Robust Control

Carsten Scherer
Delft Center for Systems and Control (DCSC)
Delft University of Technology
The Netherlands

Outline

- Nonsingularity of Matrix Families
- LTI Robust Stability Analysis
- Time-Varying Uncertainties
- Robust Stability and Performance with Multipliers
- Controller Synthesis
- A Glimpse at Nonlinear Uncertainties and IQCs

Nonsingularity of Families of Matrices

The following linear algebra problem is fundamental in robust control:
Let us be given $M \in \mathbb{C}^{n \times m}$ and $\boldsymbol{V} \subset \mathbb{C}^{m \times n}$. Decide whether

$$
\begin{equation*}
\operatorname{det}(I-M V) \neq 0 \text { for all } V \in \boldsymbol{V} \tag{NS}
\end{equation*}
$$

Nonsingularity of Families of Matrices

The following linear algebra problem is fundamental in robust control:
Let us be given $M \in \mathbb{C}^{n \times m}$ and $\boldsymbol{V} \subset \mathbb{C}^{m \times n}$. Decide whether

$$
\begin{equation*}
\operatorname{det}(I-M V) \neq 0 \text { for all } V \in \boldsymbol{V} \tag{NS}
\end{equation*}
$$

- Recall classical fact for unit ball $\boldsymbol{V}=\left\{V \in \mathbb{C}^{m \times n}: \sigma_{\max }(V) \leq 1\right\}$: Condition (NS) holds if and only if $\sigma_{\max }(M)<1$.

Nonsingularity of Families of Matrices

The following linear algebra problem is fundamental in robust control:
Let us be given $M \in \mathbb{C}^{n \times m}$ and $\boldsymbol{V} \subset \mathbb{C}^{m \times n}$. Decide whether

$$
\begin{equation*}
\operatorname{det}(I-M V) \neq 0 \text { for all } V \in \boldsymbol{V} \tag{NS}
\end{equation*}
$$

- Recall classical fact for unit ball $\boldsymbol{V}=\left\{V \in \mathbb{C}^{m \times n}: \sigma_{\max }(V) \leq 1\right\}$: Condition (NS) holds if and only if $\sigma_{\max }(M)<1$.
- If $\sigma(\boldsymbol{V}) \leq 1$ we can hence infer that $\sigma_{\max }(M)<1$ is sufficient for (NS). This small-gain condition is easy to check, but conservative.

Nonsingularity of Families of Matrices

The following linear algebra problem is fundamental in robust control:
Let us be given $M \in \mathbb{C}^{n \times m}$ and $\boldsymbol{V} \subset \mathbb{C}^{m \times n}$. Decide whether

$$
\begin{equation*}
\operatorname{det}(I-M V) \neq 0 \text { for all } V \in \boldsymbol{V} \tag{NS}
\end{equation*}
$$

- Recall classical fact for unit ball $\boldsymbol{V}=\left\{V \in \mathbb{C}^{m \times n}: \sigma_{\max }(V) \leq 1\right\}$: Condition (NS) holds if and only if $\sigma_{\max }(M)<1$.
- If $\sigma(\boldsymbol{V}) \leq 1$ we can hence infer that $\sigma_{\max }(M)<1$ is sufficient for (NS). This small-gain condition is easy to check, but conservative.
- First goal: Develop more refined computationally verifiable sufficient conditions that take the particular structure of \boldsymbol{V} into account.

Key Idea

Observe that

$$
\operatorname{det}(I-M V) \neq 0 \Longleftrightarrow \text { image }\binom{I}{M} \cap \text { image }\binom{V}{I}=\{0\} .
$$

For non-singularity we hence need to make sure that the graph of M and the inverse graph of V are separated (intersect at 0 only).

Key Idea

Observe that

$$
\operatorname{det}(I-M V) \neq 0 \Longleftrightarrow \text { image }\binom{I}{M} \cap \text { image }\binom{V}{I}=\{0\} .
$$

For non-singularity we hence need to make sure that the graph of M and the inverse graph of V are separated (intersect at 0 only).

Geometrically we guarantee separation if these graphs are located in the strictly negative/positive cone of some Hermitian $P \in \mathbb{C}^{(n+m) \times(n+m)}$ respectively:

- Positive cone of $P:\left\{x \in \mathbb{C}^{n+m}: x^{*} P x \geq 0\right\}$.
- Strictly negative cone of $P:\left\{x \in \mathbb{C}^{n+m}: x^{*} P x<0\right\}$.

Multipliers

Suppose there exists a Hermitian multiplier $P \in \mathbb{C}^{(n+m) \times(n+m)}$ with

$$
\begin{equation*}
\binom{V}{I}^{*} P\binom{V}{I} \succcurlyeq 0 \text { for all } V \in \boldsymbol{V} \tag{POS}
\end{equation*}
$$

and at the same time

$$
\binom{I}{M}^{*} P\binom{I}{M} \prec 0 .
$$

(NS-LMI)

Then $\operatorname{det}(I-M V) \neq 0$ for all $V \in \boldsymbol{V}$.

Multipliers

Suppose there exists a Hermitian multiplier $P \in \mathbb{C}^{(n+m) \times(n+m)}$ with

$$
\begin{equation*}
\binom{V}{I}^{*} P\binom{V}{I} \succcurlyeq 0 \text { for all } V \in \boldsymbol{V} \tag{POS}
\end{equation*}
$$

and at the same time

$$
\binom{I}{M}^{*} P\binom{I}{M} \prec 0 .
$$

(NS-LMI)

Then $\operatorname{det}(I-M V) \neq 0$ for all $V \in \boldsymbol{V}$.

If \boldsymbol{V} is compact it can be shown that iff holds (full block S-procedure).

Multipliers

Suppose there exists a Hermitian multiplier $P \in \mathbb{C}^{(n+m) \times(n+m)}$ with

$$
\begin{equation*}
\binom{V}{I}^{*} P\binom{V}{I} \succcurlyeq 0 \text { for all } V \in \boldsymbol{V} \tag{POS}
\end{equation*}
$$

and at the same time

$$
\binom{I}{M}^{*} P\binom{I}{M} \prec 0 .
$$

(NS-LMI)

Then $\operatorname{det}(I-M V) \neq 0$ for all $V \in \boldsymbol{V}$.

If \boldsymbol{V} is compact it can be shown that iff holds (full block S-procedure).
Very easy to prove! Extensions? How to use in computations?

Proof

Suppose there exists some $V \in \boldsymbol{V}$ for which $I-M V$ is singular.

Proof

Suppose there exists some $V \in V$ for which $I-M V$ is singular. Then there exists a vector $w \neq 0$ such that

$$
(I-M V) w=0 .
$$

Proof

Suppose there exists some $V \in V$ for which $I-M V$ is singular. Then there exists a vector $w \neq 0$ such that

$$
(I-M V) w=0 .
$$

For $z=V w$ we infer $z \neq 0$ and

$$
\binom{z}{w}=\binom{I}{M} z \text { as well as }\binom{z}{w}=\binom{V}{I} w .
$$

Proof

Suppose there exists some $V \in \boldsymbol{V}$ for which $I-M V$ is singular. Then there exists a vector $w \neq 0$ such that

$$
(I-M V) w=0 .
$$

For $z=V w$ we infer $z \neq 0$ and

$$
\binom{z}{w}=\binom{I}{M} z \text { as well as }\binom{z}{w}=\binom{V}{I} w .
$$

Since $z \neq 0$ we obtain
$0>z^{*}\binom{I}{M}^{*} P\binom{I}{M} z=\binom{z}{w}^{*} P\binom{z}{w}=w^{*}\binom{V}{I}^{*} P\binom{V}{I} w \geq 0$
which is a contradiction.

Numerical Implementation

Note that the set of P satisfying (POS) is convex. However this does not help much since this constraint involves infinitely many LMIs.

Key Idea for Computations: Relaxation
 For practically relevant \boldsymbol{V}, try to identify some "nicely described" subclass of all P 's which satisfy (POS).
 Then search in this class of P 's one which also satisfies (NS-LMI).

Recent years have witnessed a whole variety of possibilities along this line, using techniques from convex analysis and real algebraic geometry (Pólya's theorem, sum-of-squares). We only give three examples.

Numerical Implementation

Let us consider the set \boldsymbol{V} of all V with

$$
V=\operatorname{diag}\left(V_{1}, \ldots, V_{p}\right) \text { with } V_{1}, \ldots, V_{p} \in \mathbb{C}^{\bullet} \times \bullet \bullet, \quad \sigma_{\max }(V) \leq 1 .
$$

These matrices admit a diagonal structure with full complex blocks.

Numerical Implementation

Let us consider the set \boldsymbol{V} of all V with

$$
V=\operatorname{diag}\left(V_{1}, \ldots, V_{p}\right) \text { with } V_{1}, \ldots, V_{p} \in \mathbb{C}^{\bullet \times \bullet}, \quad \sigma_{\max }(V) \leq 1
$$

These matrices admit a diagonal structure with full complex blocks.
Repeated Diagonal Multipliers. (POS) is satisfied for all matrices

$$
P=\left(\begin{array}{cc}
-\operatorname{diag}\left(q_{1} I, \ldots, q_{p} I\right) & 0 \\
0 & \operatorname{diag}\left(q_{1} I, \ldots, q_{p} I\right)
\end{array}\right)
$$

with arbitrary real numbers $q_{1}, \ldots, q_{p} \geq 0$.

Numerical Implementation

Let us consider the set \boldsymbol{V} of all V with

$$
V=\operatorname{diag}\left(V_{1}, \ldots, V_{p}\right) \text { with } V_{1}, \ldots, V_{p} \in \mathbb{C}^{\bullet \times \bullet}, \quad \sigma_{\max }(V) \leq 1
$$

These matrices admit a diagonal structure with full complex blocks.

Repeated Diagonal Multipliers. (POS) is satisfied for all matrices

$$
P=\left(\begin{array}{cc}
-\operatorname{diag}\left(q_{1} I, \ldots, q_{p} I\right) & 0 \\
0 & \operatorname{diag}\left(q_{1} I, \ldots, q_{p} I\right)
\end{array}\right)
$$

with arbitrary real numbers $q_{1}, \ldots, q_{p} \geq 0$.

Proof. Just note for $V \in \boldsymbol{V}$ and P as above that

$$
\binom{V}{I}^{*} P\binom{V}{I}=\operatorname{diag}\left(q_{k}\left(I-V_{k}^{*} V_{k}\right)\right) \succcurlyeq 0 .
$$

Numerical Implementation

As we will see, another interesting set V consists of all

$$
V=\operatorname{diag}\left(v_{1} I, \ldots, v_{p} I\right) \text { with } v_{k} \in \mathbb{R}, \quad\left|v_{k}\right| \leq 1, \quad k=1, \ldots, p .
$$

These matrices admit a diagonal structure with real-repeated blocks.

Numerical Implementation

As we will see, another interesting set V consists of all

$$
V=\operatorname{diag}\left(v_{1} I, \ldots, v_{p} I\right) \text { with } v_{k} \in \mathbb{R}, \quad\left|v_{k}\right| \leq 1, \quad k=1, \ldots, p .
$$

These matrices admit a diagonal structure with real-repeated blocks.

Diagonal Multipliers. (POS) is satisfied for all matrices

$$
P=\left(\begin{array}{cc}
-\operatorname{diag}\left(Q_{1}, \ldots, Q_{p}\right) & \operatorname{diag}\left(S_{1}, \ldots, S_{p}\right) \\
\operatorname{diag}\left(S_{1}, \ldots, S_{p}\right)^{T} & \operatorname{diag}\left(Q_{1}, \ldots, Q_{p}\right)
\end{array}\right)
$$

with Hermitian $Q_{1}, \ldots, Q_{p} \succcurlyeq 0$ and skew-Hermitian S_{1}, \ldots, S_{p}.

Numerical Implementation

As we will see, another interesting set V consists of all

$$
V=\operatorname{diag}\left(v_{1} I, \ldots, v_{p} I\right) \text { with } v_{k} \in \mathbb{R}, \quad\left|v_{k}\right| \leq 1, \quad k=1, \ldots, p .
$$

These matrices admit a diagonal structure with real-repeated blocks.

