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Nonsingularity of Families of Matrices

The following linear algebra problem is fundamental in robust control:

Let us be given M € C™™ and V' C C™*". Decide whether

det(I/ — MV)#0 forall VeV. (NS)
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Nonsingularity of Families of Matrices

The following linear algebra problem is fundamental in robust control:

Let us be given M € C™™ and V' C C™*". Decide whether

det(I/ — MV)#0 forall VeV. (NS)

e Recall classical fact for unit ball V= {V € C"™*" : g, (V) < 1}:
Condition (NS) holds if and only if o, (M) < 1.

e
Carsten Scherer 'If"U Delft



Nonsingularity of Families of Matrices

The following linear algebra problem is fundamental in robust control:

Let us be given M € C™™ and V' C C™*". Decide whether

det(I/ — MV)#0 forall VeV. (NS)

e Recall classical fact for unit ball V= {V € C"™*" : g, (V) < 1}:
Condition (NS) holds if and only if o, (M) < 1.

e If 0(V) < 1 we can hence infer that oma (M) < 1 is sufficient for
(NS). This small-gain condition is easy to check, but conservative.
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Nonsingularity of Families of Matrices

The following linear algebra problem is fundamental in robust control:

Let us be given M € C™™ and V' C C™*". Decide whether

det(I/ — MV)#0 forall VeV. (NS)

e Recall classical fact for unit ball V- = {V € C™" : gx(V) < 1}
Condition (NS) holds if and only if o, (M) < 1.

e If 0(V) < 1 we can hence infer that oma (M) < 1 is sufficient for
(NS). This small-gain condition is easy to check, but conservative.

e First goal: Develop more refined computationally verifiable sufficient
conditions that take the particular structure of V' into account.
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Key ldea

Observe that
: I : V
det(I — MV)#0 <= image ( \ ) ﬂlmage< / ) = {0}.

For non-singularity we hence need to make sure that the graph of M
and the inverse graph of V' are separated (intersect at 0 only).
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Key Idea

Observe that
: I : V
det(I — MV)#0 <= image ( \ ) N image ( / ) = {0}.

For non-singularity we hence need to make sure that the graph of M
and the inverse graph of V' are separated (intersect at 0 only).

Geometrically we guarantee separation if these graphs are located in
the strictly negative/positive cone of some Hermitian P € C+m)x(n+m)

respectively:

e Positive cone of P: {z € C"*™ : z*Px > 0}.

e Strictly negative cone of P: {z € C"™™: z*Px < 0}.
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Multipliers

Suppose there exists a Hermitian multiplier P € C+m)x(+m) with

(‘;)P(‘;)#OforaIIVGV (POS)

and at the same time

( ! >*P< ! )<0. (NS-LMI)
M M

Then det(I — MV) #0forall V e V.
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Multipliers

Suppose there exists a Hermitian multiplier P € C+m)x(+m) with

(‘;)P(‘;)&OforaIIVGV (POS)

and at the same time

( ! >*P< ! )<0. (NS-LMI)
M M

Then det(I — MV) #0forall V e V.

If V' is compact it can be shown that iff holds (full block S-procedure).
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Multipliers

Suppose there exists a Hermitian multiplier P € C+m)x(+m) with

(‘;)P(‘;)&OforallVGV (POS)

and at the same time

( ! >*P< ! )<o. (NS-LMI)
M M

Then det(I — MV) #0forall V e V.

If V' is compact it can be shown that iff holds (full block S-procedure).
Very easy to prove! Extensions? How to use in computations?

e e
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Proof

Suppose there exists some V' € V' for which I — MV is singular.
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Proof

Suppose there exists some V' € V' for which I — MV is singular. Then
there exists a vector w # 0 such that

(I—MV)w=0.

st
Carsten Scherer 'I,"U Delft



Proof

Suppose there exists some V' € V' for which I — MV is singular. Then

there exists a vector w # 0 such that

(I—MV)w=0.

For z = Vw we infer z # 0 and

(2)-(1) =een (2)-2)-
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Proof

Suppose there exists some V' € V' for which I — MV is singular. Then

there exists a vector w # 0 such that
(I — MV)w =0.

For z = Vw we infer z # 0 and

(2)-(1): =eon (2)-(3)-

Since z # 0 we obtain

o> (P el o)) 2w (V)Y Vuso
M M w w I I
which is a contradiction.
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Numerical Implementation

Note that the set of P satisfying (POS) is convex. However this does
not help much since this constraint involves infinitely many LMlIs.

Key Idea for Computations: Relaxation

For practically relevant V', try to identify some "nicely described”
subclass of all P's which satisfy (POS).

Then search in this class of P's one which also satisfies (NS-LMI).

Recent years have witnessed a whole variety of possibilities along this
line, using techniques from convex analysis and real algebraic geometry

(Pdlya’s theorem, sum-of-squares). We only give three examples.
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Numerical Implementation

Let us consider the set V of all V' with
V =diag(Vi,...,V,) with Vi,...,V, € C***, onax(V) < 1.

These matrices admit a diagonal structure with full complex blocks.

e
Carsten Scherer 'If"U Delft



Numerical Implementation

Let us consider the set V of all V' with
V =diag(Vi,...,V,) with Vi,...,V, € C***, onax(V) < 1.

These matrices admit a diagonal structure with full complex blocks.

Repeated Diagonal Multipliers. (POS) is satisfied for all matrices

P —diag(q1 1, ..., q,1) 0
0 diag(q1 1, ..., q,1)

with arbitrary real numbers ¢, ..., g, > 0.
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Numerical Implementation

Let us consider the set V of all V' with
V =diag(Vi,...,V,) with Vi,...,V, € C***, onax(V) < 1.

These matrices admit a diagonal structure with full complex blocks.

Repeated Diagonal Multipliers. (POS) is satisfied for all matrices

P —diag(q1 1, ..., q,1) 0
0 diag(q1 1, ..., q,1)

with arbitrary real numbers ¢, ..., g, > 0.

Proof. Just note for V€ V and P as above that

<¥>P<Z>=m%@u—ww»%o
e
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Numerical Implementation

As we will see, another interesting set V' consists of all
V =diag(vil,...,v,0) with vy € R, || <1, k=1,...,p.

These matrices admit a diagonal structure with real-repeated blocks.
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Numerical Implementation

As we will see, another interesting set V' consists of all
V =diag(vil,...,v,0) with vy € R, || <1, k=1,...,p.

These matrices admit a diagonal structure with real-repeated blocks.

Diagonal Multipliers. (POS) is satisfied for all matrices

_ [ —dieg(@1,...,Qp) diag(Sy,...,S,)
diag(Si,...,S,)" diag(Qi,...,Q,)

with Hermitian @)y, ..., @, = 0 and skew-Hermitian S5, ..., 5,.
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Numerical Implementation
As we will see, another interesting set V' consists of all
V =diag(vil,...,v,0) with vy € R, || <1, k=1,...,p.

