) \times \mathrm{r}} & \mathbf{0}_{(\mathrm{p}-\mathrm{r}) \times(\mathrm{w}-\mathrm{r})}
\end{array}\right]}_{=: \Delta}
$$

with δ_{i} monic, $i=1, \ldots, r$, and such that δ_{i} divides $\delta_{i+1}, i=1, \ldots, r$.
Δ is the Smith form of R, and δ_{i} the i-th invariant polynomial of R. r equals the rank of $R(\xi)$.
R is unimodular iff $\delta_{i}=1, i=1, \ldots, r$.
$\operatorname{det}(R)$ is the product of the diagonal elements of Δ.

Outline

Kernel and image representations

The Smith form

Surjectivity/injectivity of polynomial differential operators

Inputs and outputs

Controllability

Observability

Surjectivity

¿When is $P\left(\frac{d}{d t}\right): \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right) \rightarrow \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{g}}\right)$ surjective?

Surjectivity

¿When is $P\left(\frac{d}{d t}\right): \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right) \rightarrow \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{g}}\right)$ surjective?
¿Given arbitrary $g \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{g}}\right)$, is there $\boldsymbol{w} \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathbf{w}}\right)$ s.t. $P\left(\frac{d}{d t}\right) \boldsymbol{w}=\boldsymbol{g}$?

Surjectivity

¿When is $P\left(\frac{d}{d t}\right): \mathbb{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right) \rightarrow \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{g}}\right)$ surjective?
¿Given arbitrary $g \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{g}}\right)$, is there $\boldsymbol{w} \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathbf{w}}\right)$ s.t. $P\left(\frac{d}{d t}\right) \boldsymbol{w}=\boldsymbol{g}$?

Scalar case: given arbitrary $g \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R})$, there exists w such that

$$
p\left(\frac{d}{d t}\right) w=g
$$

if and only if $p \neq 0$. Just integrate LHS!

Surjectivity

¿When is $P\left(\frac{d}{d t}\right): \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right) \rightarrow \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\boldsymbol{q}}\right)$ surjective?
¿Given arbitrary $g \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{g}}\right)$, is there $\boldsymbol{w} \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathbf{w}}\right)$ s.t. $P\left(\frac{d}{d t}\right) \boldsymbol{w}=\boldsymbol{g}$?

If $P \in \mathbb{R}^{w \times w}[\xi]$ is unimodular, i.e. invertible in $\mathbb{R}^{w \times w}[\xi]$, then $w:=P\left(\frac{d}{d t}\right)^{-1} g$!

Surjectivity

¿When is $P\left(\frac{d}{d t}\right): \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right) \rightarrow \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\boldsymbol{q}}\right)$ surjective?
¿Given arbitrary $g \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{g}}\right)$, is there $\boldsymbol{w} \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\boldsymbol{w}}\right)$ s.t. $P\left(\frac{d}{d t}\right) \boldsymbol{w}=\boldsymbol{g}$?

General case: use Smith form of $P=U \Delta V$

$$
P\left(\frac{d}{d t}\right) w=U\left(\frac{d}{d t}\right) \Delta\left(\frac{d}{d t}\right) V\left(\frac{d}{d t}\right) w=g
$$

Surjectivity

¿When is $P\left(\frac{d}{d t}\right): \mathbb{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right) \rightarrow \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{g}}\right)$ surjective?
¿Given arbitrary $g \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{g}}\right)$, is there $\boldsymbol{w} \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathbf{w}}\right)$ s.t. $P\left(\frac{d}{d t}\right) \boldsymbol{w}=g$?

General case: use Smith form of $P=U \Delta V$:

$$
\begin{aligned}
P\left(\frac{d}{d t}\right) w & =U\left(\frac{d}{d t}\right) \Delta\left(\frac{d}{d t}\right) \underbrace{V\left(\frac{d}{d t}\right) w}_{=: w^{\prime}} \\
& =U\left(\frac{d}{d t}\right) \Delta\left(\frac{d}{d t}\right) w^{\prime}=g
\end{aligned}
$$

Surjectivity

¿When is $P\left(\frac{d}{d t}\right): \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right) \rightarrow \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\boldsymbol{q}}\right)$ surjective?
¿Given arbitrary $g \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{g}}\right)$, is there $\boldsymbol{w} \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\boldsymbol{w}}\right)$ s.t. $P\left(\frac{d}{d t}\right) \boldsymbol{w}=\boldsymbol{g}$?

Given g, solution w exists iff solution w^{\prime} to

$$
\Delta\left(\frac{d}{d t}\right) w^{\prime}=g^{\prime}
$$

exists, with $g^{\prime}:=U\left(\frac{d}{d t}\right)^{-1} g$

Surjectivity

¿When is $P\left(\frac{d}{d t}\right): \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right) \rightarrow \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{g}}\right)$ surjective?
¿Given arbitrary $g \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{g}}\right)$, is there $\boldsymbol{w} \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\boldsymbol{w}}\right)$ s.t. $P\left(\frac{d}{d t}\right) \boldsymbol{w}=\boldsymbol{g}$?

Given g, solution w exists iff solution w^{\prime} to

$$
\Delta\left(\frac{d}{d t}\right) w^{\prime}=g^{\prime}
$$

exists, with $g^{\prime}:=U\left(\frac{d}{d t}\right)^{-1} g$
g^{\prime} arbitrary, because $\boldsymbol{U}\left(\frac{d}{d t}\right)$ bijective and g arbitrary

Surjectivity

¿When is $P\left(\frac{d}{d t}\right): \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right) \rightarrow \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{g}}\right)$ surjective?
¿Given arbitrary $g \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{g}}\right)$, is there $\boldsymbol{w} \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\boldsymbol{w}}\right)$ s.t. $P\left(\frac{d}{d t}\right) \boldsymbol{w}=\boldsymbol{g}$?

Given g, solution w exists iff solution w^{\prime} to

$$
\Delta\left(\frac{d}{d t}\right) w^{\prime}=g^{\prime}
$$

exists, with $g^{\prime}:=U\left(\frac{d}{d t}\right)^{-1} g$
iw scalar problems $\delta_{i}\left(\frac{d}{d t}\right) w_{i}^{\prime}=g_{i}^{\prime}$!

Surjectivity

¿When is $P\left(\frac{d}{d t}\right): \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right) \rightarrow \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\boldsymbol{q}}\right)$ surjective?
¿Given arbitrary $g \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{g}}\right)$, is there $\boldsymbol{w} \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\boldsymbol{w}}\right)$ s.t. $P\left(\frac{d}{d t}\right) \boldsymbol{w}=\boldsymbol{g}$?

Given g, solution w exists iff solution w^{\prime} to

$$
\Delta\left(\frac{d}{d t}\right) w^{\prime}=g^{\prime}
$$

exists, with $g^{\prime}:=U\left(\frac{d}{d t}\right)^{-1} g$
iw scalar problems $\delta_{i}\left(\frac{d}{d t}\right) w_{i}^{\prime}=g_{i}^{\prime}!$
Always solvable as long as $\delta_{i} \neq 0 . .$.

Surjectivity

¿When is $P\left(\frac{d}{d t}\right): \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right) \rightarrow \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{g}}\right)$ surjective?
¿Given arbitrary $g \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{g}}\right)$, is there $\boldsymbol{w} \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathbf{w}}\right)$ s.t. $\boldsymbol{P}\left(\frac{d}{d t}\right) \boldsymbol{w}=\boldsymbol{g}$?

We proved
$P\left(\frac{d}{d t}\right) w=g$ solvable for all g
iff
P has full row rank as a polynomial matrix

Injectivity
$¿ w$ solves $P\left(\frac{d}{d t}\right) w=g$. When is it the only one?

Injectivity

¿w solves $P\left(\frac{d}{d t}\right) w=g$. When is it the only one?
Scalar case: assuming w satisfies

$$
p\left(\frac{d}{d t}\right) w=g
$$

such w is unique iff $p=1$. Sufficiency is evident. Necessity holds since otherwise ker $\left(\boldsymbol{p}\left(\frac{d}{d t}\right)\right) \neq\{0\}$.

Injectivity

$¿ w$ solves $P\left(\frac{d}{d t}\right) w=g$. When is it the only one?
General case: Use Smith form of $P=U \Delta V$ to write

$$
\Delta\left(\frac{d}{d t}\right) w^{\prime}=g^{\prime}
$$

with $w^{\prime}:=V\left(\frac{d}{d t}\right) w, g^{\prime}:=\boldsymbol{U}\left(\frac{d}{d t}\right)^{-1} g$

Injectivity

¿w solves $P\left(\frac{d}{d t}\right) w=g$. When is it the only one?
General case: Use Smith form of $P=U \Delta V$ to write

$$
\Delta\left(\frac{d}{d t}\right) w^{\prime}=g^{\prime}
$$

with $w^{\prime}:=V\left(\frac{d}{d t}\right) w, g^{\prime}:=\boldsymbol{U}\left(\frac{d}{d t}\right)^{-1} g$
Scalar equation $\delta_{i}\left(\frac{d}{d t}\right) w_{i}^{\prime}=g_{i}^{\prime}$ has only one solution iff $\delta_{i}=1$

Injectivity

¿w solves $P\left(\frac{d}{d t}\right) w=g$. When is it the only one?

