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The following linear algebra problem is fundamental in robust control:

Let us be given M ∈ Cn×m and V ⊂ Cm×n. Decide whether

det(I −MV ) 6= 0 for all V ∈ V . (NS)
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The following linear algebra problem is fundamental in robust control:

Let us be given M ∈ Cn×m and V ⊂ Cm×n. Decide whether

det(I −MV ) 6= 0 for all V ∈ V . (NS)

• Recall classical fact for unit ball V = {V ∈ Cm×n : σmax(V ) ≤ 1}:
Condition (NS) holds if and only if σmax(M) < 1.

• If σ(V ) ≤ 1 we can hence infer that σmax(M) < 1 is sufficient for

(NS). This small-gain condition is easy to check, but conservative.

• First goal: Develop more refined computationally verifiable sufficient

conditions that take the particular structure of V into account.
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Observe that

det(I −MV ) 6= 0 ⇐⇒ image

(
I

M

)
∩ image

(
V

I

)
= {0}.

For non-singularity we hence need to make sure that the graph of M

and the inverse graph of V are separated (intersect at 0 only).
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det(I −MV ) 6= 0 ⇐⇒ image

(
I

M
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∩ image

(
V

I

)
= {0}.

For non-singularity we hence need to make sure that the graph of M

and the inverse graph of V are separated (intersect at 0 only).

Geometrically we guarantee separation if these graphs are located in

the strictly negative/positive cone of some Hermitian P ∈ C(n+m)×(n+m)

respectively:

• Positive cone of P : {x ∈ Cn+m : x∗Px ≥ 0}.

• Strictly negative cone of P : {x ∈ Cn+m : x∗Px < 0}.
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Suppose there exists a Hermitian multiplier P ∈ C(n+m)×(n+m) with(
V

I

)∗

P
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< 0 for all V ∈ V (POS)

and at the same time(
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P
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≺ 0. (NS-LMI)

Then det(I −MV ) 6= 0 for all V ∈ V .
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Suppose there exists a Hermitian multiplier P ∈ C(n+m)×(n+m) with(
V

I

)∗

P

(
V

I

)
< 0 for all V ∈ V (POS)

and at the same time(
I

M

)∗

P

(
I

M

)
≺ 0. (NS-LMI)

Then det(I −MV ) 6= 0 for all V ∈ V .

If V is compact it can be shown that iff holds (full block S-procedure).

Very easy to prove! Extensions? How to use in computations?
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Suppose there exists some V ∈ V for which I−MV is singular. Then

there exists a vector w 6= 0 such that

(I −MV )w = 0.

For z = V w we infer z 6= 0 and(
z

w

)
=

(
I

M

)
z as well as

(
z

w

)
=

(
V

I

)
w.

Since z 6= 0 we obtain

0 > z∗

(
I

M

)∗

P

(
I

M

)
z =

(
z

w

)∗

P

(
z

w

)
= w∗

(
V

I

)∗

P

(
V

I

)
w ≥ 0

which is a contradiction.



Numerical Implementation

6/57

Carsten Scherer

Note that the set of P satisfying (POS) is convex. However this does

not help much since this constraint involves infinitely many LMIs.

Key Idea for Computations: Relaxation

For practically relevant V , try to identify some ”nicely described”

subclass of all P ’s which satisfy (POS).

Then search in this class of P ’s one which also satisfies (NS-LMI).

Recent years have witnessed a whole variety of possibilities along this

line, using techniques from convex analysis and real algebraic geometry

(Pólya’s theorem, sum-of-squares). We only give three examples.
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Let us consider the set V of all V with

V = diag(V1, . . . , Vp) with V1, . . . , Vp ∈ C•×•, σmax(V ) ≤ 1.

These matrices admit a diagonal structure with full complex blocks.
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V = diag(V1, . . . , Vp) with V1, . . . , Vp ∈ C•×•, σmax(V ) ≤ 1.

These matrices admit a diagonal structure with full complex blocks.

Repeated Diagonal Multipliers. (POS) is satisfied for all matrices

P =

(
− diag(q1I, . . . , qpI) 0

0 diag(q1I, . . . , qpI)

)

with arbitrary real numbers q1, . . . , qp ≥ 0.

Proof. Just note for V ∈ V and P as above that(
V

I

)∗

P

(
V

I

)
= diag(qk(I − V ∗

k Vk)) < 0.
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As we will see, another interesting set V consists of all

V = diag(v1I, . . . , vpI) with vk ∈ R, |vk| ≤ 1, k = 1, . . . , p.

These matrices admit a diagonal structure with real-repeated blocks.
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V = diag(v1I, . . . , vpI) with vk ∈ R, |vk| ≤ 1, k = 1, . . . , p.

These matrices admit a diagonal structure with real-repeated blocks.

Diagonal Multipliers. (POS) is satisfied for all matrices

P =

(
− diag(Q1, . . . , Qp) diag(S1, . . . , Sp)

diag(S1, . . . , Sp)
T diag(Q1, . . . , Qp)

)

with Hermitian Q1, . . . , Qp < 0 and skew-Hermitian S1, . . . , Sp.

Proof. Just note for V ∈ V and P as above that(
V

I

)∗

P

(
V

I

)
= diag(Qk(1−v2

k)+vk(Sk+S∗k)) = diag(Qk(1−v2
k)) < 0.
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Numerical Implementation

9/57

Carsten Scherer

A much larger class of structured matrices can be described as

V = convex hull{V1, . . . , VN}.

Full Block Multipliers. (POS) is satisfied for all P with(
I

0

)T

P

(
I

0

)
4 0,

(
Vk

I

)T

P

(
Vk

I

)
< 0, k = 1, ..., N.

Set of multipliers described by finitely many LMI constraints.



Numerical Implementation

9/57

Carsten Scherer

A much larger class of structured matrices can be described as

V = convex hull{V1, . . . , VN}.