Diagonal Multipliers. (POS) is satisfied for all matrices

$$
P=\left(\begin{array}{cc}
-\operatorname{diag}\left(Q_{1}, \ldots, Q_{p}\right) & \operatorname{diag}\left(S_{1}, \ldots, S_{p}\right) \\
\operatorname{diag}\left(S_{1}, \ldots, S_{p}\right)^{T} & \operatorname{diag}\left(Q_{1}, \ldots, Q_{p}\right)
\end{array}\right)
$$

with Hermitian $Q_{1}, \ldots, Q_{p} \succcurlyeq 0$ and skew-Hermitian S_{1}, \ldots, S_{p}.
Proof. Just note for $V \in \boldsymbol{V}$ and P as above that
$\binom{V}{I}^{*} P\binom{V}{I}=\operatorname{diag}\left(Q_{k}\left(1-v_{k}^{2}\right)+v_{k}\left(S_{k}+S_{k}^{*}\right)\right)=\operatorname{diag}\left(Q_{k}\left(1-v_{k}^{2}\right)\right) \succcurlyeq 0$.

Numerical Implementation

A much larger class of structured matrices can be described as

$$
\boldsymbol{V}=\text { convex } \operatorname{hull}\left\{V_{1}, \ldots, V_{N}\right\} .
$$

Numerical Implementation

A much larger class of structured matrices can be described as

$$
\boldsymbol{V}=\text { convex } \operatorname{hull}\left\{V_{1}, \ldots, V_{N}\right\} .
$$

Full Block Multipliers. (POS) is satisfied for all P with

$$
\binom{I}{0}^{T} P\binom{I}{0} \preccurlyeq 0,\binom{V_{k}}{I}^{T} P\binom{V_{k}}{I} \succcurlyeq 0, \quad k=1, \ldots, N .
$$

Set of multipliers described by finitely many LMI constraints.

Numerical Implementation

A much larger class of structured matrices can be described as

$$
\boldsymbol{V}=\text { convex } \operatorname{hull}\left\{V_{1}, \ldots, V_{N}\right\} .
$$

Full Block Multipliers. (POS) is satisfied for all P with

$$
\binom{I}{0}^{T} P\binom{I}{0} \preccurlyeq 0,\binom{V_{k}}{I}^{T} P\binom{V_{k}}{I} \succcurlyeq 0, \quad k=1, \ldots, N .
$$

Set of multipliers described by finitely many LMI constraints.
Proof. The first inequality implies that

$$
V \rightarrow\binom{V}{I}^{T} P\binom{V}{I} \text { is concave. }
$$

Hence (POS) is valid iff the inequality holds at the generators V_{1}, \ldots, V_{N}.

Outline

- Nonsingularity of Matrix Families
- LTI Robust Stability Analysis
- Time-Varying Uncertainties
- Robust Stability and Performance with Multipliers
- Controller Synthesis
- A Glimpse at Nonlinear Uncertainties and IQCs

Robust Stability

Consider the system
$\dot{x}=F(\delta) x$ with uncertain parameter vector $\delta \in \mathbb{R}^{p}$.

Robust Stability

Consider the system
$\dot{x}=F(\delta) x$ with uncertain parameter vector $\delta \in \mathbb{R}^{p}$.

Assumptions: The parameter δ is contained in some polytope
$\delta \in \delta=$ convex hull $\left\{\delta^{1}, \ldots, \delta^{N}\right\} \subset \mathbb{R}^{p}$.
Let $\delta=0 \in \delta$ be the nominal value
 and assume that $F(0)$ is Hurwitz.

Robust Stability

Consider the system
$\dot{x}=F(\delta) x$ with uncertain parameter vector $\delta \in \mathbb{R}^{p}$.

Assumptions: The parameter δ is contained in some polytope
$\delta \in \delta=$ convex hull $\left\{\delta^{1}, \ldots, \delta^{N}\right\} \subset \mathbb{R}^{p}$.
Let $\delta=0 \in \delta$ be the nominal value
 and assume that $F(0)$ is Hurwitz.

Linear Fractional Representation

Let $F(\delta)$ depend rationally on δ without having a pole in 0 .
One can then write $\dot{x}=F(\delta) x$ as

$$
\left.\begin{array}{l}
\dot{x}=A x+B w \\
z=C x+D w
\end{array}\right\} w=\Delta(\delta) z
$$

with $\Delta(\delta)$ being linear in $\delta \in \delta$.

Linear Fractional Representation

Let $F(\delta)$ depend rationally on δ without having a pole in 0 .
One can then write $\dot{x}=F(\delta) x$ as

$$
\left.\begin{array}{l}
\dot{x}=A x+B w \\
z=C x+D w
\end{array}\right\} w=\Delta(\delta) z
$$

with $\Delta(\delta)$ being linear in $\delta \in \delta$.

It is always possible to take $\Delta(\delta)$ with the structure

$$
\Delta(\delta)=\left(\begin{array}{ccc}
\delta_{1} I_{\nu_{1}} & & 0 \\
0 & \ddots & \delta_{p} I_{\nu_{p}}
\end{array}\right) \text { for some integers } \nu_{1}, \ldots, \nu_{p} \geq 0
$$

where I_{ν} denotes the identity matrix of size ν.

Example I

$$
\dot{x}=\left(\begin{array}{cc}
-1 & 2 \delta_{1} \\
-\frac{1}{2+\delta_{1}} & -4+3 \delta_{2}
\end{array}\right) x \text { with }\left|\delta_{1}\right| \leq r, \quad\left|\delta_{2}\right| \leq r, \quad r>0
$$

Example I

$$
\dot{x}=\left(\begin{array}{cc}
-1 & 2 \delta_{1} \\
-\frac{1}{2+\delta_{1}} & -4+3 \delta_{2}
\end{array}\right) x \text { with }\left|\delta_{1}\right| \leq r, \quad\left|\delta_{2}\right| \leq r, \quad r>0
$$

Rewrite as

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & 2+\delta_{1}
\end{array}\right)\binom{\dot{x}_{1}}{\dot{x}_{2}}=\left(\begin{array}{cc}
-1 & 2 \delta_{1} \\
-1 & \left(-4+3 \delta_{2}\right)\left(2+\delta_{1}\right)
\end{array}\right)\binom{x_{1}}{x_{2}}
$$

Example I

$$
\dot{x}=\left(\begin{array}{cc}
-1 & 2 \delta_{1} \\
-\frac{1}{2+\delta_{1}} & -4+3 \delta_{2}
\end{array}\right) x \text { with }\left|\delta_{1}\right| \leq r, \quad\left|\delta_{2}\right| \leq r, r>0 .
$$

Rewrite as

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & 2+\delta_{1}
\end{array}\right)\binom{\dot{x}_{1}}{\dot{x}_{2}}=\left(\begin{array}{cc}
-1 & 2 \delta_{1} \\
-1 & \left(-4+3 \delta_{2}\right)\left(2+\delta_{1}\right)
\end{array}\right)\binom{x_{1}}{x_{2}}
$$

or as

$$
\begin{gathered}
\binom{\dot{x}_{1}}{2 \dot{x}_{2}}+\binom{0}{1} w_{1}=\left(\begin{array}{cc}
-1 & 0 \\
-1 & -4+3 \delta_{2}
\end{array}\right)\binom{x_{1}}{2 x_{2}}+\binom{2}{-4+3 \delta_{2}} w_{2} \\
w_{1}=\delta_{1} z_{1}, z_{1}=\dot{x}_{2}, \quad w_{2}=\delta_{1} z_{2}, z_{2}=x_{2}
\end{gathered}
$$

Example I

$$
\dot{x}=\left(\begin{array}{cc}
-1 & 2 \delta_{1} \\
-\frac{1}{2+\delta_{1}} & -4+3 \delta_{2}
\end{array}\right) x \text { with }\left|\delta_{1}\right| \leq r, \quad\left|\delta_{2}\right| \leq r, \quad r>0 .
$$

Rewrite as

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & 2+\delta_{1}
\end{array}\right)\binom{\dot{x}_{1}}{\dot{x}_{2}}=\left(\begin{array}{cc}
-1 & 2 \delta_{1} \\
-1 & \left(-4+3 \delta_{2}\right)\left(2+\delta_{1}\right)
\end{array}\right)\binom{x_{1}}{x_{2}}
$$

or as

$$
\begin{gathered}
\binom{\dot{x}_{1}}{2 \dot{x}_{2}}+\binom{0}{1} w_{1}=\left(\begin{array}{cc}
-1 & 0 \\
-1 & -4+3 \delta_{2}
\end{array}\right)\binom{x_{1}}{2 x_{2}}+\binom{2}{-4+3 \delta_{2}} w_{2} \\
w_{1}=\delta_{1} z_{1}, z_{1}=\dot{x}_{2}, \quad w_{2}=\delta_{1} z_{2}, z_{2}=x_{2}
\end{gathered}
$$

or as

$$
\binom{\dot{x}_{1}}{2 \dot{x}_{2}}+\binom{0}{1} w_{1}=\left(\begin{array}{cc}
-1 & 0 \\
-1 & -4
\end{array}\right)\binom{x_{1}}{2 x_{2}}+\binom{2}{-4} w_{2}+\binom{0}{3} w_{3}
$$

$$
w_{1}=\delta_{1} z_{1}, z_{1}=\dot{x}_{2}, \quad w_{2}=\delta_{1} z_{2}, \quad z_{2}=x_{2}, \quad w_{3}=\delta_{2} z_{3}, \quad z_{3}=2 x_{2}+w_{212 / 57}
$$

Example I

Hence $\dot{x}=F(\delta) x$ can be written as

$$
\begin{aligned}
\dot{x} & =\left(\begin{array}{rr}
-1 & 0 \\
-.5 & -4
\end{array}\right) x+\left(\begin{array}{rrr}
0 & 2 & 0 \\
-.5 & -2 & 1.5
\end{array}\right) w \\
z & =\left(\begin{array}{rr}
-.5 & -4 \\
0 & 1 \\
0 & 2
\end{array}\right) x+\left(\begin{array}{rrr}
-.5 & -2 & 1.5 \\
0 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) w, \quad w=\left(\begin{array}{rrr}
\delta_{1} & 0 & 0 \\
0 & \delta_{1} & 0 \\
0 & 0 & \delta_{2}
\end{array}\right) z .
\end{aligned}
$$

Therefore we can choose

$$
\left(\begin{array}{l|l}
A & B \\
\hline C & D
\end{array}\right)=\left(\begin{array}{rr|rrr}
-1 & 0 & 0 & 2 & 0 \\
-.5 & -4 & -.5 & -2 & 1.5 \\
\hline-.5 & -4 & -.5 & -2 & 1.5 \\
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0
\end{array}\right), \Delta(\delta)=\left(\begin{array}{rrr}
\delta_{1} & 0 & 0 \\
0 & \delta_{1} & 0 \\
0 & 0 & \delta_{2}
\end{array}\right) .
$$

Linear Fractional Representation

Let $\dot{x}=F(\delta) x$ be represented as

$$
\left.\begin{array}{l}
\dot{x}=A x+B w \\
z=C x+D w
\end{array}\right\} w=\Delta(\delta) z
$$

with $\Delta(\delta)$ being linear in $\delta \in \boldsymbol{\delta}$.

The given derivation shows that this actually means

$$
F(\delta)=A+B \Delta(\delta)(I-D \Delta(\delta))^{-1} C=:\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right) \star \Delta(\delta) .
$$

This is called a linear fractional representation (LFR) of $F(\delta)$. It is said to be well-posed if $I-D \Delta(\delta)$ is non-singular on δ.

Nonconservative Robust Stability Test

Let $\dot{x}=F(\delta) x$ be represented as

$$
\left.\begin{array}{l}
\dot{x}=A x+B w \\
z=C x+D w
\end{array}\right\} w=\Delta(\delta) z
$$

with $\Delta(\delta)$ being linear in $\delta \in \delta$.

Define the transfer matrix $G(s)=D+C(s I-A)^{-1} B$.
The LFR is well-posed and $\dot{x}=F(\delta) x$ is Hurwitz for all $\delta \in \delta$ iff

$$
\operatorname{det}(I-G(i \omega) \Delta(\delta)) \neq 0 \text { for all } \omega \in \mathbb{R} \cup\{\infty\}, \delta \in \delta
$$

Nonconservative Robust Stability Test

Let $\dot{x}=F(\delta) x$ be represented as

$$
\left.\begin{array}{l}
\dot{x}=A x+B w \\
z=C x+D w
\end{array}\right\} w=\Delta(\delta) z
$$

with $\Delta(\delta)$ being linear in $\delta \in \delta$.

