Summer Course

Linear System Theory
Control
&
Matrix Computations

Monopoli September 8-12, 2008



Lecture 14: Dissipative systems

Lecturer: Paolo Rapisarda
University of Southampton, United Kingdom



Part I: General dissipative systems
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Dissipation inequality

Physical examples:
» Resistive electrical circuits;
o Mechanical systems with friction;

Energy supplied to system ~»> supply rate variable Fx
« Electrical circuits: VT / with V (/) vector of
voltages (currents)

« Mechanical systems: FT 2 x with F (x) vector of
forces (displacements)
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Dissipation inequality
Energy supplied to system ~»> supply rate variable Fx

Energy stored in system ~» storage variable Fg

« Electrical circuits: %C- V? for capacitor, %L- I? for
inductor

« Mechanical systems: ]K - x? for spring
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Dissipation inequality
Energy supplied to system ~»> supply rate variable Fx

Energy stored in system ~» storage variable Fg

In a dissipative system,
energy cannot be stored faster than it is supplied

d
ZF<F
dt - = ' *F

Dissipation inequality
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Dissipation equality

d
2 F.<F
dt - = '*F

d
Fp := Fs — EFS dissipation rate (nonnegative)

d
Fs = F, —F,
b3 A+dtS

Dissipation equality

Lossless systems: Fz = % Fs



Example : a mechanical system

m,
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Example : a mechanical system

d2W1
. k. i, m1w + ky(wy — wo) — F
— m, /\/\/\ mz 2W2
—kqw: m k K> w
1wy + 2dt2+(1+2)2
From physical considerations:
dw;
supply (power) F. T;
1 dw, 2 9 dw, 2
storage (total ener —my [ — —my [ —=
ge ( ay) 21<dt)+2 2<dt>

1 1
—ky(wy — w2)? + —kow?
+2 1(wy — we) +2 2 W,



Example : a mechanical system

d2
i . ‘ m—— a2 +k1(W1—W2)— =
— m, /\/\/\ m. 2W2
—kqw: m k KYw, =
1wy + 2dt2+(1+2)2
From physical considerations:
dw;
supply (power) F. T;
1 dw, 2 9 dw, 2
storage (total ener —my [ — —my [ —=
ge ( ay) 21<dt)+2 2<dt>

1 1
—ky(wy — w2)? + —kow?
+21(1 2)+222

Easy to see that

d/_d 1 dw;\? 1 dw, , 1.
— | F = - — = k1 (wy—w. —kow.
dt(dt ‘) 2m1<dt>+2m<dt>+ 1(w—we)"+ 2 ey
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Remarks

o Supply, storage, dissipation for physical system
example are functions of the system variables
and their (first) derivatives.

» Existential definition: “if 3 storage function..."

o ¢Can we decide whether a system is dissipative
by examining the supply rate?

o What if linear time-invariant finite-dimensional
systems, with quadratic supply rates?

« {We need theoretical and algebraic tools!



Mechanical system example revisited

m d2W1
1 de

—kiwy + mp

+ ki(wy —wr) — F

2

dt?

W

+ (K1 + k) ws



Mechanical system example revisited

d2W1
i . N m—a ki(wy —w,) — F
— m MW m, 2W2
—kywy + mo dr + (k1 + k2)W2

Only dynamics of w; of interest —> eliminate w,



Mechanical system example revisited

d2W1
. k i, m1w + ky(wy — wo) — F
— m MW m, 2W2
—kywy + mo dr +(k1+k2)w2
4 2
mymy;— W kim kom kimo)—w. k1 ko w-
12dt41+(11+21+12)dt21+121

2

d
= mZWF-i- (k1 + kz)F



Mechanical system example revisited

d2W1

- K, K, m1w+k1(w1 —Wz)—F = 0
—— m, /\/\/\ mz 2W2
—kywy + my ar + (ki +k)w. = 0

4 2

m1m2WW1 + (kim + komy + k1m2)ww1 + kikowy
2

d
= MZWF-F (k1 + kz)F

Higher-order equations. Physical insight bound to fail.
¢ Stored energy, conservation laws, etc.?