Full Block Multipliers. (POS) is satisfied for all P with(
I

0

)T

P

(
I

0

)
4 0,

(
Vk

I

)T

P

(
Vk

I

)
< 0, k = 1, ..., N.

Set of multipliers described by finitely many LMI constraints.

Proof. The first inequality implies that

V →

(
V

I

)T

P

(
V

I

)
is concave.

Hence (POS) is valid iff the inequality holds at the generators V1, . . . , VN .
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Consider the system

ẋ = F (δ)x with uncertain parameter vector δ ∈ Rp.
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ẋ = F (δ)x with uncertain parameter vector δ ∈ Rp.

Assumptions: The parameter δ is

contained in some polytope

δ ∈ δ = convex hull{δ1, . . . , δN} ⊂ Rp.

Let δ = 0 ∈ δ be the nominal value

and assume that F (0) is Hurwitz.
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Consider the system

ẋ = F (δ)x with uncertain parameter vector δ ∈ Rp.

Assumptions: The parameter δ is

contained in some polytope

δ ∈ δ = convex hull{δ1, . . . , δN} ⊂ Rp.

Let δ = 0 ∈ δ be the nominal value

and assume that F (0) is Hurwitz.

δ1

δ3

δ2

δ4
δ5

δ

Can we decide whether all these systems are Hurwitz?
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Let F (δ) depend rationally on δ without having a pole in 0.

One can then write ẋ = F (δ)x as

ẋ = Ax + Bw

z = Cx + Dw

}
w = ∆(δ)z

with ∆(δ) being linear in δ ∈ δ.

ẋ = Ax + Bw
z = Cx + Dw

∆(δ)
z w

∫

ẋ x



Linear Fractional Representation

11/57

Carsten Scherer

Let F (δ) depend rationally on δ without having a pole in 0.

One can then write ẋ = F (δ)x as

ẋ = Ax + Bw

z = Cx + Dw

}
w = ∆(δ)z

with ∆(δ) being linear in δ ∈ δ.

ẋ = Ax + Bw
z = Cx + Dw

∆(δ)
z w

∫

ẋ x

It is always possible to take ∆(δ) with the structure

∆(δ) =

 δ1Iν1 0
. . .

0 δpIνp

 for some integers ν1, . . . , νp ≥ 0

where Iν denotes the identity matrix of size ν.



Example I

12/57
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or as(
ẋ1

2ẋ2
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+

(
0

1

)
w1 =

(
−1 0

−1 −4

)(
x1

2x2

)
+

(
2

−4

)
w2 +

(
0

3

)
w3

w1 = δ1z1, z1 = ẋ2, w2 = δ1z2, z2 = x2, w3 = δ2z3, z3 = 2x2 + w2
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Hence ẋ = F (δ)x can be written as

ẋ =

(
−1 0

−.5 −4

)
x +

(
0 2 0

−.5 −2 1.5

)
w

z =

 −.5 −4

0 1

0 2

x +

 −.5 −2 1.5

0 0 0

0 1 0

w, w =

 δ1 0 0

0 δ1 0

0 0 δ2

 z.

Therefore we can choose

(
A B

C D

)
=


−1 0 0 2 0

−.5 −4 −.5 −2 1.5

−.5 −4 −.5 −2 1.5

0 1 0 0 0

0 1 0 1 0

 , ∆(δ) =

 δ1 0 0

0 δ1 0

0 0 δ2

 .
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Let ẋ = F (δ)x be represented as

ẋ = Ax + Bw

z = Cx + Dw

}
w = ∆(δ)z

with ∆(δ) being linear in δ ∈ δ.

ẋ = Ax + Bw
z = Cx + Dw

∆(δ)
z w

∫

ẋ x

The given derivation shows that this actually means

F (δ) = A + B∆(δ)(I −D∆(δ))−1C =:

(
A B

C D

)
? ∆(δ).

This is called a linear fractional representation (LFR) of F (δ).

It is said to be well-posed if I −D∆(δ) is non-singular on δ.
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ẋ x

Define the transfer matrix G(s) = D + C(sI − A)−1B.

The LFR is well-posed and ẋ = F (δ)x is Hurwitz for all δ ∈ δ iff

det(I −G(iω)∆(δ)) 6= 0 for all ω ∈ R ∪ {∞}, δ ∈ δ.
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Let ẋ = F (δ)x be represented as

ẋ = Ax + Bw

z = Cx + Dw

}
w = ∆(δ)z

with ∆(δ) being linear in δ ∈ δ.

ẋ = Ax + Bw
z = Cx + Dw

∆(δ)
z w

∫

ẋ x

Define the transfer matrix G(s) = D + C(sI − A)−1B.

The LFR is well-posed and ẋ = F (δ)x is Hurwitz for all δ ∈ δ iff

det(I −G(iω)∆(δ)) 6= 0 for all ω ∈ R ∪ {∞}, δ ∈ δ.

Testing robust stability is reduced to a robust non-singularity condition

for the matrices G(iω), ω ∈ R ∪ {∞}, and the set V = ∆(δ).
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Suppose the LFR is well-posed. Then F (δ) is Hurwitz for all δ ∈ δ iff

det
(
sI − A−B∆(δ)(I −D∆(δ))−1C

)
6= 0 for all Re(s) ≥ 0, δ ∈ δ
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Suppose the LFR is well-posed. Then F (δ) is Hurwitz for all δ ∈ δ iff

det
(
sI − A−B∆(δ)(I −D∆(δ))−1C

)
6= 0 for all Re(s) ≥ 0, δ ∈ δ

⇐⇒ (Schur determinant formula & well-posedness)

det

(
sI − A −B∆(δ)

−C I −D∆(δ)

)
for all Re(s) ≥ 0, δ ∈ δ

⇐⇒ (Schur determinant formula & A Hurwitz)

det
(
I − [D + C(sI − A)−1B]∆(δ)

)
for all Re(s) ≥ 0, δ ∈ δ

⇐⇒ (nontrivial homotopy argument)

det
(
I − [D + C(iωI − A)−1B]∆(δ)

)
for all ω ∈ R, δ ∈ δ.