Define the transfer matrix $G(s)=D+C(s I-A)^{-1} B$.
The LFR is well-posed and $\dot{x}=F(\delta) x$ is Hurwitz for all $\delta \in \delta$ iff

$$
\operatorname{det}(I-G(i \omega) \Delta(\delta)) \neq 0 \text { for all } \omega \in \mathbb{R} \cup\{\infty\}, \delta \in \delta
$$

Testing robust stability is reduced to a robust non-singularity condition for the matrices $G(i \omega), \omega \in \mathbb{R} \cup\{\infty\}$, and the set $\boldsymbol{V}=\Delta(\boldsymbol{\delta})$.

Sketch of Proof

Suppose the LFR is well-posed. Then $F(\delta)$ is Hurwitz for all $\delta \in \delta$ iff $\operatorname{det}\left(s I-A-B \Delta(\delta)(I-D \Delta(\delta))^{-1} C\right) \neq 0$ for all $\operatorname{Re}(s) \geq 0, \delta \in \delta$

Sketch of Proof

Suppose the LFR is well-posed. Then $F(\delta)$ is Hurwitz for all $\delta \in \delta$ iff $\operatorname{det}\left(s I-A-B \Delta(\delta)(I-D \Delta(\delta))^{-1} C\right) \neq 0$ for all $\operatorname{Re}(s) \geq 0, \delta \in \delta$ \Longleftrightarrow (Schur determinant formula \& well-posedness)

$$
\operatorname{det}\left(\begin{array}{cc}
s I-A & -B \Delta(\delta) \\
-C & I-D \Delta(\delta)
\end{array}\right) \text { for all } \operatorname{Re}(s) \geq 0, \delta \in \delta
$$

Sketch of Proof

Suppose the LFR is well-posed. Then $F(\delta)$ is Hurwitz for all $\delta \in \delta$ iff $\operatorname{det}\left(s I-A-B \Delta(\delta)(I-D \Delta(\delta))^{-1} C\right) \neq 0$ for all $\operatorname{Re}(s) \geq 0, \delta \in \delta$
\Longleftrightarrow (Schur determinant formula \& well-posedness)

$$
\operatorname{det}\left(\begin{array}{cc}
s I-A & -B \Delta(\delta) \\
-C & I-D \Delta(\delta)
\end{array}\right) \text { for all } \operatorname{Re}(s) \geq 0, \delta \in \delta
$$

\Longleftrightarrow (Schur determinant formula \& A Hurwitz)

$$
\operatorname{det}\left(I-\left[D+C(s I-A)^{-1} B\right] \Delta(\delta)\right) \text { for all } \operatorname{Re}(s) \geq 0, \delta \in \delta
$$

Sketch of Proof

Suppose the LFR is well-posed. Then $F(\delta)$ is Hurwitz for all $\delta \in \delta$ iff $\operatorname{det}\left(s I-A-B \Delta(\delta)(I-D \Delta(\delta))^{-1} C\right) \neq 0$ for all $\operatorname{Re}(s) \geq 0, \delta \in \delta$
\Longleftrightarrow (Schur determinant formula \& well-posedness)

$$
\operatorname{det}\left(\begin{array}{cc}
s I-A & -B \Delta(\delta) \\
-C & I-D \Delta(\delta)
\end{array}\right) \text { for all } \operatorname{Re}(s) \geq 0, \delta \in \delta
$$

\Longleftrightarrow (Schur determinant formula \& A Hurwitz)

$$
\operatorname{det}\left(I-\left[D+C(s I-A)^{-1} B\right] \Delta(\delta)\right) \text { for all } \operatorname{Re}(s) \geq 0, \delta \in \delta
$$

\Longleftrightarrow (nontrivial homotopy argument)
$\operatorname{det}\left(I-\left[D+C(i \omega I-A)^{-1} B\right] \Delta(\delta)\right) \quad$ for all $\omega \in \mathbb{R}, \delta \in \delta$.

Sketch of Proof

Suppose the LFR is well-posed. Then $F(\delta)$ is Hurwitz for all $\delta \in \delta$ iff $\operatorname{det}\left(s I-A-B \Delta(\delta)(I-D \Delta(\delta))^{-1} C\right) \neq 0$ for all $\operatorname{Re}(s) \geq 0, \delta \in \delta$ \Longleftrightarrow (Schur determinant formula \& well-posedness)

$$
\operatorname{det}\left(\begin{array}{cc}
s I-A & -B \Delta(\delta) \\
-C & I-D \Delta(\delta)
\end{array}\right) \text { for all } \operatorname{Re}(s) \geq 0, \delta \in \delta
$$

\Longleftrightarrow (Schur determinant formula \& A Hurwitz)

$$
\operatorname{det}\left(I-\left[D+C(s I-A)^{-1} B\right] \Delta(\delta)\right) \text { for all } \operatorname{Re}(s) \geq 0, \delta \in \delta
$$

\Longleftrightarrow (nontrivial homotopy argument)

$$
\operatorname{det}\left(I-\left[D+C(i \omega I-A)^{-1} B\right] \Delta(\delta)\right) \text { for all } \omega \in \mathbb{R}, \delta \in \delta
$$

Now just observe that the latter condition is well-posedness for $\omega=\infty$.

Computational Procedure

- Choose a list frequencies $\omega_{1}, \ldots, \omega_{m} \in \mathbb{R} \cup\{\infty\}$.

Computational Procedure

- Choose a list frequencies $\omega_{1}, \ldots, \omega_{m} \in \mathbb{R} \cup\{\infty\}$.
- Define the set of real-repeated block-diagonal matrices $\boldsymbol{V}=\Delta(\boldsymbol{\delta})$.

Computational Procedure

- Choose a list frequencies $\omega_{1}, \ldots, \omega_{m} \in \mathbb{R} \cup\{\infty\}$.
- Define the set of real-repeated block-diagonal matrices $\boldsymbol{V}=\Delta(\boldsymbol{\delta})$.
- Choose an LMI class of multipliers \boldsymbol{P} for \boldsymbol{V} to satisfy (POS).

Computational Procedure

- Choose a list frequencies $\omega_{1}, \ldots, \omega_{m} \in \mathbb{R} \cup\{\infty\}$.
- Define the set of real-repeated block-diagonal matrices $\boldsymbol{V}=\Delta(\boldsymbol{\delta})$.
- Choose an LMI class of multipliers \boldsymbol{P} for \boldsymbol{V} to satisfy (POS).
- For $k=1, \ldots, m$ check feasibility of

$$
P \in P \text { and }\binom{I}{G\left(i \omega_{k}\right)}^{*} P\binom{I}{G\left(i \omega_{k}\right)} \prec 0 .
$$

Computational Procedure

- Choose a list frequencies $\omega_{1}, \ldots, \omega_{m} \in \mathbb{R} \cup\{\infty\}$.
- Define the set of real-repeated block-diagonal matrices $\boldsymbol{V}=\Delta(\boldsymbol{\delta})$.
- Choose an LMI class of multipliers \boldsymbol{P} for \boldsymbol{V} to satisfy (POS).
- For $k=1, \ldots, m$ check feasibility of

$$
P \in P \text { and }\binom{I}{G\left(i \omega_{k}\right)}^{*} P\binom{I}{G\left(i \omega_{k}\right)} \prec 0 .
$$

If all LMIs for $k=1, \ldots, m$ are feasible, we conclude robust stability.

Computational Procedure

- Choose a list frequencies $\omega_{1}, \ldots, \omega_{m} \in \mathbb{R} \cup\{\infty\}$.
- Define the set of real-repeated block-diagonal matrices $\boldsymbol{V}=\Delta(\boldsymbol{\delta})$.
- Choose an LMI class of multipliers \boldsymbol{P} for \boldsymbol{V} to satisfy (POS).
- For $k=1, \ldots, m$ check feasibility of

$$
P \in P \text { and }\binom{I}{G\left(i \omega_{k}\right)}^{*} P\binom{I}{G\left(i \omega_{k}\right)} \prec 0 .
$$

If all LMIs for $k=1, \ldots, m$ are feasible, we conclude robust stability.
Note that there is a risk of missing crucial frequencies! Can be handled!

Example I

Determine largest r such that the non-singularity test is successful.

Observation: The larger the class of multipliers the better the test!

Summary and Comments

- Sketched key ideas to obtain linear fractional representation

which forms the basis for advanced robustness analysis.
- Have reduced robust stability to non-singularity test.
- Developed multiplier relaxation schemes to verify robust stability.
- Extends to stable structured dynamic uncertainties Δ that satisfy

$$
\Delta(i \omega) \in \boldsymbol{V} \text { for all } \omega \in \mathbb{R} \cup\{\infty\}
$$

This touches the so-called structured singular value theory.

Outline

- Nonsingularity of Matrix Families
- LTI Robust Stability Analysis
- Time-Varying Uncertainties
- Robust Stability and Performance with Multipliers
- Controller Synthesis
- A Glimpse at Nonlinear Uncertainties and IQCs

Robust Stability: Time-Varying Uncertainties

Consider the system
$\dot{x}(t)=F(\delta(t)) x(t)$ affected by time-varying parameter $\delta(t) \in \mathbb{R}^{p}$.

Robust Stability: Time-Varying Uncertainties

Consider the system
$\dot{x}(t)=F(\delta(t)) x(t)$ affected by time-varying parameter $\delta(t) \in \mathbb{R}^{p}$.

Assumption: $\delta($.$) is piece-wise continuous$ and satisfies $\delta(t) \in \delta$ for all $t \in \mathbb{R}_{+}$where $\delta=$ convex hull $\left\{\delta^{1}, \ldots, \delta^{N}\right\} \subset \mathbb{R}^{p}$.

Robust Stability: Time-Varying Uncertainties

Consider the system
$\dot{x}(t)=F(\delta(t)) x(t)$ affected by time-varying parameter $\delta(t) \in \mathbb{R}^{p}$.

Assumption: $\delta($.$) is piece-wise continuous$ and satisfies $\delta(t) \in \delta$ for all $t \in \mathbb{R}_{+}$where $\delta=$ convex hull $\left\{\delta^{1}, \ldots, \delta^{N}\right\} \subset \mathbb{R}^{p}$.

Quadratic Stability

All systems are exponentially stable if there exists some X with

$$
X \succ 0, \quad F(\delta)^{T} X+X F(\delta) \prec 0 \text { for all } \delta \in \delta .
$$

How to Check?

Consider the robust LMI

$$
\binom{I}{F(\delta)}^{T}\left(\begin{array}{cc}
0 & X \\
X & 0
\end{array}\right)\binom{I}{F(\delta)}=F(\delta)^{T} X+X F(\delta) \prec 0 \quad \forall \delta \in \delta .
$$

How to Check?

Consider the robust LMI

$$
\binom{I}{F(\delta)}^{T}\left(\begin{array}{cc}
0 & X \\
X & 0
\end{array}\right)\binom{I}{F(\delta)}=F(\delta)^{T} X+X F(\delta) \prec 0 \quad \forall \delta \in \delta .
$$

LFR is well-posed and the robust LMI holds iff there exists a P with

$$
\begin{equation*}
\binom{\Delta(\delta)}{I}^{T} P\binom{\Delta(\delta)}{I} \succcurlyeq 0 \text { for all } \delta \in \delta \tag{POS}
\end{equation*}
$$

that also satisfies

$$
\left(\begin{array}{cc}
A^{T} X+X A & X B \\
B^{T} X & 0
\end{array}\right)+\left(\begin{array}{cc}
0 & I \\
C & D
\end{array}\right)^{T} P\left(\begin{array}{cc}
0 & I \\
C & D
\end{array}\right) \prec 0 . \quad \text { (QS-LMI) }
$$

Our numerical procedure applies for checking sufficient conditions!

Sketch of Algebraic Proof of "if"

Fix an arbitrary $\delta \in \delta$.

Sketch of Algebraic Proof of "if"

Fix an arbitrary $\delta \in \delta$.
Since (QS-LMI) implies $\binom{I}{D}^{T} P\binom{I}{D} \prec 0$ (right-lower block), we infer that $I-D \Delta(\delta)$ is non-singular which implies well-posedness.

