Summer Course

Linear System Theory Control & Matrix Computations

Monopoli

September 8–12, 2008

Lecture 14: Dissipative systems

Lecturer: Paolo Rapisarda University of Southampton, United Kingdom

Part I: General dissipative systems

The dissipation inequality

The dissipation equality

Physical examples:

- Resistive electrical circuits;
- Mechanical systems with friction;
- ...

Physical examples:

- Resistive electrical circuits;
- Mechanical systems with friction;

• ...

Energy supplied to system \rightsquigarrow supply rate variable F_{Σ}

Physical examples:

- Resistive electrical circuits;
- Mechanical systems with friction;

• ...

Energy supplied to system \rightsquigarrow supply rate variable F_{Σ}

Electrical circuits: V^T I with V (I) vector of voltages (currents)

Physical examples:

- Resistive electrical circuits;
- Mechanical systems with friction;

• ...

Energy supplied to system \rightsquigarrow supply rate variable F_{Σ}

- Electrical circuits: V^T I with V (I) vector of voltages (currents)
- Mechanical systems: $F^{\top} \frac{d}{dt} x$ with F(x) vector of forces (displacements)

Energy supplied to system \rightsquigarrow supply rate variable F_{Σ}

Energy stored in system \rightsquigarrow storage variable F_S

Energy supplied to system \rightsquigarrow supply rate variable F_{Σ}

Energy stored in system \rightsquigarrow storage variable F_S

• Electrical circuits: $\frac{1}{2}C \cdot V^2$ for capacitor, $\frac{1}{2}L \cdot I^2$ for inductor

Energy supplied to system \rightsquigarrow supply rate variable F_{Σ}

Energy stored in system \rightsquigarrow storage variable F_S

- Electrical circuits: $\frac{1}{2}C \cdot V^2$ for capacitor, $\frac{1}{2}L \cdot I^2$ for inductor
- Mechanical systems: $\frac{1}{2}K \cdot x^2$ for spring

Energy supplied to system \rightsquigarrow supply rate variable F_{Σ}

Energy stored in system \rightsquigarrow storage variable F_S

In a dissipative system, energy cannot be stored faster than it is supplied

Energy supplied to system \rightsquigarrow supply rate variable F_{Σ}

Energy stored in system \rightsquigarrow storage variable F_S

In a dissipative system, energy cannot be stored faster than it is supplied

$$rac{d}{dt}F_{S}\leq F_{\Sigma}$$

Energy supplied to system \rightsquigarrow supply rate variable F_{Σ}

Energy stored in system \rightsquigarrow storage variable F_S

In a dissipative system, energy cannot be stored faster than it is supplied

$$\frac{d}{dt}F_{S} \leq F_{\Sigma}$$

The dissipation inequality

The dissipation equality

$$\frac{d}{dt}F_{S}\leq F_{\Sigma}$$

$$\frac{d}{dt}F_{S}\leq F_{\Sigma}$$

$$F_{\Delta} := F_{\Sigma} - \frac{d}{dt}F_{S}$$
 dissipation rate (nonnegative)

$$rac{d}{dt}F_{S}\leq F_{\Sigma}$$

 $F_{\Delta} := F_{\Sigma} - \frac{d}{dt}F_{S}$ dissipation rate (nonnegative)

$$F_{\Sigma}=F_{\Delta}+\frac{d}{dt}F_{S}$$

$$rac{d}{dt}F_{S}\leq F_{\Sigma}$$

$$F_{\Delta} := F_{\Sigma} - \frac{d}{dt}F_{S}$$
 dissipation rate (nonnegative)

$$F_{\Sigma}=F_{\Delta}+\frac{d}{dt}F_{S}$$

Lossless systems:
$$F_{\Sigma} = \frac{d}{dt}F_{S}$$

Example : a mechanical system

Example : a mechanical system

$$\underbrace{F}_{m_1} \underbrace{m_2}_{m_2} \underbrace{m_2}_{m_2} \underbrace{m_1}_{m_2} \underbrace{m_$$

From physical considerations:

supply (power)
$$F \cdot \frac{dw_1}{dt}$$

storage (total energy) $\frac{1}{2}m_1\left(\frac{dw_1}{dt}\right)^2 + \frac{1}{2}m_2\left(\frac{dw_2}{dt}\right)^2$
 $+\frac{1}{2}k_1(w_1 - w_2)^2 + \frac{1}{2}k_2w_2^2$

Example : a mechanical system

$$\underbrace{F}_{m_1} \underbrace{k_1}_{m_2} \underbrace{k_2}_{m_2} \underbrace{m_1 \frac{d^2 w_1}{dt^2} + k_1 (w_1 - w_2) - F}_{m_1 \frac{d^2 w_2}{dt^2} + (k_1 + k_2) w_2} = 0$$

From physical considerations:

supply (power)
$$F \cdot \frac{dw_1}{dt}$$

storage (total energy) $\frac{1}{2}m_1\left(\frac{dw_1}{dt}\right)^2 + \frac{1}{2}m_2\left(\frac{dw_2}{dt}\right)^2$
 $+\frac{1}{2}k_1(w_1 - w_2)^2 + \frac{1}{2}k_2w_2^2$

Easy to see that

$$\frac{d}{dt}\left(F\frac{d}{dt}w_{1}\right) = \frac{1}{2}m_{1}\left(\frac{dw_{1}}{dt}\right)^{2} + \frac{1}{2}m_{2}\left(\frac{dw_{2}}{dt}\right)^{2} + \frac{1}{2}k_{1}(w_{1}-w_{2})^{2} + \frac{1}{2}k_{2}w_{2}^{2}$$

• Supply, storage, dissipation for physical system example are functions of the system variables and their (first) derivatives.

- Supply, storage, dissipation for physical system example are functions of the system variables and their (first) derivatives.
- Existential definition: "*if* ∃ storage function..."

- Supply, storage, dissipation for physical system example are functions of the system variables and their (first) derivatives.
- Existential definition: "*if* ∃ storage function..."
- ¿Can we decide whether a system is dissipative by examining the supply rate?

- Supply, storage, dissipation for physical system example are functions of the system variables and their (first) derivatives.
- Existential definition: "*if* ∃ storage function..."
- ¿Can we decide whether a system is dissipative by examining the supply rate?
- What if linear time-invariant finite-dimensional systems, with quadratic supply rates?