We proved

$$
w \text { is the only solution to } P\left(\frac{d}{d t}\right) w=g
$$

iff
all nonzero invariant polynomials of P are unity
$¿ w$ solves $P\left(\frac{d}{d t}\right) w=g$. When is it the only one?

We proved

$$
w \text { is the only solution to } P\left(\frac{d}{d t}\right) w=g
$$

iff
all nonzero invariant polynomials of P are unity

Equivalently: $P(\lambda)$ has full column rank for all $\lambda \in \mathbb{C}$

Injectivity

¿w solves $P\left(\frac{d}{d t}\right) w=g$. When is it the only one?

We proved

$$
w \text { is the only solution to } P\left(\frac{d}{d t}\right) w=g
$$

iff

all nonzero invariant polynomials of P are unity

If all nonzero invariant polynomials of P are unity, then P admits a left inverse on $\mathfrak{C}^{\infty}(\mathbb{R})$:

$$
P=U\left[\begin{array}{c}
I_{\mathrm{m}} \\
0
\end{array}\right] V \Longrightarrow V^{-1}\left[\begin{array}{ll}
I_{\mathrm{m}} & 0
\end{array}\right] U^{-1} \text { is left inverse }
$$

Summary

- Polynomial differential operator equations;

Summary

- Polynomial differential operator equations;
- Surjectivity: \boldsymbol{P} full row rank over $\mathbb{R}^{\bullet \times \bullet}[\xi]$, as a polynomial matrix

Summary

- Polynomial differential operator equations;
- Surjectivity: \boldsymbol{P} full row rank over $\mathbb{R}^{\bullet \times \bullet}[\xi]$, as a polynomial matrix
- Injectivity: $\boldsymbol{P}(\lambda)$ full column rank for all $\lambda \in \mathbb{C}$, as a matrix over $\mathbb{R}^{\bullet \bullet}$

Outline

Kernel and image representations
 The Smith form
 Surjectivity/injectivity of polynomial differential operators

Inputs and outputs

Controllability

Observability

Free variables

Given $\mathcal{B} \in \mathfrak{L}^{w}$ and $I:=\left\{i_{1}, \ldots, i_{k}\right\} \subseteq\{1, \ldots$, w $\}$, let
$\boldsymbol{\Pi}_{\boldsymbol{l}} \mathcal{B}:=\quad\left\{\left(\boldsymbol{w}_{i_{1}}, \ldots, \boldsymbol{w}_{i_{k}}\right) \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathbf{k}}\right) \mid \exists \boldsymbol{w} \in \mathcal{B}\right.$

$$
\text { s.t. } \left.w=\left(w_{1}, \ldots, w_{i_{1}}, \ldots, w_{i_{k}}, \ldots, w_{w}\right) \in \mathcal{B}\right\}
$$

projection of \mathcal{B} onto the variables $\boldsymbol{w}_{i j}, j=1, \ldots, \mathrm{k}$

Free variables

Given $\mathcal{B} \in \mathfrak{L}^{w}$ and $I:=\left\{i_{1}, \ldots, i_{k}\right\} \subseteq\{1, \ldots$, w $\}$, let
$\boldsymbol{\Pi}_{\boldsymbol{l}} \mathcal{B}:=\quad\left\{\left(\boldsymbol{w}_{i_{1}}, \ldots, \boldsymbol{w}_{i_{k}}\right) \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathbf{k}}\right) \mid \exists \boldsymbol{w} \in \mathcal{B}\right.$

$$
\text { s.t. } \left.w=\left(w_{1}, \ldots, w_{i_{1}}, \ldots, w_{i_{k}}, \ldots, w_{w}\right) \in \mathcal{B}\right\}
$$

projection of \mathcal{B} onto the variables $\boldsymbol{w}_{i j}, \boldsymbol{j}=1, \ldots, \mathrm{k}$
Variables $\boldsymbol{w}_{i j}, \boldsymbol{j}=1, \ldots, \mathrm{k}$ are free if

$$
\Pi_{l} \mathcal{B}=\mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{k}}\right)
$$

Free variables

Example:

$$
p_{1}\left(\frac{d}{d t}\right) w_{1}+p_{2}\left(\frac{d}{d t}\right) w_{2}+p_{3}\left(\frac{d}{d t}\right) w_{3}=0
$$

Assume $p_{i} \neq 0, i=1, \ldots, 3$.
Let $I=\{1\}$; since $\left[p_{2}(\xi) \quad p_{3}(\xi)\right]$ is full row rank, for every $w_{1} \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R})$ there exist w_{2}, w_{3} satisfying equation.
w_{1} is free.

Free variables

Example:

$$
p_{1}\left(\frac{d}{d t}\right) w_{1}+p_{2}\left(\frac{d}{d t}\right) w_{2}+p_{3}\left(\frac{d}{d t}\right) w_{3}=0
$$

Assume $p_{i} \neq 0, i=1, \ldots, 3$.
Let $I=\{1\}$; since $\left[p_{2}(\xi) p_{3}(\xi)\right]$ is full row rank, for every $w_{1} \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R})$ there exist w_{2}, w_{3} satisfying equation.
w_{1} is free.
w_{1}, w_{2} (and w_{2}, w_{3}, and w_{1}, w_{3}) are also free.

Maximally free sets

Let $I=\left\{i_{1}, \ldots, i_{k}\right\} \subseteq\{1, \ldots, w\}$. The variables $\boldsymbol{w}_{i_{1}}, \ldots, \boldsymbol{w}_{\boldsymbol{i}_{\mathrm{k}}}$ form a maximally free set if

- they are free; and
- for every $I^{\prime}=\left\{i_{1}^{\prime}, \ldots, i_{\mathrm{k}}^{\prime}\right\} \underset{\neq}{\subset}\{1, \ldots$, w $\}$ such that $I \subset I^{\prime}$ it holds

$$
\Pi_{l^{\prime}} \mathcal{B} \underset{\neq}{\subset} \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\left|I^{\prime}\right|}\right)
$$

Maximally free sets

Let $I=\left\{i_{1}, \ldots, i_{k}\right\} \subseteq\{1, \ldots, w\}$. The variables $\boldsymbol{w}_{i_{1}}, \ldots, \boldsymbol{w}_{i_{\mathrm{k}}}$ form a maximally free set if

- they are free; and
- for every $I^{\prime}=\left\{i_{1}^{\prime}, \ldots, i_{\mathrm{k}}^{\prime}\right\} \underset{\neq}{\subset}\{1, \ldots$, w $\}$ such that $I \subset I^{\prime}$ it holds

$$
\Pi_{I^{\prime}} \mathcal{B} \subset \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\left|I^{\prime}\right|}\right)
$$

Maximally free: it's free, and any added variable is not

Maximally free sets

Example:

$$
p_{1}\left(\frac{d}{d t}\right) w_{1}+p_{2}\left(\frac{d}{d t}\right) w_{2}+p_{3}\left(\frac{d}{d t}\right) w_{3}=0
$$

Assume $p_{i} \neq 0, i=1, \ldots, 3$.

Maximally free sets

Example:

$$
p_{1}\left(\frac{d}{d t}\right) w_{1}+p_{2}\left(\frac{d}{d t}\right) w_{2}+p_{3}\left(\frac{d}{d t}\right) w_{3}=0
$$

Assume $p_{i} \neq 0, i=1, \ldots, 3$.
w_{1} (and w_{2}, and w_{3}) is free, but not maximally so.

Maximally free sets

Example:

$$
p_{1}\left(\frac{d}{d t}\right) w_{1}+p_{2}\left(\frac{d}{d t}\right) w_{2}+p_{3}\left(\frac{d}{d t}\right) w_{3}=0
$$

Assume $p_{i} \neq 0, i=1, \ldots, 3$.
w_{1} (and w_{2}, and w_{3}) is free, but not maximally so.
$\left\{w_{1}, w_{2}\right\}$ (and $\left\{w_{2}, w_{3}\right\}$, and $\left\{w_{1}, w_{3}\right\}$) are maximally free.

Maximally free sets

Example:

$$
p_{1}\left(\frac{d}{d t}\right) w_{1}+p_{2}\left(\frac{d}{d t}\right) w_{2}+p_{3}\left(\frac{d}{d t}\right) w_{3}=0
$$

Assume $p_{i} \neq 0, i=1, \ldots, 3$.
w_{1} (and w_{2}, and w_{3}) is free, but not maximally so.
$\left\{w_{1}, w_{2}\right\}$ (and $\left\{w_{2}, w_{3}\right\}$, and $\left\{w_{1}, w_{3}\right\}$) are maximally free.