Sketch of Algebraic Proof of "if"

Fix an arbitrary $\delta \in \delta$.
Since (QS-LMI) implies $\binom{I}{D}^{T} P\binom{I}{D} \prec 0$ (right-lower block), we infer that $I-D \Delta(\delta)$ is non-singular which implies well-posedness.

Abbreviate $H=(I-D \Delta(\delta))^{-1} C$ to infer from (QS-LMI) that

$$
0 \succ\binom{I}{\Delta(\delta) H}^{T} \text { Ihs of LMI }\binom{I}{\Delta(\delta) H}=
$$

$$
=F(\delta)^{T} X+X F(\delta)+\underbrace{H^{T}\binom{\Delta(\delta)}{I}^{T} P\binom{\Delta(\delta)}{I} H}_{\succcurlyeq 0 \text { due to }(\mathrm{POS})}
$$

where $=$ follows by simple computation.

Sketch of Algebraic Proof of "if"

Fix an arbitrary $\delta \in \delta$.
Since (QS-LMI) implies $\binom{I}{D}^{T} P\binom{I}{D} \prec 0$ (right-lower block), we infer that $I-D \Delta(\delta)$ is non-singular which implies well-posedness.

Abbreviate $H=(I-D \Delta(\delta))^{-1} C$ to infer from (QS-LMI) that

$$
0 \succ\binom{I}{\Delta(\delta) H}^{T} \text { Ihs of LMI }\binom{I}{\Delta(\delta) H}=
$$

$$
=F(\delta)^{T} X+X F(\delta)+\underbrace{H^{T}\binom{\Delta(\delta)}{I}^{T} P\binom{\Delta(\delta)}{I} H}_{\succcurlyeq 0 \text { due to (POS) }}
$$

where $=$ follows by simple computation. Hence $F(\delta)^{T} X+X F(\delta) \prec 0$.

Example I

Determine largest r such that robust quadratic stability can be verified.

Observation: Small gap between time-invariant/time-varying case!

Example II

Test quadratic stability for polynomial parameter dependence:

$$
\dot{x}=\left(\begin{array}{cc}
-1.25 & 1-\delta_{1} \delta_{2}^{2} \\
1-\delta_{1} \delta_{2} & -1
\end{array}\right) x, \quad \delta_{1} \in[-1,1], \quad \delta_{2} \in[-1,0] .
$$

Example II

Test quadratic stability for polynomial parameter dependence:

$$
\dot{x}=\left(\begin{array}{cc}
-1.25 & 1-\delta_{1} \delta_{2}^{2} \\
1-\delta_{1} \delta_{2} & -1
\end{array}\right) x, \quad \delta_{1} \in[-1,1], \quad \delta_{2} \in[-1,0] .
$$

This family can be covered by the following uncertain system with affine parameter dependence:

$$
\dot{x}=\left(\begin{array}{cc}
-1.25 & 1-x \\
1-y & -1
\end{array}\right) x, \quad x \in[-r, r], \quad y \in[-r, r], \quad r=1 .
$$

Example II

Test quadratic stability for polynomial parameter dependence:

$$
\dot{x}=\left(\begin{array}{cc}
-1.25 & 1-\delta_{1} \delta_{2}^{2} \\
1-\delta_{1} \delta_{2} & -1
\end{array}\right) x, \quad \delta_{1} \in[-1,1], \quad \delta_{2} \in[-1,0] .
$$

This family can be covered by the following uncertain system with affine parameter dependence:

$$
\dot{x}=\left(\begin{array}{cc}
-1.25 & 1-x \\
1-y & -1
\end{array}\right) x, \quad x \in[-r, r], \quad y \in[-r, r], \quad r=1 .
$$

- Polytopic technique from Lecture 6 successful only for $r \approx 0.11$.
- The multipliers from slide 9 allow to guarantee quadratic stability for original uncertain system with polynomial parameter dependence!

Example II: What's going on?

Blue Region

Set of parameter-dependent elements of original system

Red Line
Boundary of Hurwitz region for original system

Black Boxes

Set of parameter-dependent elements of affine covering

Comments

- A trajectory-based proof for robust stability will be given below.
- With affine $Q_{0}(v), R_{0}(v), S_{0}(v)$ in the decision variable v, the same technique (proof) applies to finding v which robustly satisfies

$$
\binom{I}{F(\delta)}^{T}\left(\begin{array}{cc}
Q_{0}(v) & S_{0}(v) \\
S_{0}(v)^{T} & R_{0}(v)
\end{array}\right)\binom{I}{F(\delta)} \prec 0, \quad R_{0}(v) \succcurlyeq 0 .
$$

Examples: Discrete-time stability, eigenvalue-location in LMI region.

- The result is a concrete version of the so-called full block S-procedure. It serves to handle general robust LMI problems in which the uncertain parameters enter in a rational fashion.
C.W. Scherer, LMI Relaxations in Robust Control, Eur. J. Cont. 12 (2006) 3-29.

Outline

- Nonsingularity of Matrix Families
- LTI Robust Stability Analysis
- Time-Varying Uncertainties
- Robust Stability and Performance with Multipliers
- Controller Synthesis
- A Glimpse at Nonlinear Uncertainties and IQCs

Robust Energy-Gain Performance

Consider the uncertain input-output system described as

$$
\begin{aligned}
\dot{x}(t) & =F(\delta(t)) x(t)+G(\delta(t)) d(t) \\
e(t) & =H(\delta(t)) x(t)+J(\delta(t)) d(t)
\end{aligned}
$$

with continuous parameter-curves $\delta($.$) that satisfy$

$$
\delta(t) \in \delta=\operatorname{convex} \operatorname{hull}\left\{\delta^{1}, \ldots, \delta^{N}\right\} \subset \mathbb{R}^{p} .
$$

Robust Energy-Gain Performance

Consider the uncertain input-output system described as

$$
\begin{aligned}
\dot{x}(t) & =F(\delta(t)) x(t)+G(\delta(t)) d(t) \\
e(t) & =H(\delta(t)) x(t)+J(\delta(t)) d(t)
\end{aligned}
$$

with continuous parameter-curves $\delta($.$) that satisfy$

$$
\delta(t) \in \delta=\operatorname{convex} \operatorname{hull}\left\{\delta^{1}, \ldots, \delta^{N}\right\} \subset \mathbb{R}^{p} .
$$

Robust Energy-Gain Performance of level γ

For all parameter-curves, $\dot{x}(t)=F(\delta(t)) x(t)$ is exponentially stable

Robust Energy-Gain Performance

Consider the uncertain input-output system described as

$$
\begin{aligned}
\dot{x}(t) & =F(\delta(t)) x(t)+G(\delta(t)) d(t) \\
e(t) & =H(\delta(t)) x(t)+J(\delta(t)) d(t)
\end{aligned}
$$

with continuous parameter-curves $\delta($.$) that satisfy$

$$
\delta(t) \in \delta=\operatorname{convex} \operatorname{hull}\left\{\delta^{1}, \ldots, \delta^{N}\right\} \subset \mathbb{R}^{p} .
$$

Robust Energy-Gain Performance of level γ

For all parameter-curves, $\dot{x}(t)=F(\delta(t)) x(t)$ is exponentially stable and the system's energy-gain is bounded by γ :

$$
\int_{0}^{\infty} e(t)^{T} e(t) d t \leq \gamma^{2} \int_{0}^{\infty} d(t)^{T} d(t) d t \text { for } d \in \mathcal{L}_{2}\left(\mathbb{R}_{+}, \mathbb{R}^{n_{d}}\right), x(0)=0
$$

Robust \mathcal{L}_{2}-Gain Performance

Obtain LFR of matrices describing system:

$$
\left(\begin{array}{cc}
F(\delta) & G(\delta) \\
H(\delta) & J(\delta)
\end{array}\right)=\left(\begin{array}{cc|c}
A & B_{1} & B_{2} \\
C_{1} & D_{1} & D_{12} \\
\hline C_{2} & D_{21} & D_{2}
\end{array}\right) \star \Delta(\delta) .
$$

Robust \mathcal{L}_{2}-Gain Performance

Obtain LFR of matrices describing system:

$$
\left(\begin{array}{cc}
F(\delta) & G(\delta) \\
H(\delta) & J(\delta)
\end{array}\right)=\left(\begin{array}{cc|c}
A & B_{1} & B_{2} \\
C_{1} & D_{1} & D_{12} \\
\hline C_{2} & D_{21} & D_{2}
\end{array}\right) \star \Delta(\delta) .
$$

If LFR well-posed, we have the following alternative system description:

$$
\left(\begin{array}{c}
x(t) \\
\frac{\dot{x}(t)}{d(t)} \\
\frac{e(t)}{w(t)} \\
z(t)
\end{array}\right)=\left(\begin{array}{ccc}
I & 0 & 0 \\
A & B_{1} & B_{2} \\
\hline 0 & I & 0 \\
C_{1} & D_{1} & D_{12} \\
\hline 0 & 0 & I \\
C_{2} & D_{21} & D_{2}
\end{array}\right)\left(\begin{array}{c}
x(t) \\
d(t) \\
w(t)
\end{array}\right),\binom{w(t)}{z(t)}=\binom{\Delta(\delta(t))}{I} z(t) .
$$

Robust \mathcal{L}_{2}-Gain Performance

The LFR is well-posed and the system satisfies robust quadratic performance if there exist $P=\left(\begin{array}{cc}Q & S \\ S^{T} & R\end{array}\right)$ and $X \succ 0$ with

$$
\begin{gather*}
\binom{\Delta(\delta)}{\hline}^{T} P\binom{\Delta(\delta)}{I} \succcurlyeq 0 \text { for all } \delta \in \delta \text { and } \quad(\mathrm{POS}) \tag{POS}\\
\left(\begin{array}{ccc}
I & 0 & 0 \\
A & B_{1} & B_{2} \\
\hline 0 & I & 0 \\
C_{1} & D_{1} & D_{12} \\
\hline 0 & 0 & I \\
C_{2} & D_{21} & D_{2}
\end{array}\right)^{T}\left(\begin{array}{cc|cc|cc}
0 & X & 0 & 0 & 0 & 0 \\
X & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & -\gamma^{2} & I & 0 & 0 \\
0 \\
0 & 0 & 0 & I & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & Q & S \\
0 & 0 & 0 & 0 & S^{T} & R
\end{array}\right)\left(\begin{array}{ccc}
I & 0 & 0 \\
A & B_{1} & B_{2} \\
\hline 0 & I & 0 \\
C_{1} & D_{1} & D_{12} \\
\hline 0 & 0 & I \\
C_{2} & D_{21} & D_{2}
\end{array}\right) \prec 0 .(\mathrm{RP})
\end{gather*}
$$

Proof of Well-Posdeness

Considering the right-lower block of (RP) reveals that

$$
\begin{array}{rl}
D_{12}^{T} D_{12}+\binom{I}{D_{2}}^{T} P & P\binom{I}{D_{2}}= \\
& =\left(\begin{array}{c}
0 \\
\frac{B_{2}}{0} \\
\frac{D_{12}}{I} \\
D_{2}
\end{array}\right)\left(\begin{array}{cc|cc|cc}
0 & X & 0 & 0 & 0 & 0 \\
X & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & -\gamma^{2} & I & 0 & 0 \\
0 \\
0 & 0 & 0 & I & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & Q & S \\
0 & 0 & 0 & 0 & S^{T} & R
\end{array}\right)\left(\begin{array}{c}
0 \\
\frac{B_{2}}{0} \\
\hline \frac{D_{12}}{I} \\
D_{2}
\end{array}\right) \prec 0 .
\end{array}
$$

Proof of Well-Posdeness

Considering the right-lower block of (RP) reveals that

$$
\begin{array}{rl}
D_{12}^{T} D_{12}+\binom{I}{D_{2}}^{T} P & P\binom{I}{D_{2}}= \\
& =\left(\begin{array}{c}
0 \\
\frac{B_{2}}{0} \\
\frac{D_{12}}{I} \\
D_{2}
\end{array}\right)^{T}\left(\begin{array}{cc|cc|cc}
0 & X & 0 & 0 & 0 & 0 \\
X & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & -\gamma^{2} & I & 0 & 0 \\
0 \\
0 & 0 & 0 & I & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & Q & S \\
0 & 0 & 0 & 0 & S^{T} & R
\end{array}\right)\left(\begin{array}{c}
0 \\
\frac{B_{2}}{0} \\
\hline \frac{D_{12}}{I} \\
D_{2}
\end{array}\right) \prec 0 .
\end{array}
$$

This implies $\binom{I}{D_{2}}^{T} P\binom{I}{D_{2}} \prec 0$ and with (POS) well-posedness.

