Summer Course

Monopoli, Italy

September 8-12, 2008

Lecture 13

Interconnected Systems

Lecturer: Jan C. Willems

- Open, connected, and modular
- How do paradigms cope with this?
- Classical dynamical systems
- Input/output systems
- Modeling by tearing, zooming, and linking
- Bond graphs
- Control as interconnection

Systems

- open
- interconnected
- modular
- ▶ dynamic

open

- interconnected
- modular
- **dynamic**

Theme of this lecture:

develop a suitable mathematical language

aimed at computer-assisted modeling.

Open, connected, and modular

Systems interact with their environment

Architecture

Systems consist of subsystems, interconnected

Systems consist of an interconnection of 'building blocks'

The development of the notion

of a dynamical system

a brief causerie

- **1.** Get the physics right
- 2. The rest is mathematics

R.E. Kalman Opening lecture IFAC World Congress Prague, July 4, 2005

- **1.** Get the physics right
- 2. The rest is mathematics

R.E. Kalman Opening lecture IFAC World Congress Prague, July 4, 2005

Prima la fisica, poi la matematica

How it all began ...

The celestial question

How, for heaven's sake, does it move?

Kepler's laws

Johannes Kepler 1571-1630

Kepler's laws:

Ellipse, sun in focus; = areas in = times; (period)² \cong (diameter)³

Consequence:

acceleration = function of position and velocity

$$\frac{d^2}{dt^2}w(t) = A(w(t), \frac{d}{dt}w(t))$$

\sim via calculus and calculation

$$\frac{d^2}{dt^2}w(t) + \frac{1_{w(t)}}{|w(t)|^2} = 0$$

Isaac Newton (1643-1727)

Consequence:

acceleration = function of position and velocity

$$\frac{d^2}{dt^2}w(t) = A(w(t), \frac{d}{dt}w(t))$$

\rightarrow via calculus and calculation

$$\frac{d^2}{dt^2}w(t) + \frac{1_{w(t)}}{|w(t)|^2} = 0$$

 \cong another representation of K.1, K.2, K.3

Isaac Newton (1643-1727)

Newton's laws

2-nd law
$$F'(t) = m \frac{d^2}{dt^2} w(t)$$

gravity $F''(t) = m \frac{1_{w(t)}}{|w(t)|^2}$

3-rd law

$$F'(t) + F''(t) = 0$$

$$\downarrow$$

$$\frac{d^2}{dt^2}w(t) + \frac{1_{w(t)}}{|w(t)|^2} = 0$$

Newton's laws

2-nd law
$$F'(t) = m \frac{d^2}{dt^2} w(t)$$

gravity

3-rd law

$$F'(t) + F''(t) = 0$$

 $F''(t) = m \frac{1_{w(t)}}{|w(t)|^2}$

Isaac Newton by William Blake

 \downarrow

$$\frac{d^2}{dt^2}w(t) + \frac{1_{w(t)}}{|w(t)|^2} = 0$$

Viewing as interconnection is the key to generalization

The paradigm of *closed* systems

K.1, K.2, & K.3

K.1, K.2, & K.3

 \rightsquigarrow 'dynamical systems', flows

 \rightarrow flows as paradigm of dynamics \rightarrow closed systems Motion determined by internal initial conditions.

Henri Poincaré (1854-1912)

George Birkhoff (1884-1944)

Stephen Smale (1930-)

A *dynamical system* is defined by a state space X and a state transition function $\phi : \cdots$ such that \cdots

$\phi(t, \mathbf{x}) =$ state at time *t* starting from state \mathbf{x}

A *dynamical system* is defined by a state space X and a state transition function ϕ : ... such that ...

 $\phi(t, \mathbf{x})$ = state at time *t* starting from state \mathbf{x}

This framework of closed systems is universally used for dynamics in mathematics and physics

How could they forget Newton's 2nd law, about Maxwell's eq'ns, about thermodynamics, about tearing & zooming & linking, ...?

How could they forget Newton's 2nd law, about Maxwell's eq'ns, about thermodynamics, about tearing & zooming & linking, ...?

Reply: assume 'fixed boundary conditions'

How could they forget Newton's 2nd law, about Maxwell's eq'ns, about thermodynamics, about tearing & zooming & linking, ...?

Reply: assume 'fixed boundary conditions'

 \sim to model a system, we have to model also the environment!

How could they forget Newton's 2nd law, about Maxwell's eq'ns, about thermodynamics, about tearing & zooming & linking, ...?