These matrices admit a diagonal structure with real-repeated blocks.

Diagonal Multipliers. (POS) is satisfied for all matrices

_ [ —dieg(@1,...,Qp) diag(Sy,...,S,)
diag(Si,...,S,)" diag(Qi,...,Q,)

with Hermitian @)y, ..., @, = 0 and skew-Hermitian S5, ..., 5,.

Proof. Just note for V€ V and P as above that

(‘;) p (‘;) = diag(Qr(1-vg)+ve(Si+57)) = diag(Qr(1-vg)) = 0.
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Numerical Implementation

A much larger class of structured matrices can be described as

V' = convex hull{Vi,..., Vx}.
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Numerical Implementation

A much larger class of structured matrices can be described as

V' = convex hull{Vi,..., Vx}.

Full Block Multipliers. (POS) is satisfied for all > with

T T
Iy p(! <0, Ve ) p Ve =0, k=1,..,N.
0 0 I I

Set of multipliers described by finitely many LMI constraints.
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Numerical Implementation

A much larger class of structured matrices can be described as

V' = convex hull{Vi,..., Vx}.
Full Block Multipliers. (POS) is satisfied for all > with
1\ (1 Ve \ (Vi
P <0, "l el F =0 k=1,..,N.
0 0 1 1
Set of multipliers described by finitely many LMI constraints.
Proof. The first inequality implies that

T
V—><V> P<V> is concave.
I I

Hence (POS) is valid iff the inequality holds at the generators V1, ..., Vy.
st
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Robust Stability

Consider the system

& = F(0)x with uncertain parameter vector ¢ € R?.

e Ve
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Robust Stability

Consider the system

& = F(0)x with uncertain parameter vector ¢ € R?.

Assumptions: The parameter 0 is &

contained in some polytope 5
61
§ € & = convex hull{s*,..., 0V} C RP.

Let 6 = 0 € § be the nominal value &°
and assume that F'(0) is Hurwitz.
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Robust Stability

Consider the system

& = F(0)x with uncertain parameter vector ¢ € R?.

Assumptions: The parameter 0 is &

contained in some polytope 5
51
§ € & = convex hull{s*,..., 0V} C RP.

Let 6 = 0 € § be the nominal value &°
and assume that F'(0) is Hurwitz.

Can we decide whether all these systems are Hurwitz?
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Linear Fractional Representation

Let F(9) depend rationally on § without having a pole in 0.

One can then write & = F(0)x as . /
T T
z=Cx+ Dw | 2=Cz+Dw |
with A(8) being linear in § € 4. z w

A(9)
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Linear Fractional Representation

Let F(9) depend rationally on § without having a pole in 0.

One can then write & = F(0)x as . /
T T
& = Ax 4+ Bw w= A(5)2 L | &= Az + Bw L
z=Cz+ Dw |l z=Cx+Duw|_
. . . . % w
with A(0) being linear in 6 € 4. AQ)
It is always possible to take A(d) with the structure
6.1, 0
A(0) = for some integers v4,...,1, >0
0 oply,

where [, denotes the identity matrix of size v.

. £V
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Example |

— 26
j3:< ! >:1; with |01 <7, [0 <7, 7> 0.

1
G —4 + 30

12/57



Example |

—1 20
1) — . ! x with [01] <7, |6 <7, r>0.

Rewrite as

1 0 jl'l . —1 251 I
0246 ) \ay ) \ =1 (=4435)2+d) ) \ 2

12/57



Example |

—1 20
-77:( 1 ! >.Z’ Wlth |51’§7’, ’(52|§7“, T>O.
Rewrite as

1 0 jl'l . —1 251 I
0246 ) \ay ) \ =1 (=4435)2+d) ) \ 2

or as

jjl 0 —1 0 T 2

) + wy + Wo
(21]2) (1) <—1 —4+352><2I2> (—4+3(5g>

wy = 0121, 21 = Lo, Wy = 0122, 29 = T2

12/57



Example |

-1 20
j:z( . ! >x with [01] <7, |0 <7, 7>0.
Rewrite as
1 0 jl'l o —1 251 T
0 2+(51 fg —1 (—4+352)(2+(51) i)
or as
jjl 0 —1 0 T 2
. —+ w; = + Wa
21’2 1 -1 —4 + 3(52 21’2 —4 + 3(52
wy = 0121, 21 = T2, Wy = 0129, 22 = Ty
or as

(52) ()= (5 2) (52) (B ()

Wy = 0121, 21 = T2, Wy = 0122, %y = Ta, W3 = 0323, 23 = 2T9 + Wa 12/57



Example |

Hence & = F'(§)x can be written as

T = 0o T+ ( U
-5 —4
—5 —4 -5
z = 0 1 | z+ 0
0 2 0
Therefore we can choose
-1 0 0

-5 =2 15

-5 —4|-5 -2 15
A5 o —4 5 =2 1.5
C D - . - . - .
0 1 0

0 1 0

Carsten Scherer

0 0

0 | =

0 4

0 O

0

0 0 0

%
TUDelft



Linear Fractional Representation

Let & = F(d)x be represented as . /
X X
& = Az + Bw w=A(5)z &= Az + Bw |
z=Cz+ Dw |l z2=Czx+Dw|._
with A(9) being linear in § € 4. z v

A(®9)

The given derivation shows that this actually means

ﬂ®:A+BA@U—DA@)%hq<g §>*A@.

This is called a linear fractional representation (LFR) of F'(¢).
It is said to be well-posed if I — DA(J) is non-singular on 4.

e e
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Nonconservative Robust Stability Test

Let & = F(d)x be represented as

r = A B
v Sl w=A(d)z
z=Cz+ Dw

with A(J) being linear in 6 € 4.

/
L = Az + Bw |«
|l z=Cx+Dw [_
A(9)

Define the transfer matrix G(s) = D + C(s] — A)™'B.

The LFR is well-posed and & = F'(0)z is Hurwitz for all § € § iff

det(I — G(iw)A(0)) #0 forall we RU{oo}, § € 6.

Carsten Scherer
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Nonconservative Robust Stability Test

Let & = F(d)x be represented as

Tz = Ax + Bw

} w=A(d)z
z=Cx+ Dw

with A(J) being linear in 6 € 4.

/
L = Az + Bw |«
|l z=Cx+Dw [_
A(9)

Define the transfer matrix G(s) = D + C(s] — A)™'B.

The LFR is well-posed and & = F'(0)z is Hurwitz for all § € § iff

det(I — G(iw)A(0)) #0 forall we RU{oo}, § € 6.

