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Part I: Representations
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Kernel and image representations
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Definition
A linear differential system is a triple (R, R¥, B) with B
e linear

wi, Wo € Band aq,as € R = ayWy + aaWr € B
e time-invariant
weBandTt c R=oc"weB
where (c"w) (t) = w(t + 7) forall t € R

- differential i.e. B is the solution set of a system
of differential equations.

B consists of the solutions
of a system of linear, constant-coefficient
differential equations.
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Polynomial differential operators

Differential systems can be effectively
represented by one-variable polynomial matrices

Linear differential behavior B with:
o wvariables w;, i =1,...,w
o differentiated at most L times
e in g equations
represented as the solution space of

d
R(E)w=0
<m>w

R(S) = Ro-l— R1€+...+RL€L

where



Polynomial differential operators

Differential systems can be effectively
represented by one-variable polynomial matrices

B={W|R(%>w=0}=kerﬁ'<gt)

where

R (%) : €°(R,R*) — €=(R,R9)



Polynomial differential operators

Differential systems can be effectively
represented by one-variable polynomial matrices

B={W|R<%>W=0}=kerﬁ'<gt)

where

R <%> : €°(R,R*) — €=(R,R9)

Differential equations as differential operator equations



Outline

The Smith form



The Smith form of a polynomial matrix

U € Re*P[£] is nonsingular if det(U) € R[£] is not the
zero polynomial.
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The Smith form of a polynomial matrix

U € Re*P[£] is nonsingular if det(U) € R[£] is not the
zero polynomial.

In general, if U € RP*?[¢] is nonsingular, then U~ is a
matrix of rational functions.

U € RP*P[¢] is unimodular if U= € RP*P[¢].
Equivalent with det(U) = ¢, withc € R, ¢ # 0.



The Smith form of a polynomial matrix

Let R € RP*¥[£]. There exist unimodular matrices
U € RP*P[¢] and V € R**¥[£] such that

URV = diag(di)i=1,...,r OrX(W—r)
Op-—r)xxr  Op—z)x(w—)

with §; monic, i = 1,...,r, and such that §; di-
vides i1, i =1,...,r.
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URV = diag(di)i=1,...,r OrX(W—r)
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with 6; monic, i = 1,...,r, and such that §; di-
vides §j 1, i =1,...,r.

A is the Smith form of R, and §; the i-th invariant
polynomial of R. r equals the rank of R(¢&).

R is unimodulariff §; =1,i=1,...,r.



The Smith form of a polynomial matrix

Let R € RP*¥[£]. There exist unimodular matrices
U € RP*P[¢] and V € R**¥[£] such that

URV = diag(di)i=1,...,r OrX(W—r)

Oz Op-s)x(w—2)|

-~

with 6; monic, i = 1,...,r, and such that §; di-
vides §j 1, i =1,...,r.

A is the Smith form of R, and §; the i-th invariant
polynomial of R. r equals the rank of R(¢&).

R is unimodulariff §; =1,i=1,...,r.

det(R) is the product of the diagonal elements of A.



Outline

Surjectivity/injectivity of polynomial differential operators
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Surjectivity
¢Whenis P (4) : €2°(R,RY) — €>°(R,R9) surjective?

¢Given arbitrary g € €>=(R, R9),
is there w € €>°(R,R¥) s.t. P ($) w = g?

Scalar case: given arbitrary g € €>°(R, R), there
exists w such that

()=
plg)w=9

if and only if p # 0. Just integrate LHS!



Surjectivity
¢Whenis P (4) : €2°(R,RY) — €>°(R,R9) surjective?

¢Given arbitrary g € €>=(R, R9),
is there w € €>°(R,R¥) s.t. P ($) w = g?

If P € R¥*¥[{] is unimodular, i.e. invertible in R¥*<¥[£],
then w := P (%)_1 g!
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Surjectivity
¢Whenis P (4) : €2°(R,RY) — €>°(R,R9) surjective?

¢Given arbitrary g € €>=(R, R9),
is there w € €>°(R,R¥) s.t. P ($) w = g?