Reply: assume 'fixed boundary conditions'

 \rightsquigarrow to model a system, we have to model also the environment! Chaos theory, cellular automata, sync, etc., function in this framework ...

Inputs and outputs

meanwhile, in engineering...

Input/output systems

The originators

Oliver Heaviside (1850-1925)

Norbert Wiener (1894-1964)

and the many electrical circuit theorists ...

Mathematical description

u: input, *y*: output,

SISO, LTI case \rightsquigarrow $G(s) = \frac{q(s)}{p(s)}$ **transfer functions, impedances, admittances.**

Circuit analysis and synthesis Classical control Bode, Nyquist, root-locus.

Mathematical description

$$y(t) = \int_0^t \int_{0 \text{ or } -\infty}^t H(t - t') u(t') dt'$$
Mathematical description

$$y(t) = \int_0^t \int_{0 \text{ or } -\infty}^t H(t - t') u(t') dt'$$

$$y(t) = H_0(t) + \int_{-\infty}^t H_1(t - t')u(t') dt' + \int_{-\infty}^t \int_{-\infty}^{t'} H_2(t - t', t' - t'')u(t')u(t'') dt' dt'' + \cdots$$

Awkward nonlinear — far from the physics Fail to deal with **'initial conditions'**. **Input/state/output systems**

Around 1960: a paradigm shift to

$$\frac{d}{dt}x = f(x, u), \ y = g(x, u)$$

Rudolf Kalman (1930-)

Around 1960: a paradigm shift to

$$\frac{d}{dt}x = f(x, u), \ y = g(x, u)$$

- ► ready to be interconnected Rudolf Kalman (1930-) outputs of one system → inputs of another
- deals with initial conditions
- incorporates nonlinearities, time-variation
- models many physical phenomena

'Axiomatization'

State transition function:

 $\phi(t, x, u)$: state reached at time *t* from x using input *u*.

$$\frac{d}{dt}x = f(x, u), \ y = g(x, u)$$

Read-out function: g(x,u): output value with state x and input value u.

The input/state/output paradigm

The input/state/output view turned out to be very effective and fruitful

- ▶ for modeling
- **for control** (stabilization, robustness, ...)

The input/state/output paradigm

The input/state/output view turned out to be very effective and fruitful

- for modeling
- for control (stabilization, robustness, ...)

The input/state/output paradigm

The input/state/output view turned out to be very effective and fruitful

- for modeling
- for control (stabilization, robustness, ...)
- prediction of one signal from another, filtering
- understanding system representations (transfer f'n, input/state/output repr., etc.)
- model simplification, reduction
- **system ID:** models from data
- etc., etc., etc.

Theme

Theme of this lecture

We are accustomed to view an open dynamical system as an input/output structure

Is this appropriate for modeling physical systems?

and interconnection as output-to-input assignment

Is this appropriate for modeling physical systems?

and interconnection as output-to-input assignment

Is this appropriate for modeling physical systems?

Interconnection in physical systems

We have seen an extensive example in lecture 1. We now give a simple example from hydraulics.

Subsystems 1 and 3:

Subsystems 1 and 3:

Subsystem 2:

Subsystem 2:

$$f = -f', \quad p - p' = \alpha f$$

Interconnection laws:

Interconnection laws:

$$p, f$$
 p', f'

$$p = p', \qquad f + f' = 0.$$

Interconnection laws:

$$p, f$$
 p', f'

$$p = p', \qquad f + f' = 0.$$

Leads to the complete model:

$$A_{1} \frac{d}{dt} h_{1} = f_{1} + f_{1}',$$

$$B_{1} f_{1} = \begin{cases} \sqrt{|p_{1} - p_{0} - \rho h_{1}|} & \text{if } p_{1} - p_{0} \ge \rho h_{1}, \\ -\sqrt{|p_{1} - p_{0} - \rho h_{1}|} & \text{if } p_{1} - p_{0} \le \rho h_{1}, \end{cases}$$

$$C_{1} f_{1}' = \begin{cases} \sqrt{|p_{1}' - p_{0} - \rho h_{1}|} & \text{if } p_{1}' - p_{0} \ge \rho h_{1}, \\ -\sqrt{|p_{1}' - p_{0} - \rho h_{1}|} & \text{if } p_{1}' - p_{0} \ge \rho h_{1}, \end{cases}$$

$$(blackbox 1)$$

$$f_2 = -f'_2, \quad p_2 - p'_2 = \alpha f_2,$$
 (blackbox 2)