Now just observe that the latter condition is well-posedness for ω = ∞.
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• Choose a list frequencies ω1, . . . , ωm ∈ R ∪ {∞}.

• Define the set of real-repeated block-diagonal matrices V = ∆(δ).

• Choose an LMI class of multipliers P for V to satisfy (POS).

• For k = 1, . . . ,m check feasibility of

P ∈ P and

(
I

G(iωk)

)∗

P

(
I

G(iωk)

)
≺ 0.

If all LMIs for k = 1, . . . ,m are feasible, we conclude robust stability.

Note that there is a risk of missing crucial frequencies! Can be handled!
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Determine largest r such that the non-singularity test is successful.

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

Frequency

La
rg

es
t r Small−Gain

Diagonal Multipliers with S=0
Diagonal Multipliers

Observation: The larger the class of multipliers the better the test!
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• Sketched key ideas to obtain linear fractional representation

G

∆

z w

which forms the basis for advanced robustness analysis.

• Have reduced robust stability to non-singularity test.

• Developed multiplier relaxation schemes to verify robust stability.

• Extends to stable structured dynamic uncertainties ∆ that satisfy

∆(iω) ∈ V for all ω ∈ R ∪ {∞}.

This touches the so-called structured singular value theory.
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ẋ(t) = F (δ(t))x(t) affected by time-varying parameter δ(t) ∈ Rp.
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Carsten Scherer

Consider the system

ẋ(t) = F (δ(t))x(t) affected by time-varying parameter δ(t) ∈ Rp.

Assumption: δ(.) is piece-wise continuous

and satisfies δ(t) ∈ δ for all t ∈ R+ where

δ = convex hull{δ1, . . . , δN} ⊂ Rp.

Quadratic Stability

All systems are exponentially stable if there exists some X with

X � 0, F (δ)T X + XF (δ) ≺ 0 for all δ ∈ δ.
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Consider the robust LMI(
I

F (δ)

)T (
0 X

X 0

)(
I

F (δ)

)
= F (δ)TX+XF (δ) ≺ 0 ∀ δ ∈ δ.
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Consider the robust LMI(
I

F (δ)

)T (
0 X

X 0

)(
I

F (δ)

)
= F (δ)TX+XF (δ) ≺ 0 ∀ δ ∈ δ.

LFR is well-posed and the robust LMI holds iff there exists a P with(
∆(δ)

I

)T

P

(
∆(δ)

I

)
< 0 for all δ ∈ δ (POS)

that also satisfies(
AT X + XA XB

BT X 0

)
+

(
0 I

C D

)T

P

(
0 I

C D

)
≺ 0. (QS-LMI)

Our numerical procedure applies for checking sufficient conditions!
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D
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≺ 0 (right-lower block), we

infer that I −D∆(δ) is non-singular which implies well-posedness.
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Fix an arbitrary δ ∈ δ.

Since (QS-LMI) implies

(
I

D

)T

P

(
I

D

)
≺ 0 (right-lower block), we

infer that I −D∆(δ) is non-singular which implies well-posedness.

Abbreviate H = (I −D∆(δ))−1C to infer from (QS-LMI) that

0 �

(
I

∆(δ)H

)T

lhs of LMI

(
I

∆(δ)H

)
=

= F (δ)TX+XF (δ) + HT

(
∆(δ)

I

)T

P

(
∆(δ)

I

)
H︸ ︷︷ ︸

< 0 due to (POS)

where = follows by simple computation.
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Fix an arbitrary δ ∈ δ.

Since (QS-LMI) implies

(
I

D

)T

P

(
I

D

)
≺ 0 (right-lower block), we

infer that I −D∆(δ) is non-singular which implies well-posedness.

Abbreviate H = (I −D∆(δ))−1C to infer from (QS-LMI) that

0 �

(
I

∆(δ)H

)T

lhs of LMI

(
I

∆(δ)H

)
=

= F (δ)TX+XF (δ) + HT

(
∆(δ)

I

)T

P

(
∆(δ)

I

)
H︸ ︷︷ ︸

< 0 due to (POS)

where = follows by simple computation. Hence F (δ)TX+XF (δ) ≺ 0.
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Determine largest r such that robust quadratic stability can be verified.

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

Frequency

La
rg

es
t r Small−Gain

Diagonal Multipliers with S=0
Diagonal Multipliers (DM)
Quadratic Stability with DM

Observation: Small gap between time-invariant/time-varying case!
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Test quadratic stability for polynomial parameter dependence:

ẋ =

(
−1.25 1− δ1δ2

2

1− δ1δ2 −1

)
x, δ1 ∈ [−1, 1], δ2 ∈ [−1, 0].
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)
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Test quadratic stability for polynomial parameter dependence:

ẋ =

(
−1.25 1− δ1δ2

2

1− δ1δ2 −1

)
x, δ1 ∈ [−1, 1], δ2 ∈ [−1, 0].

This family can be covered by the following uncertain system with affine

parameter dependence:

ẋ =

(
−1.25 1− x

1− y −1

)
x, x ∈ [−r, r], y ∈ [−r, r], r = 1.

• Polytopic technique from Lecture 6 successful only for r ≈ 0.11.

• The multipliers from slide 9 allow to guarantee quadratic stability for

original uncertain system with polynomial parameter dependence!
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Blue Region

Set of parameter-dependent

elements of original system

Red Line

Boundary of Hurwitz region

for original system

Black Boxes

Set of parameter-dependent

elements of affine covering
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• A trajectory-based proof for robust stability will be given below.

