Summer Course

Linear System Theory
 Control
 \&

Matrix Computations

Lecture 13

Modeling

Interconnected Systems

Lecturer: Jan C. Willems

Outline

- Open, connected, and modular
- How do paradigms cope with this?
- Classical dynamical systems
- Input/output systems
- Modeling by tearing, zooming, and linking
- Bond graphs
- Control as interconnection

- open
- interconnected
- modular
- dynamic
- open
- interconnected
- modular
- dynamic

Theme of this lecture:
develop a suitable mathematical language
aimed at computer-assisted modeling.

Open, connected, and modular

Systems interact with their environment

Connected

Architecture

Systems consist of subsystems, interconnected

Modular

Systems consist of an interconnection of 'building blocks'

The development of the notion

of a dynamical system

a brief causerie

Mathemativation

1. Get the physics right
2. The rest is mathematics

R.E. Kalman

Opening lecture
IFAC World Congress
Prague, July 4, 2005

Mathematization

1. Get the physics right
2. The rest is mathematics

R.E. Kalman

Opening lecture
IFAC World Congress
Prague, July 4, 2005

Prima la fisica, poi la matematica

How it all began ...

Planet
???

How, for heaven's sake, does it move?

Kepler's laws

Johannes Kepler 1571-1630

PLANET

Kepler's laws:
Ellipse, sun in focus;
= areas in = times;
$(\text { period })^{2} \cong(\text { diameter })^{3}$

The equation of the planet

Consequence: acceleration $=$ function of position and velocity

$$
\frac{d^{2}}{d t^{2}} w(t)=A\left(w(t), \frac{d}{d t} w(t)\right)
$$

$\sim \quad$ via calculus and calculation

$$
\frac{d^{2}}{d t^{2}} w(t)+\frac{1_{w(t)}}{|w(t)|^{2}}=0
$$

Isaac Newton (1643-1727)

The equation of the planet

Consequence:
acceleration = function of position and velocity

$$
\frac{d^{2}}{d t^{2}} w(t)=A\left(w(t), \frac{d}{d t} w(t)\right)
$$

$\leadsto \quad$ via calculus and calculation

$$
\frac{d^{2}}{d t^{2}} w(t)+\frac{1_{w(t)}}{|w(t)|^{2}}=0
$$

\cong another representation of K.1, K.2, K. 3

Newton's laws

2-nd law $\quad F^{\prime}(t)=m \frac{d^{2}}{d t^{2}} w(t)$
gravity $\quad F^{\prime \prime}(t)=m \frac{1_{w(t)}}{|w(t)|^{2}}$
3-rd law $F^{\prime}(t)+F^{\prime \prime}(t)=0$

$$
\frac{d^{2}}{d t^{2}} w(t)+\frac{1_{w(t)}}{|w(t)|^{2}}=0
$$

Newton's laws

2-nd law $\quad F^{\prime}(t)=m \frac{d^{2}}{d t^{2}} w(t)$
gravity $\quad F^{\prime \prime}(t)=m \frac{1_{w(t)}}{|w(t)|^{2}}$
3-rd law $F^{\prime}(t)+F^{\prime \prime}(t)=0$

Isaac Newton by William Blake
\Downarrow

$$
\frac{d^{2}}{d t^{2}} w(t)+\frac{1_{w(t)}}{|w(t)|^{2}}=0
$$

Viewing as interconnection is the key to generalization

The paradigm of closed systems

K.1, K.2, \& K. 3

$$
\leadsto \quad \frac{d^{2}}{d t^{2}} w(t)+\frac{1_{w(t)}}{\left|\frac{d}{d t} w(t)\right|^{2}}=0
$$

$$
\leadsto \text { with } x=\left(w, \frac{d}{d t} w\right) \quad \frac{d}{d t} x=f(x)
$$

'Axiomatization'

K.1, K.2, \& K. 3

$$
\begin{aligned}
\leadsto & \frac{d^{2}}{d t^{2}} w(t)+\frac{1_{w(t)}}{\left|\frac{d}{d t} w(t)\right|^{2}}=0 \\
& \leadsto \text { with } x=\left(w, \frac{d}{d t} w\right) \quad \frac{d}{d t} x=f(x) \\
& \leadsto \text { generalization } \frac{d}{d t} x=f(x) \\
& \leadsto \text { 'dynamical systems', flows }
\end{aligned}
$$

$~$ flows as paradigm of dynamics \leadsto closed systems

Motion determined by internal initial conditions.