- Supply, storage, dissipation for physical system example are functions of the system variables and their (first) derivatives.
- Existential definition: "*if* ∃ storage function..."
- ¿Can we decide whether a system is dissipative by examining the supply rate?
- What if linear time-invariant finite-dimensional systems, with quadratic supply rates?
- ¡We need theoretical and algebraic tools!

$$\underbrace{F}_{m_1} \underbrace{k_1}_{m_2} \underbrace{k_2}_{m_2} \underbrace{m_1 \frac{d^2 w_1}{dt^2} + k_1 (w_1 - w_2) - F}_{m_1 \frac{d^2 w_2}{dt^2} + (k_1 + k_2) w_2} = 0$$

Only dynamics of w_1 of interest \implies eliminate w_2

$$m_1 m_2 \frac{d^4}{dt^4} w_1 + (k_1 m_1 + k_2 m_1 + k_1 m_2) \frac{d^2}{dt^2} w_1 + k_1 k_2 w_1$$

= $m_2 \frac{d^2}{dt^2} F + (k_1 + k_2) F$

$$\underbrace{F}_{m_1} \underbrace{k_1}_{m_2} \underbrace{k_2}_{m_2} \underbrace{m_1 \frac{d^2 w_1}{dt^2} + k_1 (w_1 - w_2) - F}_{m_1 \frac{d^2 w_2}{dt^2} + (k_1 + k_2) w_2} = 0$$

$$m_1 m_2 \frac{d^4}{dt^4} w_1 + (k_1 m_1 + k_2 m_1 + k_1 m_2) \frac{d^2}{dt^2} w_1 + k_1 k_2 w_1$$

= $m_2 \frac{d^2}{dt^2} F + (k_1 + k_2) F$

Higher-order equations. Physical insight bound to fail. ¿Stored energy, conservation laws, etc.?

Aim

An effective algebraic representation of bilinear and quadratic functionals of the system variables and their derivatives:

...a calculus of these functionals!

Recapitulation

• Dissipation inequality and equality;

Recapitulation

- Dissipation inequality and equality;
- Dissipation function, storage function, supply rate;

Recapitulation

- Dissipation inequality and equality;
- Dissipation function, storage function, supply rate;
- Algebraic representation of systems needs algebraic representation of functionals.

Part II: Bilinear- and quadratic differential forms

Definition

Two-variable polynomial matrices

The calculus of B/QDFs

Bilinear differential forms (BDFs)

$$\Phi := \left\{ \Phi_{k,\ell} \in \mathbb{R}^{\mathsf{w}_1 \times \mathsf{w}_2} \right\}_{k,\ell=0,\dots,L}$$

$$L_{\Phi}: \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{w_{1}}) \times \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{w_{2}}) \to \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R})$$

$$L_{\Phi}(w_{1}, w_{2}) := \begin{bmatrix} w_{1}^{\top} & \frac{dw_{1}}{dt}^{\top} & \dots \end{bmatrix} \begin{bmatrix} \Phi_{0,0} & \Phi_{0,1} & \dots \\ \Phi_{1,0} & \Phi_{1,1} & \dots \\ \vdots & \vdots & \dots \end{bmatrix} \begin{bmatrix} w_{2} \\ \frac{dw_{2}}{dt} \\ \vdots \\ \vdots \end{bmatrix}$$

$$= \sum_{k,\ell} \left(\frac{d^{k}}{dt^{k}} w_{1} \right)^{\top} \Phi_{k,\ell} \left(\frac{d^{\ell}}{dt^{\ell}} w_{2} \right)$$

Quadratic differential forms (QDFs)

$$\Phi := \left\{ \Phi_{k,\ell} \in \mathbb{R}^{\mathsf{w} \times \mathsf{w}} \right\}_{k,\ell=0,...,L} \text{ symmetric, i.e. } \Phi_{k,\ell} = \Phi_{\ell,k}^{\top}$$

$$\begin{aligned} \boldsymbol{Q}_{\Phi}: \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{w}) &\to \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}) \\ \boldsymbol{Q}_{\Phi}(\boldsymbol{w}) := \begin{bmatrix} \boldsymbol{w}^{\top} & \frac{d\boldsymbol{w}^{\top}}{dt}^{\top} & \dots \end{bmatrix} \begin{bmatrix} \Phi_{0,0} & \Phi_{0,1} & \dots \\ \Phi_{1,0} & \Phi_{1,1} & \dots \\ \vdots & \vdots & \dots \\ \Phi_{k,0} & \Phi_{k,1} & \dots \\ \vdots & \vdots & \dots \end{bmatrix} \begin{bmatrix} \boldsymbol{w} \\ \frac{d\boldsymbol{w}}{dt} \\ \vdots \end{bmatrix} \\ &= \sum_{k,\ell=0}^{L} \left(\frac{d^{k}}{dt^{k}} \boldsymbol{w} \right)^{\top} \Phi_{k,\ell} \left(\frac{d^{\ell}}{dt^{\ell}} \boldsymbol{w} \right) \end{aligned}$$

$$\underbrace{F}_{m_1} \underbrace{k_1}_{m_2} \underbrace{k_2}_{m_2} \underbrace{m_1 \frac{d^2 w_1}{dt^2} + k_1 (w_1 - w_2) - F}_{m_1 \frac{d^2 w_2}{dt^2} + (k_1 + k_2) w_2} = 0$$

$$\underbrace{F}_{m_1} \underbrace{k_1}_{m_2} \underbrace{k_2}_{m_2} \underbrace{m_1 \frac{d^2 w_1}{dt^2} + k_1 (w_1 - w_2) - F}_{m_1 \frac{d^2 w_2}{dt^2} + (k_1 + k_2) w_2} = 0$$

Total energy is

$$\begin{split} &\frac{1}{2}m_1\left(\frac{d}{dt}w_1\right)^2 + \frac{1}{2}m_2\left(\frac{d}{dt}w_2\right)^2 + \frac{1}{2}k_1(w_1 - w_2)^2 + \frac{1}{2}k_2w_2^2 \\ &= \left[w_1 \quad w_2 \quad F \quad \frac{d}{dt}w_1 \quad \frac{d}{dt}w_2 \quad \frac{d}{dt}F\right] \begin{bmatrix} \frac{1}{2}k_1 & -\frac{1}{2}k_1 & 0 & 0 & 0 & 0 \\ -\frac{1}{2}k_1 & \frac{1}{2}(k_1 + k_2) & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2}m_1 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2}m_2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} w_1 \\ w_2 \\ F \\ \frac{d}{dt}w_1 \\ \frac{d}{dt}w_2 \\ \frac{d}{dt}F \end{bmatrix}$$