• With affine Q0(v), R0(v), S0(v) in the decision variable v, the same

technique (proof) applies to finding v which robustly satisfies(
I

F (δ)

)T (
Q0(v) S0(v)

S0(v)T R0(v)

)(
I

F (δ)

)
≺ 0, R0(v) < 0.

Examples: Discrete-time stability, eigenvalue-location in LMI region.

• The result is a concrete version of the so-called full block S-procedure.

It serves to handle general robust LMI problems in which the uncertain

parameters enter in a rational fashion.

C.W. Scherer, LMI Relaxations in Robust Control, Eur. J. Cont. 12 (2006) 3-29.
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Consider the uncertain input-output system described as

ẋ(t) = F (δ(t))x(t) + G(δ(t))d(t)

e(t) = H(δ(t))x(t) + J(δ(t))d(t)

with continuous parameter-curves δ(.) that satisfy

δ(t) ∈ δ = convex hull{δ1, . . . , δN} ⊂ Rp.
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Consider the uncertain input-output system described as

ẋ(t) = F (δ(t))x(t) + G(δ(t))d(t)

e(t) = H(δ(t))x(t) + J(δ(t))d(t)

with continuous parameter-curves δ(.) that satisfy

δ(t) ∈ δ = convex hull{δ1, . . . , δN} ⊂ Rp.

Robust Energy-Gain Performance of level γ

For all parameter-curves, ẋ(t) = F (δ(t))x(t) is exponentially stable

and the system’s energy-gain is bounded by γ:∫ ∞

0

e(t)T e(t) dt ≤ γ2

∫ ∞

0

d(t)T d(t) dt for d ∈ L2(R+, Rnd), x(0)=0.
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Obtain LFR of matrices describing system:(
F (δ) G(δ)

H(δ) J(δ)

)
=

 A B1 B2

C1 D1 D12

C2 D21 D2

 ? ∆(δ).
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Carsten Scherer

Obtain LFR of matrices describing system:(
F (δ) G(δ)

H(δ) J(δ)

)
=

 A B1 B2

C1 D1 D12

C2 D21 D2

 ? ∆(δ).

If LFR well-posed, we have the following alternative system description:

x(t)

ẋ(t)

d(t)

e(t)

w(t)

z(t)


=



I 0 0

A B1 B2

0 I 0

C1 D1 D12

0 0 I

C2 D21 D2


 x(t)

d(t)

w(t)

 ,

(
w(t)

z(t)

)
=

(
∆(δ(t))

I

)
z(t).
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The LFR is well-posed and the system satisfies robust quadratic

performance if there exist P =

(
Q S

ST R

)
and X � 0 with

(
∆(δ)

I

)T

P

(
∆(δ)

I

)
< 0 for all δ ∈ δ and (POS)



I 0 0

A B1 B2

0 I 0

C1 D1 D12

0 0 I

C2 D21 D2



T

0 X 0 0 0 0

X 0 0 0 0 0

0 0 −γ2I 0 0 0

0 0 0 I 0 0

0 0 0 0 Q S

0 0 0 0 ST R





I 0 0

A B1 B2

0 I 0

C1 D1 D12

0 0 I

C2 D21 D2


≺0. (RP)
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Considering the right-lower block of (RP) reveals that

DT
12D12 +

(
I

D2

)T

P

(
I

D2

)
=

=



0

B2

0

D12

I

D2



T

0 X 0 0 0 0

X 0 0 0 0 0

0 0 −γ2I 0 0 0

0 0 0 I 0 0

0 0 0 0 Q S

0 0 0 0 ST R





0

B2

0

D12

I

D2


≺ 0.
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Considering the right-lower block of (RP) reveals that

DT
12D12 +

(
I

D2

)T

P

(
I

D2

)
=

=



0

B2

0

D12

I

D2



T

0 X 0 0 0 0

X 0 0 0 0 0

0 0 −γ2I 0 0 0

0 0 0 I 0 0

0 0 0 0 Q S

0 0 0 0 ST R





0

B2

0

D12

I

D2


≺ 0.

This implies

(
I

D2

)T

P

(
I

D2

)
≺ 0 and with (POS) well-posedness.
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Due to (RP) there exists some ε > 0 such that

I 0 0

A B1 B2

0 I 0

C1 D1 D12

0 0 I

C2 D21 D2



T

0 X 0 0 0 0

X 0 0 0 0 0

0 0 −γ2I 0 0 0

0 0 0 I 0 0

0 0 0 0 Q S

0 0 0 0 ST R





I 0 0

A B1 B2

0 I 0

C1 D1 D12

0 0 I

C2 D21 D2


+

εX 0 0

0 0 0

0 0 0

 ≺ 0.
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Due to (RP) there exists some ε > 0 such that

I 0 0

A B1 B2

0 I 0

C1 D1 D12

0 0 I

C2 D21 D2



T

0 X 0 0 0 0

X 0 0 0 0 0

0 0 −γ2I 0 0 0

0 0 0 I 0 0

0 0 0 0 Q S

0 0 0 0 ST R





I 0 0

A B1 B2

0 I 0

C1 D1 D12

0 0 I

C2 D21 D2


+

εX 0 0

0 0 0

0 0 0

 ≺ 0.

Choose parameter trajectory δ(t) ∈ δ and d ∈ L2(R+, Rnd), and let

x(.) and e(.) be some corresponding state- and output trajectories for

any initial condition x(0).
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+
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Choose parameter trajectory δ(t) ∈ δ and d ∈ L2(R+, Rnd), and let

x(.) and e(.) be some corresponding state- and output trajectories for

any initial condition x(0). Due to well-posedness, these trajectories

satisfy the relations on slide 28 for suitable w(.), z(.).
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Due to (RP) there exists some ε > 0 such that

I 0 0

A B1 B2

0 I 0

C1 D1 D12

0 0 I

C2 D21 D2



T

0 X 0 0 0 0

X 0 0 0 0 0

0 0 −γ2I 0 0 0

0 0 0 I 0 0

0 0 0 0 Q S

0 0 0 0 ST R





I 0 0

A B1 B2

0 I 0

C1 D1 D12

0 0 I

C2 D21 D2


+

εX 0 0

0 0 0

0 0 0

 ≺ 0.