Testing robust stability is reduced to a robust non-singularity condition
for the matrices G(iw), w € RU {00}, and the set V' = A(J).
s

Carsten Scherer
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Sketch of Proof

Suppose the LFR is well-posed. Then F'(9) is Hurwitz for all § € & iff
det (sI — A — BA(6)(I — DA(6))7'C) #0 for all Re(s) >0, 6 €6

eyt
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Sketch of Proof
Suppose the LFR is well-posed. Then F'(9) is Hurwitz for all § € & iff
det (sI — A — BA(6)(I — DA(6))7'C) #0 for all Re(s) >0, 6 €6

<= (Schur determinant formula & well-posedness)

det sI—A4 —BAD) for all Re(s) >0, 0 €4
—C I —DA(9)

eyt
Carsten Scherer 'If"U Delft



Sketch of Proof

Suppose the LFR is well-posed. Then F'(9) is Hurwitz for all § € & iff
det (sI — A — BA(6)(I — DA(6))7'C) #0 for all Re(s) >0, 6 €6

<= (Schur determinant formula & well-posedness)

det sI—A4 —BAD) for all Re(s) >0, 0 €4
—C I —DA(9)

<= (Schur determinant formula & A Hurwitz)

det (I — [D + C(sI — A)"'BJA(9)) forall Re(s) >0, d €46
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Sketch of Proof

Suppose the LFR is well-posed. Then F'(9) is Hurwitz for all § € & iff
det (sI — A — BA(6)(I — DA(6))7'C) #0 for all Re(s) >0, 6 €6

<= (Schur determinant formula & well-posedness)

det sI—A4 —BAD) for all Re(s) >0, 0 €4
—C I —DA(9)

<= (Schur determinant formula & A Hurwitz)
det (I — [D + C(sI — A)"'BJA(9)) forall Re(s) >0, d €46
<= (nontrivial homotopy argument)

det (I — [D + C(iwl — A)"'BJA(6)) forall w€eR, 6 €4.
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Sketch of Proof
Suppose the LFR is well-posed. Then F'(9) is Hurwitz for all § € & iff
det (sI — A — BA(6)(I — DA(6))7'C) #0 for all Re(s) >0, 6 €6

<= (Schur determinant formula & well-posedness)

det [ 1A TBAO) N Re(s) >0, 6 €6
~C  I-DA(®)

<= (Schur determinant formula & A Hurwitz)
det (I — [D + C(sI — A)"'BJA(9)) forall Re(s) >0, d €46
<= (nontrivial homotopy argument)

det (I — [D + C(iwl — A)"'BJA(6)) forall w€eR, 6 €4.

Now just observe that the latter condition is well-posedness for w = co.

eyt
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Computational Procedure

e Choose a list frequencies wy, . ..,w, € RU {oco}.
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Computational Procedure

e Choose a list frequencies wy, . ..,w, € RU {oco}.

e Define the set of real-repeated block-diagonal matrices V' = A(§).
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Computational Procedure

e Choose a list frequencies wy, . ..,w, € RU {oco}.
e Define the set of real-repeated block-diagonal matrices V' = A(§).

e Choose an LMI class of multipliers P for V' to satisfy (POS).
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Computational Procedure

e Choose a list frequencies wy, . ..,w, € RU {oco}.
e Define the set of real-repeated block-diagonal matrices V' = A(§).
e Choose an LMI class of multipliers P for V' to satisfy (POS).

e For k =1,...,m check feasibility of

I\ I
Pe P and ( Gliwn) ) P ( Gliwn) ) < 0.

Carsten Scherer
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Computational Procedure

e Choose a list frequencies wy, . ..,w, € RU {oco}.
e Define the set of real-repeated block-diagonal matrices V' = A(§).
e Choose an LMI class of multipliers P for V' to satisfy (POS).

e For k =1,...,m check feasibility of

I\ I
Pe P and ( Gliwn) ) P ( Gliwn) ) < 0.

If all LMIs for k = 1, ..., m are feasible, we conclude robust stability.
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Computational Procedure

e Choose a list frequencies wy, . ..,w, € RU {oco}.
e Define the set of real-repeated block-diagonal matrices V' = A(9).
e Choose an LMI class of multipliers P for V' to satisfy (POS).

e For k =1,...,m check feasibility of

I\ I
Pe P and ( Gliwn) ) P ( Gliwn) ) < 0.

If all LMIs for k = 1, ..., m are feasible, we conclude robust stability.

Note that there is a risk of missing crucial frequencies! Can be handled!
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Example |

Determine largest r such that the non-singularity test is successful.

25
2,
~ 1.5r
7 — Small-Gain
S — Diagonal Multipliers with S=0
S —— Diagonal Multipliers

00 2 4 6 8 10

Frequency

Observation: The larger the class of multipliers the better the test!

.
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Summary and Comments

e Sketched key ideas to obtain linear fractional representation

=t

which forms the basis for advanced robustness analysis.

e Have reduced robust stability to non-singularity test.

e Developed multiplier relaxation schemes to verify robust stability.

e Extends to stable structured dynamic uncertainties A that satisfy
A(iw) € V' forall we RU{oco}.

This touches the so-called structured singular value theory.
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Robust Stability: Time-Varying Uncertainties

Consider the system

z(t) = F(6(t))x(t) affected by time-varying parameter §(t) € R”.

e
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Robust Stability: Time-Varying Uncertainties

Consider the system

z(t) = F(6(t))x(t) affected by time-varying parameter §(t) € R”.

parameter 5
Assumption: §(.) is piece-wise continuous curve 4(t) 5
and satisfies 0(t) € 6 for all t € R, where 5
d = convex hull{s*,..., sV} C RP.
55
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Robust Stability: Time-Varying Uncertainties

Consider the system

z(t) = F(6(t))x(t) affected by time-varying parameter §(t) € R”.

parameter 5
Assumption: §(.) is piece-wise continuous curve 4(t) 5
and satisfies 0(t) € 6 for all t € R, where 5
d = convex hull{s*,..., sV} C RP.
65

Quadratic Stability
All systems are exponentially stable if there exists some X with

X =0, F(O)"X+XF(§) <0 forall §€dé.
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How to Check?

Consider the robust LMI

I\ 0 X I .,
(F(5)> (X 0><F(5)>:F(5) X+XF() <0 Vied.

st
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How to Check?

Consider the robust LMI

Y\ 0 X I .
(F(5)> (X 0><F(5)>:F(5) X+XF(0)<0 Vied.