Definition

Two-variable polynomial matrices

The calculus of B/QDFs

$$\left\{ \Phi_{k,\ell} \in \mathbb{R}^{\mathsf{w}_1 \times \mathsf{w}_2} \right\}_{k,\ell=0,\ldots,L}$$

$$L_{\Phi}(w_1, w_2) = \sum_{k,\ell=0}^{L} \left(\frac{d^k}{dt^k} w_1\right)^{\top} \Phi_{k,\ell} \frac{d^\ell}{dt^\ell} w_2$$

$$\left\{ \Phi_{k,\ell} \in \mathbb{R}^{\mathsf{w}_1 \times \mathsf{w}_2} \right\}_{k,\ell=0,\ldots,L}$$

$$L_{\Phi}(w_1, w_2) = \sum_{k,\ell=0}^{L} \left(\frac{d^k}{dt^k} w_1\right)^{\top} \Phi_{k,\ell} \frac{d^\ell}{dt^\ell} w_2$$

$$\Phi(\zeta,\eta) = \sum_{k,\ell=0}^L \Phi_{k,\ell} \, \zeta^k \; \eta^\ell$$

$$\left\{ \Phi_{k,\ell} \in \mathbb{R}^{\mathsf{w}_1 \times \mathsf{w}_2} \right\}_{k,\ell=0,\ldots,L}$$

$$L_{\Phi}(w_1, w_2) = \sum_{k,\ell=0}^{L} \left(\frac{d^k}{dt^k} w_1\right)^{\top} \Phi_{k,\ell} \frac{d^\ell}{dt^\ell} w_2$$

$$\Phi(\zeta,\eta) = \sum_{k,\ell=0}^L \Phi_{k,\ell} \, \zeta^k \, \eta^\ell$$

$$\left\{ \Phi_{k,\ell} \in \mathbb{R}^{\mathsf{w}_1 \times \mathsf{w}_2} \right\}_{k,\ell=0,\ldots,L}$$

$$L_{\Phi}(w_1, w_2) = \sum_{k,\ell=0}^{L} \left(\frac{d^k}{dt^k} w_1\right)^{\top} \Phi_{k,\ell} \frac{d^\ell}{dt^\ell} w_2$$

$$\Phi(\zeta,\eta) = \sum_{k,\ell=0}^L \Phi_{k,\ell} \, \zeta^k \; \eta^\ell$$

$$\left\{ \Phi_{k,\ell} \in \mathbb{R}^{\mathsf{w}_1 \times \mathsf{w}_2} \right\}_{k,\ell=0,\dots,L}$$

$$L_{\Phi}(w_1, w_2) = \sum_{k,\ell=0}^{L} \left(\frac{d^k}{dt^k} w_1\right)^{\top} \Phi_{k,\ell} \frac{d^\ell}{dt^\ell} w_2$$

$$\Phi(\zeta,\eta) = \sum_{k,\ell=0}^{L} \Phi_{k,\ell} \zeta^{k} \eta^{\ell}$$

2-variable polynomial matrix associated with L_{ϕ}

$$\left\{\Phi_{k,\ell} \in \mathbb{R}^{\mathsf{w} imes \mathsf{w}}
ight\}_{k,\ell=0,...,L}$$
 symmetric ($\Phi_{k,\ell} = \Phi_{\ell,k}^{\top}$)

$$Q_{\Phi}(w) = \sum_{k,\ell=0}^{L} \left(\frac{d^{k}}{dt^{k}}w\right)^{\top} \Phi_{k,\ell} \frac{d^{\ell}}{dt^{\ell}}w$$

$$Φ(ζ, η) = \sum_{k,\ell=0}^{L} Φ_{k,\ell} ζ^k η^{\ell}$$
symmetric: Φ(ζ, η) = Φ(η, ζ)^T

$$\boldsymbol{E}(\zeta,\eta) = \begin{bmatrix} \frac{1}{2}\boldsymbol{k}_1 & -\frac{1}{2}\boldsymbol{k}_1 & \mathbf{0} \\ -\frac{1}{2}\boldsymbol{k}_1 & \frac{1}{2}(\boldsymbol{k}_1 + \boldsymbol{k}_2) & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix} + \begin{bmatrix} \frac{1}{2}\zeta\eta & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \frac{1}{2}\zeta\eta & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} \end{bmatrix}$$

$$E(\zeta,\eta) = \begin{bmatrix} \frac{1}{2}k_1 & -\frac{1}{2}k_1 & 0 & 0 & 0 & 0 \\ -\frac{1}{2}k_1 & \frac{1}{2}(k_1+k_2) & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2}m_1 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2}m_2 & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2}m_2 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{w_1} & \frac{w_2}{r} \\ \frac{d}{dt}w_1 \\ \frac{d}{dt}w_2 \\ \frac{d}{dt}F \end{bmatrix}$$

$$E(\zeta,\eta) = \begin{bmatrix} \frac{1}{2}k_1 & -\frac{1}{2}k_1 & 0 & 0 & 0 & 0 \\ -\frac{1}{2}k_1 & \frac{1}{2}(k_1+k_2) & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{2}m_1 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{2}m_2 & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2}m_2 & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{2}m_2 & 0 \end{bmatrix} \begin{bmatrix} \frac{w_1}{w_2} \\ \frac{w_1}{g} \\ \frac{w_1}{g}$$

Two-variable polynomial matrices

The calculus of B/QDFs

The calculus of B/QDFs

Using powers of ζ and η as placeholders,

B/QDF <---> two-variable polynomial matrix

The calculus of B/QDFs

Using powers of ζ and η as placeholders,

B/QDF composition two-variable polynomial matrix

algebraic operations/properties on two-variable matrix

Differentiation

$$egin{aligned} \Phi \in \mathbb{R}^{ extsf{w} imes imes$$

Differentiation

$$egin{aligned} \Phi \in \mathbb{R}^{ extsf{w} imes imes$$

$$\overset{\bullet}{\Phi}(\zeta,\eta)=(\zeta+\eta)\Phi(\zeta,\eta)$$

Two-variable version of Leibniz's rule

Integration

 $\mathfrak{D}(\mathbb{R}, \mathbb{R}^{\bullet}) \mathfrak{C}^{\infty}$ -compact-support trajectories $L_{\Phi} : \mathfrak{D}(\mathbb{R}, \mathbb{R}^{w_1}) \times \mathfrak{D}(\mathbb{R}, \mathbb{R}^{w_2}) \to \mathfrak{D}(\mathbb{R}, \mathbb{R})$

 $\int L_{\Phi} : \mathfrak{D}(\mathbb{R}, \mathbb{R}^{w_1}) \times \mathfrak{D}(\mathbb{R}, \mathbb{R}^{w_2}) \to \mathbb{R}$ $\int L_{\Phi}(w_1, w_2) := \int_{-\infty}^{+\infty} L_{\Phi}(w_1, w_2) dt$

Analogous for QDFs

Part III: LTI dissipative differential systems

Characterizations of dissipativity

Dissipation and storage in an algebraic setting

LTI systems \sim

supply, dissipation, storage are quadratic functionals of the system variables and their derivatives

LTI systems \sim

supply, dissipation, storage are quadratic functionals of the system variables and their derivatives