Aim

An effective algebraic representation
of bilinear and quadratic functionals
of the system variables and their derivatives:

Operations/properties of functionals

()

algebraic operations/properties of representation

...a calculus of these functionals!
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Recapitulation

- Dissipation inequality and equality;

» Dissipation function, storage function, supply
rate;

 Algebraic representation of systems needs
algebraic representation of functionals.



Part lI: Bilinear- and quadratic differential forms



Outline

Definition



Bilinear differential forms (BDFs)

b= {‘Dk,z € R™ xwz}k,ezo,...,L

Lo : €°(R,R"") x €°(R,R"2) — €(R,R)

®opo Do,
¢1,0 ¢1,1 coo W
d T . . M
L¢(W1, W2) = [W{r % :| : ; dt
o Py, :

-
ak a‘
=2 ke (WW1> P <WW2>



Quadratic differential forms (QDFs)

¢ := {®, € RV}, , | symmetric,ie. &, = &/,

Qo : €2(R,R¥) — €<(R,R)

®opo Do,
¢1’0 ¢1,1 e w
. . d
Qo(w):=[wr @™ ]| ¢ i .| |&
Dro Dg ;

-
_ L dk df
= Zk,e=o (Ww> LY. (Ww>



Example: total energy in mechanical system

d2W1
i . N m1F+k1(W1 —w2) — F
- m; /\/\/\ m, 2W2
—Kkywy + my + (k1 + k2)W2

dr?



Example: total energy in mechanical system

d2W1
i . N m1F+k1(W1 —wy) — F
- m; N\/\ m, 2W2
—kiwy + my ar + (K1 + k) w2

1 (d )2+1m(d )2+1k( )2+1k 2
—my | — w; - — W —ky(wg — w —kow;
2 "\ 22\ gt 2 g T Tl T 5T
1k — 1k 0 0 0 0
1k lUa+k) O 0 0 0
_ J J J 0 0 0 0 0 0
= [w1 wo F  Gw af W2 EF] 0 0 0 %'771 0 0
0 0 0 0 im0
0 0 0 0 0 0
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{d’k,ﬂ € R }k,£=0,...,L

i d dt
Lo(wy, wp) = (=w1) Oy —Ws
Pl dtk dt¢

®(¢,m) = Y pmg Pre 1



Two-variable polynomial matrices for BDFs

{d’k,ﬂ € R }k,£=0,...,L

i dk dt
Lo(wy, Wo) = (W) By —ws
= dtk dtt

®(¢,m) = Y pmg Pre ¢ 1



Two-variable polynomial matrices for BDFs

{d)k,f S IRW1><W2}k,£=o,...,L
L
dk d*
Lo(wy, wo) = —Ww Dy — W
o(W1, W2) k;()(dt" 1) Pre gpe 2

¢(C7 "7) = Zlﬁ,e:o (Dk,e Ck ng



Two-variable polynomial matrices for BDFs

{(bk,f S RW1xwz}k,e=o,...,L
L
dk d*
Lo(wy, wo) = —wy) P, —
o(W1, W2) k;(,(dt" 1) Pre gpe 2

¢(C’ "7) = le;,e=o Dy e Ck nl

2-variable polynomial matrix associated with L,



Two-variable polynomial matrices for QDFs

{®re € RV}, o, symmetric (O4, = ®/,

Quw) = 3 (dtk T o Lw

k,£=0

¢(C’ "7) = Zl’;,z=o ¢k,£ Ck ne

symmetric: ®(¢(,n) = ®(n,¢) "



Example: total energy in mechanical system

Qe(wy, wo, F) =
1k — 1K 0 0 0 0 wy
— Ik 3k +hk) O 0 0 0 VIV__z
[ we Fogw Gw §F]| g A
0 0 0 0 Imy 0 @WZ
0 0 0 0 (] ol L GF



Example: total energy in mechanical system

Qe(wy, wo, F) =
1k — 1K 0 0 0 0
—0%k1 %(k1o+k2) g g g g
(i we FoGw Gw GF| g 0 o Im 0o o0
0 0 0 0 Imy 0
0 0 0o o 0o o
— 1 1 1
E(¢,n)= |—3ki 3(ki+k) O+ | O 3(n O