'Axiomatization'

Henri Poincaré (1854-1912)

George Birkhoff (1884-1944)

Stephen Smale (1930-)

'Axiomativation'

A dynamical system is defined by
a state space X and
a state transition function
ϕ : \cdots such that \cdots
$\phi(t, \mathrm{x})=$ state at time t starting from state x

'Axiomatization'

A dynamical system is defined by
a state space X and
a state transition function
ϕ : \cdots such that \cdots
$\phi(t, \mathrm{x})=$ state at time t starting from state x

This framework of closed systems is universally used for dynamics in mathematics and physics

'Axiomatization'

How could they forget Newton's $2^{\text {nd }}$ law, about Maxwell's eq'ns, about thermodynamics, about tearing \& zooming \& linking, ...?

'Axiomativation'

How could they forget Newton's $2^{\text {nd }}$ law, about Maxwell's eq'ns, about thermodynamics, about tearing \& zooming \& linking, ...?
Reply: assume 'fixed boundary conditions'

'Axiomatization'

How could they forget Newton's $2^{\text {nd }}$ law, about Maxwell's eq'ns, about thermodynamics, about tearing \& zooming \& linking, ...?
Reply: assume 'fixed boundary conditions'

\leadsto to model a system, we have to model also the environment!

'Axiomatization'

How could they forget Newton's $2^{\text {nd }}$ law, about Maxwell's eq'ns, about thermodynamics, about tearing \& zooming \& linking, ...?
Reply: assume 'fixed boundary conditions'

\leadsto to model a system, we have to model also the environment!
Chaos theory, cellular automata, sync, etc., function in this framework ...

Inputs and outputs

meanwhile, in engineering...

Oliver Heaviside (1850-1925)

Norbert Wiener (1894-1964)

and the many electrical circuit theorists ...

Mathematical description

u : input, y : output,
SISO, LTI case $\leadsto G(s)=\frac{q(s)}{p(s)}$ transfer functions, impedances, admittances.

Circuit analysis and synthesis Classical control Bode, Nyquist, root-locus.

Mathematical description

$$
y(t)=\int_{0 \text { or }-\infty}^{t} H\left(t-t^{\prime}\right) u\left(t^{\prime}\right) d t^{\prime}
$$

Mathematical description

$$
y(t)=\int_{0 \text { or }-\infty}^{t} H\left(t-t^{\prime}\right) u\left(t^{\prime}\right) d t^{\prime}
$$

$$
\begin{aligned}
& y(t)=H_{0}(t)+\int_{-\infty}^{t} H_{1}\left(t-t^{\prime}\right) u\left(t^{\prime}\right) d t^{\prime}+ \\
& \quad \int_{-\infty}^{t} \int_{-\infty}^{t^{\prime}} H_{2}\left(t-t^{\prime}, t^{\prime}-t^{\prime \prime}\right) u\left(t^{\prime}\right) u\left(t^{\prime \prime}\right) d t^{\prime} d t^{\prime \prime}+\cdots
\end{aligned}
$$

Awkward nonlinear - far from the physics
Fail to deal with 'initial conditions'.

Around 1960: a paradigm shift to

$$
\frac{d}{d t} x=f(x, u), y=g(x, u)
$$

Rudolf Kalman (1930-)

Input/state/output systems

Around 1960: a paradigm shift to

$$
\frac{d}{d t} x=f(x, u), y=g(x, u)
$$

- open ready to be interconnected
 outputs of one system \mapsto inputs of another
- deals with initial conditions
- incorporates nonlinearities, time-variation
- models many physical phenomena

'Axiomatization'

State transition function: $\phi(t, \mathrm{x}, u)$: state reached at time t from x using input u.

$$
\frac{d}{d t} x=f(x, u), y=g(x, u)
$$

Read-out function:
 $g(\mathrm{x}, \mathrm{u}):$ output value with state x and input value u.

The input/state/output paradigm

The input/state/output view turned out to be very effective and fruitful

- for modeling
- for control (stabilization, robustness, ...)

The input/state/output paradigm

The input/state/output view turned out to be very effective and fruitful

- for modeling

- for control (stabilization, robustness, ...)