Note nonunicity of maximally free sets!

Inputs and outputs

Let $\mathcal{B} \in \mathfrak{L}^{w}$. Assume (if necessary, after permutation of the variables) w partitioned as

$$
w=\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right]
$$

with w_{1} a set of maximally free variables.
Then w_{1} are inputs and w_{2} outputs.

Inputs and outputs

Let $\mathcal{B} \in \mathfrak{L}^{w}$. Assume (if necessary, after permutation of the variables) w partitioned as

$$
w=\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right]
$$

with w_{1} a set of maximally free variables.
Then w_{1} are inputs and w_{2} outputs.
Example: for $p_{1}\left(\frac{d}{d t}\right) w_{1}+p_{2}\left(\frac{d}{d t}\right) w_{2}+p_{3}\left(\frac{d}{d t}\right) w_{3}=0$ and assuming $p_{i} \neq 0$ for $i=1, \ldots, 3$, we can choose

- w_{1}, w_{2} or
- w_{2}, w_{3} or
- w_{1}, w_{3}
as inputs.

Remarks

- Nonunicity an issue? What about (linear) resistors

$$
\mathcal{B}=\{(V, I) \mid V=R \cdot I\} ?
$$

Is it voltage- or current-controlled?

Remarks

- Nonunicity an issue? What about (linear) resistors

$$
\mathcal{B}=\{(V, I) \mid V=R \cdot I\} ?
$$

Is it voltage- or current-controlled?

- 'Causality’ an issue? What about

$$
w_{1}=\frac{d}{d t} w_{2} ?
$$

Don't w_{1} and w_{2} 'happen' at the same time?

Remarks

- Nonunicity an issue? What about (linear) resistors

$$
\mathcal{B}=\{(V, I) \mid V=R \cdot I\} ?
$$

Is it voltage- or current-controlled?

- 'Causality’ an issue? What about

$$
w_{1}=\frac{d}{d t} w_{2} ?
$$

Don't w_{1} and w_{2} 'happen' at the same time?

- 'Smoothness' may be relevant...

Input-output representations

$$
\mathcal{B}=\left\{(u, y) \left\lvert\, P\left(\frac{d}{d t}\right) y=Q\left(\frac{d}{d t}\right) u\right.\right\}
$$

with P square and nonsingular. Then y is output and u is input.

Input-output representations

$$
\mathcal{B}=\left\{(u, y) \left\lvert\, P\left(\frac{d}{d t}\right) y=Q\left(\frac{d}{d t}\right) u\right.\right\}
$$

with P square and nonsingular. Then y is output and u is input.

Surjectivity of $P\left(\frac{d}{d t}\right) \Longrightarrow u$ is free.

Input-output representations

$$
\mathcal{B}=\left\{(u, y) \left\lvert\, P\left(\frac{d}{d t}\right) y=Q\left(\frac{d}{d t}\right) u\right.\right\}
$$

with P square and nonsingular. Then \boldsymbol{y} is output and u is input.

Surjectivity of $P\left(\frac{d}{d t}\right) \Longrightarrow \boldsymbol{u}$ is free.
u maximally free: add one component of y to those of u, resulting set satisfies differential equation \Longrightarrow it is not free.

Input-output representations

Let $\mathcal{B} \in \mathfrak{L}^{\mathrm{w}}$. There exists (possibly after permuting components) a partition of $w=(u, y)$ and $P \in \mathbb{R}^{\mathbf{y} \times \mathrm{y}}[\xi]$ nonsingular, $Q \in \mathbb{R}^{\mathrm{Y} \times u}[\xi]$ such that

$$
\mathcal{B}=\left\{(u, y) \left\lvert\, P\left(\frac{d}{d t}\right) y=Q\left(\frac{d}{d t}\right) u\right.\right\}
$$

The partition can be chosen so that $P^{-1} Q$ is proper.

Input-output representations

Let $\mathcal{B} \in \mathfrak{L}^{\mathbf{w}}$. There exists (possibly after permuting components) a partition of $w=(u, y)$ and $P \in \mathbb{R}^{y \times y}[\xi]$ nonsingular, $Q \in \mathbb{R}^{\mathrm{Y} \times u}[\xi]$ such that

$$
\mathcal{B}=\left\{(u, y) \left\lvert\, P\left(\frac{d}{d t}\right) y=Q\left(\frac{d}{d t}\right) u\right.\right\}
$$

The partition can be chosen so that $P^{-1} Q$ is proper.
Proof: Assume w.l.o.g. that $\mathcal{B}=\operatorname{ker} R\left(\frac{d}{d t}\right)$ with R of full row rank p.
Since R of full row rank, there exists a nonsingular submatrix P.
For $P^{-1} Q$ proper, select P to be a maximal determinantal degree (nonsingular) submatrix of R.

Example

$$
\begin{aligned}
F & m_{1} \frac{d^{2} w_{1}}{d t^{2}}+c_{1}\left(\frac{d}{d t} w_{1}-\frac{d}{d t} w_{2}\right)+k_{1}\left(w_{1}-w_{2}\right)-F=0
\end{aligned}
$$

¿What is an 'input', and what an 'output' in this case?

Example

¿What is an 'input', and what an 'output' in this case?
Any selection of a 2×2 nonsingular submatrix of R yields output variables- the rest is inputs

Example

¿What is an 'input', and what an 'output' in this case?
Any selection of a 2×2 nonsingular submatrix of R yields output variables- the rest is inputs

$$
R(\xi)=\left[\begin{array}{ccc}
m_{1} \xi^{2}+c_{1} \xi+k_{1} & -c_{1} \xi-k_{1} & -1 \\
-c_{1} \xi-k_{1} & m_{2} \xi^{2}+\left(c_{1}+c_{2}\right) \xi+k_{1}+k_{2} & 0
\end{array}\right]
$$

Example

¿What is an 'input', and what an 'output' in this case?
Any selection of a 2×2 nonsingular submatrix of R yields output variables- the rest is inputs

$$
\boldsymbol{R}(\xi)=\left[\begin{array}{ccc}
m_{1} \xi^{2}+c_{1} \xi+k_{1} & -c_{1} \xi-k_{1} & -\mathbf{1} \\
-c_{1} \xi-k_{1} & m_{2} \xi^{2}+\left(c_{1}+c_{2}\right) \xi+k_{1}+k_{2} & 0
\end{array}\right]
$$

w_{1} and w_{2} outputs, F input; $\boldsymbol{P}^{\boldsymbol{- 1}} \boldsymbol{Q}$ strictly proper

Example

¿What is an 'input', and what an 'output' in this case?
Any selection of a 2×2 nonsingular submatrix of R yields output variables- the rest is inputs

$$
\boldsymbol{R}(\xi)=\left[\begin{array}{ccc}
m_{1} \xi^{2}+c_{1} \xi+k_{1} & -c_{1} \xi-k_{1} & -1 \\
-c_{1} \xi-k_{1} & m_{2} \xi^{2}+\left(c_{1}+c_{2}\right) \xi+k_{1}+k_{2} & 0
\end{array}\right]
$$

w_{1} and F outputs, w_{2} input; $P^{-1} Q$ not proper

Example

¿What is an 'input', and what an 'output' in this case?
Any selection of a 2×2 nonsingular submatrix of R yields output variables- the rest is inputs

$$
\boldsymbol{R}(\xi)=\left[\begin{array}{ccc}
m_{1} \xi^{2}+c_{1} \xi+\boldsymbol{k}_{1} & -c_{1} \xi-k_{1} & -1 \\
-\boldsymbol{c}_{1} \xi-\boldsymbol{k}_{1} & \boldsymbol{m}_{2} \xi^{2}+\left(c_{1}+c_{2}\right) \xi+\boldsymbol{k}_{1}+\boldsymbol{k}_{2} & 0
\end{array}\right]
$$

w_{2} and F outputs, w_{1} input; $P^{-1} Q$ proper

Remarks

- Notion of transfer function, dependent on input/output partition;

Remarks

- Notion of transfer function, dependent on input/output partition;
- Number of outputs fixed, output cardinality $\mathrm{p}(\mathcal{B})$;

Remarks

- Notion of transfer function, dependent on input/output partition;
- Number of outputs fixed, output cardinality $p(\mathcal{B})$;
- $p(\mathcal{B})$ equals $\operatorname{rank}(R)$ for every R such that ker $\boldsymbol{R}\left(\frac{d}{d t}\right)=\mathcal{B}$;

Remarks

- Notion of transfer function, dependent on input/output partition;
- Number of outputs fixed, output cardinality $\mathrm{p}(\mathcal{B})$;
- $p(\mathcal{B})$ equals $\operatorname{rank}(R)$ for every R such that $\operatorname{ker} \boldsymbol{R}\left(\frac{d}{d t}\right)=\mathcal{B}$;
- Number of inputs fixed, input cardinality $\mathrm{m}(\mathcal{B})$;

Remarks

- Notion of transfer function, dependent on input/output partition;
- Number of outputs fixed, output cardinality $\mathrm{p}(\mathcal{B})$;
- $p(\mathcal{B})$ equals $\operatorname{rank}(R)$ for every R such that ker $R\left(\frac{d}{d t}\right)=\mathcal{B}$;
- Number of inputs fixed, input cardinality $\mathrm{m}(\mathcal{B})$;
- $\mathrm{m}(\mathcal{B})$ equals $\mathbf{w}-\operatorname{rank}(R)$ for every R such that $\operatorname{ker} \boldsymbol{R}\left(\frac{d}{d t}\right)=\mathcal{B}$.