Dissipation equality:

$$Q_{\Phi}(w) = Q_{\Delta}(w) + rac{d}{dt}Q_{\Psi}(w)$$

where $w \in \mathcal{B}$

Controllable system

$$W = M(\frac{d}{dt})\ell \rightsquigarrow M(\xi)$$

Power ('supply rate')

$$Q_{\Phi} \rightsquigarrow \Phi(\zeta, \eta)$$

Controllable systemPower ('supply rate') $w = M(\frac{d}{dt})\ell \rightsquigarrow M(\xi)$ $Q_{\Phi} \rightsquigarrow \Phi(\zeta, \eta)$

$$egin{aligned} oldsymbol{Q}_{\Phi}(oldsymbol{w}) &= oldsymbol{Q}_{\Phi}(oldsymbol{M}(rac{d}{dt})\ell) \ \Phi'(\zeta,\eta) &:= oldsymbol{M}(\zeta)^{ op} \Phi(\zeta,\eta) oldsymbol{M}(\eta) \end{aligned}$$

$Q_{\Phi'}$ acts on free variable ℓ , i.e. \mathfrak{C}^{∞}

Controllable systemPower ('supply rate') $w = M(\frac{d}{dt})\ell \rightsquigarrow M(\xi)$ $Q_{\Phi} \rightsquigarrow \Phi(\zeta, \eta)$

$$egin{aligned} oldsymbol{Q}_{\Phi}(w) &= oldsymbol{Q}_{\Phi}(M(rac{d}{dt})\ell) \ \Phi'(\zeta,\eta) &:= M(\zeta)^{ op} \Phi(\zeta,\eta) M(\eta) \end{aligned}$$

 $Q_{\Phi'}$ acts on free variable ℓ , i.e. \mathfrak{C}^{∞}

$$m{Q}_{\Phi} = rac{m{d}}{m{d}t}m{Q}_{\Psi} + m{Q}_{\Delta}$$

$$Q_{\Phi}=rac{d}{dt}Q_{\Psi}+Q_{\Delta}$$

Integrate along compact-support trajectory:

$$\int_{-\infty}^{+\infty} Q_{\Phi}(w) dt = Q_{\Psi}(w) \mid_{-\infty}^{+\infty} + \int_{-\infty}^{+\infty} Q_{\Delta}(w) dt$$

$$Q_{\Phi}=rac{d}{dt}Q_{\Psi}+Q_{\Delta}$$

Integrate along compact-support trajectory:

$$m{Q}_{\Phi}=rac{m{d}}{m{d}t}m{Q}_{\Psi}+m{Q}_{\Delta}$$

$$\int_{-\infty}^{+\infty} Q_{\Phi}(w) dt \geq 0$$

for all compact-support trajectories $w \in B$

When is a system dissipative? $\int_{-\infty}^{+\infty} Q_{\Phi}(w) dt \ge 0$ for all compact-support trajectories $w \in \mathcal{B}$

If $w = M(\frac{d}{dt})\ell$, equivalent to $Q_{\Phi'}(\ell) \ge 0$ for all $\ell \in \mathfrak{C}^{\infty}$ with $\Phi'(\zeta, \eta) = M(\zeta)^{\top} \Phi(\zeta, \eta) M(\eta)$ When is a system dissipative? $\int_{-\infty}^{+\infty} Q_{\Phi}(w) dt \ge 0$ for all compact-support trajectories $w \in \mathcal{B}$

If $w = M(\frac{d}{dt})\ell$, equivalent to $Q_{\Phi'}(\ell) \ge 0$ for all $\ell \in \mathfrak{C}^{\infty}$ with $\Phi'(\zeta, \eta) = M(\zeta)^{\top} \Phi(\zeta, \eta) M(\eta)$

Fourier transformation leads to

$$\Phi'(-i\omega,i\omega) = M(-i\omega)^{\top}\Phi(-i\omega,i\omega)M(i\omega) \ge 0$$

for all $\omega \in \mathbb{R}$

When is a system dissipative? $\int_{-\infty}^{+\infty} Q_{\Phi}(w) dt \ge 0$ for all compact-support trajectories $w \in \mathcal{B}$

Fourier transformation leads to

 $\Phi'(-i\omega,i\omega) = M(-i\omega)^{\top} \Phi(-i\omega,i\omega) M(i\omega) \geq 0$

for all $\omega \in \mathbb{R}$

¡A frequency-domain inequality!
When is a system dissipative?

We just proved:

im $M(\frac{d}{dt})$ is Φ-dissipative if and only if $M(-i\omega)^{\top} \Phi(-i\omega, i\omega) M(i\omega) \ge 0$ for all $\omega \in \mathbb{R}$

Characterizations of dissipativity

Theorem: The following conditions are equivalent:

- $\int_{-\infty}^{+\infty} Q_{\Phi}(\ell) dt \geq 0$ for all \mathfrak{C}^{∞} compact-support ℓ ;
- *Q*₀ admits a storage function;
- *Q*₀ admits a dissipation rate

Given Q_{Φ} , storage and dissipation are one-one:

$$\frac{d}{dt}Q_{\Psi} = Q_{\Phi} - Q_{\Delta}$$
$$(\zeta + \eta)\Psi(\zeta, \eta) = \Phi(\zeta, \eta) - \Delta(\zeta, \eta)$$

Example: mechanical systems

$$M \frac{d^2}{dt^2} q + D \frac{d}{dt} q + Kq = F$$
 $\begin{bmatrix} F \\ q \end{bmatrix} = \begin{bmatrix} M \frac{d^2}{dt^2} + D \frac{d}{dt} + K \\ I_3 \end{bmatrix} \ell$

Example: mechanical systems $M\frac{d^2}{dt^2}q + D\frac{d}{dt}q + Kq = F$ $\begin{bmatrix} F \\ q \end{bmatrix} = \begin{bmatrix} M\frac{d^2}{dt^2} + D\frac{d}{dt} + K \\ I_3 \end{bmatrix} \ell$

Supply rate: power

$$\boldsymbol{F}^{\top}\left(\frac{d}{dt}\boldsymbol{q}\right) = \left(\boldsymbol{M}\frac{d^{2}}{dt^{2}}\boldsymbol{\ell} + \boldsymbol{D}\frac{d}{dt}\boldsymbol{\ell} + \boldsymbol{K}\boldsymbol{\ell}\right)^{\top}\left(\frac{d}{dt}\boldsymbol{\ell}\right)$$

corresponding to

$$\Phi(\zeta,\eta) = \frac{1}{2}(M\zeta^2 + D\zeta + K)^\top \eta + \frac{1}{2}\zeta(M\eta^2 + D\eta + K)$$

$$M_{\frac{d^2}{dt^2}}q + D_{\frac{d}{dt}}q + Kq = F \qquad \begin{bmatrix} F \\ q \end{bmatrix} = \begin{bmatrix} M_{\frac{d^2}{dt^2}} + D_{\frac{d}{dt}} + K \\ I_3 \end{bmatrix} \ell$$