General case: use Smith formof P = UAYV:

(G - 0(2)(2) V()

=w’

- u(3)(3)wms
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¢Given arbitrary g € €>=(R, R9),
is there w € €>°(R,R¥) s.t. P ($) w = g?

Given g, solution w exists iff solution w’ to

o(3)w=s
dt =9

exists, with g’ := U (%)_1 g
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d
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Surjectivity
¢Whenis P (4) : €2°(R,RY) — €>°(R,R9) surjective?

¢Given arbitrary g € €>=(R, R9),
is there w € €>°(R,R¥) s.t. P ($) w = g?

Given g, solution w exists iff solution w’ to

A(d>w =
dt g

exists, with g’ := U (%)_1 g

jw scalar problems §; () w/ = g;!
Always solvable as long as 4; # O0...



Surjectivity
¢Whenis P (4) : €2°(R,RY) — €>°(R,R9) surjective?

¢Given arbitrary g € €>=(R, R9),
is there w € €>°(R,R¥) s.t. P ($) w = g?

We proved

|a

P (2) w = g solvable for all g
iff

P has full row rank as a polynomial matrix

Q

t



Injectivity

¢w solves P (4) w = g. When is it the only one?



Injectivity

¢w solves P (2) w = g. When is it the only one?

Scalar case: assuming w satisfies

(@) -
plg)w=9

such w is unique iff p = 1. Sufficiency is evident.
Necessity holds since otherwise ker (p ()) # {0}.



Injectivity

¢w solves P (4) w = g. When is it the only one?

General case: Use Smith form of P = UAYV to write

(3=
dt =9

withw :=V (4w, g :=U (%) g



Injectivity

¢, w solves P (%) w = g. When is it the only one?
General case: Use Smith form of P = UAYV to write
A ( d) Wl — /
dt =9
withw' :=V ($)w, g :=U (%)_1 g

Scalar equation §; () w/ = g/ has only one solution
iff 0; = 1



Injectivity

¢w solves P (4) w = g. When is it the only one?

We proved
w is the only solutionto P ($)w =g
iff
all nonzero invariant polynomials of P are unity



Injectivity

¢w solves P (2) w = g. When is it the only one?

We proved

w is the only solutionto P ($)w =g
iff
all nonzero invariant polynomials of P are unity

Equivalently: P(\) has full column rank forall A € C



Injectivity

¢w solves P (2) w = g. When is it the only one?

We proved

w is the only solutionto P ($)w =g
iff
all nonzero invariant polynomials of P are unity

If all nonzero invariant polynomials of P are unity,
then P admits a left inverse on €>°(R):

L,

P=U{0

} V— V! [k 0] U 'is left inverse
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« Polynomial differential operator equations;
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Summary

« Polynomial differential operator equations;

o Surjectivity: P full row rank over R**°[ £], as a
polynomial matrix

o Injectivity: P()\) full column rank for all A € C, as
a matrix over R®*®



Outline

Inputs and outputs



Free variables
Given B € ¢¥and | := {iy,...,ik} C {1,...,w},let

nB:= {(W,'1,...,Wik) € Q:OO(R,Rk) | dweB
st.w=(w,...,Wi,...,W,...,w,) € B}

projection of 3 onto the variables w;, j =1,...,k



Free variables
Given B € ¢¥and | := {iy,...,ik} C {1,...,w},let

nB:= {(W,'1,...,Wik) € Q:OO(R,Rk) | dweB
st.w=(w,...,Wi,...,W,...,w,) € B}

projection of 3 onto the variables w;, j =1,...,k
Variables w;, j = 1,...,k are free if

nB = €=(R, R¥)



Free variables

Example:

(Gt) P () et s () ws =0
Pilge)WitPe\g)WetPs{g) ™=

Assume p; #0,i=1,...,3.

Let I = {1}; since [p2(§) p3(§)] is full row rank,
for every wy; € €°(R,R) there exist w,, w; satisfying
equation.

w; is free.



Free variables

Example:

(Gt) P () et s () ws =0
Pilge)WitPe\g)WetPs{g) ™=

Assume p; #0,i=1,...,3.