$$A_{3} \frac{d}{dt} h_{3} = f_{3} + f_{3}',$$

$$Cf_{3} = \begin{cases} \sqrt{|p_{3} - p_{0} - \rho h_{3}|} & \text{if } p_{3} - p_{0} \ge \rho h_{3}, \\ -\sqrt{|p_{3} - p_{0} - \rho h_{3}|} & \text{if } p_{3} - p_{0} \le \rho h_{3}, \end{cases}$$

$$C_{3} f_{3}' = \begin{cases} \sqrt{|p_{3}' - p_{0} - \rho h_{3}|} & \text{if } p_{3}' - p_{0} \ge \rho h_{3}, \\ -\sqrt{|p_{3}' - p_{0} - \rho h_{3}|} & \text{if } p_{3}' - p_{0} \ge \rho h_{3}, \end{cases}$$

$$f_{3} = \begin{cases} \sqrt{|p_{3}' - p_{0} - \rho h_{3}|} & \text{if } p_{3}' - p_{0} \ge \rho h_{3}, \\ -\sqrt{|p_{3}' - p_{0} - \rho h_{3}|} & \text{if } p_{3}' - p_{0} \le \rho h_{3}, \end{cases}$$

$$p'_1 = p_2, f'_1 + f_2 = 0, p'_2 = p_3, f'_2 + f_3 = 0.$$
 (interconnection)

 $p_{\text{left}} = p_1, \quad f_{\text{left}} = f_1, \quad p_{\text{right}} = p'_3, \quad f_{\text{right}} = f'_3.$ (manifest variable assignment)

- Unclear input/output structure for terminal variables
- Many variables, indivisibly, at the same terminal
- Interconnection = variable sharing
- ► No signal flows, no output-to-input assignment

These remarks pertain to every physical interconnection. And, ultimately, every interconnection is physical

- Unclear input/output structure for terminal variables
- Many variables, indivisibly, at the same terminal
- Interconnection = variable sharing
- ► No signal flows, no output-to-input assignment

These remarks pertain to every physical interconnection. And, ultimately, every interconnection is physical

"Block diagrams unsuitable for serious physical modeling

- the control/physics barrier"

"Behavior based (declarative) modeling is a good alternative"

Karl Åström (born 1934)

from K.J. Åström, Present Developments in Control Applications

IFAC 50-th Anniversary Celebration Heidelberg, September 12, 2006.

Behavioral systems

A dynamical system

:⇔ a family of time functions, *'the behavior'*

Interconnection : \Leftrightarrow 'variable sharing'.

Control : \Leftrightarrow *interconnection*.

Modeling of interconnected physical systems is the strongest case for 'behaviors'.

Interconnection architecture

Formalize mathematically interconnection of systems.

Architecture & module embedding

Architecture

- **nodes** \rightsquigarrow systems with terminals
- **edges** \rightsquigarrow connected terminals
- **leaves** \rightsquigarrow interaction with environment

Architecture & module embedding

Modules (systems) in the vertices

Terminals in the edges

- **nodes** \rightsquigarrow systems with terminals
- **edges** \rightsquigarrow connected terminals
- **leaves** \rightsquigarrow interaction with environment

Interconnection architecture

A graph with leaves is defined as G = (V, E, L, A)
V the set of vertices,
E the set of edges,
L the set of leaves,
A the adjacency map.

 \mathscr{A} associates

with each edge $e \in \mathbb{E}$ an unordered pair $\mathscr{A}(e) = \begin{bmatrix} v_1, v_2 \end{bmatrix} \quad v_1, v_2 \in \mathbb{V}$,

with each leaf $\ell \in \mathbb{L}$ an element $\mathscr{A}(\ell) = v \in \mathbb{V}$.

The *module embedding* associates

a module with each vertex, a $1 \leftrightarrow 1$ assignment between the edges and leaves adjacent to the vertex and the terminals of the associated module.

The *module embedding* associates

a module with each vertex, a $1 \leftrightarrow 1$ assignment between the edges and leaves adjacent to the vertex and the terminals of the associated module.

vertices specify the subsystems,

- **edges** how terminals of subsystems are connected,
- **leaves** how the interconnected system interacts with the environment.

The *module embedding* associates

a module with each vertex, a $1 \leftrightarrow 1$ assignment between the edges and leaves adjacent to the vertex and the terminals of the associated module.

vertices specify the subsystems,

- edges how terminals of subsystems are connected,
- leaves how the interconnected system interacts with the environment.