LFR is well-posed and the robust LMI holds iff there exists a I’ with

( A(9) ) S ( Al9) ) =0 forall 6€0 (POS)
I 1

that also satisfies
T
ATX + XA XB 01 01
P < 0. S-LMI
() (6 0) (en) <0 esum
Our numerical procedure applies for checking sufficient conditions!

st
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Sketch of Algebraic Proof of “if”’

Fix an arbitrary 6 € 4.

o et
3
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Sketch of Algebraic Proof of “if”’

Fix an arbitrary 6 € 4.
T

Since (QS-LMI) implies ( lI) ) P ( lj) ) =< 0 (right-lower block), we

infer that 7 — DA(6) is non-singular which implies well-posedness.

o et
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Sketch of Algebraic Proof of “if”’

Fix an arbitrary 6 € 4.
T

I I
Since (QS-LMI) implies ( D ) P ( D ) =< 0 (right-lower block), we
infer that 7 — DA(6) is non-singular which implies well-posedness.

Abbreviate H = (I — DA(5))7'C to infer from (QS-LMI) that

I g 1
0> (A(é)H) lhs of LMI (A((S)H) =

= F(O)"X+XF() + HT (A§5)> P (A(5)> H

(. J

7= 0due to (POS)

where = follows by simple computation.
s
3
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Sketch of Algebraic Proof of “if”’

Fix an arbitrary 6 € 4.
T

I I
Since (QS-LMI) implies ( D ) P ( D ) =< 0 (right-lower block), we
infer that 7 — DA(6) is non-singular which implies well-posedness.

Abbreviate H = (I — DA(5))7'C to infer from (QS-LMI) that

I g 1
0> (A(é)H) lhs of LMI (A((S)H) =

= F(O)"X+XF() + HT (A§5)> P (A§5)> H

7= 0due to (POS)

where = follows by simple computation. Hence F(§)7X + X F(§) < 0.
.
%
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Example |

Determine largest r such that robust quadratic stability can be verified.

2.5
2,
= 1.5 — Small-Gain
3 —— Diagonal Multipliers with S=0
= —— Diagonal Multipliers (DM)
=49 — Quadratic Stability with DM |

0.5r |

00 2 4 6 8 10

Frequency

Observation: Small gap between time-invariant/time-varying case!

o st
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Example |l

Test quadratic stability for polynomial parameter dependence:

- <—1.25 1— 0,6,2
x:

, 0 €[—1,1], 9, € [-1,0].
1 - 68 1 )‘”1[ 02 € 71,0

g
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Example |l

Test quadratic stability for polynomial parameter dependence:

- (—1.25 1— 0,6,2
x:

, 0 €[—1,1], 6, €[-1,0].
168y 1 )xl[ b o el-L0

This family can be covered by the following uncertain system with affine

parameter dependence:

. —1.25 1—=
T = x, x€[-rr], ye[-rr], r=1
1—y -1
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Example |l

Test quadratic stability for polynomial parameter dependence:

- (—1.25 1— 0,6,2
Z’:

, 0 €[—1,1], 6, €[-1,0].
168y 1 >‘”1[ b o el-L0

This family can be covered by the following uncertain system with affine

parameter dependence:

. —1.25 1—=
T = x, x€[-rr], ye[-rr], r=1
1—y -1

e Polytopic technique from Lecture 6 successful only for » ~ 0.11.

e The multipliers from slide 9 allow to guarantee quadratic stability for

original uncertain system with polynomial parameter dependence!

g
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Example |l: What’s going on?

2 ."I

Blue Region

Set of parameter-dependent e

elements of original system 161
1.4f

Red Line 12f

Boundary of Hurwitz region il

for original system osl

0.6

Black Boxes
0.4

Set of parameter-dependent

elements of affine covering

Carsten Scherer 'i"U Delft



Comments

e A trajectory-based proof for robust stability will be given below.

e With affine Qy(v), Ro(v), So(v) in the decision variable v, the same
technique (proof) applies to finding v which robustly satisfies

I\ [ Q) So(v) I
( F () > ( So(v)T Ro(v) ) ( F(5) ) <0, Ro(v) = 0.

Examples: Discrete-time stability, eigenvalue-location in LMI region.

e The result is a concrete version of the so-called full block S-procedure.
It serves to handle general robust LMI problems in which the uncertain
parameters enter in a rational fashion.

C.W. Scherer, LMI Relaxations in Robust Control, Eur. J. Cont. 12 (2006) 3-29.

e e
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Robust Energy-Gain Performance

Consider the uncertain input-output system described as
a(t) = F(o@)x(t) + G((1))d(t)
e(t) = H(o(t)x(t) + J(0(1))d(?)
with continuous parameter-curves §(.) that satisfy

§(t) € & = convex hull{s", ..., 6"} C RP.

e
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Robust Energy-Gain Performance

Consider the uncertain input-output system described as
w(t) = F(o(1)x(t) + G(0(t))d(t)
e(t) = H(6(t)x(t) + J(0(t))d(t)

with continuous parameter-curves ¢(.) that satisfy

§(t) € & = convex hull{s", ..., 6"} C RP.
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Robust Energy-Gain Performance

Consider the uncertain input-output system described as
w(t) = F((t)x(t) + G(6(1))d(t)
e(t) = H(0(t)z(t)+ J(6(t))d(t)
with continuous parameter-curves §(.) that satisfy

§(t) € & = convex hull{s", ..., 6"} C RP.
Robust Energy-Gain Performance of level ~

For all parameter-curves, &(t) = F((t))x(t) is exponentially stable
and the system'’s energy-gain is bounded by ~v:

/0 (X:B(t)Te(t) dt < > /0 oji(t)Td(t) dt for d € Lo(R,,R™), 2(0)=0.

e
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Robust £,-Gain Performance

Obtain LFR of matrices describing system:

A B1 BQ
(F(é) G(5)>= Ci Dy | D | xA®5).
H(5) J(5) G, D | D,

o st
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Robust £,-Gain Performance

Obtain LFR of matrices describing system:

A By | B
Cl D12
Cy Dy | Dy

* A(6).

If LFR well-posed, we have the following alternative system description:

I 0 0
A By B;

0 I 0
Cy Dy Dy

0o 0 I
Cy Doy Dy

=7 7
%
TUDelft
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Robust £,-Gain Performance

The LFR is well-posed and the system satisfies robust quadratic

performance if there exist P = (gﬁf’ ;) and X > 0 with

ORI NG

( §)>P< §)>¢Oforall(5€6 and (POS)

IOO\TOXOOOO\(IOO\

A By B, X0 0 000 A By B,
1 —~2] 1

0 0 0 0—*10[0 O 0 0 ~0. (RP)