Choose parameter trajectory δ(t) ∈ δ and d ∈ L2(R+, Rnd), and let

x(.) and e(.) be some corresponding state- and output trajectories for

any initial condition x(0). Due to well-posedness, these trajectories

satisfy the relations on slide 28 for suitable w(.), z(.).

Now right-multiply col(x(t), d(t), w(t)) and left-multiply its transpose.
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We obtain(
x(t)

ẋ(t)

)T (
0 X

X 0

)(
x(t)

ẋ(t)

)
+ εx(t)T Xx(t)+

+

(
d(t)

e(t)

)T(
−γ2I 0

0 I

)(
d(t)

e(t)

)
+

(
w(t)

z(t)

)T

P

(
w(t)

z(t)

)
≤ 0.
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We obtain(
x(t)

ẋ(t)

)T (
0 X

X 0

)(
x(t)

ẋ(t)

)
+ εx(t)T Xx(t)+

+

(
d(t)

e(t)

)T(
−γ2I 0

0 I

)(
d(t)

e(t)

)
+

(
w(t)

z(t)

)T

P

(
w(t)

z(t)

)
≤ 0.

As a key feature observe that w(t) = ∆(δ(t))z(t) and hence with (POS):(
w(t)

z(t)

)T

P

(
w(t)

z(t)

)
= z(t)T

(
∆(δ(t))

I

)T

P

(
∆(δ(t))

I

)
z(t) < 0.
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We obtain(
x(t)

ẋ(t)

)T (
0 X

X 0

)(
x(t)

ẋ(t)

)
+ εx(t)T Xx(t)+

+

(
d(t)

e(t)

)T(
−γ2I 0

0 I

)(
d(t)

e(t)

)
+

(
w(t)

z(t)

)T

P

(
w(t)

z(t)

)
≤ 0.

As a key feature observe that w(t) = ∆(δ(t))z(t) and hence with (POS):(
w(t)

z(t)

)T

P

(
w(t)

z(t)

)
= z(t)T

(
∆(δ(t))

I

)T

P

(
∆(δ(t))

I

)
z(t) < 0.

Even after canceling this term, the above inequality hence stays valid.
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With the product-rule we arrive at

d

dt
x(t)T Xx(t) + εx(t)T Xx(t) + e(t)T e(t) − γ2d(t)T d(t) ≤ 0.
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d

dt
x(t)T Xx(t) + εx(t)T Xx(t) + e(t)T e(t) − γ2d(t)T d(t) ≤ 0.

• If d(.) = 0 we infer d
dt

x(t)T Xx(t)+εx(t)T Xx(t) ≤ 0. Exploit X � 0

to obtain uniform exponential stability as in Lecture 6.
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• If x(0) = 0 drop the term εx(t)T Xx(t) and observe that the inequal-

ity stays true.
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• If d(.) = 0 we infer d
dt

x(t)T Xx(t)+εx(t)T Xx(t) ≤ 0. Exploit X � 0

to obtain uniform exponential stability as in Lecture 6.

• If x(0) = 0 drop the term εx(t)T Xx(t) and observe that the inequal-

ity stays true. We then infer by integration on [0, T ] that

x(T )T Xx(T ) +

∫ T

0

e(t)T e(t)− γ2d(t)T d(t) dt ≤ 0.
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With the product-rule we arrive at

d

dt
x(t)T Xx(t) + εx(t)T Xx(t) + e(t)T e(t) − γ2d(t)T d(t) ≤ 0.

• If d(.) = 0 we infer d
dt

x(t)T Xx(t)+εx(t)T Xx(t) ≤ 0. Exploit X � 0

to obtain uniform exponential stability as in Lecture 6.

• If x(0) = 0 drop the term εx(t)T Xx(t) and observe that the inequal-

ity stays true. We then infer by integration on [0, T ] that

x(T )T Xx(T ) +

∫ T

0

e(t)T e(t)− γ2d(t)T d(t) dt ≤ 0.

Since X � 0, we can drop term x(T )T Xx(T ) without violating the

inequality.
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With the product-rule we arrive at

d

dt
x(t)T Xx(t) + εx(t)T Xx(t) + e(t)T e(t) − γ2d(t)T d(t) ≤ 0.

• If d(.) = 0 we infer d
dt

x(t)T Xx(t)+εx(t)T Xx(t) ≤ 0. Exploit X � 0

to obtain uniform exponential stability as in Lecture 6.

• If x(0) = 0 drop the term εx(t)T Xx(t) and observe that the inequal-

ity stays true. We then infer by integration on [0, T ] that

x(T )T Xx(T ) +

∫ T

0

e(t)T e(t)− γ2d(t)T d(t) dt ≤ 0.

Since X � 0, we can drop term x(T )T Xx(T ) without violating the

inequality. Then T →∞ finally leads to ‖e‖L2(R+,Rne ) ≤ γ‖d‖L2(R+,Rnd ).
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Test feasibility of LMIs(
I

0

)T

P

(
I

0

)
≺ 0,

(
∆(δk)

I

)T

P

(
∆(δk)

I

)
� 0, k = 1, ..., N,

X � 0,



I 0 0

A B1 B2

0 I 0

C1 D1 D12

0 0 I

C2 D21 D2



T

0 X 0 0 0 0

X 0 0 0 0 0

0 0 −γ2I 0 0 0

0 0 0 I 0 0

0 0 0 0 Q S

0 0 0 0 ST R





I 0 0

A B1 B2

0 I 0

C1 D1 D12

0 0 I

C2 D21 D2


≺ 0.