Vertices \rightarrow **Subsystems**

Edges \rightsquigarrow **Interconnections**

Contrast with circuit theory: systems in the edges, interconnections in vertices. Manifest variables

The *manifest variable assignment* is a map that assigns the manifest variables as a function of the terminal (or, more generally, the module) variables.

The terminal variables are henceforth considered as latent (auxiliary) variables.
1. **Module equations** for each vertex. Relation among the variables on the terminals.

2. Interconnection equations for each edge. Equating the variables on the terminals associated with the same edge.

3. Manifest variable assignment Specifies the variables of interest.

- 1. Module equations for each vertex. Relation among the variables on the terminals. Behavioral equations stored as (parametrized) modules in a data-base
- 2. Interconnection equations for each edge.

 Equating the variables on the terminals associated with the same edge.

 Interconnection laws stored in a data-base.

 Laws depend on terminal type: electrical / mechanical / hydraulic / etc.
- 3. Manifest variable assignment Specifies the variables of interest.

A classical example

already discussed in lecture 1

Model the port behavior of

by tearing, zooming, and linking.

by tearing, zooming, and linking.

In each node there is a module \rightsquigarrow module equations each terminal involves 2 variables (potential, current) in each branch an electrical interconnection \rightsquigarrow interconnection equations

vertex 1:
$$V_{\text{connector}_{1,1}} = V_{\text{connector}_{1,2}} = V_{\text{connector}_{1,3}}$$

 $I_{\text{connector}_{1,1}} + I_{\text{connector}_{1,2}} + I_{\text{connector}_{1,3}} = 0$
vertex 2: $V_{R_{C},1} - V_{R_{C},2} = R_{C}I_{R_{C},1}, I_{R_{C},1} + I_{R_{C},2} = 0$
vertex 3: $L\frac{d}{dt}I_{L,1} = V_{L,1} - V_{L,2}, I_{L,1} + I_{L,2} = 0$
vertex 4: $C\frac{d}{dt}(V_{C,1} - V_{C,2}) = I_{C,1}, I_{C,1} + I_{C,2} = 0$
vertex 5: $V_{R_{L},1} - V_{R_{L},2} = R_{L}I_{R_{L},1}$
 $I_{R_{L},1} + I_{R_{L},2} = 0$
vertex 6: $V_{\text{connector}_{2,1}} = V_{\text{connector}_{2,2}} = V_{\text{connector}_{2,3}} = 0$

All interconnection are of electrical type

Interconnection equations:

potential left = **potential right**

current left + current right = 0

Interconnection equations

edge c:
$$V_{R_{C,1}} = V_{\text{connector1}_2}$$
 $I_{R_{C,1}} + I_{\text{connector1},2} = 0$
edge d: $V_{L_1} = V_{\text{connector1}_3}$ $I_{L_1} + I_{\text{connector1}_3} = 0$
edge e: $V_{R_{C,2}} = V_{C_1}$ $I_{R_{C,2}} + I_{C_1} = 0$
edge f: $V_{L_2} = V_{R_{C,1}}$ $I_{L_2} + I_{R_{L,1}} = 0$
edge g: $V_{C_2} = V_{\text{connector2}_1}$ $I_{C_2} + I_{\text{connector2}_1} = 0$
edge h: $V_{R_{L,2}} = V_{\text{connector2}_2}$ $I_{R_{L,2}} + I_{\text{connector2}_2} = 0$

Manifest variable assignment

$$V_{\text{externalport}} = V_{\text{connector}_{1,1}} - V_{\text{connector}_{2,3}}$$
$$I_{\text{externalport}} = I_{\text{connector}_{1,1}}$$

 \rightsquigarrow the dynamical system with behavior ${\mathscr B}$ specified by:

<u>**Case 1</u>:** $CR_C \neq \frac{L}{R_L}$ </u>

$$\left(\frac{R_C}{R_L} + \left(1 + \frac{R_C}{R_L}\right)CR_C\frac{d}{dt} + CR_C\frac{L}{R_L}\frac{d^2}{dt^2}\right)V = \left(1 + CR_C\frac{d}{dt}\right)\left(1 + \frac{L}{R_L}\frac{d}{dt}\right)R_CI$$

Case 2:
$$CR_C = \frac{L}{R_I}$$

$$\left(\frac{R_C}{R_L} + CR_C \frac{d}{dt}\right) \mathbf{V} = \left(1 + CR_C \frac{d}{dt}\right) R_C \mathbf{I}$$