The input/state/output paradigm

The input/state/output view turned out to be very effective and fruitful

- for modeling
- for control (stabilization, robustness, ...)
- prediction of one signal from another, filtering
- understanding system representations
(transfer f'n, input/state/output repr., etc.)
- model simplification, reduction
system ID: models from data
- etc., etc., etc.

Theme

Theme of this lecture

We are accustomed to view an open dynamical system as an input/output structure

Is this appropriate for modeling physical systems?

Theme of this lecture

and interconnection as output-to-input assignment

Is this appropriate for modeling physical systems?

Theme of this lecture

and interconnection as output-to-input assignment

Is this appropriate for modeling physical systems?

Interconnection in physical systems

We have seen an extensive example in lecture 1.
We now give a simple example from hydraulics.

(pressure, flow)

Subsystems 1 and 3:

(pressure, flow) (pressure, flow)

Subsystems 1 and 3:

(pressure, flow)

(pressure, flow)

$$
A \frac{d}{d t} h=f+f^{\prime}
$$

$$
B f=\left\{\begin{aligned}
\sqrt{\left|p-p_{0}-\rho h\right|} & \text { if } p-p_{0} \geq \rho h \\
-\sqrt{\left|p-p_{0}-\rho h\right|} & \text { if } p-p_{0} \leq \rho h
\end{aligned}\right.
$$

$$
C f^{\prime}=\left\{\begin{aligned}
\sqrt{\left|p^{\prime}-p_{0}-\rho h\right|} & \text { if } p^{\prime}-p_{0} \geq \rho h, \\
-\sqrt{\left|p^{\prime}-p_{0}-\rho h\right|} & \text { if } p^{\prime}-p_{0} \leq \rho h,
\end{aligned}\right.
$$

Subsystem 2:

Subsystem 2:

$$
f=-f^{\prime}, \quad p-p^{\prime}=\alpha f
$$

Interconnection laws:

$$
\stackrel{\rightharpoonup}{p, f} p^{\prime}, f^{\prime}
$$

Interconnection laws:

$$
\overrightarrow{p, f}{ }^{\times}, f^{\prime}
$$

$$
p=p^{\prime}, \quad f+f^{\prime}=0
$$

Interconnection laws:

$$
\stackrel{p, f}{ }
$$

$$
p=p^{\prime}, \quad f+f^{\prime}=0
$$

Leads to the complete model:

$$
\begin{align*}
A_{1} \frac{d}{d t} h_{1} & =f_{1}+f_{1}^{\prime} \\
B_{1} f_{1} & =\left\{\begin{aligned}
\sqrt{\left|p_{1}-p_{0}-\rho h_{1}\right|} & \text { if } p_{1}-p_{0} \geq \rho h_{1} \\
-\sqrt{\left|p_{1}-p_{0}-\rho h_{1}\right|} & \text { if } p_{1}-p_{0} \leq \rho h_{1}
\end{aligned}\right. \tag{blackbox1}\\
C_{1} f_{1}^{\prime} & =\left\{\begin{aligned}
\sqrt{\left|p_{1}^{\prime}-p_{0}-\rho h_{1}\right|} & \text { if } p_{1}^{\prime}-p_{0} \geq \rho h_{1} \\
-\sqrt{\left|p_{1}^{\prime}-p_{0}-\rho h_{1}\right|} & \text { if } p_{1}^{\prime}-p_{0} \leq \rho h_{1}
\end{aligned}\right. \\
f_{2} & =-f_{2}^{\prime}, \quad p_{2}-p_{2}^{\prime}=\alpha f_{2} \tag{blackbox2}
\end{align*}
$$

$A_{3} \frac{d}{d t} h_{3}=f_{3}+f_{3}^{\prime}$,

$$
\begin{gathered}
C f_{3}=\left\{\begin{aligned}
\sqrt{\left|p_{3}-p_{0}-\rho h_{3}\right|} & \text { if } p_{3}-p_{0} \geq \rho h_{3}, \\
-\sqrt{\left|p_{3}-p_{0}-\rho h_{3}\right|} & \text { if } p_{3}-p_{0} \leq \rho h_{3}
\end{aligned}\right. \\
C_{3} f_{3}^{\prime}=\left\{\begin{aligned}
\sqrt{\left|p_{3}^{\prime}-p_{0}-\rho h_{3}\right|} & \text { if } p_{3}^{\prime}-p_{0} \geq \rho h_{3} \\
-\sqrt{\left|p_{3}^{\prime}-p_{0}-\rho h_{3}\right|} & \text { if } p_{3}^{\prime}-p_{0} \leq \rho h_{3}
\end{aligned}\right.
\end{gathered}
$$