No inputs: autonomous systems
\mathcal{B} is called autonomous if

$$
\begin{array}{rll}
w_{1}, w_{2} \in \mathcal{B} & \text { and } & \left.w_{1}\right|_{(-\infty, 0]}=\left.w_{2}\right|_{(-\infty, 0]} \\
& \Longrightarrow & w_{1}=w_{2}
\end{array}
$$

No inputs: autonomous systems
\mathcal{B} is called autonomous if

$$
\begin{array}{rll}
w_{1}, w_{2} \in \mathcal{B} & \text { and } & \left.w_{1}\right|_{(-\infty, 0]}=\left.w_{2}\right|_{(-\infty, 0]} \\
& \Longrightarrow & w_{1}=w_{2}
\end{array}
$$

Equivalent with

- $\mathrm{m}(\mathcal{B})=0$ (no inputs);
- there exists $R \in \mathbb{R}^{w \times w}[\xi]$ nonsingular such that $\mathcal{B}=\operatorname{ker} R\left(\frac{d}{d t}\right)$

$$
\begin{array}{r}
m_{1} \frac{d^{2} w_{1}}{d t^{2}}+c_{1}\left(\frac{d}{d t} w_{1}-\frac{d}{d t} w_{2}\right)+k_{1}\left(w_{1}-w_{2}\right)=0 \\
-k_{1} w_{1}+m_{2} \frac{d^{2} w_{2}}{d t^{2}}+c_{2} \frac{d}{d t} w_{2}+c_{1}\left(\frac{d}{d t} w_{2}-\frac{d}{d t} w_{1}\right)+\left(k_{1}+k_{2}\right) w_{2}=0
\end{array}
$$

Example

$$
\underbrace{2}_{c_{1}}
$$

Classical mechanics: motion depends only on 'initial conditions'

Example

$R(\xi)=\left[\begin{array}{cc}m_{1} \xi^{2}+c_{1} \xi+k_{1} & -c_{1} \xi-k_{1} \\ -c_{1} \xi-k_{1} & m_{2} \xi^{2}+\left(c_{1}+c_{2}\right) \xi+k_{1}+k_{2}\end{array}\right]$
R nonsingular \leadsto autonomous system

On autonomous system trajectories

Scalar case:

$$
p\left(\frac{d}{d t}\right) w=0 \Longleftrightarrow w(t)=\sum_{i=1}^{n} \sum_{j=0}^{n_{i}} \alpha_{i j} t^{j} e^{\lambda_{i} t}
$$

where

- n is number of distinct roots of $p(\xi)$;
- λ_{i} is i-th root of $p(\xi)$;
- n_{i} multiplicity of λ_{i};
- $\alpha_{i j} \in \mathbb{C}$.

On autonomous system trajectories

Scalar case:

$$
p\left(\frac{d}{d t}\right) w=0 \Longleftrightarrow w(t)=\sum_{i=1}^{n} \sum_{j=0}^{n_{i}} \alpha_{i j} t^{j} e^{\lambda_{i} t}
$$

where

- n is number of distinct roots of $p(\xi)$;
- λ_{i} is i-th root of $p(\xi)$;
- n_{i} multiplicity of λ_{i};
- $\alpha_{i j} \in \mathbb{C}$.

On autonomous system trajectories

Scalar case:

$$
p\left(\frac{d}{d t}\right) w=0 \Longleftrightarrow w(t)=\sum_{i=1}^{n} \sum_{j=0}^{n_{i}} \alpha_{i j} t^{j} e^{\lambda_{i} t}
$$

where

- n is number of distinct roots of $p(\xi)$;
- λ_{i} is i-th root of $p(\xi)$;
- n_{i} multiplicity of λ_{i};
- $\alpha_{i j} \in \mathbb{C}$.

On autonomous system trajectories

Scalar case:

$$
p\left(\frac{d}{d t}\right) w=0 \Longleftrightarrow w(t)=\sum_{i=1}^{n} \sum_{j=0}^{n_{i}} \alpha_{i j} t^{j} e^{\lambda_{i} t}
$$

where

- n is number of distinct roots of $p(\xi)$;
- λ_{i} is i-th root of $p(\xi)$;
- n_{i} multiplicity of λ_{i};
- $\alpha_{i j} \in \mathbb{C}$.

On autonomous system trajectories

Scalar case:

$$
\boldsymbol{p}\left(\frac{\boldsymbol{d}}{\boldsymbol{d} t}\right) \boldsymbol{w}=\mathbf{0} \Longleftrightarrow \boldsymbol{w}(\boldsymbol{t})=\sum_{i=1}^{n} \sum_{j=0}^{n_{i}} \alpha_{i j} t^{j} e^{\lambda_{i} t}
$$

where

- n is number of distinct roots of $p(\xi)$;
- λ_{i} is i-th root of $p(\xi)$;
- n_{i} multiplicity of λ_{i};
- $\alpha_{i j} \in \mathbb{C}$.

On autonomous system trajectories

Scalar case:

$$
p\left(\frac{d}{d t}\right) w=0 \Longleftrightarrow w(t)=\sum_{i=1}^{n} \sum_{j=0}^{n_{i}} \alpha_{i j} t^{j} e^{\lambda_{i} t}
$$

where

- n is number of distinct roots of $p(\xi)$;
- λ_{i} is i-th root of $p(\xi)$;
- n_{i} multiplicity of λ_{i};
- $\alpha_{i j} \in \mathbb{C}$.
λ_{i} are called characteristic frequencies of p.

On autonomous system trajectories

For w >1, resort to Smith form $R=U \Delta V$:

$$
R\left(\frac{d}{d t}\right) w=0 \Longleftrightarrow \Delta\left(\frac{d}{d t}\right) \underbrace{V\left(\frac{d}{d t}\right) w}_{=: w^{\prime}}=0
$$

On autonomous system trajectories

For w >1, resort to Smith form $R=U \Delta V$:

$$
R\left(\frac{d}{d t}\right) w=0 \Longleftrightarrow \Delta\left(\frac{d}{d t}\right) \underbrace{v\left(\frac{d}{d t}\right) w}_{=: w^{\prime}}=0
$$

$w^{\prime}=\operatorname{col}\left(w_{i}^{\prime}\right)_{i=1, \ldots, w} \in \operatorname{ker} \Delta\left(\frac{d}{d t}\right)$ iff $w_{i}^{\prime} \in \operatorname{ker} \delta_{i}\left(\frac{d}{d t}\right)$
with δ_{i} the i-th invariant polynomial. Scalar case!

On autonomous system trajectories

For w >1, resort to Smith form $R=U \Delta V$:

$$
R\left(\frac{d}{d t}\right) w=0 \Longleftrightarrow \Delta\left(\frac{d}{d t}\right) \underbrace{v\left(\frac{d}{d t}\right) w}_{=: w^{\prime}}=0
$$

$w^{\prime}=\operatorname{col}\left(w_{i}^{\prime}\right)_{i=1, \ldots, w} \in \operatorname{ker} \Delta\left(\frac{d}{d t}\right)$ iff $w_{i}^{\prime} \in \operatorname{ker} \delta_{i}\left(\frac{d}{d t}\right)$
with δ_{i} the i-th invariant polynomial. Scalar case!
Assume for simplicity all roots of $\operatorname{det}(R)$ are simple:

$$
w=V\left(\frac{d}{d t}\right)^{-1} w^{\prime} \Longleftrightarrow w(t)=\sum_{i=1}^{n} \alpha_{i} e^{\lambda_{i} t}
$$

with $\alpha_{i} \in \mathbb{C}^{w}$ such that $R\left(\lambda_{i}\right) \alpha_{i}=0, i=1, \ldots, n$.

Remarks

- Linear combinations of polynomial exponential vector trajectories

$$
\sum_{i=1}^{n} \sum_{j=0}^{n_{i}} \alpha_{i j} t^{j} e^{\lambda_{i} t}
$$

with $\alpha_{i j} \in \mathbb{C}^{\text {w }}$.