Cl D1 D12 00 0 I/10 O Cl D1 D12

0 0 I 00l 0 0QS 0 0 I

CoDy Dy ) \0 0| 0 os”r) \C,Du D,

Carsten Scherer 'i"U Delft



Proof of Well-Posdeness

Considering the right-lower block of (RP) reveals that

T
I I
DT D P —

0\ /0x] 0 ooo0\/o0

B || x0| 0 oooll| B
o 0 0[=2rofo 0 || 0 |,

Dl ool o 100]] Dy

I 00l 0 0Qs|| 1

D) \ool o osTr/)\ D,

Carsten Scherer 1,"U Delft



Proof of Well-Posdeness

Considering the right-lower block of (RP) reveals that

T
I I
DT D P —

0\ /0x] 0 ooo0\/o0

B || x0| 0 oooll| B
o 0 0[=2rofo 0 || 0 |,

Dl ool o 100]] Dy

i 00l 0 0Qs|| 1

D) \ool o osTr/)\ D,

T
1 1

This implies P =< 0 and with (POS) well-posedness.
D, D,

e e
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Sketch of Trajectory-Based Proof

Due to (RP) there exists some ¢ > 0 such that

70 o\ /oxl o ooo\/I 0o o

AB B || xo0l 0o oooll 4B B
0 I 0 00—2r0loo ||l o 1 o X 00

b +[ o000l <o
Cl D1 D12 00 0 110 0 Cl D1 D12 000
00 I 00l 0 0S|l o o 1

CQ D21 DQ 00 0 0 ST R CQ D21 D2

Carsten Scherer 'If"U Delft



Sketch of Trajectory-Based Proof

Due to (RP) there exists some ¢ > 0 such that

70 o\ /oxl o ooo\/I 0o o

A B, B, X0 0 000 A By B,
eX00
0 I 0 0 0|—~2I0[0 0 0 I 0
+|1 0 00| <0.
Cl D1 D12 00 0 110 0 Cl D1 D12 000
0 0 I 00f 0 0QS 0 0 I

Cg D21 DQ 00 0 0 ST R CQ D21 D2

Choose parameter trajectory 6(t) € § and d € Z (R4, R™), and let
z(.) and e(.) be some corresponding state- and output trajectories for

any initial condition z(0).
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Sketch of Trajectory-Based Proof

Due to (RP) there exists some ¢ > 0 such that
I o oY\ /ox]oooo\/I 0 0

A B, B, X0 0 000 A By B,
5 eX00
0 I 0 0 0]—y*10[0 O 0 I 0
+|1 0 00| <0.
Cl D1 D12 00 0 110 0 Cl D1 D12 000
0 0 I 00f 0 0QS 0 0 I

CQ D21 DQ 00 0 0 ST R CQ D21 D2

Choose parameter trajectory 6(t) € § and d € Z (R4, R™), and let
z(.) and e(.) be some corresponding state- and output trajectories for
any initial condition x(0). Due to well-posedness, these trajectories

satisfy the relations on slide 28 for suitable w(.), z(.).
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Sketch of Trajectory-Based Proof

Due to (RP) there exists some ¢ > 0 such that

I 0 0 0X 0 000 I 0 0
A By B, X0 0 000 A B, B,
0 I 0 0 0]—+%10/0 0 0 1 0
Cy1 Dy Dy 00 0 I[0O Cy Dy Dy
0 0 I 00 0 0Q S 0 0 I
Cy Doy Do 00 0 OSTR Cy Doy Do

eX00
+|1 0 00| <0.
000

Choose parameter trajectory 6(t) € § and d € Z (R4, R™), and let
z(.) and e(.) be some corresponding state- and output trajectories for

any initial condition z(0).
satisfy the relations on slide 28 for suitable w(.), z(.).

Due to well-posedness, these trajectories

Now right-multiply col(z(t), d(t), w(t)) and left-multiply its transpose.

Carsten Scherer
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Sketch of Trajectory-Based Proof

We obtain

o st
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Sketch of Trajectory-Based Proof

We obtain

l’(t) ’ 0X ZL'(t) ,
<$(t)> <X 0) (:i:(t)) +ex(t)" Xa(t)+
d(t) T _,)/210 d(t) UJ(t) T w(t)
+ (e(t)> ( 0 I) (e(t)) + (z(t)> P <z(t)> <0,
As a key feature observe that w(t) = A(6(1))2(¢) and hence with (POS):

wt))  (w®\ .
<z<t>>P<z<t>>‘z“’ ( I

>
—
%)
—~
~
S—
S—
v

Carsten Scherer 'If"U Delft



Sketch of Trajectory-Based Proof

We obtain
(ig;)T <)0()0(> (ig;) + ex(t)" Xa(t)+
L) () ()=
As a key feature observe that w(t) = A(d(t))z(t) and hence with (POS):
("‘;’é;;)TP (Z’(?) . (Ni(t)))TP (A(i(t))) 46 5 0.

Even after canceling this term, the above inequality hence stays valid.

o st
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Sketch of Trajectory-Based Proof

With the product-rule we arrive at

%x(t)TXx(t) + ex ()T Xz (t) + e(t)e(t) — v2d(t)Td(t) < 0.

O et
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Sketch of Trajectory-Based Proof

With the product-rule we arrive at

%x(t)TXx(t) + ex(t)T Xa(t) + e(t)Te(t) — v2d(t)Td(t) < 0.
o Ifd(.) = 0 weinfer La(t)" Xa(t)+ex(t)" Xa(t) < 0. Exploit X > 0

to obtain uniform exponential stability as in Lecture 6.

O et
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Sketch of Trajectory-Based Proof

With the product-rule we arrive at

%x(t)TXx(t) + ex(t)T Xa(t) + e(t)Te(t) — v2d(t)Td(t) < 0.
o Ifd(.) = 0 weinfer La(t)" Xa(t)+ex(t)" Xa(t) < 0. Exploit X > 0

to obtain uniform exponential stability as in Lecture 6.

e If 2(0) = 0 drop the term ex(t)” X x(t) and observe that the inequal-
ity stays true.

O et
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Sketch of Trajectory-Based Proof

With the product-rule we arrive at

%x(t)TXx(t) + ex(t)T Xa(t) + e(t)Te(t) — v2d(t)Td(t) < 0.

o Ifd(.) = 0 weinfer La(t)" Xa(t)+ex(t)" Xa(t) < 0. Exploit X > 0

to obtain uniform exponential stability as in Lecture 6.

o If 2(0) = 0 drop the term ex(¢)? X z(t) and observe that the inequal-
ity stays true. We then infer by integration on [0, 7] that

(T Xa(T) + /OT e(t)Te(t) — y2d(t)Td(t) dt < 0.

O et
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Sketch of Trajectory-Based Proof

With the product-rule we arrive at

%x(t)TXx(t) + ex(t)T Xa(t) + e(t)Te(t) — v2d(t)Td(t) < 0.
o Ifd(.) = 0 weinfer La(t)" Xa(t)+ex(t)" Xa(t) < 0. Exploit X > 0

to obtain uniform exponential stability as in Lecture 6.

o If 2(0) = 0 drop the term ex(¢)? X z(t) and observe that the inequal-
ity stays true. We then infer by integration on [0, 7] that

(T Xa(T) + /OT e(t)Te(t) — y2d(t)Td(t) dt < 0.