 $\Phi(\zeta,\eta) = \frac{1}{2}(M\zeta^2 + D\zeta + K)^\top \eta + \frac{1}{2}\zeta(M\eta^2 + D\eta + K)$

Example: mechanical systems $M\frac{d^2}{dt^2}q + D\frac{d}{dt}q + Kq = F \qquad \begin{bmatrix} F \\ q \end{bmatrix} = \begin{bmatrix} M\frac{d^2}{dt^2} + D\frac{d}{dt} + K \\ I_3 \end{bmatrix} \ell$ $\Phi(\zeta, \eta) = \frac{1}{2}(M\zeta^2 + D\zeta + K)^\top \eta + \frac{1}{2}\zeta(M\eta^2 + D\eta + K)$

If dissipation inequality

$$\Phi(\zeta,\eta) = (\zeta+\eta)\Psi(\zeta,\eta) + \Delta(\zeta,\eta)$$

holds, then

$$\Phi(-\xi,\xi) = -\frac{1}{2}\xi^2(D^\top + D) = \Delta(-\xi,\xi)$$
$$\Longrightarrow \Delta(\zeta,\eta) = \frac{1}{2}(D^\top + D)\zeta\eta$$

Spectral factorization of $\Phi(-\xi,\xi)$ is key

$$M\frac{d^2}{dt^2}q + D\frac{d}{dt}q + Kq = F \qquad \begin{bmatrix} F \\ q \end{bmatrix} = \begin{bmatrix} M\frac{d^2}{dt^2} + D\frac{d}{dt} + K \\ I_3 \end{bmatrix} \ell$$

 $\Phi(\zeta,\eta) = \frac{1}{2}(M\zeta^2 + D\zeta + K)^\top \eta + \frac{1}{2}\zeta(M\eta^2 + D\eta + K)$ $\Delta(\zeta,\eta) = \frac{1}{2}(D^\top + D)\zeta\eta$

$$M\frac{d^2}{dt^2}q + D\frac{d}{dt}q + Kq = F \qquad \begin{bmatrix} F \\ q \end{bmatrix} = \begin{bmatrix} M\frac{d^2}{dt^2} + D\frac{d}{dt} + K \\ I_3 \end{bmatrix} \ell$$

 $\Phi(\zeta,\eta) = \frac{1}{2}(M\zeta^2 + D\zeta + K)^\top \eta + \frac{1}{2}\zeta(M\eta^2 + D\eta + K)$

 $\Delta(\zeta,\eta) = \frac{1}{2}(\boldsymbol{D}^{\top} + \boldsymbol{D})\zeta\eta$

Storage function

$$\Psi(\zeta,\eta) = \frac{\Phi(\zeta,\eta) - \Delta(\zeta,\eta)}{\zeta + \eta} = \frac{1}{2}M\zeta\eta + \frac{1}{2}K$$

Total energy

$$M_{\frac{d^2}{dt^2}}^2 q + D_{\frac{d}{dt}}^d q + Kq = F \qquad \begin{bmatrix} F \\ q \end{bmatrix} = \begin{bmatrix} M_{\frac{d^2}{dt^2}}^2 + D_{\frac{d}{dt}}^d + K \\ I_3 \end{bmatrix} \ell$$

 $\Phi(\zeta,\eta) = \frac{1}{2}(M\zeta^2 + D\zeta + K)^\top \eta + \frac{1}{2}\zeta(M\eta^2 + D\eta + K)$

 $\Delta(\zeta,\eta) = \frac{1}{2}(\boldsymbol{D}^{\top} + \boldsymbol{D})\zeta\eta$

 $\Psi(\zeta,\eta) = \frac{1}{2}M\zeta\eta + \frac{1}{2}K$

$$M\frac{d^2}{dt^2}q + D\frac{d}{dt}q + Kq = F \qquad \begin{bmatrix} F \\ q \end{bmatrix} = \begin{bmatrix} M\frac{d^2}{dt^2} + D\frac{d}{dt} + K \\ I_3 \end{bmatrix} \ell$$

- $\Phi(\zeta,\eta) = \frac{1}{2}(M\zeta^2 + D\zeta + K)^\top \eta + \frac{1}{2}\zeta(M\eta^2 + D\eta + K)$
- $\Delta(\zeta,\eta) = \frac{1}{2}(\boldsymbol{D}^{\top} + \boldsymbol{D})\zeta\eta$
- $\Psi(\zeta,\eta) = \frac{1}{2}M\zeta\eta + \frac{1}{2}K$
- Physically correct: $\frac{d}{dt}Q_{\Psi} + Q_{\Delta}$ equals

$$\underbrace{\left(\frac{d^2}{dt^2}q\right)^{\top}M\frac{d}{dt}q+q^{\top}K\frac{d}{dt}q}_{\frac{d}{dt}\left[\frac{1}{2}\left(\frac{d}{dt}q\right)^{\top}M\frac{d}{dt}q+\frac{1}{2}q^{\top}Kq\right]}^{\top}(D+D^{\top})\frac{d}{dt}q$$

$$M\frac{d^2}{dt^2}q + D\frac{d}{dt}q + Kq = F \qquad \begin{bmatrix} F \\ q \end{bmatrix} = \begin{bmatrix} M\frac{d^2}{dt^2} + D\frac{d}{dt} + K \\ I_3 \end{bmatrix} \ell$$

- $\Phi(\zeta,\eta) = \frac{1}{2}(M\zeta^2 + D\zeta + K)^\top \eta + \frac{1}{2}\zeta(M\eta^2 + D\eta + K)$
- $\Delta(\zeta,\eta) = \frac{1}{2}(\boldsymbol{D}^{\top} + \boldsymbol{D})\zeta\eta$
- $\Psi(\zeta,\eta) = \frac{1}{2}M\zeta\eta + \frac{1}{2}K$
- Physically correct: $\frac{d}{dt}Q_{\Psi} + Q_{\Delta}$ equals

$$\underbrace{\left(\frac{d^2}{dt^2}q\right)^{\top}M\frac{d}{dt}q+q^{\top}K\frac{d}{dt}q}_{\frac{d}{dt}q+\frac{1}{2}\left(\frac{d}{dt}q\right)^{\top}(D+D^{\top})\frac{d}{dt}q}_{\frac{d}{dt}\left[\frac{1}{2}\left(\frac{d}{dt}q\right)^{\top}M\frac{d}{dt}q+\frac{1}{2}q^{\top}Kq\right]}$$

Supply rate equals

$$\boldsymbol{F}^{\top} \frac{\boldsymbol{d}}{\boldsymbol{d}t} \boldsymbol{q} = \left[\left(\frac{\boldsymbol{d}^2}{\boldsymbol{d}t^2} \boldsymbol{q} \right)^{\top} \boldsymbol{M} + \left(\frac{\boldsymbol{d}}{\boldsymbol{d}t} \boldsymbol{q} \right)^{\top} \boldsymbol{D}^{\top} + \boldsymbol{q}^{\top} \boldsymbol{K} \right] \frac{\boldsymbol{d}}{\boldsymbol{d}t} \boldsymbol{q}$$

Characterizations of dissipativity

Dissipation and storage in an algebraic setting

$$(\zeta + \eta)\Psi(\zeta, \eta) + \Delta(\zeta, \eta) = \Phi(\zeta, \eta)$$

;How to compute Δ and Ψ ?

$$(\zeta + \eta)\Psi(\zeta, \eta) + \Delta(\zeta, \eta) = \Phi(\zeta, \eta)$$

¿How to compute Δ and Ψ ?