 \rightsquigarrow behavior $\mathscr{B} =$ all solutions $(V, I) : \mathbb{R} \to \mathbb{R}^2$

 \rightsquigarrow the dynamical system with behavior ${\mathscr B}$ specified by:

<u>**Case 1</u>:** $CR_C \neq \frac{L}{R_L}$ </u>

$$\left(\frac{R_C}{R_L} + \left(1 + \frac{R_C}{R_L}\right)CR_C\frac{d}{dt} + CR_C\frac{L}{R_L}\frac{d^2}{dt^2}\right)\mathbf{V} = \left(1 + CR_C\frac{d}{dt}\right)\left(1 + \frac{L}{R_L}\frac{d}{dt}\right)R_C\mathbf{I}$$

Case 2:
$$CR_C = \frac{L}{R_I}$$

$$\left(\frac{R_C}{R_L} + CR_C \frac{d}{dt}\right) \mathbf{V} = \left(1 + CR_C \frac{d}{dt}\right) R_C \mathbf{I}$$

 \rightsquigarrow behavior $\mathscr{B} =$ all solutions $(V, I) : \mathbb{R} \to \mathbb{R}^2$

Theorem: In LTIDSs latent variables can be eliminated

Other methodologies

Signal flow graphs

There are many many examples where output-to-input connection is eminently natural:

- shows terminal variables separate
- suggests that inputs and outputs occur at different physical points

Does not respect the physics

allows impossible input-output connections

Does not respect the physics

Physical systems are not signal processors.

"Block diagrams unsuitable for serious physical modeling

- the control/physics barrier"

"Behavior based (declarative) modeling is a good alternative"

Karl Åström (born 1934)

from K.J. Åström, Present Developments in Control Applications

IFAC 50-th Anniversary Celebration Heidelberg, September 12, 2006.

Bond graphs

Interconnection variables:

a **flow** and an **effort**

product = power

- current & voltage
- velocity & force
- mass flow & pressure
- heat flow& temperature heat flow temperature
 & temperature

•

Bond graphs

- 1. Mechanical interconnections equate positions, not velocities
- 2. Not all interconnections involve equating energy transfer
- **3.** Terminals are for interconnection, ports are for energy transfer

Terminal variables and behavior:

 $(V_1, I_1, V_2, I_2, \ldots, V_n, I_n) \rightsquigarrow$ behavior $\mathscr{B} \subseteq (\mathbb{R}^{2n})^{\mathbb{R}}$

Energy does not flow along the terminals!

Port : \Leftrightarrow sum currents = 0 potentials + constant \Rightarrow potentials

Port : \Leftrightarrow sum currents = 0 potentials + constant \Rightarrow potentials

$$\left(\begin{matrix} V_{1}, I_{1} \dots, V_{p}, I_{p} \end{matrix}, V_{p+1}, \dots, I_{n} \end{matrix}\right) \in \mathscr{B}, \alpha : \mathbb{R} \to \mathbb{R}$$
$$\downarrow$$
$$\left(\begin{matrix} V_{1} + \alpha, I_{1}, \dots, V_{p} + \alpha, I_{p} \end{matrix}, V_{p+1}, \dots, I_{n} \end{matrix}\right) \in \mathscr{B}$$
$$\boxed{I_{1} + \dots + I_{p}} = 0$$

Interconnection via terminals, energy transfer via ports; one cannot talk about

"the energy transferred from circuit 1 to circuit 2"

unless their interconnected terminals form a port.

Various facets of control

Path planning

$$\frac{d}{dt}x = f(x, u)$$

Choose time-function $u(\cdot):[0,T] \to \mathbb{U}$ so as to achieve (optimal) state transfer.

'open loop control'

Choose a **feedback system** that processes sensor outputs and generates actuator inputs so as to achieve good (optimal) performance.

'feedback control'
'closed loop control'
'intelligent control'

Embedded systems control

Choose controller so as to achieve good (optimal) performance of the interconnected system

'control as interconnection'
'integrated system design'

Control as interconnection

Interconnecting a controller

Interconnecting a controller

Interconect via control terminals:

Controlling turbulence:

Many controllers are not sensor-to-actuator

Controlling turbulence:

Nagano 1998 Winter Olympics

Many controllers are not sensor-to-actuator

controlling drag:

Many stabilizers are not sensor-to-actuator

Stabilization:

Disturbance attenuation

Control as Interconnection

- Are all interconnections 'reasonable'?
- Which controlled behaviors can be achieved?
- Parametrize all stabilizing controllers

Implementability

For simplicity, restrict attention to LTIDSs, \mathcal{L}^{\bullet} .