Since X > 0, we can drop term z(T)? X z(T) without violating the
inequality.

O et
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Sketch of Trajectory-Based Proof

With the product-rule we arrive at

%x(t)TXx(t) + ex(t)T Xa(t) + e(t)Te(t) — v2d(t)Td(t) < 0.
o Ifd(.) = 0 weinfer La(t)" Xa(t)+ex(t)" Xa(t) < 0. Exploit X > 0

to obtain uniform exponential stability as in Lecture 6.

o If 2(0) = 0 drop the term ex(¢)? X z(t) and observe that the inequal-
ity stays true. We then infer by integration on [0, 7] that

(T Xa(T) + /OT e(t)e(t) —~*d(t)Td(t)dt < 0.

Since X > 0, we can drop term z(T)? X z(T) without violating the
inequality. ThenT" — oo finally leads to |le]| #, &, rne) < V||d|| 2@, R7a)-

O et
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How to Apply?

Test feasibility of LMIs

T
I 1 A(6%) A6
P <0, ( =0, k=1,...,N,
0 0 I
T
I 0 0 0X 0 000 I 0 0
A By B, X0 0 000 A By B,
1 2] I
X w0, 0 0 0 0[—*10/0 0 0 0 <0
Cl D1 D12 00 0 IO 0 01 D1 D12
0 0 I 00 0 0QS 0 0 I
CgDQl D2 00 0 OSTR OQDQl D2

Feasibility guarantees a robust energy-gain level of .

Minimize 7 to determine best possible bound ... with this technique.

Carsten Scherer 'If"U Delft



Summary and Comments

e Obtained non-trivial robust stability and robust performance tests
which are based on multiplier relaxations.

e Observed trade-off between conservatism and “size” of multiplier set
(computational complexity).

e Substantially more instances of the same theme are known.

Examples: Uncertainty phase information in p-theory
Parameter-dependent Lyapunov functions

Semi-algebraic uncertainty sets
C.W. Scherer, LMI Relaxations in Robust Control, Eur. J. Cont. 12 (2006) 3-29.
e Finally: Hints on synthesis. Larger classes of uncertainties.

e 4
Carsten Scherer 'i"U Delft



Outline

Nonsingularity of Matrix Families

LTI Robust Stability Analysis

Time-Varying Uncertainties

Robust Stability and Performance with Multipliers

Controller Synthesis

A Glimpse at Nonlinear Uncertainties and 1QCs

e 4
Carsten Scherer 'If"U Delft



Configuration for Robust Controller Synthesis

Design controller guaranteeing A
N z w
e robust stability
e desired robust performance e «—— System ——d
specification on d — e. ]
Yy u
Controller —

Carsten Scherer

%
TUDelft



Configuration for Robust Controller Synthesis

Design controller guaranteeing A

N z w
e robust stability
e desired robust performance ¢ <—— System |——d

specification on d — e. ]
Y U
) ) Controller —

Consider following approach:

e Use robust performance characterization with multipliers

e Try to satisfy the multiplier characterization with suitable controller

Carsten Scherer 'If"U Delft



Configuration for Robust Controller Synthesis

Design controller guaranteeing A

N z w
e robust stability
e desired robust performance ¢ <—— System |——d

specification on d — e. ]
Y U
) ) Controller —

Consider following approach:

e Use robust performance characterization with multipliers

e Try to satisfy the multiplier characterization with suitable controller

For notational simplicity: Concentrate on robust quadratic stability
with full-block multiplier relaxation.

Carsten Scherer 'i"U Delft



System Descriptions

Uncontrolled LTI part: w: uncertainty input
t = Az + Byw+ Bu z: uncertainty output
z = Ciz+ Dyw+ Eu u: control input
y = Cox+ Fuw y: measured output
Controller:
T, = Agx.+ Bry . A(G®) w
u = COgx.+ Dyy
Controlled LTI part: System
£ = Af+ Bw y u
z = C&+ Dw Controller

Uncertainty: w(t) = A(d(t))z().

et
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Robust Stability Analysis Inequalities
Assume 6(t) € 6 = co{d*,..., 0V},

Robust stability guaranteed if exist X and (), R, S with

(2)7(0) <0 (507 7)o wmtn
0 0 I 1

T
I 0 0Ilo o I 0
YA XB I 0/0 o0 XA XB
X =0, 4 A < 0.
0 I 00/Q S 0 I
c D 0 0|ST R C D

Apply standard procedure to step from analysis to synthesis.

Carsten Scherer 'i"U Delft



Robust Synthesis Inequalities

Exists controller guaranteeing robust stability if exist v, ), 12, S:

(o)) () (%
0 0 I I

=0, k=1,..,N,

1 0 ! 07I{/0 O 1 0
X(0) = 0, A(v) B(v) 100 O A(v) B(v) <0
0o I 00/0Q S 0 I
C(v) D(v) 00|ST R C(v) D(v)

Carsten Scherer
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Robust Synthesis Inequalities

Exists controller guaranteeing robust stability if exist v, ), 12, S:

(1) (2) <0 (2 (56 ks
0 0 I 1
1 0 ! 07]0 O 1 0
X(0) = 0 A(v) B(v) I0/0 0 A(v) B(v) <0
’ 0 I 00 Q S 0 I
C(v) D(v) 00lST R C(v) D(v)

Unfortunately not convex in all variables v and @), R, S'

e e
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Robust Synthesis Inequalities

Exists controller guaranteeing robust stability if exist v, ), 12, S:

(1) (2) <0 (2 (56 ks
0 0 I 1
1 0 ! 07]0 O 1 0
X(0) = 0 A(v) B(v) I0/0 0 A(v) B(v) <0
’ 0 I 00 Q S 0 I
C(v) D(v) 00lST R C(v) D(v)

Unfortunately not convex in all variables v and @), R, S'

No technique known how to convexify in general!

e e
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Robust Synthesis Inequalities

Exists controller guaranteeing robust stability if exist v, ), 12, S:

(1) (2) <0 (2 (56 ks
0 0 I 1
1 0 ! 07]0 O 1 0
X(0) = 0 A(v) B(v) I0/0 0 A(v) B(v) <0
’ 0 I 00 Q S 0 I
C(v) D(v) 00lST R C(v) D(v)

Unfortunately not convex in all variables v and @), R, S'
No technique known how to convexify in general!