$$
p_{1}^{\prime}=p_{2}, f_{1}^{\prime}+f_{2}=0, p_{2}^{\prime}=p_{3}, f_{2}^{\prime}+f_{3}=0
$$

$$
p_{\text {left }}=p_{1}, \quad f_{\text {left }}=f_{1}, \quad p_{\text {right }}=p_{3}^{\prime}, \quad f_{\text {right }}=f_{3}^{\prime}
$$

- Unclear input/output structure for terminal variables Many variables, indivisibly, at the same terminal
- Interconnection = variable sharing
- No signal flows, no output-to-input assignment

These remarks pertain to every physical interconnection. And, ultimately, every interconnection is physical

- Unclear input/output structure for terminal variables Many variables, indivisibly, at the same terminal Interconnection = variable sharing
No signal flows, no output-to-input assignment
These remarks pertain to every physical interconnection. And, ultimately, every interconnection is physical
"Block diagrams unsuitable for serious physical modeling
- the control/physics barrier"
"Behavior based (declarative) modeling is a good alternative"

Karl Åström (born 1934)
from K.J. Åström, Present Developments in Control Applications

IFAC 50-th Anniversary Celebration Heidelberg, September 12, 2006.

Behavioral systems

Behavioral approach

A dynamical system
$: \Leftrightarrow$ a family of time functions, 'the behavior'

Interconnection $: \Leftrightarrow$ 'variable sharing'.

Control $: \Leftrightarrow$ interconnection.

Modeling of interconnected physical systems is the strongest case for 'behaviors'.

Interconnection architecture

Formalize mathematically interconnection of systems.

Architecture \& module embedding

Architecture

nodes \sim systems with terminals
edges \leadsto connected terminals
leaves \leadsto interaction with environment

Architecture \& module embedding

Modules (systems) in the vertices

nodes \leadsto systems with terminals
edges \sim connected terminals
leaves \sim interaction with environment

Architecture \& module embedding

Terminals in the edges

nodes \sim systems with terminals
edges \leadsto connected terminals
leaves \leadsto interaction with environment

Interconnection architecture

A graph with leaves is defined as $\mathscr{G}=(\mathbb{V}, \mathbb{E}, \mathbb{L}, \mathscr{A})$
\mathbb{V} the set of vertices,
\mathbb{E} the set of edges,
\mathbb{L} the set of leaves,
\mathscr{A} the adjacency map.
\mathscr{A} associates
with each edge $e \in \mathbb{E}$ an unordered pair

$$
\mathscr{A}(e)=\left[v_{1}, v_{2}\right] \quad v_{1}, v_{2} \in \mathbb{V}
$$

with each leaf $\ell \in \mathbb{L}$ an element $\mathscr{A}(\ell)=v \in \mathbb{V}$.

Module embedding

The module embedding associates
a module with each vertex,
a $1 \leftrightarrow 1$ assignment between the edges and leaves adjacent to the vertex and the terminals of the associated module.

Module embedding

The module embedding associates
a module with each vertex,
a $1 \leftrightarrow 1$ assignment between the edges and leaves adjacent to the vertex and the terminals of the associated module.
vertices specify the subsystems,
edges how terminals of subsystems are connected,
leaves how the interconnected system interacts with the environment.

Module embedding

The module embedding associates
a module with each vertex,
a $1 \leftrightarrow 1$ assignment between the edges and leaves adjacent to the vertex and the terminals of the associated module.
vertices specify the subsystems,
edges how terminals of subsystems are connected,
leaves how the interconnected system interacts with the environment.

Vertices \sim Subsystems Edges \leadsto Interconnections
Contrast with circuit theory: systems in the edges, interconnections in vertices.

Manifest variables

The manifest variable assignment is a map
that assigns the manifest variables
as a function of the terminal (or, more generally, the module) variables.

The terminal variables are henceforth considered as latent (auxiliary) variables.