0 0 0 0 0O O

wy

d

a M
ar W2

dt



Example: total energy in mechanical system

Qg(wq, w2, F) =

[w1 w, F Zw Gw lF]

x
Nl=
x
coc oo
+
>
Nl=

oo ocooco o
N
OOSOOO
=
OEOOOO
oo ocooco oo

1k —1ky 0 ¢n 0 0
E(,m)= |3k i(ki+k) O+ | 0 I¢n O
0 0 0 0 0 O

wq

d

a M
ar W2

dt



Example: total energy in mechanical system

Qe(wy, wo, F) =

1k - 1K 0 0 0 0
AN I -
[ we F Gw Gw GF] 0 0 o Im 0o o0
0 0 0 0 imy 0
0 0 0o o 0o o

1 1 1
5’(1 —§k1 0 ECT’ 0 0

— 1 1 1

E(¢,n)= |—3ki 3(ki+k) O+ | 0 3(n O

0 0 0 0 0O O

wq

d

a"
ar W2

dt
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The calculus of B/QDFs
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B/QDF « two-variable polynomial matrix



The calculus of B/QDFs

Using powers of ¢ and ) as placeholders,

B/QDF « two-variable polynomial matrix

Operations algebraic
and properties <~  operations/properties
of B/QDF on two-variable matrix



Differentiation

® € R™[¢, n]. ® derivative of Qo:
Q; : €(R,R") — €=(R,R)

Q. (w) := %(Qq;(W))



Differentiation

® € R™[¢, n]. ® derivative of Qo:
Q; : €(R,R") — €=(R,R)

Q. (w) := %(sz(W))

5’(C, n) = (¢ + )P, n)

Two-variable version of Leibniz’s rule



Integration

D (R, R®) €>°-compact-support trajectories

Lo : D(R,R") x D(R,R") — D(R,R)

[ Lo : D(R,R") x D(R,R*) — R
f L¢(W1, W2) = f:—:: L¢(W1, Wg)dt

Analogous for QDFs



Part lll: LTI dissipative differential systems



Outline

Characterizations of dissipativity



Setting the stage

supply, dissipation, storage
LTI systems ~ are quadratic functionals
of the system variables
and their derivatives



Setting the stage

supply, dissipation, storage
LTI systems ~ are quadratic functionals
of the system variables
and their derivatives

Dissipation equality:

Qu(W) = @a (W) + 7 Qu(W)

where w € B
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Setting the stage

Controllable system Power (‘supply rate’)

w = M(5)¢~ M(E) Qs ~ ®(¢,n)

Qo(W) = Qo(M(S)0)

®'(¢,m) == M(C) T ®(E, n)M(n)

Qo acts on free variable ¢, i.e. €



When is a system dissipative?
Dissipation equality:
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Dissipation equality:
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When is a system dissipative?
Dissipation equality:

d
Qd)zaQ\U"'QA

Integrate along compact-support trajectory:

+o0 +oo
——

— oo —_—— —00

=0 >0



When is a system dissipative?
Dissipation equality:

d
Qd):aQ\U'l'QA

+oo

—0o0

for all compact-support trajectories w € B



When is a system dissipative?
+oo
Qo (w)dt > 0

—Oo0

for all compact-support trajectories w € B
If w = M(%)¢, equivalent to
Qo (€) > 0forall £ € €=
with ®'(¢, ) = M(C) T (¢, n)M(n)



When is a system dissipative?

+oo
Qo(W)dt > 0

—Oo0

for all compact-support trajectories w € B
If w = M(%)¢, equivalent to
Qo (€) > 0forall £ € €=
with ®'(¢, ) = M(C) T (¢, n)M(n)
Fourier transformation leads to
&' (—iw, iw) = M(—iw) T ®(—iw, iw)M(iw) > 0

forallw € R



When is a system dissipative?
+oo
Qo (w)dt > 0

for all compact-support trajectories w € B
Fourier transformation leads to
' (—iw, iw) = M(—iw) T ®(—iw, iw)M(iw) > 0

forallw e R

iA frequency-domain inequality!