Feasibility guarantees a robust energy-gain level of γ.

Minimize γ2 to determine best possible bound ... with this technique.
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• Obtained non-trivial robust stability and robust performance tests

which are based on multiplier relaxations.

• Observed trade-off between conservatism and “size” of multiplier set

(computational complexity).

• Substantially more instances of the same theme are known.

Examples: Uncertainty phase information in µ-theory

Parameter-dependent Lyapunov functions

Semi-algebraic uncertainty sets

C.W. Scherer, LMI Relaxations in Robust Control, Eur. J. Cont. 12 (2006) 3-29.

• Finally: Hints on synthesis. Larger classes of uncertainties.
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Design controller guaranteeing

• robust stability

• desired robust performance

specification on d → e.

de

y

Controller

System

u

∆
z w
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∆
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Consider following approach:

• Use robust performance characterization with multipliers

• Try to satisfy the multiplier characterization with suitable controller



Configuration for Robust Controller Synthesis
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Design controller guaranteeing

• robust stability

• desired robust performance

specification on d → e.

de

y

Controller

System

u

∆
z w

Consider following approach:

• Use robust performance characterization with multipliers

• Try to satisfy the multiplier characterization with suitable controller

For notational simplicity: Concentrate on robust quadratic stability

with full-block multiplier relaxation.
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Uncontrolled LTI part:

ẋ = Ax + B1w + Bu

z = C1x + D1w + Eu

y = Cx + Fw

Controller:

ẋc = AKxc + BKy

u = CKxc + DKy

Controlled LTI part:

ξ̇ = Aξ + Bw

z = Cξ +Dw

Uncertainty: w(t) = ∆(δ(t))z(t).

w: uncertainty input

z: uncertainty output

u: control input

y: measured output

y

Controller

System

u

∆(δ(t))
z w



Robust Stability Analysis Inequalities
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Assume δ(t) ∈ δ = co{δ1, . . . , δN}.

Robust stability guaranteed if exist X and Q, R, S with(
I

0

)T

P

(
I

0

)
≺ 0,

(
∆(δk)

I

)T

P

(
∆(δk)

I

)
� 0, k = 1, ..., N,

X � 0,


I 0

XA XB
0 I

C D


T 

0 I 0 0

I 0 0 0

0 0 Q S

0 0 ST R




I 0

XA XB
0 I

C D

 ≺ 0.

Apply standard procedure to step from analysis to synthesis.
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Exists controller guaranteeing robust stability if exist v, Q, R, S:(
I

0

)T

P

(
I

0

)
≺ 0,

(
∆(δk)

I

)T

P

(
∆(δk)

I

)
� 0, k = 1, ..., N,

X(v) � 0,


I 0

A(v) B(v)

0 I

C(v) D(v)


T

0 I 0 0

I 0 0 0

0 0 Q S

0 0 ST R




I 0

A(v) B(v)

0 I

C(v) D(v)

≺ 0.
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Exists controller guaranteeing robust stability if exist v, Q, R, S:(
I

0

)T

P

(
I

0

)
≺ 0,

(
∆(δk)

I

)T

P

(
∆(δk)

I

)
� 0, k = 1, ..., N,

X(v) � 0,


I 0

A(v) B(v)

0 I

C(v) D(v)


T

0 I 0 0

I 0 0 0

0 0 Q S

0 0 ST R




I 0

A(v) B(v)

0 I

C(v) D(v)
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Unfortunately not convex in all variables v and Q, R, S!
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Exists controller guaranteeing robust stability if exist v, Q, R, S:(
I

0

)T

P

(
I

0

)
≺ 0,

(
∆(δk)

I

)T

P

(
∆(δk)

I

)
� 0, k = 1, ..., N,

X(v) � 0,


I 0

A(v) B(v)

0 I

C(v) D(v)


T

0 I 0 0

I 0 0 0

0 0 Q S

0 0 ST R




I 0

A(v) B(v)

0 I

C(v) D(v)

≺ 0.

Unfortunately not convex in all variables v and Q, R, S!

No technique known how to convexify in general!

Usual heuristic remedy: Controller multiplier iteration.



Dualization Lemma

40/57

Carsten Scherer

For real matrices P = P T and W of compatible size, the conditions(
0

I

)T

P

(
0

I

)
� 0 and

(
I

W

)T

P

(
I

W

)
≺ 0

are equivalent to(
I

0

)T

P−1

(
I

0

)
≺ 0 and

(
W T

−I

)T

P−1

(
W T

−I

)
� 0.

Note that im

(
I

W

)⊥

equals im

(
W T

−I

)
.
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For real matrices P = P T and W of compatible size, the conditions(
0

I

)T

P

(
0

I

)
� 0 and

(
I

W

)T

P

(
I

W

)
≺ 0

are equivalent to(
I

0

)T

P−1

(
I

0

)
≺ 0 and

(
W T

−I

)T

P−1

(
W T

−I

)
� 0.

Note that im

(
I

W

)⊥

equals im

(
W T

−I

)
.

In general: Let P = P T be nonsingular with k negative eigenvalues.

If the subspace S with dimension k is P -negative then S⊥ is P -positive.



Dual Robust Synthesis Inequalities
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Exists controller guaranteeing robust stability if exist v, Q̃, R̃, S̃:(
0

I

)T

P̃

(
0

I

)
� 0,

(
−I

∆(δk)

)T

P̃

(
−I

∆(δk)

)
≺ 0, k = 1, ..., N

X(v) �0,


A(v)T C(v)T

−I 0

B(v)T D(v)T

0 −I


T

0 I 0 0

I 0 0 0

0 0 Q̃ S̃

0 0 S̃T R̃




A(v)T C(v)T

−I 0

B(v)T D(v)T

0 −I

�0.

Note that we use the partition P̃ =

(
Q̃ S̃

S̃T R̃

)
.