Sketch of Trajectory-Based Proof

Due to (RP) there exists some $\epsilon>0$ such that

$$
\left(\begin{array}{ccc}
I & 0 & 0 \\
A & B_{1} & B_{2} \\
\hline 0 & I & 0 \\
C_{1} & D_{1} & D_{12} \\
\hline 0 & 0 & I \\
C_{2} & D_{21} & D_{2}
\end{array}\right)^{T}\left(\begin{array}{cc|cc|cc}
0 & X & 0 & 0 & 0 & 0 \\
X & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & -\gamma^{2} & I & 0 & 0 \\
0 \\
0 & 0 & 0 & I & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & Q & S \\
0 & 0 & 0 & 0 & S^{T} & R
\end{array}\right)\left(\begin{array}{ccc}
I & 0 & 0 \\
A & B_{1} & B_{2} \\
\hline 0 & I & 0 \\
C_{1} & D_{1} & D_{12} \\
\hline 0 & 0 & I \\
C_{2} & D_{21} & D_{2}
\end{array}\right)+\left(\begin{array}{ccc}
\epsilon & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \prec 0 .
$$

Sketch of Trajectory-Based Proof

Due to (RP) there exists some $\epsilon>0$ such that

$$
\left(\begin{array}{ccc}
I & 0 & 0 \\
A & B_{1} & B_{2} \\
\hline 0 & I & 0 \\
C_{1} & D_{1} & D_{12} \\
\hline 0 & 0 & I \\
C_{2} & D_{21} & D_{2}
\end{array}\right)^{T}\left(\begin{array}{cc|cc|cc}
0 & X & 0 & 0 & 0 & 0 \\
X & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & -\gamma^{2} & I & 0 & 0 \\
0 \\
0 & 0 & 0 & I & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & Q & S \\
0 & 0 & 0 & 0 & S^{T} & R
\end{array}\right)\left(\begin{array}{ccc}
I & 0 & 0 \\
A & B_{1} & B_{2} \\
\hline 0 & I & 0 \\
C_{1} & D_{1} & D_{12} \\
\hline 0 & 0 & I \\
C_{2} & D_{21} & D_{2}
\end{array}\right)+\left(\begin{array}{ccc}
\epsilon & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \prec 0 .
$$

Choose parameter trajectory $\delta(t) \in \delta$ and $d \in \mathscr{L}_{2}\left(\mathbb{R}_{+}, \mathbb{R}^{n_{d}}\right)$, and let $x($.$) and e($.$) be some corresponding state- and output trajectories for$ any initial condition $x(0)$.

Sketch of Trajectory-Based Proof

Due to (RP) there exists some $\epsilon>0$ such that

$$
\left(\begin{array}{ccc}
I & 0 & 0 \\
A & B_{1} & B_{2} \\
\hline 0 & I & 0 \\
C_{1} & D_{1} & D_{12} \\
\hline 0 & 0 & I \\
C_{2} & D_{21} & D_{2}
\end{array}\right)^{T}\left(\begin{array}{cc|cc|cc}
0 & X & 0 & 0 & 0 & 0 \\
X & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & -\gamma^{2} & I & 0 & 0 \\
0 \\
0 & 0 & 0 & I & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & Q & S \\
0 & 0 & 0 & 0 & S^{T} & R
\end{array}\right)\left(\begin{array}{ccc}
I & 0 & 0 \\
A & B_{1} & B_{2} \\
\hline 0 & I & 0 \\
C_{1} & D_{1} & D_{12} \\
\hline 0 & 0 & I \\
C_{2} & D_{21} & D_{2}
\end{array}\right)+\left(\begin{array}{ccc}
\epsilon & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \prec 0 .
$$

Choose parameter trajectory $\delta(t) \in \delta$ and $d \in \mathscr{L}_{2}\left(\mathbb{R}_{+}, \mathbb{R}^{n_{d}}\right)$, and let $x($.$) and e($.$) be some corresponding state- and output trajectories for$ any initial condition $x(0)$. Due to well-posedness, these trajectories satisfy the relations on slide 28 for suitable $w(),. z($.$) .$

Sketch of Trajectory-Based Proof

Due to (RP) there exists some $\epsilon>0$ such that

$$
\left(\begin{array}{ccc}
I & 0 & 0 \\
A & B_{1} & B_{2} \\
\hline 0 & I & 0 \\
C_{1} & D_{1} & D_{12} \\
\hline 0 & 0 & I \\
C_{2} & D_{21} & D_{2}
\end{array}\right)^{T}\left(\begin{array}{cc|cc|cc}
0 & X & 0 & 0 & 0 & 0 \\
X & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & -\gamma^{2} & I & 0 & 0 \\
0 \\
0 & 0 & 0 & I & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & Q & S \\
0 & 0 & 0 & 0 & S^{T} & R
\end{array}\right)\left(\begin{array}{ccc}
I & 0 & 0 \\
A & B_{1} & B_{2} \\
\hline 0 & I & 0 \\
C_{1} & D_{1} & D_{12} \\
\hline 0 & 0 & I \\
C_{2} & D_{21} & D_{2}
\end{array}\right)+\left(\begin{array}{c}
\epsilon X \\
\hline
\end{array} 0\right.
$$

Choose parameter trajectory $\delta(t) \in \delta$ and $d \in \mathscr{L}_{2}\left(\mathbb{R}_{+}, \mathbb{R}^{n_{d}}\right)$, and let $x($.$) and e($.$) be some corresponding state- and output trajectories for$ any initial condition $x(0)$. Due to well-posedness, these trajectories satisfy the relations on slide 28 for suitable $w(),. z($.$) .$

Now right-multiply $\operatorname{col}(x(t), d(t), w(t))$ and left-multiply its transpose.

Sketch of Trajectory-Based Proof

We obtain

$$
\begin{aligned}
& \binom{x(t)}{\dot{x}(t)}^{T}\left(\begin{array}{ll}
0 & X \\
X & 0
\end{array}\right)\binom{x(t)}{\dot{x}(t)}+\epsilon x(t)^{T} X x(t)+ \\
& \quad+\binom{d(t)}{e(t)}^{T}\left(\begin{array}{rr}
-\gamma^{2} I & 0 \\
0 & I
\end{array}\right)\binom{d(t)}{e(t)}+\binom{w(t)}{z(t)}^{T} P\binom{w(t)}{z(t)} \leq 0 .
\end{aligned}
$$

Sketch of Trajectory-Based Proof

We obtain

$$
\begin{aligned}
& \binom{x(t)}{\dot{x}(t)}^{T}\left(\begin{array}{cc}
0 & X \\
X & 0
\end{array}\right)\binom{x(t)}{\dot{x}(t)}+\epsilon x(t)^{T} X x(t)+ \\
& \quad+\binom{d(t)}{e(t)}^{T}\left(\begin{array}{rr}
-\gamma^{2} I & 0 \\
0 & I
\end{array}\right)\binom{d(t)}{e(t)}+\binom{w(t)}{z(t)}^{T} P\binom{w(t)}{z(t)} \leq 0 .
\end{aligned}
$$

As a key feature observe that $w(t)=\Delta(\delta(t)) z(t)$ and hence with (POS):

$$
\binom{w(t)}{z(t)}^{T} P\binom{w(t)}{z(t)}=z(t)^{T}\binom{\Delta(\delta(t))}{I}^{T} P\binom{\Delta(\delta(t))}{I} z(t) \succcurlyeq 0 .
$$

Sketch of Trajectory-Based Proof

We obtain

$$
\begin{aligned}
& \binom{x(t)}{\dot{x}(t)}^{T}\left(\begin{array}{ll}
0 & X \\
X & 0
\end{array}\right)\binom{x(t)}{\dot{x}(t)}+\epsilon x(t)^{T} X x(t)+ \\
& \quad+\binom{d(t)}{e(t)}^{T}\left(\begin{array}{rr}
-\gamma^{2} I & 0 \\
0 & I
\end{array}\right)\binom{d(t)}{e(t)}+\binom{w(t)}{z(t)}^{T} P\binom{w(t)}{z(t)} \leq 0 .
\end{aligned}
$$

As a key feature observe that $w(t)=\Delta(\delta(t)) z(t)$ and hence with (POS):

$$
\binom{w(t)}{z(t)}^{T} P\binom{w(t)}{z(t)}=z(t)^{T}\binom{\Delta(\delta(t))}{I}^{T} P\binom{\Delta(\delta(t))}{I} z(t) \succcurlyeq 0 .
$$

Even after canceling this term, the above inequality hence stays valid.

Sketch of Trajectory-Based Proof

With the product-rule we arrive at

$$
\frac{d}{d t} x(t)^{T} X x(t)+\epsilon x(t)^{T} X x(t)+e(t)^{T} e(t)-\gamma^{2} d(t)^{T} d(t) \leq 0 .
$$

Sketch of Trajectory-Based Proof

With the product-rule we arrive at

$$
\frac{d}{d t} x(t)^{T} X x(t)+\epsilon x(t)^{T} X x(t)+e(t)^{T} e(t)-\gamma^{2} d(t)^{T} d(t) \leq 0
$$

- If $d()=$.0 we infer $\frac{d}{d t} x(t)^{T} X x(t)+\epsilon x(t)^{T} X x(t) \leq 0$. Exploit $X \succ 0$ to obtain uniform exponential stability as in Lecture 6.

Sketch of Trajectory-Based Proof

With the product-rule we arrive at

$$
\frac{d}{d t} x(t)^{T} X x(t)+\epsilon x(t)^{T} X x(t)+e(t)^{T} e(t)-\gamma^{2} d(t)^{T} d(t) \leq 0
$$

- If $d()=$.0 we infer $\frac{d}{d t} x(t)^{T} X x(t)+\epsilon x(t)^{T} X x(t) \leq 0$. Exploit $X \succ 0$ to obtain uniform exponential stability as in Lecture 6.
- If $x(0)=0$ drop the term $\epsilon x(t)^{T} X x(t)$ and observe that the inequality stays true.

Sketch of Trajectory-Based Proof

With the product-rule we arrive at

$$
\frac{d}{d t} x(t)^{T} X x(t)+\epsilon x(t)^{T} X x(t)+e(t)^{T} e(t)-\gamma^{2} d(t)^{T} d(t) \leq 0
$$

- If $d()=$.0 we infer $\frac{d}{d t} x(t)^{T} X x(t)+\epsilon x(t)^{T} X x(t) \leq 0$. Exploit $X \succ 0$ to obtain uniform exponential stability as in Lecture 6.
- If $x(0)=0$ drop the term $\epsilon x(t)^{T} X x(t)$ and observe that the inequality stays true. We then infer by integration on $[0, T]$ that

$$
x(T)^{T} X x(T)+\int_{0}^{T} e(t)^{T} e(t)-\gamma^{2} d(t)^{T} d(t) d t \leq 0 .
$$

Sketch of Trajectory-Based Proof

With the product-rule we arrive at

$$
\frac{d}{d t} x(t)^{T} X x(t)+\epsilon x(t)^{T} X x(t)+e(t)^{T} e(t)-\gamma^{2} d(t)^{T} d(t) \leq 0
$$

- If $d()=$.0 we infer $\frac{d}{d t} x(t)^{T} X x(t)+\epsilon x(t)^{T} X x(t) \leq 0$. Exploit $X \succ 0$ to obtain uniform exponential stability as in Lecture 6.
- If $x(0)=0$ drop the term $\epsilon x(t)^{T} X x(t)$ and observe that the inequality stays true. We then infer by integration on $[0, T]$ that

$$
x(T)^{T} X x(T)+\int_{0}^{T} e(t)^{T} e(t)-\gamma^{2} d(t)^{T} d(t) d t \leq 0
$$

Since $X \succ 0$, we can drop term $x(T)^{T} X x(T)$ without violating the inequality.