Remarks

- Linear combinations of polynomial exponential vector trajectories

$$
\sum_{i=1}^{n} \sum_{j=0}^{n_{i}} \alpha_{i j} t^{j} e^{\lambda_{i} t}
$$

with $\alpha_{i j} \in \mathbb{C}^{\mathrm{w}}$.

- Characteristic frequencies λ_{i} are roots of $\operatorname{det}(R)$.

Remarks

- Linear combinations of polynomial exponential vector trajectories

$$
\sum_{i=1}^{n} \sum_{j=0}^{n_{i}} \alpha_{i j} t^{j} e^{\lambda_{i} t}
$$

with $\alpha_{i j} \in \mathbb{C}^{\mathrm{w}}$.

- Characteristic frequencies λ_{i} are roots of $\operatorname{det}(R)$.
- \mathcal{B} is finite-dimensional subspace of $\mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathbf{w}}\right)$.

Remarks

- Linear combinations of polynomial exponential vector trajectories

$$
\sum_{i=1}^{n} \sum_{j=0}^{n_{i}} \alpha_{i j} t^{j} e^{\lambda_{i} t}
$$

with $\alpha_{i j} \in \mathbb{C}^{w}$.

- Characteristic frequencies λ_{i} are roots of $\operatorname{det}(R)$.
- \mathcal{B} is finite-dimensional subspace of $\mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right)$.
- If real part of λ_{i} is negative, $i=1, \ldots, n$, then \mathcal{B} is asymptotically stable: $\lim _{t \rightarrow \infty} \boldsymbol{w}(\boldsymbol{t})=\mathbf{0} \forall \boldsymbol{w} \in \mathcal{B}$.

Outline

Kernel and image representations
 The Smith form
 Surjectivity/injectivity of polynomial differential operators
 Inputs and outputs

Controllability

Observability

Controllability

\mathcal{B} controllable if for all $w_{1}, w_{2} \in \mathcal{B}$ there exists $w \in \mathcal{B}$ and $T \geq 0$ such that

$$
w(t)=\left\{\begin{array}{lll}
w_{1}(t) & \text { for } & \boldsymbol{t}<\mathbf{0} \\
w_{2}(t) & \text { for } & \boldsymbol{t} \geq \boldsymbol{T}
\end{array}\right.
$$

Controllability

\mathcal{B} controllable if for all $w_{1}, w_{2} \in \mathcal{B}$ there exists $w \in \mathcal{B}$ and $T \geq 0$ such that

$$
w(t)=\left\{\begin{array}{lll}
w_{1}(t) & \text { for } & \boldsymbol{t}<\mathbf{0} \\
w_{2}(t) & \text { for } & \boldsymbol{t} \geq \boldsymbol{T}
\end{array}\right.
$$

Controllability

\mathcal{B} controllable if for all $w_{1}, w_{2} \in \mathcal{B}$ there exists $w \in \mathcal{B}$ and $T \geq 0$ such that

$$
w(t)=\left\{\begin{array}{lll}
w_{1}(t) & \text { for } & t<0 \\
w_{2}(t) & \text { for } & \boldsymbol{t} \geq \boldsymbol{T}
\end{array}\right.
$$

Controllability

\mathcal{B} controllable if for all $w_{1}, w_{2} \in \mathcal{B}$ there exists $w \in \mathcal{B}$ and $T \geq 0$ such that

$$
w(t)=\left\{\begin{array}{lll}
w_{1}(\boldsymbol{t}) & \text { for } & \boldsymbol{t}<\mathbf{0} \\
\boldsymbol{w}_{\mathbf{2}}(\boldsymbol{t}) & \text { for } & \boldsymbol{t} \geq \boldsymbol{T}
\end{array}\right.
$$

Past of any trajectory can be "patched up" with future of any trajectory

Examples

$$
r\left(\frac{d}{d t}\right) w=0
$$

where $0 \neq r \in \mathbb{R}[\xi]$ has degree n.

System autonomous: every solution uniquely determined by 'initial conditions' $\frac{d^{\prime} w}{d t^{\prime}}(t), i=0, \ldots, n-1$, so no patching possible among different trajectories.

Past of trajectory uniquely determines its future.

Examples

Classical state-space system

$$
\begin{aligned}
\frac{d}{d t} x & =A x+B u \\
y & =C x+D u
\end{aligned}
$$

Examples

Classical state-space system

$$
\begin{gathered}
\frac{d}{d t} x=A x+B u \\
y=C x+D u \\
\mathcal{B}_{s}:=\left\{(u, y, x) \mid \text { s.t. } \frac{d}{d t} x=A x+B u, y=C x+D u\right\} \\
\mathcal{B}:=\left\{(u, y) \mid \exists x \text { s.t. } \frac{d}{d t} x=A x+B u, y=C x+D u\right\} \\
\mathcal{B}_{x}:=\left\{x \mid \exists(u, y) \text { s.t. } \frac{d}{d t} x=A x+B u, y=C x+D u\right\}
\end{gathered}
$$

Examples

Classical state-space system

$$
\begin{gathered}
\frac{d}{d t} x=A x+B u \\
y=C x+D u \\
\mathcal{B}_{s}:=\left\{(u, y, x) \mid \text { s.t. } \frac{d}{d t} x=A x+B u, y=C x+D u\right\} \\
\mathcal{B}:=\left\{(u, y) \mid \exists x \text { s.t. } \frac{d}{d t} x=A x+B u, y=C x+D u\right\} \\
\mathcal{B}_{x}:=\left\{x \mid \exists(u, y) \text { s.t. } \frac{d}{d t} x=A x+B u, y=C x+D u\right\}
\end{gathered}
$$

\mathcal{B}_{s} controllable iff \mathcal{B}_{x} controllable $\Longrightarrow \mathcal{B}$ controllable.

Examples

Classical state-space system

$$
\begin{gathered}
\frac{d}{d t} x=A x+B u \\
y=C x+D u \\
\mathcal{B}_{s}:=\left\{(u, y, x) \mid \text { s.t. } \frac{d}{d t} x=A x+B u, y=C x+D u\right\} \\
\mathcal{B}:=\left\{(u, y) \mid \exists x \text { s.t. } \frac{d}{d t} x=A x+B u, y=C x+D u\right\} \\
\mathcal{B}_{x}:=\left\{x \mid \exists(u, y) \text { s.t. } \frac{d}{d t} x=A x+B u, y=C x+D u\right\}
\end{gathered}
$$

\mathcal{B}_{s} controllable iff \mathcal{B}_{X} controllable $\Longrightarrow \mathcal{B}$ controllable.
If \boldsymbol{x} minimal, then \mathcal{B} controllable $\Longrightarrow \mathcal{B}_{s}$ controllable.

Examples

Classical state-space system

$$
\begin{aligned}
\frac{d}{d t} x & =A x+B u \\
y & =C x+D u
\end{aligned}
$$

"State point-controllability": for all $x_{1}, x_{2} \in \mathbb{R}^{n} \exists x \in$ \mathcal{B}_{x} and $T \geq 0$ s.t. $x(0)=x_{0}$ and $x(T)=x_{1}$.

Examples

Classical state-space system

$$
\begin{aligned}
\frac{d}{d t} x & =A x+B u \\
y & =C x+D u
\end{aligned}
$$

"State point-controllability": for all $x_{1}, x_{2} \in \mathbb{R}^{\mathrm{n}} \exists \boldsymbol{x} \in$ \mathcal{B}_{x} and $T \geq 0$ s.t. $x(0)=x_{0}$ and $x(T)=x_{1}$.
If \boldsymbol{x} minimal, then \mathcal{B} controllable iff \mathcal{B}_{s} controllable $\Longleftrightarrow \mathcal{B}_{s}$ state point-controllable.

Algebraic characterization of controllability

$\mathcal{B}=\operatorname{ker} R\left(\frac{d}{d t}\right)$ is controllable

 iff$\operatorname{rank}(R(\lambda))$ is constant for all $\lambda \in \mathbb{C}$

Algebraic characterization of controllability

$\mathcal{B}=\operatorname{ker} \boldsymbol{R}\left(\frac{d}{d t}\right)$ is controllable

iff

$\operatorname{rank}(R(\lambda))$ is constant for all $\lambda \in \mathbb{C}$
Proof: Compute Smith form

$$
R=U\left[\begin{array}{cc}
\Delta & 0 \\
0 & 0
\end{array}\right] V \in \mathbb{R}^{p \times w}[\xi]
$$

$\boldsymbol{U}\left(\frac{d}{d t}\right), \boldsymbol{V}\left(\frac{d}{d t}\right)$ bijective $\Longrightarrow \operatorname{ker} \boldsymbol{R}\left(\frac{d}{d t}\right)$ controllable iff $\operatorname{ker} \Delta\left(\frac{d}{d t}\right)$ is.