Let $\zeta = -\xi$, $\eta = \xi$; then $\Delta(-\xi, \xi) = \Phi(-\xi, \xi)$

$$(\zeta + \eta)\Psi(\zeta, \eta) + \Delta(\zeta, \eta) = \Phi(\zeta, \eta)$$

¿How to compute Δ and Ψ ?

Let $\zeta = -\xi$, $\eta = \xi$; then $\Delta(-\xi, \xi) = \Phi(-\xi, \xi)$ Also, $Q_{\Delta}(\ell) \ge 0$ for all $\ell \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{\bullet}) \Longrightarrow$ there exists square $D \in \mathbb{R}^{\bullet \times \bullet}[\xi]$ such that

$$\Delta(\zeta,\eta) = D(\zeta)^{\top} D(\eta)$$

$$(\zeta + \eta)\Psi(\zeta, \eta) + \Delta(\zeta, \eta) = \Phi(\zeta, \eta)$$

¿How to compute Δ and Ψ ?

Let $\zeta = -\xi$, $\eta = \xi$; then $\Delta(-\xi, \xi) = \Phi(-\xi, \xi)$ Also, $Q_{\Delta}(\ell) \ge 0$ for all $\ell \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{\bullet}) \Longrightarrow$ there exists square $D \in \mathbb{R}^{\bullet \times \bullet}[\xi]$ such that

$$\Delta(\zeta,\eta) = D(\zeta)^{\top} D(\eta)$$

Spectral factorization: given $\Phi(-\xi,\xi)$, find square matrix *D* s.t. $\Phi(-\xi,\xi) = D(-\xi)^{\top}D(\xi)$

$$(\zeta + \eta)\Psi(\zeta, \eta) + \Delta(\zeta, \eta) = \Phi(\zeta, \eta)$$

¿How to compute Δ and Ψ ?

Let
$$\zeta = -\xi$$
, $\eta = \xi$; then $\Delta(-\xi, \xi) = \Phi(-\xi, \xi)$

Spectral factorization: given $\Phi(-\xi,\xi)$, find square matrix *D* s.t. $\Phi(-\xi,\xi) = D(-\xi)^{\top}D(\xi)$

Solvable if and only if $\Phi(-i\omega, i\omega) \ge 0$ for all $\omega \in \mathbb{R}$. Frequency domain condition for dissinguivity!

¡Frequency domain condition for dissipativity!

$$(\zeta + \eta)\Psi(\zeta, \eta) + \Delta(\zeta, \eta) = \Phi(\zeta, \eta)$$

; How to compute Δ and Ψ ?

Spectral factorize $\Phi(-\xi,\xi) = D(-\xi)^{\top}D(\xi)$, define

 $\Delta(\zeta,\eta) := D(\zeta)^\top D(\eta)$

$$(\zeta + \eta)\Psi(\zeta, \eta) + \Delta(\zeta, \eta) = \Phi(\zeta, \eta)$$

¿How to compute Δ and Ψ ?

Spectral factorize $\Phi(-\xi,\xi) = D(-\xi)^{\top}D(\xi)$, define $\Delta(\zeta,\eta) := D(\zeta)^{\top}D(\eta)$

 $\Phi(-\xi,\xi) = \Delta(-\xi,\xi) \Longrightarrow$ there exists $\Psi(\zeta,\eta)$ s.t. $\Phi(\zeta,\eta) - \Delta(\zeta,\eta) = (\zeta+\eta)\Psi(\zeta,\eta)$

Then storage function is

$$\Psi(\zeta,\eta) = rac{\Phi(\zeta,\eta) - \Delta(\zeta,\eta)}{\zeta + \eta}$$

Remarks

Remarks

• Set of storage functions is convex:

 Q_{Ψ_1}, Q_{Ψ_2} storage functions and $\alpha \in [0, 1]$ $\implies \alpha Q_{\Psi_1} + (1 - \alpha) Q_{\Psi_2}$ is storage function

Let $\mathcal{B} \in \mathfrak{L}^{w}$ be controllable and Φ -dissipative. There exist storage functions $Q_{\Psi_{-}}$ and $Q_{\Psi_{+}}$ such that for any storage function Q_{Ψ} it holds

$$Q_{\Psi_{-}} \leq Q_{\Psi} \leq Q_{\Psi_{+}}$$

Let $\mathcal{B} \in \mathfrak{L}^{w}$ be controllable and Φ -dissipative. There exist storage functions $Q_{\Psi_{-}}$ and $Q_{\Psi_{+}}$ such that for any storage function Q_{Ψ} it holds

$$Q_{\Psi_{-}} \leq Q_{\Psi} \leq Q_{\Psi_{+}}$$

 $Q_{\Psi_{-}}$ s is minimal-, $Q_{\Psi_{+}}$ is maximal storage function

Let $\mathcal{B} \in \mathfrak{L}^{w}$ be controllable and Φ -dissipative. There exist storage functions $Q_{\Psi_{-}}$ and $Q_{\Psi_{+}}$ such that for any storage function Q_{Ψ} it holds

$$oldsymbol{Q}_{\Psi_-} \leq oldsymbol{Q}_{\Psi} \leq oldsymbol{Q}_{\Psi_+}$$

$Q_{\Psi_{-}}$ is available storage:

$$Q_{\Psi_{-}}(w)(0) = \sup_{\substack{w' \text{ s.t.} \\ w \wedge w' \in \mathcal{B}}} \left(-\int_{0}^{\infty} Q_{\Phi}(w') dt \right)$$

Maximum amount of energy extractable from system.