Sketch of Trajectory-Based Proof

With the product-rule we arrive at

$$
\frac{d}{d t} x(t)^{T} X x(t)+\epsilon x(t)^{T} X x(t)+e(t)^{T} e(t)-\gamma^{2} d(t)^{T} d(t) \leq 0
$$

- If $d()=$.0 we infer $\frac{d}{d t} x(t)^{T} X x(t)+\epsilon x(t)^{T} X x(t) \leq 0$. Exploit $X \succ 0$ to obtain uniform exponential stability as in Lecture 6.
- If $x(0)=0$ drop the term $\epsilon x(t)^{T} X x(t)$ and observe that the inequality stays true. We then infer by integration on $[0, T]$ that

$$
x(T)^{T} X x(T)+\int_{0}^{T} e(t)^{T} e(t)-\gamma^{2} d(t)^{T} d(t) d t \leq 0
$$

Since $X \succ 0$, we can drop term $x(T)^{T} X x(T)$ without violating the inequality. Then $T \rightarrow \infty$ finally leads to $\|e\|_{\mathscr{L}_{2}\left(\mathbb{R}_{+}, \mathbb{R}^{n_{e}}\right)} \leq \gamma\|d\|_{\mathscr{L}_{2}\left(\mathbb{R}_{+}, \mathbb{R}^{n_{d}}\right)}$.

How to Apply?

Test feasibility of LMIs

$$
\begin{aligned}
& \binom{I}{0}^{T} P\binom{I}{0} \prec 0,\binom{\Delta\left(\delta^{k}\right)}{I}^{T} P\binom{\Delta\left(\delta^{k}\right)}{I} \succ 0, \quad k=1, \ldots, N, \\
& X \succ 0, \quad\left(\begin{array}{ccc}
I & 0 & 0 \\
A & B_{1} & B_{2} \\
\hline 0 & I & 0 \\
C_{1} & D_{1} & D_{12} \\
\hline 0 & 0 & I \\
C_{2} & D_{21} & D_{2}
\end{array}\right)^{T}\left(\begin{array}{cc|cc|cc}
0 & X & 0 & 0 & 0 & 0 \\
X & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & -\gamma^{2} & I & 0 & 0 \\
0 \\
0 & 0 & 0 & I & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & Q & S \\
0 & 0 & 0 & 0 & S^{T} & R
\end{array}\right)\left(\begin{array}{ccc}
I & 0 & 0 \\
A & B_{1} & B_{2} \\
\hline 0 & I & 0 \\
C_{1} & D_{1} & D_{12} \\
\hline 0 & 0 & I \\
C_{2} & D_{21} & D_{2}
\end{array}\right) \prec 0 .
\end{aligned}
$$

Feasibility guarantees a robust energy-gain level of γ.
Minimize γ^{2} to determine best possible bound ... with this technique.

Summary and Comments

- Obtained non-trivial robust stability and robust performance tests which are based on multiplier relaxations.
- Observed trade-off between conservatism and "size" of multiplier set (computational complexity).
- Substantially more instances of the same theme are known.

Examples: Uncertainty phase information in μ-theory
Parameter-dependent Lyapunov functions Semi-algebraic uncertainty sets
C.W. Scherer, LMI Relaxations in Robust Control, Eur. J. Cont. 12 (2006) 3-29.

- Finally: Hints on synthesis. Larger classes of uncertainties.

Outline

- Nonsingularity of Matrix Families
- LTI Robust Stability Analysis
- Time-Varying Uncertainties
- Robust Stability and Performance with Multipliers
- Controller Synthesis
- A Glimpse at Nonlinear Uncertainties and IQCs

Configuration for Robust Controller Synthesis

Design controller guaranteeing

- robust stability
- desired robust performance specification on $d \rightarrow e$.

Configuration for Robust Controller Synthesis

Design controller guaranteeing

- robust stability
- desired robust performance specification on $d \rightarrow e$.

Consider following approach:

- Use robust performance characterization with multipliers
- Try to satisfy the multiplier characterization with suitable controller

Configuration for Robust Controller Synthesis

Design controller guaranteeing

- robust stability
- desired robust performance specification on $d \rightarrow e$.

Consider following approach:

- Use robust performance characterization with multipliers
- Try to satisfy the multiplier characterization with suitable controller

For notational simplicity: Concentrate on robust quadratic stability with full-block multiplier relaxation.

System Descriptions

Uncontrolled LTI part:

$$
\begin{aligned}
\dot{x} & =A x+B_{1} w+B u \\
z & =C_{1} x+D_{1} w+E u \\
y & =C x+F w
\end{aligned}
$$

Controller:

$$
\begin{aligned}
\dot{x}_{c} & =A_{K} x_{c}+B_{K} y \\
u & =C_{K} x_{c}+D_{K} y
\end{aligned}
$$

Controlled LTI part:

$$
\begin{aligned}
\dot{\xi} & =\mathcal{A} \xi+\mathcal{B} w \\
z & =\mathcal{C} \xi+\mathcal{D} w
\end{aligned}
$$

Uncertainty: $w(t)=\Delta(\delta(t)) z(t)$.
w : uncertainty input
z : uncertainty output
u : control input
y : measured output

Robust Stability Analysis Inequalities

Assume $\delta(t) \in \delta=\operatorname{co}\left\{\delta^{1}, \ldots, \delta^{N}\right\}$.
Robust stability guaranteed if exist \mathcal{X} and Q, R, S with

$$
\begin{gathered}
\binom{I}{0}^{T} P\binom{I}{0} \prec 0,\binom{\Delta\left(\delta^{k}\right)}{I}^{T} P\binom{\Delta\left(\delta^{k}\right)}{I} \succ 0, k=1, \ldots, N, \\
\mathcal{X} \succ 0, \quad\left(\begin{array}{cc}
I & 0 \\
\mathcal{X} \mathcal{A} & \mathcal{X} \mathcal{B} \\
\hline 0 & I \\
\mathcal{C} & \mathcal{D}
\end{array}\right)^{T}\left(\begin{array}{cc|cc}
0 & I & 0 & 0 \\
I & 0 & 0 & 0 \\
\hline 0 & 0 & Q & S \\
0 & 0 & S^{T} & R
\end{array}\right)\left(\begin{array}{cc}
I & 0 \\
\mathcal{X} \mathcal{A} & \mathcal{X} \mathcal{B} \\
\hline 0 & I \\
\mathcal{C} & \mathcal{D}
\end{array}\right) \prec 0 .
\end{gathered}
$$

Apply standard procedure to step from analysis to synthesis.

Robust Synthesis Inequalities

Exists controller guaranteeing robust stability if exist v, Q, R, S :

$$
\begin{gathered}
\binom{I}{0}^{T} P\binom{I}{0} \prec 0,\binom{\Delta\left(\delta^{k}\right)}{I}^{T} P\binom{\Delta\left(\delta^{k}\right)}{I} \succ 0, k=1, \ldots, N, \\
\boldsymbol{X}(v) \succ 0, \quad\left(\begin{array}{cc}
I & 0 \\
\frac{\boldsymbol{A}(v)}{} \boldsymbol{B}(v) \\
\hline 0 & I \\
\boldsymbol{C}(v) & \boldsymbol{D}(v)
\end{array}\right)^{T}\left(\begin{array}{cc|cc}
0 & I & 0 & 0 \\
I & 0 & 0 & 0 \\
\hline 0 & 0 & Q & S \\
0 & 0 & S^{T} & R
\end{array}\right)\left(\begin{array}{cc}
I & 0 \\
\frac{\boldsymbol{A}(v)}{} \boldsymbol{B}(v) \\
\hline 0 & I \\
\boldsymbol{C}(v) & \boldsymbol{D}(v)
\end{array}\right) \prec 0 .
\end{gathered}
$$

Robust Synthesis Inequalities

Exists controller guaranteeing robust stability if exist v, Q, R, S :

$$
\begin{gathered}
\binom{I}{0}^{T} P\binom{I}{0} \prec 0,\binom{\Delta\left(\delta^{k}\right)}{I}^{T} P\binom{\Delta\left(\delta^{k}\right)}{I} \succ 0, k=1, \ldots, N, \\
\boldsymbol{X}(v) \succ 0,\left(\begin{array}{cc}
I & 0 \\
\frac{\boldsymbol{A}(v)}{} \boldsymbol{B}(v) \\
\hline 0 & I \\
\boldsymbol{C}(v) & \boldsymbol{D}(v)
\end{array}\right)^{T}\left(\begin{array}{cc|cc}
0 & I & 0 & 0 \\
I & 0 & 0 & 0 \\
\hline 0 & 0 & Q & S \\
0 & 0 & S^{T} & R
\end{array}\right)\left(\begin{array}{cc}
I & 0 \\
\frac{\boldsymbol{A}(v)}{} \boldsymbol{B}(v) \\
\hline 0 & I \\
\boldsymbol{C}(v) & \boldsymbol{D}(v)
\end{array}\right) \prec 0 .
\end{gathered}
$$

Unfortunately not convex in all variables v and Q, R, S !

Robust Synthesis Inequalities

Exists controller guaranteeing robust stability if exist v, Q, R, S :

$$
\begin{gathered}
\binom{I}{0}^{T} P\binom{I}{0} \prec 0,\binom{\Delta\left(\delta^{k}\right)}{I}^{T} P\binom{\Delta\left(\delta^{k}\right)}{I} \succ 0, k=1, \ldots, N, \\
\boldsymbol{X}(v) \succ 0, \quad\left(\begin{array}{cc}
I & 0 \\
\frac{\boldsymbol{A}(v)}{} \boldsymbol{B}(v) \\
\hline 0 & I \\
\boldsymbol{C}(v) & \boldsymbol{D}(v)
\end{array}\right)^{T}\left(\begin{array}{cc|cc}
0 & I & 0 & 0 \\
I & 0 & 0 & 0 \\
\hline 0 & 0 & Q & S \\
0 & 0 & S^{T} & R
\end{array}\right)\left(\begin{array}{cc}
I & 0 \\
\frac{\boldsymbol{A}(v)}{} \boldsymbol{B}(v) \\
\hline 0 & I \\
\boldsymbol{C}(v) & \boldsymbol{D}(v)
\end{array}\right) \prec 0 .
\end{gathered}
$$

Unfortunately not convex in all variables v and Q, R, S !
No technique known how to convexify in general!

Robust Synthesis Inequalities

Exists controller guaranteeing robust stability if exist v, Q, R, S :

$$
\begin{gathered}
\binom{I}{0}^{T} P\binom{I}{0} \prec 0,\binom{\Delta\left(\delta^{k}\right)}{I}^{T} P\binom{\Delta\left(\delta^{k}\right)}{I} \succ 0, k=1, \ldots, N, \\
\boldsymbol{X}(v) \succ 0,\left(\begin{array}{cc}
I & 0 \\
\frac{\boldsymbol{A}(v)}{} \boldsymbol{B}(v) \\
\hline 0 & I \\
\boldsymbol{C}(v) & \boldsymbol{D}(v)
\end{array}\right)^{T}\left(\begin{array}{cc|cc}
0 & I & 0 & 0 \\
I & 0 & 0 & 0 \\
\hline 0 & 0 & Q & S \\
0 & 0 & S^{T} & R
\end{array}\right)\left(\begin{array}{cc}
I & 0 \\
\frac{\boldsymbol{A}(v)}{} \boldsymbol{B}(v) \\
\hline 0 & I \\
\boldsymbol{C}(v) & \boldsymbol{D}(v)
\end{array}\right) \prec 0 .
\end{gathered}
$$

Unfortunately not convex in all variables v and Q, R, S !
No technique known how to convexify in general! Usual heuristic remedy: Controller multiplier iteration.

Dualization Lemma

For real matrices $P=P^{T}$ and W of compatible size, the conditions

$$
\binom{0}{I}^{T} P\binom{0}{I} \succ 0 \text { and }\binom{I}{W}^{T} P\binom{I}{W} \prec 0
$$

are equivalent to

$$
\binom{I}{0}^{T} P^{-1}\binom{I}{0} \prec 0 \text { and }\binom{W^{T}}{-I}^{T} P^{-1}\binom{W^{T}}{-I} \succ 0 .
$$

Note that $\operatorname{im}\binom{I}{W}^{\perp}$ equals im $\binom{W^{T}}{-I}$.