Usual heuristic remedy: Controller multiplier iteration.

e e
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Dualization Lemma

For real matrices P = P and W of compatible size, the conditions
7 77
I I
0 P 0 >0 and P <0
1 1 774 %74
are equivalent to
7 T
I 1 wT wT
p! <0 and p1 = 0.
0 0 —1I -1
1
. I . wT
Note that im equals im :
W -1

e e
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Dualization Lemma

For real matrices P = P and W of compatible size, the conditions

()7 ()0 (o) ()

are equivalent to
T T
I 1 wt wT
P! <0 and = = 0.
0 0 —1 -1
i
. I . wt
Note that im equals im :
W -1

In general: Let P = PT be nonsingular with & negative eigenvalues.
If the subspace S with dimension k is P-negative then S+ is P-positive.

e e
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Dual Robust Synthesis Inequalities

Exists controller guaranteeing robust stability if exist v, ), 12, S:

0 . 0 7 T i
<I>P<I> -0 (A(5’“)>P<A(5k)> <0, k=1.,N

AT e\ [o1lo 0\ /[ AW Ccw?

X(0) 0 -1 0 I0/0 0 -1 0 0
v ) — :
B()T D(v)" 00/Q S B(w)T D(v)"
0o I 00/ST R 0o I
Note that we use the partition P = ( SC?T 7 )

No progress in general.

e
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Dual Robust Synthesis Inequalities

Exists controller guaranteeing robust stability if exist v, Q, R, S:

0 T~ 0 —I T~ —1
<I>P<1> 0 (Am)P(Aw'ﬂ) R

AT e\ [or

Il
=

X (1) =0 —1 0 100 O —1 0 <0
v , — .
B()T D(v)" 00/Q S B(w)T D(v)"
0 0 00[ST R 0 =

Note that we use the partition P = ( ¢ B )

No progress in general. However it helps for state-feedback synthesis!

Carsten Scherer 'i"U Delft



Lucky Case: Static State-Feedback Synthesis

Recall block substitution:

A(v) B(v) B AY + BM By X(v) =Y
“\ov+revw p, ) VT

Last column does not depend on v ...

e
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Lucky Case: Static State-Feedback Synthesis

Recall block substitution:

A(v) B(v) B AY + BM By X(v) =Y
“\ov+revw p, ) VT

Last column does not depend on v ...

... dual inequalities are affine in all variables ...
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Lucky Case: Static State-Feedback Synthesis

Recall block substitution:

A(v) B(v) B AY + BM By X(v) =Y
“\ov+revw p, ) VT

Last column does not depend on v ...
... dual inequalities are affine in all variables ...

.. robust state-feedback synthesis possible with LMI's!

e
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Lucky Case: Static State-Feedback Synthesis

Recall block substitution:

A(v) B(v) B AY + BM By X(v) =Y
“\ov+revw p, ) VT

Last column does not depend on v ...
... dual inequalities are affine in all variables ...

.. robust state-feedback synthesis possible with LMI's!

Extends to robust performance specification in straightforward fashion!

e
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Dual Robust Synthesis Inequalities: State-feedback

Exists state-feedback controller guaranteeing robust stability if there
exist Y, M, Q, R, S satisfying

T T
0\ - (0 1\ - -1
P - 0, J2 <0, k=1,..,N
<I> (I (A(fsk)) (A(5k)>
«\(01]0 0)/[(AY +BM)T (C1Y + EM)T
I I
yso | 010 0 0 0.
* 00/@ S BT DT
+/\00|ST R 0 —1

Is indeed - obviously - an LMI problem!

Carsten Scherer 'i"U Delft



Lucky Case: Robust Estimator Synthesis

Configuration for robust estimator synthesis:

A

L

System

n

e AE
Estimator

nE

Carsten Scherer
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Lucky Case: Robust Estimator Synthesis

Configuration for robust estimator synthesis:

e~ System d
v

Estimator

The open-loop system with performance channel reads as

i Al B By 0

T

7 - Cl D1 D12 0 w
(& B CQ D21 D2 -1 d
Yy C F1 F2 0 Uu

Carsten Scherer 'If"U Delft



Lucky Case: Robust Estimator Synthesis

General variable substitution simplifies to

- () 1)

A(v)  Bi(v) Ba(v)
Cl (U) D1 (U) Dlz(v) ==
C2(U) D21 (’U) D2 (U)
AY A B, By
B K XA+ LC | XBy+ LF, XBy+ LF,

N c,Y C, Dy Dy,
CyY — M Cy—NC | Dyy— NF, Dy— NF,

sy
Carsten Scherer 1,"U Delft



Lucky Case: Robust Estimator Synthesis

Robust L£o-gain estimator synthesis: Multiplier constraints and LMls

(7 5)
-0

I X
00700 0] 0 O I 0 0 0
00070 0] 0 O 0 I 0 0
1000[]0 0 O O AY A By By
0700[0 0] O O K XA+ LC|XBy+ LFy XBy+ LF,

i 0000@Q S| 0 O 0 0 1 0
0000STR 0 0 Y 4 D, Dy
00000 0|—~%I0 0 0 0 I
0000[0 O] O I CoyY —M Co—NC' | Dyy—NF;, Dy—NFy

<0

7 70
%
TUDelft
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Lucky Case: Robust Estimator Synthesis

Robust L£o-gain estimator synthesis: Multiplier constraints and LMls

(7 5)
-0

I X
00700 0] 0 O I 0 0 0
00070 0] 0 O 0 I 0 0
1000[]0 0 O O AY A By By
0700[0 0] O O K XA+ LC|XBy+ LFy XBy+ LF,

i 0000@Q S| 0 O 0 0 1 0
0000STR 0 0 Y 4 D, Dy
00000 0|—~%I0 0 0 0 I
0000[0 O] O I CoyY —M Co—NC' | Dyy—NF;, Dy—NFy

Non-convex.

<0

7 70
%
TUDelft
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Lucky Case: Robust Estimator Synthesis

Robust L£o-gain estimator synthesis: Multiplier constraints and LMls

(7 5)
-0

I X
00700 0] 0 O I 0 0 0
00070 0] 0 O 0 I 0 0
1000[]0 0 O O AY A By By
0700[0 0] O O K XA+ LC|XBy+ LFy XBy+ LF,

i 0000@Q S| 0 O 0 0 1 0
0000STR 0 0 Y 4 D, Dy
00000 0|—~%I0 0 0 0 I
0000[0 O] O I CoyY —M Co—NC' | Dyy—NF;, Dy—NFy

Non-convex. Congruence trafos with diag(Y !, I), diag(Y ™', I, I, 1) ...