Let $\mathcal{B} \in \mathfrak{L}^{w}$ be controllable and Φ -dissipative. There exist storage functions $Q_{\Psi_{-}}$ and $Q_{\Psi_{+}}$ such that for any storage function Q_{Ψ} it holds

 $Q_{\Psi_{-}} \leq Q_{\Psi} \leq Q_{\Psi_{+}}$

 Q_{Ψ_+} is required supply:

$$Q_{\Psi_+}(w)(0) = \inf_{\substack{w' \text{ s.t.} \\ w' \wedge w \in \mathcal{B}}} \left(\int_{-\infty}^0 Q_{\Phi}(w') dt \right)$$

Minimum energy needed to produce w from t = 0

Spectral factorization and extremal storage functions

If det $\Phi(-\xi,\xi) \neq 0$ and $\Phi(-i\omega,i\omega) \geq 0$ for all $\omega \in \mathbb{R}$, there exist *H*, *A* s.t.

$$\Phi(-\xi,\xi) = H(-\xi)^{\top}H(\xi) = A(-\xi)^{\top}A(\xi)$$

where

 $det(H(\lambda)) = 0 \Longrightarrow \lambda \in \mathbb{C}^{0}_{-} \text{ ("semi-Hurwitz polynomial")}$ $det(A(\lambda)) = 0 \Longrightarrow \lambda \in \mathbb{C}^{0}_{+} \text{ ("semi-anti-Hurwitz polynomial")}$

Spectral factorization and extremal storage functions

If det $\Phi(-\xi,\xi) \neq 0$ and $\Phi(-i\omega,i\omega) \geq 0$ for all $\omega \in \mathbb{R}$, there exist *H*, *A* s.t.

$$\Phi(-\xi,\xi) = H(-\xi)^{\top}H(\xi) = A(-\xi)^{\top}A(\xi)$$

where

$$det(H(\lambda)) = 0 \Longrightarrow \lambda \in \mathbb{C}^{0}_{-} \text{ ("semi-Hurwitz polynomial")}$$
$$det(A(\lambda)) = 0 \Longrightarrow \lambda \in \mathbb{C}^{0}_{+} \text{ ("semi-anti-Hurwitz polynomial")}$$

In this case,

$$\Psi_{-}(\zeta,\eta) = \frac{\Phi(\zeta,\eta) - H(\zeta)^{\top}H(\eta)}{\zeta + \eta}$$

$$\Psi_{+}(\zeta,\eta) = \frac{\Phi(\zeta,\eta) - A(\zeta)^{\top}A(\eta)}{\zeta + \eta}$$

Circuit theory folklore: state variables are associated with energy storing elements (capacitors, inductors)

Circuit theory folklore: state variables are associated with energy storing elements (capacitors, inductors)

Physics: potential energy in a field dependent on position (and velocity/acceleration)

Circuit theory folklore: state variables are associated with energy storing elements (capacitors, inductors)

Physics: potential energy in a field dependent on position (and velocity/acceleration)

¿Can we give rational foundation to the intuition that "storage" is related with "memory"?

Theorem: Let $\Sigma = \Sigma^{\top} \in \mathbb{R}^{w \times w}$ be nonsingular. Assume that $\mathcal{B} = \operatorname{im} (M(\frac{d}{dt}))$ is Σ -dissipative.

Let $\Psi \in \mathbb{R}^{w \times w}[\zeta, \eta]$ be a storage function, and let $X \in \mathbb{R}^{\bullet \times w}[\xi]$ be a state map for \mathcal{B} .

Then $\exists K = K^{\top} \in \mathbb{R}^{\bullet \times \bullet}$, $E = E^{\top} \in \mathbb{R}^{\bullet \times \bullet}$ such that

$$\Psi(\zeta,\eta) = \mathbf{X}(\zeta)^{\top} \mathbf{K} \mathbf{X}(\eta)$$
$$\Delta(\zeta,\eta) = \begin{bmatrix} \mathbf{M}(\zeta) \\ \mathbf{X}(\zeta) \end{bmatrix}^{\top} \mathbf{E} \begin{bmatrix} \mathbf{M}(\eta) \\ \mathbf{X}(\eta) \end{bmatrix}$$

Theorem: Let $\Sigma = \Sigma^{\top} \in \mathbb{R}^{w \times w}$ be nonsingular. Assume that $\mathcal{B} = \operatorname{im} (M(\frac{d}{dt}))$ is Σ -dissipative.

Let $\Psi \in \mathbb{R}^{w \times w}[\zeta, \eta]$ be a storage function, and let $X \in \mathbb{R}^{\bullet \times w}[\xi]$ be a state map for \mathcal{B} .

Then $\exists K = K^{\top} \in \mathbb{R}^{\bullet \times \bullet}$, $E = E^{\top} \in \mathbb{R}^{\bullet \times \bullet}$ such that

$$\Psi(\zeta,\eta) = X(\zeta)^{\top} K X(\eta)$$
$$\Delta(\zeta,\eta) = \begin{bmatrix} M(\zeta) \\ X(\zeta) \end{bmatrix}^{\top} E \begin{bmatrix} M(\eta) \\ X(\eta) \end{bmatrix}$$

¡The storage function is a quadratic function of the state!

Theorem: Let $\Sigma = \Sigma^{\top} \in \mathbb{R}^{w \times w}$ be nonsingular. Assume that $\mathcal{B} = \operatorname{im} (M(\frac{d}{dt}))$ is Σ -dissipative.

Let $\Psi \in \mathbb{R}^{w \times w}[\zeta, \eta]$ be a storage function, and let $X \in \mathbb{R}^{\bullet \times w}[\xi]$ be a state map for \mathcal{B} .

Then $\exists K = K^{\top} \in \mathbb{R}^{\bullet \times \bullet}$, $E = E^{\top} \in \mathbb{R}^{\bullet \times \bullet}$ such that

$$\Psi(\zeta,\eta) = \mathbf{X}(\zeta)^{\top} \mathbf{K} \mathbf{X}(\eta)$$
$$\Delta(\zeta,\eta) = \begin{bmatrix} \mathbf{M}(\zeta) \\ \mathbf{X}(\zeta) \end{bmatrix}^{\top} \mathbf{E} \begin{bmatrix} \mathbf{M}(\eta) \\ \mathbf{X}(\eta) \end{bmatrix}$$

i The dissipation function is a quadratic function of the state and of the input!

Recapitulation

Recapitulation

Characterization of dissipativity, dissipation and storage functions;

Recapitulation

- Characterization of dissipativity, dissipation and storage functions;
- Spectral factorization and storage functions;
Recapitulation

- Characterization of dissipativity, dissipation and storage functions;
- Spectral factorization and storage functions;
- Extremal storage functions;

Recapitulation

- Characterization of dissipativity, dissipation and storage functions;
- Spectral factorization and storage functions;
- Extremal storage functions;
- Storage function is a function of the state.