Let I = {1}; since [p2(§) p3(§)] is full row rank,
for every wy; € €°(R,R) there exist w,, w; satisfying
equation.

w; is free.

wy, w, (and w,, ws, and wy, ws) are also free.



Maximally free sets

Let I = {i,...,k} C {1,...,w}. The variables
wi, ..., w, form a maximally free set if

« they are free; and

o forevery I' = {if,..., i} g {1,...,w} such that

I C I it holds
#

n,n - C=(R,RI"



Maximally free sets

Let I = {i,...,k} C {1,...,w}. The variables
wi, ..., w, form a maximally free set if

« they are free; and
o forevery I' = {if,..., i} g {1,...,w} such that
I C I' it holds
#

n,n - C=(R,RI"

Maximally free: it’s free, and any added variable is not



Maximally free sets

Example:
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Maximally free sets

Example:

(Gt) P () et s () ws =0
Pilge)WitPe\g)WetbPs{g) ™=

Assume p; #0,i=1,...,3.
w; (and wsp, and ws) is free, but not maximally so.

{wy, w2} (and {ws, w3}, and {wy, w;}) are maximally
free.



Maximally free sets

Example:

(Gt) P () et s () ws =0
Pilge)WitPe\g)WetbPs{g) ™=

Assume p; #0,i=1,...,3.
w; (and wsp, and ws) is free, but not maximally so.

{wy, w2} (and {ws, w3}, and {wy, w;}) are maximally
free.

Note nonunicity of maximally free sets!



Inputs and outputs

Let B € £¥. Assume (if necessary, after permutation
of the variables) w partitioned as

with w; a set of maximally free variables.

Then w; are inputs and w, outputs.



Inputs and outputs

Let B € £¥. Assume (if necessary, after permutation
of the variables) w partitioned as

with w; a set of maximally free variables.

Then w; are inputs and w, outputs.

Example: for py ($) wi+p2 (&) wa+ps () ws = 0 and
assuming p; #0fori=1,...,3, we can choose

o Wy, W OF
e W>, W3 OF
e Wy, W

as inputs.



Remarks

o Nonunicity an issue? What about (linear)
resistors

B={(V,)|V=R-1}?

Is it voltage- or current-controlled?
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o Nonunicity an issue? What about (linear)
resistors

B={V,)|V=R-I}?
Is it voltage- or current-controlled?

o ‘Causality’ an issue? What about

wy; = —Ww,?
1 dt 2

Don’t w; and w, happen’ at the same time?



Remarks

o Nonunicity an issue? What about (linear)
resistors

B={V,)|V=R-I}?
Is it voltage- or current-controlled?

o ‘Causality’ an issue? What about

wy; = —Ww,?
1 dt 2

Don’t w; and w, happen’ at the same time?

» ’Smoothness’ may be relevant...



Input-output representations

B={wy | P(g)r=0(5)w

with P square and nonsingular. Then y is output
and u is input.
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Surjectivity of P (£) = u is free.



Input-output representations

B={wy | P(g)r=0(5)w

with P square and nonsingular. Then y is output
and u is input.

Surjectivity of P (£) = u is free.

u maximally free: add one component of y to those of
u, resulting set satisfies differential equation —- it is
not free.



Input-output representations

Let B € £¥. There exists (possibly after permuting
components) a partition of w = (u, y) and P € RY*¥[{]
nonsingular, @ € RY**[£] such that

B={wy|P(g)y=0a(5)u

The partition can be chosen so that P—'Q is proper.



Input-output representations

Let B € £¥. There exists (possibly after permuting
components) a partition of w = (u, y) and P € RY*¥[{]
nonsingular, @ € RY**[£] such that

B={wy|P(g)y=0a(5)u

The partition can be chosen so that P—'Q is proper.

Proof: Assume w.l.0.g. that B = ker R (%) with R of
full row rank p.

Since R of full row rank, there exists a nonsingular
submatrix P.

For P—'Q proper, select P to be a maximal
determinantal degree (nonsingular) submatrix of R.