When is a system dissipative?

We just proved:

im M(2) is ®-dissipative
if and only if

M(—iw)T&(—iw, iw)M(iw) > 0forall w € R



Characterizations of dissipativity

Theorem: The following conditions are equivalent:

o [*°° Qu(£)dt > 0 for all € compact-support ¢;
* Q. admits a storage function;
» Qo admits a dissipation rate

Given Qy, storage and dissipation are one-one:

d
—Qu = Q—Q
ar ) A

(C+n)w(C,n) = ®(n)— A(,n)



Example: mechanical systems
2 d
{F} _ [M%+DE+K ¢

2
M&%q+Dgq+Kq=F q L



Example: mechanical systems
2 F M2 +D9 + K
M2.q+ DSq+ Kq=F [q} = { drz L at Y

Supply rate: power

d d? d T/d
FT'(—q)|=(M-—¢+D—¢+ K¢ —/
(dtq) ( ae T Patt ) (dt)
corresponding to

1 1
®(¢,m) = E(MC"' + D¢+ K)'n + 5c(ll/hy2 + Dn + K)



Example: mechanical systems

{F} _ [Mj—;+D%+K p
q h
®(¢,m) = 3(MC? + D¢ + K)Tn + 2¢(Mn? + Dn + K)

M%q+D%q+Kq=F



Example: mechanical systems

a? d
MZ.q+Diq+Kqg=F [F} {Md,2+DE+K P
q h

®(¢,m) = 3(MC? + D¢ + K)Tn + 2¢(Mn? + Dn + K)
If dissipation inequality

®(¢,m) = (C+n)W(¢n) + A7)
holds, then

O(~£,¢) = —,€(D7 + D) = A(~¢,¢)
= A(Gn) = H(D7 + D)t

Spectral factorization of ®(—¢, £) is key



Example: mechanical systems

d? d
4q+Diq+Kq=F Fl = |Mi +Dg + K| ,
dt q [

®(¢,n) = 3(ME? + D¢ + K) T + 3¢(Mn? + Dn + K)
A(¢,m) = 3(DT + D)¢n



Example: mechanical systems

a2 d
fq+D4q+Kg=F |0 = |t DatKl,
M q h

®(¢,m) = 3(MC? + D¢ + K)Tn + 2¢(Mn? + Dn + K)
A(¢,m) = 3(DT 4+ D)¢n
Storage function

®(¢,n) — A(S ) 1Mc 2k

C+n 2

Total energy

v(¢,n) =



Example: mechanical systems

d? d
4q+Diq+Kq=F Fl = |Mi +Dg + K| ,
dt q [

®(¢,n) = 3(ME? + D¢ + K) T + 3¢(Mn? + Dn + K)
A(¢,m) = 3(DT 4+ D)¢n
(¢, n) = 3M¢n + 3K



Example: mechanical systems

a? d
MZ.q+Diq+Kqg=F [F} {Md,2+DE+K P
q h

®(¢,m) = 3(MC? + D¢ + K)Tn + 2¢(Mn? + Dn + K)
A(¢,m) = 3(DT + D)¢n

(¢, n) = 3MCn + 3K

Physically correct: £Qy + Qa equals

.
a2 d d d \' d
- — — D+D")—
(dt2q> Mdtq+q q+ (dtq) (D+ )dtq

4[3(49) " Mga+3a7Kq|




Example: mechanical systems

{F} _ [Mg—;+D%+K p
q h
®(¢,m) = 3(MC? + D¢ + K)Tn + 2¢(Mn? + Dn + K)
A(¢,m) = 3(DT 4+ D)¢n
W(¢,n) = 3M¢n + 5K

Physically correct: £Qy + Qa equals

M%q+D%q+Kq=F

-
d? d .,d o 1/d \T d
— — K—q+ - (= D+D")—
(dt2q> M 9+4 dtq+2<dtq) (D+D7) .49

4[3(%9) " Mga+iqTKq
Supply rate equals

.
d d? d \' d
FT—qg=||— M+ — D" +q"K| —
at? {(dt2q> + (dtq> +q q

dt




Outline

Dissipation and storage in an algebraic setting
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(C + ﬂ)‘"(C, 77) + A(C? 77) = ¢(C7 "7)
¢How to compute A and w?
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Dissipation functions and spectral factorization

(C + ﬂ)"’(C, 77) + A(C? 77) = ¢(C9 "7)
¢How to compute A and w?