Part IV: Dissipativity and state representations

The linear matrix inequality

The algebraic Riccati equation

$$\mathcal{B} = \left\{ (x, u) \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{n+m}) \mid \frac{d}{dt}x = Ax + Bu
ight\}$$

 \mathcal{B} controllable \iff (A, B) controllable

$$\mathcal{B} = \left\{ (x, u) \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{n+m}) \mid \frac{d}{dt}x = Ax + Bu
ight\}$$

 \mathcal{B} controllable \iff (A, B) controllable

Observable image representation of \mathcal{B} :

$$\begin{bmatrix} \mathbf{x} \\ \mathbf{u} \end{bmatrix} = \begin{bmatrix} \mathbf{X}(\frac{d}{dt}) \\ \mathbf{U}(\frac{d}{dt}) \end{bmatrix} \ell$$

Observable image representation of B:

$$\begin{bmatrix} \mathbf{X} \\ \mathbf{u} \end{bmatrix} = \begin{bmatrix} \mathbf{X}(\frac{d}{dt}) \\ \mathbf{U}(\frac{d}{dt}) \end{bmatrix} \ell$$

 $\boldsymbol{\mathcal{B}}$ is dissipative with respect to

$$\boldsymbol{\Sigma} := \begin{bmatrix} \boldsymbol{Q} & \boldsymbol{S}^{\top} \\ \boldsymbol{S} & \boldsymbol{R} \end{bmatrix} \rightsquigarrow \boldsymbol{x}^{\top} \boldsymbol{Q} \boldsymbol{x} + 2 \boldsymbol{x}^{\top} \boldsymbol{S}^{\top} \boldsymbol{u} + \boldsymbol{u}^{\top} \boldsymbol{R} \boldsymbol{u}$$

Observable image representation of \mathcal{B} :

$$\begin{bmatrix} \mathbf{X} \\ \mathbf{u} \end{bmatrix} = \begin{bmatrix} \mathbf{X}(\frac{d}{dt}) \\ \mathbf{U}(\frac{d}{dt}) \end{bmatrix} \ell$$

 $\boldsymbol{\mathcal{B}}$ is dissipative with respect to

$$\Sigma := \begin{bmatrix} Q & S^{\top} \\ S & R \end{bmatrix} \rightsquigarrow x^{\top} Q x + 2 x^{\top} S^{\top} u + u^{\top} R u$$

Leads to

 $\Phi(\zeta,\eta) := \begin{bmatrix} \boldsymbol{X}(\zeta)^\top & \boldsymbol{U}(\zeta)^\top \end{bmatrix} \begin{bmatrix} \boldsymbol{Q} & \boldsymbol{S}^\top \\ \boldsymbol{S} & \boldsymbol{R} \end{bmatrix} \begin{bmatrix} \boldsymbol{X}(\eta) \\ \boldsymbol{U}(\eta) \end{bmatrix}$

acting on $\mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^m)$.

The linear matrix inequality

Theorem. The following conditions are equivalent:

1. \mathcal{B} is Σ -dissipative;

2.
$$\int_{-\infty}^{+\infty} Q_{\Phi} \geq 0;$$

3. $\exists K = K^{\top} \in \mathbb{R}^{n}$ s.t. linear matrix inequality (LMI)

$$\begin{bmatrix} \mathbf{Q} - \mathbf{A}^\top \mathbf{K} - \mathbf{K}\mathbf{A} & -\mathbf{K}\mathbf{B} + \mathbf{S}^\top \\ -\mathbf{B}^\top \mathbf{K} + \mathbf{S} & \mathbf{R} \end{bmatrix} \ge \mathbf{0}$$

holds.

If any of the above conditions hold, then $x^{\top}Kx$ is a storage function for \mathcal{B} .

The linear matrix inequality

The algebraic Riccati equation

The algebraic Riccati equation

Assume det $\Phi(-\xi,\xi) \neq 0$. Then there exists *F* of full row rank m s.t.

$$\begin{bmatrix} \mathbf{Q} - \mathbf{A}^\top \mathbf{K} - \mathbf{K}\mathbf{A} & -\mathbf{K}\mathbf{B} + \mathbf{S}^\top \\ -\mathbf{B}^\top \mathbf{K} + \mathbf{S} & \mathbf{R} \end{bmatrix} = \mathbf{F}^\top \mathbf{F}$$

The algebraic Riccati equation

Assume det $\Phi(-\xi,\xi) \neq 0$. Then there exists *F* of full row rank m s.t.

$$\begin{bmatrix} \mathbf{Q} - \mathbf{A}^\top \mathbf{K} - \mathbf{K}\mathbf{A} & -\mathbf{K}\mathbf{B} + \mathbf{S}^\top \\ -\mathbf{B}^\top \mathbf{K} + \mathbf{S} & \mathbf{R} \end{bmatrix} = \mathbf{F}^\top \mathbf{F}$$

Assume R > 0, and write Schur complement of R:

$$\boldsymbol{Q} - \boldsymbol{A}^{\top}\boldsymbol{K} - \boldsymbol{K}\boldsymbol{A} - (-\boldsymbol{K}\boldsymbol{B} + \boldsymbol{S}^{\top})\boldsymbol{R}^{-1}(-\boldsymbol{B}\boldsymbol{K} + \boldsymbol{S}) = \boldsymbol{0}$$

The algebraic Riccati equation

Assume det $\Phi(-\xi,\xi) \neq 0$. Then there exists *F* of full row rank m s.t.

$$\begin{bmatrix} \mathbf{Q} - \mathbf{A}^\top \mathbf{K} - \mathbf{K}\mathbf{A} & -\mathbf{K}\mathbf{B} + \mathbf{S}^\top \\ -\mathbf{B}^\top \mathbf{K} + \mathbf{S} & \mathbf{R} \end{bmatrix} = \mathbf{F}^\top \mathbf{F}$$

Assume R > 0, and write Schur complement of R: $Q - A^{\top}K - KA - (-KB + S^{\top})R^{-1}(-BK + S) = 0$

Algebraic Riccati equation

Remarks

- State-space case as special case;
- First-order aspect and other (historical, etc.) reasons → efficient algorithms;
- Optimal control, filtering, etc. applications of ARE.

First principles approach to dissipation theory;

- First principles approach to dissipation theory;
- Two-variable polynomial matrices and the calculus of bilinear- and differential forms;

- First principles approach to dissipation theory;
- Two-variable polynomial matrices and the calculus of bilinear- and differential forms;
- Answers (algorithmic!) to: "when is a system dissipative?", "how to compute a dissipation function?", etc.

- First principles approach to dissipation theory;
- Two-variable polynomial matrices and the calculus of bilinear- and differential forms;
- Answers (algorithmic!) to: "when is a system dissipative?", "how to compute a dissipation function?", etc.
- Algebraic Riccati equation, LMIs, etc. as *special case* of higher-order approach.