Algebraic characterization of controllability

$$
\mathcal{B}=\operatorname{ker} R\left(\frac{d}{d t}\right) \text { is controllable }
$$

iff
$\operatorname{rank}(R(\lambda))$ is constant for all $\lambda \in \mathbb{C}$
Proof: Compute Smith form

$$
R=U\left[\begin{array}{cc}
\Delta & 0 \\
0 & 0
\end{array}\right] V \in \mathbb{R}^{p \times w}[\xi]
$$

$\boldsymbol{U}\left(\frac{d}{d t}\right), \boldsymbol{V}\left(\frac{d}{d t}\right)$ bijective $\Longrightarrow \operatorname{ker} \boldsymbol{R}\left(\frac{d}{d t}\right)$ controllable iff $\operatorname{ker} \Delta\left(\frac{d}{d t}\right)$ is.

Change variables $w \leadsto w^{\prime}:=V\left(\frac{d}{d t}\right) w$, define $\mathcal{B}^{\prime}:=V\left(\frac{d}{d t}\right) \mathcal{B}=\operatorname{ker} \Delta\left(\frac{d}{d t}\right)$.

Algebraic characterization of controllability

$\mathcal{B}=\operatorname{ker} R\left(\frac{d}{d t}\right)$ is controllable

iff
 $\operatorname{rank}(R(\lambda))$ is constant for all $\lambda \in \mathbb{C}$

Proof: Last $\mathrm{p}-\operatorname{rank}(R)$ trajectories of $\mathcal{B}^{\prime}=\operatorname{ker} \Delta\left(\frac{d}{d t}\right)$ are free.
First $\operatorname{rank}(R)$ ones patchable if and only if $\delta_{i}=1$.

Example

Case 1: $C R_{C} \neq \frac{L}{R_{L}}$

$$
\begin{aligned}
\left(\frac{R_{C}}{R_{L}}\right. & \left.+\left(1+\frac{R_{C}}{R_{L}}\right) C R_{C} \frac{d}{d t}+C R_{C} \frac{L}{R_{L}} \frac{d^{2}}{d t^{2}}\right) V_{\text {externalport }} \\
& =\left(1+C R_{C} \frac{d}{d t}\right)\left(1+\frac{L}{R_{L}} \frac{d}{d t}\right) R_{C} l_{\text {externalport }}
\end{aligned}
$$

Example

Case 1: $C R_{C} \neq \frac{L}{R_{L}}$

$$
\begin{aligned}
\left(\frac{R_{C}}{R_{L}}\right. & \left.+\left(1+\frac{R_{C}}{R_{L}}\right) C R_{C} \frac{d}{d t}+C R_{C} \frac{L}{R_{L}} \frac{d^{2}}{d t^{2}}\right) V_{\text {externalport }} \\
& =\left(1+C R_{C} \frac{d}{d t}\right)\left(1+\frac{L}{R_{L}} \frac{d}{d t}\right) R_{C} l_{\text {externalport }}
\end{aligned}
$$

¿Is system controllable?

Example

Case 1: $C R_{C} \neq \frac{L}{R_{L}}$

$$
\begin{aligned}
\left(\frac{R_{C}}{R_{L}}\right. & \left.+\left(1+\frac{R_{C}}{R_{L}}\right) C R_{C} \frac{d}{d t}+C R_{C} \frac{L}{R_{L}} \frac{d^{2}}{d t^{2}}\right) V_{\text {externalport }} \\
& =\left(1+C R_{C} \frac{d}{d t}\right)\left(1+\frac{L}{R_{L}} \frac{d}{d t}\right) R_{C} l_{\text {externalport }}
\end{aligned}
$$

¿Is system controllable?
$\left[\left(\frac{R_{C}}{R_{L}}+\left(1+\frac{R_{C}}{R_{L}}\right) C R_{C} \xi+C R_{C} \frac{L}{R_{L}} \xi^{2}\right)-\left(1+C R_{C} \xi\right)\left(1+\frac{L}{R_{L}} \xi\right) R_{C}\right]$
Are there common roots among the two polynomials?

Example

Case 1: $C R_{C} \neq \frac{L}{R_{L}}$

$$
\begin{aligned}
\left(\frac{R_{C}}{R_{L}}\right. & \left.+\left(1+\frac{R_{C}}{R_{L}}\right) C R_{C} \frac{d}{d t}+C R_{C} \frac{L}{R_{L}} \frac{d^{2}}{d t^{2}}\right) V_{\text {externalport }} \\
& =\left(1+C R_{C} \frac{d}{d t}\right)\left(1+\frac{L}{R_{L}} \frac{d}{d t}\right) R_{C} l_{\text {externalport }}
\end{aligned}
$$

¿Is system controllable?
$\left[\left(\frac{R_{C}}{R_{L}}+\left(1+\frac{R_{C}}{R_{L}}\right) C R_{C} \xi+C R_{C} \frac{L}{R_{L}} \xi^{2}\right)-\left(1+C R_{C} \xi\right)\left(1+\frac{L}{R_{L}} \xi\right) R_{C}\right]$
Are there common roots among the two polynomials?
No \Longrightarrow system is controllable

Example

Case 2: $C R_{C}=\frac{L}{R_{L}}$

$$
\left(\frac{R_{C}}{R_{L}}+C R_{C} \frac{d}{d t}\right) V_{\text {externalport }}=\left(1+C R_{C} \frac{d}{d t}\right) R_{C} l_{\text {externalport }}
$$

Example

Case 2: $C R_{C}=\frac{L}{R_{L}}$

$$
\left(\frac{R_{C}}{R_{L}}+C R_{C} \frac{d}{d t}\right) V_{\text {externalport }}=\left(1+C R_{C} \frac{d}{d t}\right) R_{C} l_{\text {externalport }}
$$

¿Is system controllable?

Example

Case 2: $C R_{C}=\frac{L}{R_{L}}$

$$
\left(\frac{R_{C}}{R_{L}}+C R_{C} \frac{d}{d t}\right) v_{\text {externalport }}=\left(1+C R_{C} \frac{d}{d t}\right) R_{C} l_{\text {externalport }}
$$

¿Is system controllable?

$$
\left[\frac{R_{C}}{R_{L}}+C R_{C} \xi-\left(1+C R_{C} \xi\right) R_{C}\right]
$$

Are there common roots among the two polynomials?

Example

Case 2: $C R_{C}=\frac{L}{R_{L}}$

$$
\left(\frac{R_{C}}{R_{L}}+C R_{C} \frac{d}{d t}\right) V_{\text {externalport }}=\left(1+C R_{C} \frac{d}{d t}\right) R_{C} l_{\text {externalport }}
$$

¿Is system controllable?

$$
\left[\frac{R_{C}}{R_{L}}+C R_{C} \xi-\left(1+C R_{C} \xi\right) R_{C}\right]
$$

Are there common roots among the two polynomials?
If $R_{C}=R_{L}$ yes \Longrightarrow system is not controllable

Remarks

- $\mathcal{B}=\operatorname{ker} R\left(\frac{d}{d t}\right)$, with $R \in \mathbb{R}^{w \times w}[\xi]$ nonsingular, is controllable $\Longleftrightarrow R$ is unimodular $\Longleftrightarrow \mathcal{B}=\{0\}$

Remarks

- $\mathcal{B}=\operatorname{ker} R\left(\frac{d}{d t}\right)$, with $R \in \mathbb{R}^{w \times w}[\xi]$ nonsingular, is controllable $\Longleftrightarrow \boldsymbol{R}$ is unimodular $\Longleftrightarrow \mathcal{B}=\{0\}$
- Rank constancy test generalization of 'Hautus test' for state-space systems.

Remarks

- $\mathcal{B}=\operatorname{ker} R\left(\frac{d}{d t}\right)$, with $R \in \mathbb{R}^{w \times w}[\xi]$ nonsingular, is controllable $\Longleftrightarrow \boldsymbol{R}$ is unimodular $\Longleftrightarrow \mathcal{B}=\{0\}$
- Rank constancy test generalization of 'Hautus test' for state-space systems.
- Trajectory-, not representation-based definition as in state-space framework.

Decomposition of behaviors

Let $\mathcal{B}=\operatorname{ker} \boldsymbol{R}\left(\frac{d}{d t}\right)$, with $R \in \mathbb{R}^{p \times w}[\xi]$ full row rank. There exist $\mathcal{B}_{\text {aut }} \subseteq \mathcal{B}$ and $\mathcal{B}_{\text {contr }} \subseteq \mathcal{B}$ such that

$$
\mathcal{B}=\mathcal{B}_{\text {aut }} \oplus \mathcal{B}_{\text {contr }}
$$

with $\mathcal{B}_{\text {contr }}$ controllable and $\mathcal{B}_{\text {aut }}$ autonomous.