Let { = —¢, n = & then A(—¢,£) = ®(—¢,¢)

Also, Qa(¢) > 0forall £ € €°(R,R*) =
there exists square D € R***[¢] such that

A(¢;m) = D(¢) "D(n)



Dissipation functions and spectral factorization

(C + ﬂ)"’(C, "7) + A(C? 77) = ¢(C9 "7)
¢How to compute A and v?

Let C = _€5 n= f, then A(_£’ 5) = ¢(_€,€)

Also, Qa(¢) > 0forall £ € €°(R,R*) =
there exists square D € R***[¢] such that

A(¢;m) = D(¢) "D(n)

Spectral factorization: given ®(—¢,¢), find
square matrix D s.t.

®(—¢,¢) = D(—€) " D(€)



Dissipation functions and spectral factorization

(C + 77)"’(43 "7) + A(C? 77) = ¢(C9 77)
¢How to compute A and w?
Let ¢ = —¢, n = &;then A(—¢, &) = (¢, €)

Spectral factorization: given ®(—¢,¢), find
square matrix D s.t.

®(—¢,¢) = D(—€) " D(€)

Solvable if and only if ®(—iw, iw) > 0 for all w € R.
iFrequency domain condition for dissipativity!



Dissipation functions and spectral factorization

(C + n)“’(C, "7) + A(C? 77) = ¢(C9 "7)
¢How to compute A and w?

Spectral factorize ®(—¢, ¢) = D(—¢) " D(¢), define

A(¢ym) = D(¢) " D(n)



Dissipation functions and spectral factorization
(C+mW(¢n) + A1) = ¢(¢,n)
¢How to compute A and w?
Spectral factorize ®(—¢, ¢) = D(—¢) " D(¢), define
A(¢,n) == D(¢) " D(n)
d(—&,8) = A(—&, &) = there exists W(({, n) s.t.
®(¢,m) — AGn) = (C+mW(C,n)

Then storage function is

W(C,n) = "’(C,né ; :(C,n)




Remarks

« Many ways of spectral factorizing the same matrix
~» many dissipation functions
~> many storage functions.



Remarks

« Many ways of spectral factorizing the same matrix
~» many dissipation functions
~> many storage functions.

» Set of storage functions is convex:

Qu,, Qy, storage functions and a € [0, 1]
= aQy, + (1 — a)Qy, is storage function



Maximal and minimal storage functions

Let B € <£¥ be controllable and ®-dissipative.
There exist storage functions Qy_ and Q,, such
that for any storage function Qy it holds

Qv < Qu < Qu,



Maximal and minimal storage functions

Let B € <£¥ be controllable and ®-dissipative.
There exist storage functions Qy_ and Q,, such
that for any storage function Qy it holds

Qv < Qu < Qu,

Qu_s is minimal-, Qy, is maximal storage function



Maximal and minimal storage functions

Let B € <£¥ be controllable and ®-dissipative.
There exist storage functions Qy_ and Q,, such
that for any storage function Qy it holds

Qv < Qu < Qu,

Q. _ is available storage:

Qu_(W)(0) = sup (—/(Joooq,(w’)dt) ~\

w’ st 2%
wAw € B

Maximum amount of energy extractable from system.



Maximal and minimal storage functions

Let B € <£¥ be controllable and ®-dissipative.
There exist storage functions Qy_ and Q,, such
that for any storage function Qy it holds

Qu_ < Qv < Qu,
Qu, is required supply:

\

w’ st

Qlll+(w)(0) = inf (/ th(w,)dt> \ K

w AwE B

Minimum energy needed to produce w from t = 0



Spectral factorization and extremal storage functions

If detd(—¢,¢&) # 0 and ®(—ijw,iw) > 0forall w € R,
there exist H, A s.i.