No progress in general.
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Exists controller guaranteeing robust stability if exist v, Q̃, R̃, S̃:(
0

I

)T

P̃

(
0

I

)
� 0,

(
−I

∆(δk)

)T

P̃

(
−I

∆(δk)

)
≺ 0, k = 1, ..., N

X(v) �0,


A(v)T C(v)T

−I 0

B(v)T D(v)T

0 −I


T

0 I 0 0

I 0 0 0

0 0 Q̃ S̃

0 0 S̃T R̃




A(v)T C(v)T

−I 0

B(v)T D(v)T

0 −I

�0.

Note that we use the partition P̃ =

(
Q̃ S̃

S̃T R̃

)
.

No progress in general. However it helps for state-feedback synthesis!
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Recall block substitution:(
A(v) B(v)

C(v) D(v)

)
=

(
AY + BM B1

C1Y + EM D1

)
, X(v) = Y .

Last column does not depend on v ...
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Lucky Case: Static State-Feedback Synthesis
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Carsten Scherer

Recall block substitution:(
A(v) B(v)

C(v) D(v)

)
=

(
AY + BM B1

C1Y + EM D1

)
, X(v) = Y .

Last column does not depend on v ...

... dual inequalities are affine in all variables ...

... robust state-feedback synthesis possible with LMI’s!

Extends to robust performance specification in straightforward fashion!



Dual Robust Synthesis Inequalities: State-feedback
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Exists state-feedback controller guaranteeing robust stability if there

exist Y , M , Q̃, R̃, S̃ satisfying(
0

I

)T

P̃

(
0

I

)
� 0,

(
−I

∆(δk)

)T

P̃

(
−I

∆(δk)

)
≺ 0, k = 1, ..., N

Y � 0,


∗
∗
∗
∗


T

0 I 0 0

I 0 0 0

0 0 Q̃ S̃

0 0 S̃T R̃




(AY + BM)T (C1Y + EM)T

−I 0

BT
1 DT

1

0 −I

�0.

Is indeed - obviously - an LMI problem!
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Configuration for robust estimator synthesis:

System

y

+

−

Estimator

∆z w

e
d
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Configuration for robust estimator synthesis:

System

y

+

−

Estimator

∆z w

e
d

The open-loop system with performance channel reads as
ẋ

z

e

y

 =


A B1 B2 0

C1 D1 D12 0

C2 D21 D2 −I

C F1 F2 0




x

w

d

u

 .



Lucky Case: Robust Estimator Synthesis
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General variable substitution simplifies to

X(v) =

(
Y I

I X

)
 A(v) B1(v) B2(v)

C1(v) D1(v) D12(v)

C2(v) D21(v) D2(v)

 =

=


AY A B1 B2

K XA + LC XB1 + LF1 XB2 + LF2

C1Y C1 D1 D12

C2Y −M C2 −NC D21 −NF1 D2 −NF2





Lucky Case: Robust Estimator Synthesis
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Robust L2-gain estimator synthesis: Multiplier constraints and LMIs(
Y I

I X

)
� 0

∗



0 0 I 0 0 0 0 0

0 0 0 I 0 0 0 0

I 0 0 0 0 0 0 0

0 I 0 0 0 0 0 0

0 0 0 0 Q S 0 0

0 0 0 0ST R 0 0

0 0 0 0 0 0 −γ2I 0

0 0 0 0 0 0 0 I





I 0 0 0

0 I 0 0

AY A B1 B2

K XA + LC XB1 + LF1 XB2 + LF2

0 0 I 0

C1Y C1 D1 D12

0 0 0 I

C2Y −M C2−NC D21−NF1 D2−NF2


≺ 0
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Robust L2-gain estimator synthesis: Multiplier constraints and LMIs(
Y I

I X

)
� 0

∗
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0 0 0 I 0 0 0 0

I 0 0 0 0 0 0 0

0 I 0 0 0 0 0 0

0 0 0 0 Q S 0 0

0 0 0 0ST R 0 0

0 0 0 0 0 0 −γ2I 0

0 0 0 0 0 0 0 I
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0 I 0 0
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0 0 I 0
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Non-convex.
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Robust L2-gain estimator synthesis: Multiplier constraints and LMIs(
Y I

I X

)
� 0

∗



0 0 I 0 0 0 0 0

0 0 0 I 0 0 0 0

I 0 0 0 0 0 0 0

0 I 0 0 0 0 0 0

0 0 0 0 Q S 0 0

0 0 0 0ST R 0 0

0 0 0 0 0 0 −γ2I 0

0 0 0 0 0 0 0 I





I 0 0 0

0 I 0 0

AY A B1 B2

K XA + LC XB1 + LF1 XB2 + LF2

0 0 I 0

C1Y C1 D1 D12

0 0 0 I

C2Y −M C2−NC D21−NF1 D2−NF2


≺ 0

Non-convex. Congruence trafos with diag(Y −1, I), diag(Y −1, I, I, I) ...



Lucky Case: Robust Estimator Synthesis
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... leads to (
Y −1 Y −1

Y −1 X

)
� 0

∗



00I 0 0 0 0 0

000I 0 0 0 0

I 000 0 0 0 0

0I 00 0 0 0 0

0000 Q S 0 0

0000ST R 0 0

0000 0 0−γ2I 0

0000 0 0 0 I





I 0 0 0

0 I 0 0

Y −1A Y −1A Y −1B1 Y −1B2

KY −1 XA + LCXB1 + LF1XB2 + LF2

0 0 I 0

C1 C1 D1 D12

0 0 0 I

C2−MY −1 C2−NC D21−NF1 D2−NF2


≺ 0



Lucky Case: Robust Estimator Synthesis
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... leads to (
Y −1 Y −1

Y −1 X

)
� 0

∗



00I 0 0 0 0 0

000I 0 0 0 0

I 000 0 0 0 0

0I 00 0 0 0 0

0000 Q S 0 0

0000ST R 0 0

0000 0 0−γ2I 0

0000 0 0 0 I





I 0 0 0

0 I 0 0

Y −1A Y −1A Y −1B1 Y −1B2

KY −1 XA + LCXB1 + LF1XB2 + LF2

0 0 I 0

C1 C1 D1 D12

0 0 0 I

C2−MY −1 C2−NC D21−NF1 D2−NF2


≺ 0

which is convex in new variables Ŷ = Y −1, K̂ = KY −1, M̂ = MY −1!