<0

7 70
%
TUDelft
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Lucky Case: Robust Estimator Synthesis

... leads to
y-t y-!
>0
(Y

0070,0 O O O 1 0 0 0

00070 O O O 0 I 0 0

10000 O O O Y-1A Y-lA Y'B Y 'B,

0700,0 0| O O KY™' XA+ LCOXB,+ LFiXBy+ LF,
i 0000/@Q S| 0 O 0 0 I 0

0000,STRl 0 0 C Ch Dy Dss

0000[ 0 0—~210 0 0 0 I

0000[0 0 0 I/ \Co—MY ' Cyo—NC |Dyy—NF, Dy—NF,

<0

7 70
%
TUDelft
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Lucky Case: Robust Estimator Synthesis

... leads to
y-t y-!
>0
(Y
0070,0 O O O 1 0 0 0
00070 O O O 0 I 0 0
10000 O O O Y-1A Y-lA Y'B Y 'B,
. 0700,0 0| O O KY™' XA+ LCOXB,+ LFiXBy+ LF, -0
0000/@Q S| 0 O 0 0 I 0
0000,STRl 0 0 C Ch Dy Dss
0000[ 0 0—~210 0 0 0 I
0000[0 0 0 I/ \Co—MY ' Cyo—NC |Dyy—NF, Dy—NF,

which is convex in new variables Y = V!, K = KY ! M = MY 1l

e
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Summary and Comments

e |dentified trouble in output-feedback synthesis.
e Discussed lucky cases for robust synthesis by LMls.

e Gain-scheduling synthesis: The controller is allowed to adapt itself
according to on-line measurement parameters:

€ +— 1—d

System(d(t))

Controller(6(t))

Output-feedback synthesis can be transformed into LMls.

e e
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Outline

Nonsingularity of Matrix Families

LTI Robust Stability Analysis

Time-Varying Uncertainties

Robust Stability and Performance with Multipliers

Controller Synthesis

A Glimpse at Nonlinear Uncertainties and 1QCs

e e
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Nonlinear Uncertainties

Consider the system

Z(t) Cg D21 0 ’U)(t)

which involves the (smooth) nonlinear uncertainty A : R"* — R"™».

N
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Nonlinear Uncertainties

Consider the system

Z(t) Cg D21 0 ’U)(t)

which involves the (smooth) nonlinear uncertainty A : R"* — R"™».
The description is well-posed (due to the red zero block.)
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Nonlinear Uncertainties

Consider the system

2(t) Cs Dyy 0 w(t)

which involves the (smooth) nonlinear uncertainty A : R"* — R"™».
The description is well-posed (due to the red zero block.)

The statement on slide 29 persists to hold if replacing (POS) by

T
( A(z) ) P ( A(2) ) > (0 for all vectors z € R™.

z

Proof. Literally as before!

Carsten Scherer 'i"U Delft



IQCs: Example

For transfer function
-1

Gls) = 25+ )(Zs+ D(Es + 1)

consider the following interconnection with saturation nonlinearity:

d

4

0
\/
QM)

Compute a good bound on the energy-gain of d — e.
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IQCs: Example 20

—_
(3]
T

[$3]
T

Guaranteed Energy-Gain
>

1 1.2 1.4 1.6 1.8 2
Sector parameter b

Saturation nonlinearity with gain 0 satisfies

AG)| < bl or (%”) (‘01 b”) (Af>>zo
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IQCs: Example 20

—_
(3]
T

[$3]
T

Guaranteed Energy-Gain
>

1 1.2 1.4 1.6 1.8 2
Sector parameter b

Introduce multiplier to reduce conservatism:

(A(z)>/<—7 0 )(A(Z)>>Oforall7->0
z 0 7b? z - o
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IQCs: Example 20

-y
(33
T

Guaranteed Energy-Gain
=

(3]
T

A(2)? < bzA(2)

2 4 6 8 10
Sector parameter b

Refined information about saturation:
!
A -2
(2) T Al?) >0 forall 7>0
z br 0 z
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d

Integral Quadratic Constraints [ I @ ¢

I

For any 7 = (71, 75) (elementwise) define the dynamic multiplier

_92 ) s
I,(s) =7 ( ) + 7 ( _OS §+100 ) :
b0 —710

e e
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d
Integral Quadratic Constraints [ I @ ¢

I

For any 7 = (71, 75) (elementwise) define the dynamic multiplier

oo (2 ) en( 0 )
b 0 —s5+4100 0

Saturation satisfies Integral Quadratic Constraint (IQC)

o~ o~

/m ( AA(2) (iw) )"‘HT (i) ( AA(2) (iw) ) =
o\ 3(iw) 5(iw) =
for all z € 4 (R4, R), A € [0,1], 7 > 0 (elementwise).

Dynamic (frequency-dependent) multipliers!

Carsten Scherer 'If"U Delft



Integral Quadratic Constraints

Suppose that

Tu Ty is the transfer matrix of d — ¢ .
Ty Ty w z

e e
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Integral Quadratic Constraints

Suppose that

T, d
n T is the transfer matrix of — ¢ .
TQl T22 w z

Robust stability and energy-gain performance of level v is guaranteed
if there exists 7 > 0 for which the following FDI holds:

*

° 270 1 0
- . .
0 T; T;
* ( 0 I) ”(()w) 125“") <0 VYw € RU{oo}.
[}
0 I, (iw . .
® ‘ ( ) T21 (zw) T22 (ZUJ)

Computation: Application of KYP lemma leads to LMI feasibility test.

A. Megretski, A. Rantzer, System analysis via Integral Quadratic Constraints, IEEE
Trans. Autom. Contr. 42 (1997) 819-830.
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IQCs: Example [ I @ ¢

20

Guaranteed Energy-Gain
S o

[$)]
T

5 10 15 20
Sector parameter b

Dynamics are highly beneficial!
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Main Points
Here is a summary of the main issues we addressed:

e Discussed multiplier relaxations for non-singularity problem
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Main Points
Here is a summary of the main issues we addressed:

e Discussed multiplier relaxations for non-singularity problem

e Showed how to apply to robust stability and performance analysis

for time-invariant and time-varying parametric uncertainties
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Main Points
Here is a summary of the main issues we addressed:

e Discussed multiplier relaxations for non-singularity problem

e Showed how to apply to robust stability and performance analysis
for time-invariant and time-varying parametric uncertainties

e Revealed what can be said about controller/estimator synthesis
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for time-invariant and time-varying parametric uncertainties
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We were much too brief about

e Flexibility of framework for general uncertainty value sets
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e Discussed multiplier relaxations for non-singularity problem

e Showed how to apply to robust stability and performance analysis
for time-invariant and time-varying parametric uncertainties

e Revealed what can be said about controller/estimator synthesis

We were much too brief about
e Flexibility of framework for general uncertainty value sets

e Gain-scheduling synthesis (and how to convexify)
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Main Points
Here is a summary of the main issues we addressed:

e Discussed multiplier relaxations for non-singularity problem

e Showed how to apply to robust stability and performance analysis
for time-invariant and time-varying parametric uncertainties

e Revealed what can be said about controller/estimator synthesis

We were much too brief about
e Flexibility of framework for general uncertainty value sets
e Gain-scheduling synthesis (and how to convexify)

e Dynamic multipliers and synthesis
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