®(—¢,8) = H(—€)TH() = A(—€) TA(¢)
where

det(H()\)) = 0 = X € C° (“semi-Hurwitz polynomial”)
det(A(A\)) =0= X € (Cg_ (“semi-anti-Hurwitz polynomial”)



Spectral factorization and extremal storage functions

If detd(—¢,¢&) # 0 and ®(—iw,iw) > 0forall w € R,
there exist H, A s.i.

®(—¢,8) = H(—€)TH() = A(—€) TA(¢)
where

det(H()\)) = 0 = X € C° (“semi-Hurwitz polynomial”)
det(A(A\)) =0= X € (Cg_ (“semi-anti-Hurwitz polynomial”)

In this case,
v (cm) = 2Gm : :rf?o H(n)
v ey = 2EM—AQTAM)

¢+n



Storage functions and the state

Circuit theory folklore: state variables are associated
with energy storing elements (capacitors, inductors)
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Physics: potential energy in a field dependent on po-
sition (and velocity/acceleration)



Storage functions and the state

Circuit theory folklore: state variables are associated
with energy storing elements (capacitors, inductors)

Physics: potential energy in a field dependent on po-
sition (and velocity/acceleration)

¢ Can we give rational foundation to the intuition
that “storage" is related with “memory"?



Storage functions and the state

Theorem: Let ¥ = X7 € R*X" be nonsingular. As-
sume that B = im (M(%)) is Z-dissipative.

Let ¥ € R"*¥[(,n] be a storage function, and let X ¢
R***[£] be a state map for 5.

Then3 K = KT € R*%®, E = ET € R*** such that
(¢, m) = X(¢)TKX(n)

acm = 9] e[ 4]
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Storage functions and the state

Theorem: Let ¥ = X7 € R*X" be nonsingular. As-
sume that B = im (M(%)) is Z-dissipative.

Let ¥ € R"*¥[(,n] be a storage function, and let X ¢
R***[£] be a state map for 5.

Then3 K = KT € R*%®, E = ET € R*** such that
(¢, m) = X(¢)TKX(n)

acm = 9] e[ 4]

i The dissipation function
is a quadratic function of the state and of the input!
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Recapitulation

» Characterization of dissipativity, dissipation and
storage functions;

o Spectral factorization and storage functions;
o Extremal storage functions;

 Storage function is a function of the state.



Part IV: Dissipativity and state representations
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The linear matrix inequality
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Setting the stage
Observable image representation of B:

J- )

dt

B is dissipative with respect to

Q ST

z’:[s R

1 ~ X'Qx+2x"STu+ u'"Ru
Leads to
®(¢,m) = [X(O)T U] [3 SRT] M

acting on €>=(R, R").



The linear matrix inequality

Theorem. The following conditions are equivalent:
1. Bis X-dissipative;
3. 3K = KT € R* s.t. linear matrix inequality (LMI)

Q-A'K—-KA —KB+ ST

_BTK+S R =0

holds.

If any of the above conditions hold, then x " Kx is a
storage function for B.
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The algebraic Riccati equation

Assume det ®(—¢&,£) # 0. Then there exists F of full
row rank m s.t.

Q- ATK—-KA —KB+ ST

_ T
_BTK+ S R =F'F

Assume R > 0, and write Schur complement of R:

Q—A"K—KA— (—KB+ST)R'(—BK +S) =0

Algebraic Riccati equation




Remarks

» State-space case as special case;

« First-order aspect and other (historical, etc.)
reasons ~ efficient algorithms;

« Optimal control, filtering, etc. applications of
ARE.
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Summary

« First principles approach to dissipation theory;

» Two-variable polynomial matrices and the
calculus of bilinear- and differential forms;

o Answers (algorithmic!) to: “when is a system
dissipative?"”, “how to compute a dissipation
function?", etc.

» Algebraic Riccati equation, LMIs, etc. as special
case of higher-order approach.
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