Example

2

dw1+ (
m—— + ¢
e 1

d
—wy —

dt

2w, d
—kywy + mp——= + co—ws + €

dr? dt

d
—Wws | + ky(wg — wp) — F
a 2) 1(wq 2)

dw dw)+(k+k)w
dtz dt1 1 2)W2
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"'1dl + ¢ <1W1 - 1W2> +ki(wy —wp) — F
di? dt dt

kowy + 2 e (dw dw>+(k + ko)w,
— KWy + My ——= + cp— W —wy — —
1" 2dt2 Zd' 2 1 dt 2 dt1 1 2) W2

¢What is an ‘input’, and what an ‘output’ in this case?
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Example

2

'"1dl + ¢ (1W1 - ng) +ki(wy —wp) — F
di? dt dt

kowy + 2 e (dw dw)+(k + ko)w,
— KWy + My ——= + cp— W —wy — —
1" 2dt2 2d' 2 1 dt 2 dt1 1 2) W2

¢What is an ‘input’, and what an ‘output’ in this case?

Any selection of a 2 x 2 nonsingular submatrix of R
yields output variables- the rest is inputs

R(¢) = mé&2 + cié + k —cié — K —1
—ci€ — ki mé?+(cr+c)+ki+k 0

w; and w, outputs, F input; P~'Q strictly proper



Example

2

'"1dl + ¢ (1W1 - ng) +ki(wy —wp) — F
di? dt dt

kowy + 2 e (dw dw)+(k + ko)w,
— KWy + My ——= + cp— W —wy — —
1" 2dt2 2d' 2 1 dt 2 dt1 1 2) W2

¢What is an ‘input’, and what an ‘output’ in this case?

Any selection of a 2 x 2 nonsingular submatrix of R
yields output variables- the rest is inputs

R({) — m152+C1£-|—k1 —C1€—k1 —1
—ci§ — ki mt2+(cr+C)é+ki+k 0

w; and F outputs, w; input; P~'Q not proper



Example

2

'"1dl + ¢ (1W1 - ng) +ki(wy —wp) — F
di? dt dt

kowy + 2 e (dw dw)+(k + ko)w,
— KWy + My ——= + cp— W —wy — —
1" 2dt2 2d' 2 1 dt 2 dt1 1 2) W2

¢What is an ‘input’, and what an ‘output’ in this case?

Any selection of a 2 x 2 nonsingular submatrix of R
yields output variables- the rest is inputs

R(¢) = mE? + ci1€ + ky —cié — K -1
—c1€ — ki me? +(c1+c)é+ki+k 0

w, and F outputs, wy input; P~1Q proper



Remarks

» Notion of transfer function, dependent on
input/output partition;
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Remarks

Notion of transfer function, dependent on
input/output partition;

Number of outputs fixed, output cardinality p(1);

p(B) equals rank(R) for every R such that
ker R ( d) B;

Number of inputs fixed, input cardinality m(1);



Remarks

Notion of transfer function, dependent on
input/output partition;

Number of outputs fixed, output cardinality p(1);

p(B) equals rank(R) for every R such that
ker R ( d) B;

Number of inputs fixed, input cardinality m(1);

m(B) equals w — rank(R) for every R such that
ker R (%) =



No inputs: autonomous systems

B is called autonomous if

Wi, W € B and Wy |(—o0,00= W2 |(—o0,0]
= Wi=W



No inputs: autonomous systems

B is called autonomous if

Wi, W € B and Wy |(—o0,00= W2 |(—o0,0]
= Wi=W

Equivalent with
e m(B) = 0 (no inputs);

« there exists R € R"*¥[¢] nonsingular such that
B =%kerR (%)



k,

H

G

Example

2

dw1+ <
m c
e 1

" ) ( )
—wy — —Wwa ) + k(W — w
f1 f2 1" 2

2w, d d d
—kiwy +mp—2= + o —wo + € (*Wz - *W1) + (ki + k2)w,

dr? dt

dt dt



ky

o

<

(]

Example

2

d’wy d d
m + ¢ (*W1 - oW

dr? dt

dt

) + ki(wy — wp)

2w, d d d
—kiwy +mp—2= + o —wo + € (*Wz - *W1) + (ki + k2)w,

dr? dt dt

dt

Classical mechanics: motion depends only

on ‘initial conditions’