Decomposition of behaviors

Let $\mathcal{B}=\operatorname{ker} \boldsymbol{R}\left(\frac{d}{d t}\right)$, with $R \in \mathbb{R}^{p \times w}[\xi]$ full row rank. There exist $\mathcal{B}_{\text {aut }} \subseteq \mathcal{B}$ and $\mathcal{B}_{\text {contr }} \subseteq \mathcal{B}$ such that

$$
\mathcal{B}=\mathcal{B}_{\text {aut }} \oplus \mathcal{B}_{\text {contr }}
$$

with $\mathcal{B}_{\text {contr }}$ controllable and $\mathcal{B}_{\text {aut }}$ autonomous.
Proof: Write Smith form of $R=\boldsymbol{U}\left[\begin{array}{ll}D & \mathbf{0}_{\mathrm{p} \times(\mathrm{w}-\mathrm{p})}\end{array}\right] \boldsymbol{V}$, define $\mathcal{B}^{\prime}:=V\left(\frac{d}{d t}\right) \mathcal{B}$.

Decomposition of behaviors

Let $\mathcal{B}=\operatorname{ker} \boldsymbol{R}\left(\frac{d}{d t}\right)$, with $R \in \mathbb{R}^{p \times w}[\xi]$ full row rank. There exist $\mathcal{B}_{\text {aut }} \subseteq \mathcal{B}$ and $\mathcal{B}_{\text {contr }} \subseteq \mathcal{B}$ such that

$$
\mathcal{B}=\mathcal{B}_{\text {aut }} \oplus \mathcal{B}_{\text {contr }}
$$

with $\mathcal{B}_{\text {contr }}$ controllable and $\mathcal{B}_{\text {aut }}$ autonomous.
Proof: Write Smith form of $R=\boldsymbol{U}\left[\begin{array}{ll}D \quad \mathbf{0}_{\mathrm{p} \times(\mathrm{w}-\mathrm{p})}\end{array}\right] \boldsymbol{V}$, define $\mathcal{B}^{\prime}:=V\left(\frac{d}{d t}\right) \mathcal{B}$.

$$
\boldsymbol{w}^{\prime} \in \mathcal{B}^{\prime} \Longleftrightarrow \boldsymbol{w}^{\prime}=\left[\begin{array}{l}
\boldsymbol{w}_{1}^{\prime} \\
\boldsymbol{w}_{2}^{\prime}
\end{array}\right]
$$

with $w_{1}^{\prime} \in \operatorname{ker} D\left(\frac{d}{d t}\right), w_{2}^{\prime}$ free.

Decomposition of behaviors

Let $\mathcal{B}=\operatorname{ker} \boldsymbol{R}\left(\frac{d}{d t}\right)$, with $R \in \mathbb{R}^{p \times w}[\xi]$ full row rank. There exist $\mathcal{B}_{\text {aut }} \subseteq \mathcal{B}$ and $\mathcal{B}_{\text {contr }} \subseteq \mathcal{B}$ such that

$$
\mathcal{B}=\mathcal{B}_{\text {aut }} \oplus \mathcal{B}_{\text {contr }}
$$

with $\mathcal{B}_{\text {contr }}$ controllable and $\mathcal{B}_{\text {aut }}$ autonomous.

$$
w^{\prime} \in \mathcal{B}^{\prime} \Longleftrightarrow \boldsymbol{w}^{\prime}=\left[\begin{array}{l}
\mathbf{w}_{1}^{\prime} \\
\mathbf{w}_{2}^{\prime}
\end{array}\right]
$$

with $w_{1}^{\prime} \in \operatorname{ker} D\left(\frac{d}{d t}\right), w_{2}^{\prime}$ free.
If $D=I_{\mathrm{p}} \Longrightarrow$ take $\mathcal{B}_{\text {contr }}^{\prime}=\mathcal{B}^{\prime}, \mathcal{B}_{\text {aut }}^{\prime}=\{0\}$.

Decomposition of behaviors

Let $\mathcal{B}=\operatorname{ker} \boldsymbol{R}\left(\frac{d}{d t}\right)$, with $R \in \mathbb{R}^{p \times w}[\xi]$ full row rank. There exist $\mathcal{B}_{\text {aut }} \subseteq \mathcal{B}$ and $\mathcal{B}_{\text {contr }} \subseteq \mathcal{B}$ such that

$$
\mathcal{B}=\mathcal{B}_{\text {aut }} \oplus \mathcal{B}_{\text {contr }}
$$

with $\mathcal{B}_{\text {contr }}$ controllable and $\mathcal{B}_{\text {aut }}$ autonomous.

$$
w^{\prime} \in \mathcal{B}^{\prime} \Longleftrightarrow \boldsymbol{w}^{\prime}=\left[\begin{array}{l}
\mathbf{w}_{1}^{\prime} \\
\mathbf{w}_{2}^{\prime}
\end{array}\right]
$$

with $w_{1}^{\prime} \in \operatorname{ker} D\left(\frac{d}{d t}\right), w_{2}^{\prime}$ free.
If $\boldsymbol{D} \neq \boldsymbol{I}_{\mathrm{p}}$, define

$$
\begin{aligned}
\mathcal{B}_{\text {contr }}^{\prime} & =\left\{\left[\begin{array}{c}
\boldsymbol{w}_{1}^{\prime} \\
\mathbf{0}
\end{array}\right] \left\lvert\, \boldsymbol{w}_{1}^{\prime} \in \operatorname{ker} \boldsymbol{D}\left(\frac{\boldsymbol{d}}{\boldsymbol{d} t}\right)\right.\right\} \\
\mathcal{B}_{\mathrm{aut}}^{\prime} & =\left\{\left.\left[\begin{array}{c}
0 \\
\mathbf{w}_{2}^{\prime}
\end{array}\right] \right\rvert\, \boldsymbol{w}_{2}^{\prime} \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathbf{w}-\mathrm{p}}\right)\right\} .
\end{aligned}
$$

Decomposition of behaviors

Let $\mathcal{B}=\operatorname{ker} \boldsymbol{R}\left(\frac{d}{d t}\right)$, with $R \in \mathbb{R}^{p \times w}[\xi]$ full row rank. There exist $\mathcal{B}_{\text {aut }} \subseteq \mathcal{B}$ and $\mathcal{B}_{\text {contr }} \subseteq \mathcal{B}$ such that

$$
\mathcal{B}=\mathcal{B}_{\text {aut }} \oplus \mathcal{B}_{\text {contr }}
$$

with $\mathcal{B}_{\text {contr }}$ controllable and $\mathcal{B}_{\text {aut }}$ autonomous.

$$
w^{\prime} \in \mathcal{B}^{\prime} \Longleftrightarrow \boldsymbol{w}^{\prime}=\left[\begin{array}{l}
\mathbf{w}_{1}^{\prime} \\
\mathbf{w}_{2}^{\prime}
\end{array}\right]
$$

with $w_{1}^{\prime} \in \operatorname{ker} D\left(\frac{d}{d t}\right), w_{2}^{\prime}$ free.
Then transform back to \boldsymbol{w} variables.

Image representations and controllability
There exists $M \in \mathbb{R}^{\mathbf{w} \times \bullet}[\xi]$ such that $\mathcal{B}=\operatorname{im} \boldsymbol{M}\left(\frac{d}{d t}\right)$
if and only if \mathcal{B} is controllable.

Image representations and controllability

There exists $M \in \mathbb{R}^{w \times \bullet}[\xi]$ such that $\mathcal{B}=\operatorname{im} \boldsymbol{M}\left(\frac{d}{d t}\right)$
if and only if \mathcal{B} is controllable.
Only if: Full behavior is controllable, since has kernel representation induced by

$$
\left[\begin{array}{ll}
I_{w} & -M(\xi)]
\end{array}\right.
$$

with constant rank over \mathbb{C}.

Image representations and controllability

There exists $M \in \mathbb{R}^{\boldsymbol{w} \times \bullet}[\xi]$ such that $\mathcal{B}=\operatorname{im} \boldsymbol{M}\left(\frac{d}{d t}\right)$

if and only if \mathcal{B} is controllable.

If: Take \boldsymbol{R} for minimal kernel representation of \mathcal{B}. Apply constancy of rank to conclude Smith form of R is $R=\boldsymbol{U}\left[\begin{array}{ll}\boldsymbol{I}_{\mathrm{p}} & \mathbf{0}_{\mathrm{p} \times \mathrm{m}}\end{array}\right] \boldsymbol{V}$.