Summary and Comments
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• Identified trouble in output-feedback synthesis.

• Discussed lucky cases for robust synthesis by LMIs.

• Gain-scheduling synthesis: The controller is allowed to adapt itself

according to on-line measurement parameters:

de

y

System(δ(t))

u

Controller(δ(t))

Output-feedback synthesis can be transformed into LMIs.



Outline
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• Nonsingularity of Matrix Families

• LTI Robust Stability Analysis

• Time-Varying Uncertainties

• Robust Stability and Performance with Multipliers

• Controller Synthesis

• A Glimpse at Nonlinear Uncertainties and IQCs
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Consider the system ẋ(t)

e(t)

z(t)

 =

 A B1 B2

C1 D1 D12

C2 D21 0


 x(t)

d(t)

w(t)

 , w(t) = ∆(z(t)).

which involves the (smooth) nonlinear uncertainty ∆ : Rnz → Rnw .
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Consider the system ẋ(t)

e(t)

z(t)

 =

 A B1 B2

C1 D1 D12

C2 D21 0


 x(t)

d(t)

w(t)

 , w(t) = ∆(z(t)).

which involves the (smooth) nonlinear uncertainty ∆ : Rnz → Rnw .

The description is well-posed (due to the red zero block.)

The statement on slide 29 persists to hold if replacing (POS) by(
∆(z)

z

)T

P

(
∆(z)

z

)
≥ 0 for all vectors z ∈ Rnz .

Proof. Literally as before!



IQCs: Example
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For transfer function

G(s) =
−1

2(s + 1)(1
2
s + 1)(1

3
s + 1)

consider the following interconnection with saturation nonlinearity:

G e

d

Compute a good bound on the energy-gain of d → e.
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1 1.2 1.4 1.6 1.8 2
0

5

10

15

20

Sector parameter b
G

ua
ra

nt
ee

d 
E

ne
rg

y−
G

ai
n

Saturation nonlinearity with gain b satisfies

|∆(z)| ≤ b |z| or

(
∆(z)

z

)′(
−1 0

0 b2

)(
∆(z)

z

)
≥ 0
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1 1.2 1.4 1.6 1.8 2
0

5

10

15

20

Sector parameter b
G

ua
ra

nt
ee

d 
E

ne
rg

y−
G

ai
n

Introduce multiplier to reduce conservatism:(
∆(z)

z

)′(
−τ 0

0 τb2

)(
∆(z)

z

)
≥ 0 for all τ ≥ 0
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2 4 6 8 10
0

5

10

15

20

Sector parameter b
G

ua
ra

nt
ee

d 
E

ne
rg

y−
G

ai
n

Refined information about saturation:(
∆(z)

z

)′(
−2τ bτ

bτ 0

)(
∆(z)

z

)
≥ 0 for all τ ≥ 0

∆(z)2 ≤ b z∆(z)



Integral Quadratic Constraints
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G e

d

For any τ = (τ1, τ2) (elementwise) define the dynamic multiplier

Πτ (s) = τ1

(
−2 b

b 0

)
+ τ2

(
0 s

s+100
−s

−s+100
0

)
.
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G e

d

For any τ = (τ1, τ2) (elementwise) define the dynamic multiplier

Πτ (s) = τ1

(
−2 b

b 0

)
+ τ2

(
0 s

s+100
−s

−s+100
0

)
.

Saturation satisfies Integral Quadratic Constraint (IQC)∫ ∞

−∞

(
λ∆̂(z)(iω)

ẑ(iω)

)∗

Πτ (iω)

(
λ∆̂(z)(iω)

ẑ(iω)

)
dω ≥ 0

for all z ∈ L2(R+, R), λ ∈ [0, 1], τ ≥ 0 (elementwise).

Dynamic (frequency-dependent) multipliers!



Integral Quadratic Constraints
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Suppose that(
T11 T12

T21 T22

)
is the transfer matrix of

(
d

w

)
→

(
e

z

)
.



Integral Quadratic Constraints
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Suppose that(
T11 T12

T21 T22

)
is the transfer matrix of

(
d

w

)
→

(
e

z

)
.

Robust stability and energy-gain performance of level γ is guaranteed

if there exists τ ≥ 0 for which the following FDI holds:
•
•
•
•


∗
(
−γ2I 0

0 I

)
0

0 Πτ (iω)




I 0

T11(iω) T12(iω)

0 I

T21(iω) T22(iω)

≺0 ∀ω ∈ R∪{∞}.

Computation: Application of KYP lemma leads to LMI feasibility test.

A. Megretski, A. Rantzer, System analysis via Integral Quadratic Constraints, IEEE

Trans. Autom. Contr. 42 (1997) 819-830.
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G e

d

5 10 15 20
0

5

10

15

20

Sector parameter b

G
ua

ra
nt

ee
d 

E
ne

rg
y−

G
ai

n

Dynamics are highly beneficial!
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Here is a summary of the main issues we addressed:

• Discussed multiplier relaxations for non-singularity problem

• Showed how to apply to robust stability and performance analysis

for time-invariant and time-varying parametric uncertainties

• Revealed what can be said about controller/estimator synthesis

We were much too brief about

• Flexibility of framework for general uncertainty value sets

• Gain-scheduling synthesis (and how to convexify)

• Dynamic multipliers and synthesis