Let $\mathscr{B} \in \mathscr{L}^{w+c}$ be the plant behavior, $\mathscr{C} \in \mathscr{L}^{c}$ be the controller behavior, and

$$\mathscr{K} = \{ w : \mathbb{R} \to \mathbb{R}^w \mid \exists c \in \mathscr{C} \text{ such that } (w, c) \in \mathscr{B} \}$$

be the *controlled behavior*

Implementability

For simplicity, restrict attention to LTIDSs, \mathcal{L}^{\bullet} .

Let $\mathscr{B} \in \mathscr{L}^{w+c}$ be the plant behavior, $\mathscr{C} \in \mathscr{L}^{c}$ be the controller behavior, and

$$\mathscr{K} = \{ w : \mathbb{R} \to \mathbb{R}^w \mid \exists c \in \mathscr{C} \text{ such that } (w, c) \in \mathscr{B} \}$$

be the *controlled behavior*

Elimination theorem $\Rightarrow \mathscr{K} \in \mathscr{L}^{\mathsf{w}}$

For a given $\mathscr{B} \in \mathscr{L}^{w+c}$, call $\mathscr{K} \in \mathscr{L}^{w}$ implementable if there exists $\mathscr{C} \in \mathscr{L}^{c}$ such that \mathscr{K} is the controlled behavior.

Which $\mathscr{K} \in \mathscr{L}^{\mathsf{w}}$ are implementable?

Every lecture must have at least one theorem

Define the *hidden behavior*

$$\mathscr{N} := \{ w | (w, 0) \in \mathscr{B} \}$$

Every lecture must have at least one theorem

Every lecture must have at least one theorem

Proof of the implementability theorem

Summary of lecture 13

Interconnection = variable (terminal) sharing

- Interconnection = variable (terminal) sharing
- Modeling by physical systems proceeds by tearing, zooming, and linking

- Interconnection = variable (terminal) sharing
- Modeling by physical systems proceeds by tearing, zooming, and linking
- Hierarchical procedure

- Interconnection = variable (terminal) sharing
- Modeling by physical systems proceeds by tearing, zooming, and linking
- Hierarchical procedure
- Importance of latent variables and the elimination theorem

- Interconnection = variable (terminal) sharing
- Modeling by physical systems proceeds by tearing, zooming, and linking
- Hierarchical procedure
- Importance of latent variables and the elimination theorem
- Limitations of input/output thinking

- Interconnection = variable (terminal) sharing
- Modeling by physical systems proceeds by tearing, zooming, and linking
- Hierarchical procedure
- Importance of latent variables and the elimination theorem
- Limitations of input/output thinking
- Control is interconnection, sensor output to actuator input feedback important special case

Overview

Gets the physics right

Gets the physics right

Starts with first principles models

- Gets the physics right
- Starts with first principles models
- Latent variables with state as a special case

- Gets the physics right
- Starts with first principles models
- Latent variables with state as a special case
- Avoids universal use of signal flow graphs

- Gets the physics right
- Starts with first principles models
- Latent variables with state as a special case
- Avoids universal use of signal flow graphs
- i/o and i/s/o are important special cases

- Gets the physics right
- Starts with first principles models
- Latent variables with state as a special case
- Avoids universal use of signal flow graphs
- ▶ i/o and i/s/o are important special cases
- Extends seamlessly to PDEs

Controllability becomes genuine system property

- Controllability becomes genuine system property
- Deals faithfully with interconnections: variable sharing

- Controllability becomes genuine system property
- Deals faithfully with interconnections: variable sharing
- Views control as interconnection

- Controllability becomes genuine system property
- Deals faithfully with interconnections: variable sharing
- Views control as interconnection
- Advantages in SYSID with the MPUM, etc.

- Controllability becomes genuine system property
- Deals faithfully with interconnections: variable sharing
- Views control as interconnection
- Advantages in SYSID with the MPUM, etc.
- Natural approach to dissipative systems

- Controllability becomes genuine system property
- Deals faithfully with interconnections: variable sharing
- Views control as interconnection
- Advantages in SYSID with the MPUM, etc.
- Natural approach to dissipative systems
- Far easier pedagogically

- **1.** A dynamical system = a family of trajectories.
- **2. Interconnection = variable sharing**
- **3.** Control = interconnection

- **1.** A dynamical system = a family of trajectories.
- **2. Interconnection = variable sharing**
- **3.** Control = interconnection

End of lecture 13