Example

2

. K, d?w d d
! m, N m 4o (—wg — —w | + kg(wg — wp) =
A A RN S o ! tzz 1<d:11 d; 2)
a e —hawy - mp—om - c2 Wy + (EW2—3W1)+(k1+kz)Wz =
R(¢) = me2 + cié + kq —ci§ — Kk
—ci§ — Kk myt? + (¢ + C)¢ + ki + ko

R nonsingular ~»> autonomous system



On autonomous system trajectories

Scalar case:
d n n; )
p (E) w=0<= w(t) = Z_: Z:a,-,-t’ek"‘
i=1 j=0
where

« nis number of distinct roots of p(¢);
« \; is i-th root of p(¢);

o n; multiplicity of \;;

. aj €C.
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On autonomous system trajectories

Scalar case:
d n n; )
p (E) w=0<= w(t) = Z_: Z:a,-,-t’ek"‘
i=1 j=0
where

« nis number of distinct roots of p(¢);
« \; is i-th root of p(¢);

o n; multiplicity of \;;

e ajj € C.



On autonomous system trajectories

Scalar case:

d n n; ) '
p (E) w=0< w(t)=> > a;tieM

i=1 j=0
where
» nis number of distinct roots of p(&);
e A is i-th root of p(&);
o n; multiplicity of \;;
e ajj € C.
Aj are called characteristic frequencies of p.



On autonomous system trajectories
For w > 1, resort to Smith form R = UAYV:

d d d
R| — = Al — |V | — =
(dt) w=0<—= (dt) (dt) w=20
~———

=:w’



On autonomous system trajectories
For w > 1, resort to Smith form R = UAYV:

d d d
R(dt) w=0<«+— (dt) (dt) w=20
\ﬁ,_/

=:w’

d\ . d
w' = col(W;)i=1,.... € ker A (E) it wj € kex 5, (E>

with §; the i-th invariant polynomial. Scalar case!



On autonomous system trajectories
For w > 1, resort to Smith form R = UAYV:

d d d
R(C\w=0—=na(2\v(%\w=

(dt)w 0 (dt) (dt)w 0
— ——

=:w’

d\ . d
w' = col(W;)i=1,.... € ker A (E) it wj € kex 5, (E)

with §; the i-th invariant polynomial. Scalar case!
Assume for simplicity all roots of det(R) are simple:

d\ ™’ 1
w=V|— w <— w(t) = et
(5) =3 e

with «; € C" such that R()\,-)a,- =0,i=1,...,n.
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Remarks

Linear combinations of polynomial exponential
vector trajectories

n n;
Z Z a,-,-tjeA"’
i=1 j=0
with o; € C.
Characteristic frequencies \; are roots of det(R).
B is finite-dimensional subspace of €>°(R, R¥).

If real part of \; is negative,i =1,...,n,then Bis
asymptotically stable: lim;_ . w(f) =0V w € B.



Outline

Controllability



Controllability

B controllable if for all wy, wo, € B there exists w € B
and T > 0 such that

_{w1(t) for t
- t

<0
wo(t) for t>T



Controllability

B controllable if for all wy, wo, € B there exists w € B
and T > 0 such that

W(t)={w1(t) for !
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Controllability

B controllable if for all wy, wo, € B there exists w € B
and T > 0 such that

_ { W1(t) for t
- t

<0
wo(t) for t>T

Past of any trajectory can be “patched up”
with future of any trajectory



Examples

d
il =0
r<dt>w

where 0 # r € R[£] has degree n.

System autonomous: every solution uniquely deter-

mined by ‘initial conditions’ "gt"}’(t), i=0,...,n—1,

so no patching possible among different trajectories.

Past of trajectory uniquely determines its future.
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Examples

Classical state-space system

d
—X
dt

y = Cx+ Du

Ax + Bu

“State point-controllability”: for all x;,x, € R* I x €
Byand T > 0s.t. x(0) = xo and x(T) = x;.

If x minimal, then B controllable iff Bs controllable
<= B; state point-controllable.