Dualization Lemma

For real matrices $P=P^{T}$ and W of compatible size, the conditions

$$
\binom{0}{I}^{T} P\binom{0}{I} \succ 0 \text { and }\binom{I}{W}^{T} P\binom{I}{W} \prec 0
$$

are equivalent to

$$
\binom{I}{0}^{T} P^{-1}\binom{I}{0} \prec 0 \text { and }\binom{W^{T}}{-I}^{T} P^{-1}\binom{W^{T}}{-I} \succ 0 .
$$

Note that im $\binom{I}{W}^{\perp}$ equals im $\binom{W^{T}}{-I}$.
In general: Let $P=P^{T}$ be nonsingular with k negative eigenvalues.
If the subspace \mathcal{S} with dimension k is P-negative then \mathcal{S}^{\perp} is P-positive.

Dual Robust Synthesis Inequalities

Exists controller guaranteeing robust stability if exist $v, \tilde{Q}, \tilde{R}, \tilde{S}$:

$$
\begin{aligned}
& \binom{0}{I}^{T} \tilde{P}\binom{0}{I} \succ 0,\binom{-I}{\Delta\left(\delta^{k}\right)}^{T} \tilde{P}\binom{-I}{\Delta\left(\delta^{k}\right)} \prec 0, \quad k=1, \ldots, N \\
& \boldsymbol{X}(v) \succ 0,\left(\begin{array}{cc}
\boldsymbol{A}(v)^{T} & \boldsymbol{C}(v)^{T} \\
\frac{-I}{} & 0 \\
\hline \boldsymbol{B}(v)^{T} & \boldsymbol{D}(v)^{T} \\
0 & -I
\end{array}\right)^{T}\left(\begin{array}{cc|cc}
0 & I & 0 & 0 \\
I & 0 & 0 & 0 \\
\hline 0 & 0 & \tilde{Q} & \tilde{S} \\
0 & 0 & \tilde{S}^{T} & \tilde{R}
\end{array}\right)\left(\begin{array}{cc}
\boldsymbol{A}(v)^{T} & \boldsymbol{C}(v)^{T} \\
\frac{-I}{\boldsymbol{B}(v)^{T}} & 0 \\
0 & -I \\
0 & -I
\end{array}\right) \succ 0 .
\end{aligned}
$$

Note that we use the partition $\tilde{P}=\left(\begin{array}{cc}\tilde{Q} & \tilde{S} \\ \tilde{S}^{T} & \tilde{R}\end{array}\right)$.
No progress in general.

Dual Robust Synthesis Inequalities

Exists controller guaranteeing robust stability if exist $v, \tilde{Q}, \tilde{R}, \tilde{S}$:

$$
\begin{aligned}
& \binom{0}{I}^{T} \tilde{P}\binom{0}{I} \succ 0,\binom{-I}{\Delta\left(\delta^{k}\right)}^{T} \tilde{P}\binom{-I}{\Delta\left(\delta^{k}\right)} \prec 0, \quad k=1, \ldots, N \\
& \boldsymbol{X}(v) \succ 0,\left(\begin{array}{cc}
\boldsymbol{A}(v)^{T} & \boldsymbol{C}(v)^{T} \\
\frac{-I}{} & 0 \\
\hline \boldsymbol{B}(v)^{T} & \boldsymbol{D}(v)^{T} \\
0 & -I
\end{array}\right)^{T}\left(\begin{array}{cc|cc}
0 & I & 0 & 0 \\
I & 0 & 0 & 0 \\
\hline 0 & 0 & \tilde{Q} & \tilde{S} \\
0 & 0 & \tilde{S}^{T} & \tilde{R}
\end{array}\right)\left(\begin{array}{cc}
\boldsymbol{A}(v)^{T} & \boldsymbol{C}(v)^{T} \\
-I & 0 \\
\hline \boldsymbol{B}(v)^{T} & \boldsymbol{D}(v)^{T} \\
0 & -I
\end{array}\right) \succ 0 .
\end{aligned}
$$

Note that we use the partition $\tilde{P}=\left(\begin{array}{cc}\tilde{Q} & \tilde{S} \\ \tilde{S}^{T} & \tilde{R}\end{array}\right)$.
No progress in general. However it helps for state-feedback synthesis!

Lucky Case: Static State-Feedback Synthesis

Recall block substitution:

$$
\left(\begin{array}{ll}
\boldsymbol{A}(v) & \boldsymbol{B}(v) \\
\boldsymbol{C}(v) & \boldsymbol{D}(v)
\end{array}\right)=\left(\begin{array}{cc}
A Y+B M & B_{1} \\
C_{1} Y+E M & D_{1}
\end{array}\right), \quad \boldsymbol{X}(v)=Y .
$$

Last column does not depend on $v \ldots$

Lucky Case: Static State-Feedback Synthesis

Recall block substitution:

$$
\left(\begin{array}{ll}
\boldsymbol{A}(v) & \boldsymbol{B}(v) \\
\boldsymbol{C}(v) & \boldsymbol{D}(v)
\end{array}\right)=\left(\begin{array}{cc}
A Y+B M & B_{1} \\
C_{1} Y+E M & D_{1}
\end{array}\right), \quad \boldsymbol{X}(v)=Y .
$$

Last column does not depend on v...
... dual inequalities are affine in all variables ...

Lucky Case: Static State-Feedback Synthesis

Recall block substitution:

$$
\left(\begin{array}{ll}
\boldsymbol{A}(v) & \boldsymbol{B}(v) \\
\boldsymbol{C}(v) & \boldsymbol{D}(v)
\end{array}\right)=\left(\begin{array}{cc}
A Y+B M & B_{1} \\
C_{1} Y+E M & D_{1}
\end{array}\right), \quad \boldsymbol{X}(v)=Y .
$$

Last column does not depend on v...
... dual inequalities are affine in all variables ...
... robust state-feedback synthesis possible with LMI's!

Lucky Case: Static State-Feedback Synthesis

Recall block substitution:

$$
\left(\begin{array}{ll}
\boldsymbol{A}(v) & \boldsymbol{B}(v) \\
\boldsymbol{C}(v) & \boldsymbol{D}(v)
\end{array}\right)=\left(\begin{array}{cc}
A Y+B M & B_{1} \\
C_{1} Y+E M & D_{1}
\end{array}\right), \quad \boldsymbol{X}(v)=Y .
$$

Last column does not depend on v...
... dual inequalities are affine in all variables ...
... robust state-feedback synthesis possible with LMI's!

Extends to robust performance specification in straightforward fashion!

Dual Robust Synthesis Inequalities: State-feedback

Exists state-feedback controller guaranteeing robust stability if there exist $Y, M, \tilde{Q}, \tilde{R}, \tilde{S}$ satisfying

$$
\begin{aligned}
& \binom{0}{I}^{T} \tilde{P}\binom{0}{I} \succ 0,\binom{-I}{\Delta\left(\delta^{k}\right)}^{T} \tilde{P}\binom{-I}{\Delta\left(\delta^{k}\right)} \prec 0, \quad k=1, \ldots, N \\
& Y \succ 0,\left(\begin{array}{c}
* \\
* \\
* \\
*
\end{array}\right)\left(\begin{array}{cc|cc}
0 & I & 0 & 0 \\
I & 0 & 0 & 0 \\
\hline 0 & 0 & \tilde{Q} & \tilde{S} \\
0 & 0 & \tilde{S}^{T} & \tilde{R}
\end{array}\right)\left(\begin{array}{cc}
(A Y+B M)^{T}\left(C_{1} Y+E M\right)^{T} \\
-I & 0 \\
\hline B_{1}^{T} & D_{1}^{T} \\
0 & -I
\end{array}\right) \succ 0 .
\end{aligned}
$$

Is indeed - obviously - an LMI problem!

Lucky Case: Robust Estimator Synthesis

Configuration for robust estimator synthesis:

Lucky Case: Robust Estimator Synthesis

Configuration for robust estimator synthesis:

The open-loop system with performance channel reads as

$$
\left(\begin{array}{c}
\dot{x} \\
\hline z \\
e \\
y
\end{array}\right)=\left(\begin{array}{c|ccc}
A & B_{1} & B_{2} & 0 \\
\hline C_{1} & D_{1} & D_{12} & 0 \\
C_{2} & D_{21} & D_{2} & -I \\
C & F_{1} & F_{2} & 0
\end{array}\right)\left(\begin{array}{c}
x \\
\hline w \\
d \\
u
\end{array}\right) .
$$

Lucky Case: Robust Estimator Synthesis

General variable substitution simplifies to

$$
\boldsymbol{X}(v)=\left(\begin{array}{cc}
Y & I \\
I & X
\end{array}\right)
$$

$$
\begin{aligned}
& \left(\begin{array}{ccc}
\boldsymbol{A}(v) & \boldsymbol{B}_{\mathbf{1}}(v) & \boldsymbol{B}_{\mathbf{2}}(v) \\
\boldsymbol{C}_{\mathbf{1}}(v) & \boldsymbol{D}_{\mathbf{1}}(v) & \boldsymbol{D}_{\mathbf{1 2}}(v) \\
\boldsymbol{C}_{\mathbf{2}}(v) & \boldsymbol{D}_{\mathbf{2 1}}(v) & \boldsymbol{D}_{\mathbf{2}}(v)
\end{array}\right)= \\
& \quad=\left(\begin{array}{cc|cc}
A Y & A & B_{1} & B_{2} \\
K & X A+L C & X B_{1}+L F_{1} & X B_{2}+L F_{2} \\
\hline C_{1} Y & C_{1} & D_{1} & D_{12} \\
C_{2} Y-M & C_{2}-N C & D_{21}-N F_{1} & D_{2}-N F_{2}
\end{array}\right)
\end{aligned}
$$

Lucky Case: Robust Estimator Synthesis

Robust \mathcal{L}_{2}-gain estimator synthesis: Multiplier constraints and LMIs

$$
\left(\begin{array}{cc}
Y & I \\
I & X
\end{array}\right) \succ 0
$$

Lucky Case: Robust Estimator Synthesis

Robust \mathcal{L}_{2}-gain estimator synthesis: Multiplier constraints and LMIs

$$
\left(\begin{array}{cc}
Y & I \\
I & X
\end{array}\right) \succ 0
$$

$*\left(\begin{array}{ccccc|cc}0 & 0 & I & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & I & 0 & 0 & 0 \\ I & 0 \\ I & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & Q & S & 0 \\ 0 & 0 \\ 0 & 0 & 0 & 0 & S^{T} & R & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & -\gamma^{2} I \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline\end{array}\right)\left(\begin{array}{ccccc}I & 0 & 0 & 0 \\ 0 & I & 0 & 0 \\ A Y & A & B_{1} & B_{2} \\ K & X A+L C & X B_{1}+L F_{1} X B_{2}+L F_{2} \\ \hline 0 & 0 & I & 0 \\ C_{1} Y & C_{1} & D_{1} & D_{12} \\ \hline 0 & 0 & 0 & I \\ C_{2} Y-M & C_{2}-N C & D_{21}-N F_{1} & D_{2}-N F_{2}\end{array}\right) \prec 0$

Non-convex.