Image representations and controllability
There exists $M \in \mathbb{R}^{\mathbf{w} \times \bullet}[\xi]$ such that $\mathcal{B}=\operatorname{im} \boldsymbol{M}\left(\frac{d}{d t}\right)$
if and only if \mathcal{B} is controllable.
If: Take \boldsymbol{R} for minimal kernel representation of \mathcal{B}. Apply constancy of rank to conclude Smith form of R is $R=\boldsymbol{U}\left[\begin{array}{ll}I_{p} & \mathbf{O}_{\mathrm{p} \times \mathrm{m}}\end{array}\right] \boldsymbol{V}$.
Now $U\left(\frac{d}{d t}\right)\left[\begin{array}{ll}I_{p} & 0_{p \times m}\end{array}\right] \underbrace{\boldsymbol{V}\left(\frac{d}{d t}\right) w}_{=: w^{\prime}}=0$ if and only if
$\left[\begin{array}{ll}I_{p} & \mathbf{0}_{\mathrm{p} \times \mathrm{m}}\end{array}\right] \boldsymbol{w}^{\prime}=\mathbf{0}$ if and only if

$$
\boldsymbol{w}^{\prime}=\left[\begin{array}{c}
\mathbf{0}_{\mathrm{p}} \\
\boldsymbol{I}_{\mathrm{m}}
\end{array}\right] \ell
$$

with $\ell \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{m}}\right)$ free.

Image representations and controllability

There exists $M \in \mathbb{R}^{\boldsymbol{w} \times \bullet}[\xi]$ such that $\mathcal{B}=\operatorname{im} \boldsymbol{M}\left(\frac{d}{d t}\right)$ if and only if \mathcal{B} is controllable.

Consequently,

$$
w^{\prime}=V\left(\frac{d}{d t}\right) w=\left[\begin{array}{l}
\mathbf{0}_{\mathrm{p}} \\
\boldsymbol{I}_{\mathrm{m}}
\end{array}\right] \ell
$$

from which

$$
w=V\left(\frac{d}{d t}\right)^{-1}\left[\begin{array}{c}
0_{\mathrm{p}} \\
I_{\mathrm{m}}
\end{array}\right] \ell=: M\left(\frac{d}{d t}\right) \ell
$$

Image representations and controllability

There exists $M \in \mathbb{R}^{\boldsymbol{w} \times \bullet}[\xi]$ such that $\mathcal{B}=\operatorname{im} \boldsymbol{M}\left(\frac{d}{d t}\right)$ if and only if \mathcal{B} is controllable.

Consequently,

$$
w^{\prime}=V\left(\frac{d}{d t}\right) w=\left[\begin{array}{l}
\mathbf{0}_{\mathrm{p}} \\
\boldsymbol{I}_{\mathrm{m}}
\end{array}\right] \ell
$$

from which

$$
w=V\left(\frac{d}{d t}\right)^{-1}\left[\begin{array}{l}
0_{\mathrm{p}} \\
I_{\mathrm{m}}
\end{array}\right] \ell=: M\left(\frac{d}{d t}\right) \ell
$$

Note also that M can be chosen with $m(B)$ columns.

Outline

Kernel and image representations

The Smith form

Surjectivity/injectivity of polynomial differential operators

Inputs and outputs

Controllability

Observability

Observability

Observability

¿Can w_{2} be determine knowing w_{1} and the system dynamics?

Observability

¿Can w_{2} be determine knowing w_{1} and the system dynamics?
$\mathcal{B} \in \mathfrak{L}^{\mathbf{w}}, \boldsymbol{w}=\left(w_{1}, w_{2}\right) . w_{2}$ is observable from w_{1} if

$$
\left(w_{1}, w_{2}^{\prime}\right),\left(w_{1}, w_{2}^{\prime \prime}\right) \in \mathcal{B} \Longrightarrow w_{2}^{\prime}=w_{2}^{\prime \prime}
$$

Algebraic characterization of observability

Assume \mathcal{B} represented in kernel form as

$$
R_{1}\left(\frac{d}{d t}\right) w_{1}+R_{2}\left(\frac{d}{d t}\right) w_{2}=0
$$

Algebraic characterization of observability
Assume \mathcal{B} represented in kernel form as

$$
R_{1}\left(\frac{d}{d t}\right) w_{1}+R_{2}\left(\frac{d}{d t}\right) w_{2}=0
$$

¿Does

$$
R_{2}\left(\frac{d}{d t}\right) w_{2}=\underbrace{-R_{1}\left(\frac{d}{d t}\right) w_{1}}_{\text {known }}
$$

have a unique solution w_{2} ?

Algebraic characterization of observability
Assume \mathcal{B} represented in kernel form as

$$
R_{1}\left(\frac{d}{d t}\right) w_{1}+R_{2}\left(\frac{d}{d t}\right) w_{2}=0
$$

¿Does

$$
R_{2}\left(\frac{d}{d t}\right) w_{2}=\underbrace{-R_{1}\left(\frac{d}{d t}\right) w_{1}}_{\text {known }}
$$

have a unique solution w_{2} ?
It has iff $\boldsymbol{R}_{\mathbf{2}}\left(\frac{d}{d t}\right)$ injective iff $\boldsymbol{R}_{\mathbf{2}}(\lambda)$ has full column rank for all $\lambda \in \mathbb{C}$

Algebraic characterization of observability
Assume \mathcal{B} represented in kernel form as

$$
R_{1}\left(\frac{d}{d t}\right) w_{1}+R_{2}\left(\frac{d}{d t}\right) w_{2}=0
$$

w_{2} observable from w_{1}
if and only if
$\boldsymbol{R}_{\mathbf{2}}(\lambda)$ has full column rank for all $\lambda \in \mathbb{C}$
2

Example

$$
m_{c_{1}}
$$

¿Is w_{2} observable from w_{1} ?

Example

¿ls w_{2} observable from w_{1} ?
¿Can one determine w_{2}
from knowledge of w_{1} and the system dynamics?

Example

(

¿Is w_{2} observable from w_{1} ?

$$
\left[\begin{array}{c}
m_{1} \frac{d^{2}}{d t^{2}}+c_{1} \frac{d}{d t}+k_{1} \\
-c_{1} \frac{d}{d t}-k_{1}
\end{array}\right] w_{1}=\left[\begin{array}{c}
c_{1} \frac{d}{d t}+k_{1} \\
-m_{2} \frac{d^{2}}{d t^{2}}-\left(c_{2}+c_{1}\right) \frac{d}{d t}-\left(k_{1}+k_{2}\right)
\end{array}\right] w_{2}
$$

Example

(
¿Is w_{2} observable from w_{1} ?

$$
\left[\begin{array}{c}
m_{1} \frac{d^{2}}{d t^{2}}+c_{1} \frac{d}{d t}+k_{1} \\
-c_{1} \frac{d}{d t}-k_{1}
\end{array}\right] w_{1}=\left[\begin{array}{c}
c_{1} \frac{d}{d t}+k_{1} \\
-m_{2} \frac{d^{2}}{d t^{2}}-\left(c_{2}+c_{1}\right) \frac{d}{d t}-\left(k_{1}+k_{2}\right)
\end{array}\right] w_{2}
$$

Is polynomial differential operator on RHS injective?

Example

组
¿Is w_{2} observable from w_{1} ?

$$
\left[\begin{array}{c}
m_{1} \frac{d^{2}}{d t^{2}}+c_{1} \frac{d}{d t}+k_{1} \\
-c_{1} \frac{d}{d t}-k_{1}
\end{array}\right] w_{1}=\left[\begin{array}{c}
c_{1} \frac{d}{1 d t}+k_{1} \\
-m_{2} \frac{d^{2}}{d t^{2}}-\left(c_{2}+c_{1}\right) \frac{d}{d t}-\left(k_{1}+k_{2}\right)
\end{array}\right] w_{2}
$$

Is polynomial differential operator on RHS injective?

$$
\left[\begin{array}{c}
c_{1} \lambda+k_{1} \\
-m_{2} \lambda^{2}-\left(c_{2}+c_{1}\right) \lambda-\left(k_{1}+k_{2}\right)
\end{array}\right]
$$

has full column rank $\forall \lambda \in \mathbb{C}(\Longleftrightarrow$ observability $)$ iff

$$
-m_{2} k_{1}^{2}+c_{1} c_{2} k_{1}-k_{2} c_{2}^{2} \neq 0
$$

Remarks

- Rank constancy test generalization of 'Hautus test' for state-space systems.

Remarks

- Rank constancy test generalization of 'Hautus test' for state-space systems.
- Trajectory-, not representation-based definition as in state-space framework.

Summary

- Polynomial differential operators and their properties are key;

Summary

- Polynomial differential operators and their properties are key;
- Inputs: free variables;

Summary

- Polynomial differential operators and their properties are key;
- Inputs: free variables;
- Autonomous systems;

Summary

- Polynomial differential operators and their properties are key;
- Inputs: free variables;
- Autonomous systems;
- Controllability and observability;

Summary

- Polynomial differential operators and their properties are key;
- Inputs: free variables;
- Autonomous systems;
- Controllability and observability;
- Algebraic characterizations;

Summary

- Polynomial differential operators and their properties are key;
- Inputs: free variables;
- Autonomous systems;
- Controllability and observability;
- Algebraic characterizations;
- Image representations.