Algebraic characterization of controllability
B = ker R (2) is controllable
iff
rank(R(\)) is constant forall A € C



Algebraic characterization of controllability
B = ker R (2) is controllable
iff
rank(R(\)) is constant forall A € C

Proof: Compute Smith form

R=Ug o ver™d

U(2),V(4) bijective = ker R () controllable iff



Algebraic characterization of controllability
B = ker R (2) is controllable
iff
rank(R(\)) is constant forall A € C

Proof: Compute Smith form

A0

Rz“{o 0

|verg

us),vis ) bijective =—> ker R () controllable iff
ker A ( )

Change variables w ~ w’ := V (4) w, define
B :=V (%) B=ker A (%).

Q.|Q_



Algebraic characterization of controllability
B = ker R (2) is controllable
iff
rank(R(\)) is constant forall A € C

Proof: Last p — rank(R) trajectories of
B’ = ker A (2) are free.

First rank(R) ones patchable if and only if §; = 1.
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Example
Case 1: CR; # RLL

Rc Rc d L &
A + 1+ A CRCE + CRCFTL e ) Vexternalport

= (1+CH d) 1+Ld Rcl,
= Cat R, dt Clexternalport

¢ls system controllable?
(% + (1+ %) CRot + CRc-€2)  —(1+ CRcé) (1+ #€) Rel

Are there common roots among the two polynomials?

No — system is controllable
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Case 2: CRc = ~

L

Rc

d d
<FTL + CFICE> Vexternalport = (1 + CRCE) Rclexternalport

¢ls system controllable?



Example

Case 2: CR: = RLL

Re d d
&+ CRc— | Vexternalport = (1 + CRCE) Rclexternalport

¢ls system controllable?
[Be + CRct  — (1 + CRct) R

Are there common roots among the two polynomials?



Example

Case 2: CRc = ~

L

Re d d
&+ CRc— | Vexternalport = (1 + CRCE) Rclexternalport

¢ls system controllable?
[Be + CRct  — (1 + CRct) R
Are there common roots among the two polynomials?

If Rc = R, yes = system is not controllable
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Remarks

B = ker R (), with R € R**[¢] nonsingular, is
controllable <= R is unimodular <—=- B = {0}

» Rank constancy test generalization of ‘Hautus
test’ for state-space systems.

» Trajectory-, not representation-based definition as
in state-space framework.
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There exist B,,: C B and Beonr C B such that

B= Baut @ Bcontr
with B..nr controllable and B,,; autonomous.
Proof: Write Smith formof R= U [D Oyyxw—p)| V,
define B’ := V (4) B.
/ ’ ’ W1,
w eB <— w = [WJ

with wj € ker D (5), w; free.
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Let B = ker R (&), with R € RP>¥[¢] full row rank.
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B = Baut S5 Bcontr

with B..nr controllable and B,,; autonomous.
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Decomposition of behaviors

Let B = ker R (&), with R € RP>¥[¢] full row rank.
There exist B,,: C B and Beonr C B such that

B = Baut S5 Bcontr

with B..nr controllable and B,,; autonomous.

with w] € ker D (5), w; free.
If D # [, define

w; d
5. = {§]1wexern( )

Bl = (| ] | W€ e=@r),



Decomposition of behaviors

Let B = ker R (&), with R € RP>¥[¢] full row rank.
There exist B,,: C B and Beonr C B such that

B = Baut S5 Bcontr

with B..nr controllable and B,,; autonomous.

with w] € ker D (5), w; free.

Then transform back to w variables.
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Image representations and controllability

There exists M € R***[¢] such that B = im M (&)
if and only if B is controllable.

Only if: Full behavior is controllable, since has kernel
representation induced by

[Iw _M(g)]

with constant rank over C.
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Image representations and controllability

There exists M € R***[¢] such that B = im M (&)
if and only if B is controllable.
If. Take R for minimal kernel representation of 5.

Apply constancy of rank to conclude Smith form of R
isR=U[L Oy V.

dt

=:w’

[k Opxn] W = 0if and only if

Now U (&) [k Opxm| V <£> w = 0 if and only if

with £ € €>=°(R, R") free.