Lucky Case: Robust Estimator Synthesis

Robust \mathcal{L}_{2}-gain estimator synthesis: Multiplier constraints and LMIs

$$
\left(\begin{array}{cc}
Y & I \\
I & X
\end{array}\right) \succ 0
$$

$\left(\begin{array}{ccc\|cc\|cc} 0 & 0 & I & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & I & 0 & 0 & 0 \\ & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & I & 0 & 0 & 0 & 0 & 0 \\ \hline \end{array}\right)$	$\left(\begin{array}{rr}I & 0 \\ 0 & I \\ A Y & A \\ K & X A+\end{array}\right.$	$\begin{array}{cc}0 & 0 \\ 0 & 0 \\ B_{1} & B_{2} \\ B_{1}+L F_{1} X B_{2}+L F_{2}\end{array}$
$00 Q^{Q} S$	0	$\begin{array}{ll}I & 0\end{array}$
$00 S^{T} R \quad 0 \quad 0$	$C_{1} Y \quad C_{1}$	$D_{1} \quad D_{12}$
$\begin{array}{\|cc\|cc\|cc\|} \hline 0 & 0 & 0 & 0 & 0 & 0 \end{array}-\gamma^{2} I 0010$	$\begin{array}{cc}0 & 0 \\ C_{2} Y-M & C_{2}-N C\end{array}$	$\left.\begin{array}{cc}0 & I \\ D_{21}-N F_{1} & D_{2}-N F_{2}\end{array}\right)$

Non-convex. Congruence trafos with $\operatorname{diag}\left(Y^{-1}, I\right), \operatorname{diag}\left(Y^{-1}, I, I, I\right) \ldots$

Lucky Case: Robust Estimator Synthesis

... leads to

$$
\left(\begin{array}{cc}
Y^{-1} & Y^{-1} \\
Y^{-1} & X
\end{array}\right) \succ 0
$$

$*\left(\begin{array}{c|cc|cc}00 & I & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ I 000 & 0 & 0 & 0 & 0 \\ 0 I 00 & 0 & 0 & 0 & 0 \\ \hline 0000 & Q & S & 0 & 0 \\ 0000 & S^{T} & R & 0 & 0 \\ \hline 0000 & 0 & 0 & -\gamma^{2} I 0 \\ 0000 & 0 & 0 & 0 & I\end{array}\right)\left(\begin{array}{cc|cc}I & 0 & 0 & 0 \\ 0 & I & 0 & 0 \\ Y^{-1} A & Y^{-1} A & Y^{-1} B_{1} & Y^{-1} B_{2} \\ K Y^{-1} & X A+L C & X B_{1}+L F_{1} X B_{2}+L F_{2} \\ \hline 0 & 0 & I & 0 \\ C_{1} & C_{1} & D_{1} & D_{12} \\ \hline 0 & 0 & 0 & I \\ C_{2}-M Y^{-1} & C_{2}-N C & D_{21}-N F_{1} & D_{2}-N F_{2}\end{array}\right) \prec 0$

Lucky Case: Robust Estimator Synthesis

... leads to

$$
\left(\begin{array}{cc}
Y^{-1} & Y^{-1} \\
Y^{-1} & X
\end{array}\right) \succ 0
$$

$*\left(\begin{array}{c|cc|cc}00 & I & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \\ I 000 & 0 & 0 & 0 & 0 \\ 0 I 00 & 0 & 0 & 0 & 0 \\ \hline 0000 & Q & S & 0 & 0 \\ 0000 & S^{T} & R & 0 & 0 \\ \hline 0000 & 0 & 0 & -\gamma^{2} I 0 \\ 0000 & 0 & 0 & 0 & I\end{array}\right)\left(\begin{array}{cc|cc}I & 0 & 0 & 0 \\ 0 & I & 0 & 0 \\ Y^{-1} A & Y^{-1} A & Y^{-1} B_{1} & Y^{-1} B_{2} \\ K Y^{-1} & X A+L C & X B_{1}+L F_{1} X B_{2}+L F_{2} \\ \hline 0 & 0 & I & 0 \\ C_{1} & C_{1} & D_{1} & D_{12} \\ \hline 0 & 0 & 0 & I \\ C_{2}-M Y^{-1} & C_{2}-N C & D_{21}-N F_{1} & D_{2}-N F_{2}\end{array}\right) \prec 0$
which is convex in new variables $\hat{Y}=Y^{-1}, \hat{K}=K Y^{-1}, \hat{M}=M Y^{-1}$!

Summary and Comments

- Identified trouble in output-feedback synthesis.
- Discussed lucky cases for robust synthesis by LMIs.
- Gain-scheduling synthesis: The controller is allowed to adapt itself according to on-line measurement parameters:

Output-feedback synthesis can be transformed into LMIs.

Outline

- Nonsingularity of Matrix Families
- LTI Robust Stability Analysis
- Time-Varying Uncertainties
- Robust Stability and Performance with Multipliers
- Controller Synthesis
- A Glimpse at Nonlinear Uncertainties and IQCs

Nonlinear Uncertainties

Consider the system

$$
\left(\begin{array}{c}
\dot{x}(t) \\
e(t) \\
z(t)
\end{array}\right)=\left(\begin{array}{ccc}
A & B_{1} & B_{2} \\
C_{1} & D_{1} & D_{12} \\
C_{2} & D_{21} & 0
\end{array}\right)\left(\begin{array}{c}
x(t) \\
d(t) \\
w(t)
\end{array}\right), \quad w(t)=\Delta(z(t)) .
$$

which involves the (smooth) nonlinear uncertainty $\Delta: \mathbb{R}^{n_{z}} \rightarrow \mathbb{R}^{n_{w}}$.

Nonlinear Uncertainties

Consider the system

$$
\left(\begin{array}{c}
\dot{x}(t) \\
e(t) \\
z(t)
\end{array}\right)=\left(\begin{array}{ccc}
A & B_{1} & B_{2} \\
C_{1} & D_{1} & D_{12} \\
C_{2} & D_{21} & 0
\end{array}\right)\left(\begin{array}{c}
x(t) \\
d(t) \\
w(t)
\end{array}\right), \quad w(t)=\Delta(z(t)) .
$$

which involves the (smooth) nonlinear uncertainty $\Delta: \mathbb{R}^{n_{z}} \rightarrow \mathbb{R}^{n_{w}}$. The description is well-posed (due to the red zero block.)

Nonlinear Uncertainties

Consider the system

$$
\left(\begin{array}{c}
\dot{x}(t) \\
e(t) \\
z(t)
\end{array}\right)=\left(\begin{array}{ccc}
A & B_{1} & B_{2} \\
C_{1} & D_{1} & D_{12} \\
C_{2} & D_{21} & 0
\end{array}\right)\left(\begin{array}{c}
x(t) \\
d(t) \\
w(t)
\end{array}\right), \quad w(t)=\Delta(z(t)) .
$$

which involves the (smooth) nonlinear uncertainty $\Delta: \mathbb{R}^{n_{z}} \rightarrow \mathbb{R}^{n_{w}}$. The description is well-posed (due to the red zero block.)

The statement on slide 29 persists to hold if replacing (POS) by

$$
\binom{\Delta(z)}{z}^{T} P\binom{\Delta(z)}{z} \geq 0 \text { for all vectors } z \in \mathbb{R}^{n_{z}}
$$

Proof. Literally as before!

IQCs: Example

For transfer function

$$
G(s)=\frac{-1}{2(s+1)\left(\frac{1}{2} s+1\right)\left(\frac{1}{3} s+1\right)}
$$

consider the following interconnection with saturation nonlinearity:

Compute a good bound on the energy-gain of $d \rightarrow e$.

IQCs: Example

Saturation nonlinearity with gain b satisfies

$$
|\Delta(z)| \leq b|z| \text { or }\binom{\Delta(z)}{z}^{\prime}\left(\begin{array}{cc}
-1 & 0 \\
0 & b^{2}
\end{array}\right)\binom{\Delta(z)}{z} \geq 0
$$

IQCs: Example

Introduce multiplier to reduce conservatism:

$$
\binom{\Delta(z)}{z}^{\prime}\left(\begin{array}{cc}
-\tau & 0 \\
0 & \tau b^{2}
\end{array}\right)\binom{\Delta(z)}{z} \geq 0 \text { for all } \tau \geq 0
$$

IQCs: Example

$\Delta(z)^{2} \leq b z \Delta(z)$

Refined information about saturation:

$$
\binom{\Delta(z)}{z}^{\prime}\left(\begin{array}{cc}
-2 \tau & b \tau \\
b \tau & 0
\end{array}\right)\binom{\Delta(z)}{z} \geq 0 \text { for all } \tau \geq 0
$$

Integral Quadratic Constraints

For any $\tau=\left(\tau_{1}, \tau_{2}\right)$ (elementwise) define the dynamic multiplier

$$
\Pi_{\tau}(s)=\tau_{1}\left(\begin{array}{cc}
-2 & b \\
b & 0
\end{array}\right)+\tau_{2}\left(\begin{array}{cc}
0 & \frac{s}{s+100} \\
\frac{-s}{-s+100} & 0
\end{array}\right) .
$$

Integral Quadratic Constraints

For any $\tau=\left(\tau_{1}, \tau_{2}\right)$ (elementwise) define the dynamic multiplier

$$
\Pi_{\tau}(s)=\tau_{1}\left(\begin{array}{cc}
-2 & b \\
b & 0
\end{array}\right)+\tau_{2}\left(\begin{array}{cc}
0 & \frac{s}{s+100} \\
\frac{-s}{-s+100} & 0
\end{array}\right) .
$$

Saturation satisfies Integral Quadratic Constraint (IQC)

$$
\int_{-\infty}^{\infty}\binom{\lambda \widehat{\Delta(z)}(i \omega)}{\hat{z}(i \omega)}^{*} \Pi_{\tau}(i \omega)\binom{\lambda \widehat{\Delta(z)}(i \omega)}{\hat{z}(i \omega)} d \omega \geq 0
$$

for all $z \in \mathscr{L}_{2}\left(\mathbb{R}_{+}, \mathbb{R}\right), \lambda \in[0,1], \tau \geq 0$ (elementwise).
Dynamic (frequency-dependent) multipliers!

Integral Quadratic Constraints

Suppose that

$$
\left(\begin{array}{ll}
T_{11} & T_{12} \\
T_{21} & T_{22}
\end{array}\right) \text { is the transfer matrix of }\binom{d}{w} \rightarrow\binom{e}{z} .
$$

Integral Quadratic Constraints

Suppose that

$$
\left(\begin{array}{ll}
T_{11} & T_{12} \\
T_{21} & T_{22}
\end{array}\right) \text { is the transfer matrix of }\binom{d}{w} \rightarrow\binom{e}{z} .
$$

Robust stability and energy-gain performance of level γ is guaranteed if there exists $\tau \geq 0$ for which the following FDI holds:

$$
\left(\begin{array}{l}
\bullet \\
\bullet \\
\bullet
\end{array}\right)^{*}\left(\begin{array}{cc}
\left(\begin{array}{cc}
-\gamma^{2} I & 0 \\
0 & I
\end{array}\right) & 0 \\
\hline 0 & \Pi_{\tau}(i \omega)
\end{array}\right)\left(\begin{array}{cc}
I & 0 \\
\frac{T_{11}(i \omega)}{} T_{12}(i \omega) \\
0 & I \\
T_{21}(i \omega) & T_{22}(i \omega)
\end{array}\right) \prec 0 \quad \forall \omega \in \mathbb{R} \cup\{\infty\} .
$$

Computation: Application of KYP lemma leads to LMI feasibility test.
A. Megretski, A. Rantzer, System analysis via Integral Quadratic Constraints, IEEE Trans. Autom. Contr. 42 (1997) 819-830.

IQCs: Example

Dynamics are highly beneficial!

Main Points

Here is a summary of the main issues we addressed:

- Discussed multiplier relaxations for non-singularity problem

Main Points

Here is a summary of the main issues we addressed:

- Discussed multiplier relaxations for non-singularity problem
- Showed how to apply to robust stability and performance analysis for time-invariant and time-varying parametric uncertainties

Main Points

Here is a summary of the main issues we addressed:

- Discussed multiplier relaxations for non-singularity problem
- Showed how to apply to robust stability and performance analysis for time-invariant and time-varying parametric uncertainties
- Revealed what can be said about controller/estimator synthesis

Main Points

Here is a summary of the main issues we addressed:

- Discussed multiplier relaxations for non-singularity problem
- Showed how to apply to robust stability and performance analysis for time-invariant and time-varying parametric uncertainties
- Revealed what can be said about controller/estimator synthesis

We were much too brief about

- Flexibility of framework for general uncertainty value sets

Main Points

Here is a summary of the main issues we addressed:

- Discussed multiplier relaxations for non-singularity problem
- Showed how to apply to robust stability and performance analysis for time-invariant and time-varying parametric uncertainties
- Revealed what can be said about controller/estimator synthesis

We were much too brief about

- Flexibility of framework for general uncertainty value sets
- Gain-scheduling synthesis (and how to convexify)

Main Points

Here is a summary of the main issues we addressed:

- Discussed multiplier relaxations for non-singularity problem
- Showed how to apply to robust stability and performance analysis for time-invariant and time-varying parametric uncertainties
- Revealed what can be said about controller/estimator synthesis

We were much too brief about

- Flexibility of framework for general uncertainty value sets
- Gain-scheduling synthesis (and how to convexify)
- Dynamic multipliers and synthesis