Image representations and controllability

There exists M € R"**[¢] such that B = im M ()
if and only if B is controllable.

d 0
w=V|—|w=|/PlZ
(a)w= %]
from which
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Consequently,



Image representations and controllability

There exists M € R***[¢] such that B = im M (&)
if and only if B is controllable.

d 0
w=V|—|w=|/PlZ
(a)w= %]
from which

(3] (3]

Note also that M can be chosen with m(B) columns.

Consequently,
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Observability

w4 N 1)
observed e SYSTEM to-be-deduced
variables variables

¢Can w, be determine knowing w;,
and the system dynamics?

B e £¥, w = (wy, w2). W, is observable from w; if

(W17 W£)7(W17 )€B=>W2_W2
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Algebraic characterization of observability

Assume B represented in kernel form as

d d
R1(dt)w1+R2(dt) w, =0

d d
R = —R, | —
2 (dt) w2 } ! (dt) Wi

v~

cDoes

known

have a unique solution w,?

It has iff R, () injective iff R>(\) has full column rank
forall A € C



Algebraic characterization of observability

Assume B represented in kernel form as

d d
R | — R | — =0
1(dt)W1+ 2(dt)W2
w, observable from w;,

if and only if
R>(\) has full column rank for all A € C



m,

k,

H—

(]

Example

2

d“w- d d
my—=L 4o (*W1 - *Wz) + ki(wy — wp)
dt dt

dr?

—kywy + —22+ —wy +
wy +m Co—Wo + €
1W1 20 2 W2 o

(d

we dW
at 2 at !

)+t + e



Example

2

m,

k,

aph dr2
. 2w, d d d
2 —k1w1+m2F+CZEw2+c1 (EWZ_EM

éls w, observable from w,?

d“w- d d
my—=L 4o <7W1 - *Wz) + ki(wy — wp)
dt dt

)+t + e



Example

2

k k, d“wy " (d d ) +a( ) 0
\ N m——+0¢ ( —w — —Ww wy — W =
” N m, a2 Lipe T\~ a™ 1(Wq 2
¢ B d?w, d d d
> —k1W1+m2F+CZEW2+C1 (EWZ—EM + (ki +hk)w, = 0

éls w, observable from w;?

¢ Can one determine w,
from knowledge of w; and the system dynamics?

L X kl
A m,




Example

2

& k mdw1+c<dw d )+k( )
— —w — — W, wy — W,
m AN a2 Lipe T\~ a™ 1(wy 2
¢ . 2w, d d d
2 —k1W1+M2F+CZEW2+C1 (EWZ_EW1)+(k1+kZ)W2

éls w, observable from w,?

d
Cig + ki

Wi = w:
T emE (et e)d — (ki + k)|

d2
m1w+01%+k1

il —k

_1dt_ 1




Example

2

k, ky dw1+c<dw dw)+k(w w,)
] > m Zwy — — — =
m AN m, A " g™~ g™ 1(w4 2
¢ B d?w, d d d
> —k1W1+m2F+CZEW2+C1 (EWZ— EW1 + (ki + k)w, =

éls w, observable from w;?

d
Cig + ki

d? d
Mgz +Cig + ki - j W
—Magz — (C2+ C1) 5 — (ki + k2)

wy =
d
_017 — k1

Is polynomial differential operator on RHS injective?



Example

2

k, k,

d“w- d d
my—=L 4o (*W1 - *Wz) + ki(wy — wp)
dt dt

" " HAH a2
¢ B d?w, d d d
2 —k1W1+M2F+CZEW2+C1 (awz—aw1)+(k1+kz)w2 =

éls w, observable from w;?

d
Cig + ki

m1“]—,22+01%+k1 -
—mpd; — (24 ¢1) % — (ki + k2)

w{ =
d 1
—C4 7 k1

[17]

Is polynomial differential operator on RHS injective?

Ci\ + k1
—muA2 — (¢ + ¢1)\ — (ki + ko)

has full column rank V A € C (<= observability) iff

—m2k12 + c1C6ky — kzcg ;é 0
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Summary
« Polynomial differential operators and their
properties are key;
« Inputs: free variables;
o Autonomous systems;
» Controllability and observability;
» Algebraic characterizations;

« Image representations.
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