Behavioral equations

1. Module equations for each vertex. Relation among the variables on the terminals.
2. Interconnection equations for each edge. Equating the variables on the terminals associated with the same edge.
3. Manifest variable assignment Specifies the variables of interest.

Behavioral equations

1. Module equations for each vertex.

Relation among the variables on the terminals.
Behavioral equations stored as (parametrized) modules in a data-base
2. Interconnection equations for each edge.

Equating the variables on the terminals associated with the same edge.
Interconnection laws stored in a data-base.
Laws depend on terminal type:
electrical / mechanical / hydraulic / etc.
3. Manifest variable assignment

Specifies the variables of interest.

A classical example

already discussed in lecture 1

RLC circuit

Model the port behavior of

by tearing, zooming, and linking.

RLC circuit

Model the port behavior of

by tearing, zooming, and linking.
In each node there is a module \leadsto module equations each terminal involves 2 variables (potential, current) in each branch an electrical interconnection \sim interconnection equations

resistor1 R_{C}

resistor2 R_{L}

inductor L

capacitor C
connector2 $\mathrm{n}=3$

Module equations

vertex 1 : $\quad V_{\text {connector }_{1}, 1}=V_{\text {connector }_{1}, 2}=V_{\text {connector }_{1}, 3}$

$$
I_{\text {connector }_{1}, 1}+I_{\text {connector }_{1}, 2}+I_{\text {connector }_{1}, 3}=0
$$

vertex 2 : $\quad V_{R_{C}, 1}-V_{R_{C}, 2}=R_{C} I_{R_{C}, 1}, I_{R_{C}, 1}+I_{R_{C}, 2}=0$
vertex 3 : $\quad L \frac{d}{d t} I_{L, 1}=V_{L, 1}-V_{L, 2}, I_{L, 1}+I_{L, 2}=0$
vertex 4 : $C \frac{d}{d t}\left(V_{C, 1}-V_{C, 2}\right)=I_{C, 1}, I_{C, 1}+I_{C, 2}=0$
vertex 5 : $\quad V_{R_{L}, 1}-V_{R_{L}, 2}=R_{L} I_{R_{L}, 1}$

$$
I_{R_{L}, 1}+I_{R_{L}, 2}=0
$$

vertex 6 : $\quad V_{\text {connector }_{2}, 1}=V_{\text {connector }_{2}, 2}=V_{\text {connector }_{2}, 3}$

$$
I_{\text {connector }_{2}, 1}+I_{\text {connector }_{2}, 2}+I_{\text {connector }_{2}, 3}=0
$$

Interconnection

All interconnection are of electrical type

Interconnection equations:

$$
\text { potential left }=\text { potential right }
$$

current left + current right $=0$

Interconnection equations

edge c : $\quad V_{R_{C, 1}}=V_{\text {connector 1 }_{2}} \quad I_{R_{C, 1}}+I_{\text {connector } 1,2}=0$
edge d: $\quad V_{L_{1}}=V_{\text {connector }_{3}} I_{L_{1}}+I_{\text {connector }_{3}}=0$
edge e : $\quad V_{R_{C, 2}}=V_{C_{1}} \quad I_{R_{C, 2}}+I_{C_{1}}=0$
edge f: $\quad V_{L_{2}}=V_{R_{C, 1}} \quad I_{L_{2}}+I_{R_{L, 1}}=0$
edge g: $\quad V_{C_{2}}=V_{\text {connector } 2_{1}} I_{C_{2}}+I_{\text {connector } 2_{1}}=0$
edge h: $\quad V_{R_{L, 2}}=V_{\text {connector } 2_{2}} \quad I_{R_{L, 2}}+I_{\text {connector } 2_{2}}=0$
$\begin{array}{ll}V_{\text {externalport }} & =V_{\text {connector }_{1}, 1}-V_{\text {connector }_{2}, 3} \\ I_{\text {externalport }} & =I_{\text {connector }_{1}}\end{array}$

Manifest behavior

\leadsto the dynamical system with behavior \mathscr{B} specified by:
Case 1: $\quad C R_{C} \neq \frac{L}{R_{L}}$
$\left(\frac{R_{C}}{R_{L}}+\left(1+\frac{R_{C}}{R_{L}}\right) C R_{C} \frac{d}{d t}+C R_{C} \frac{L}{R_{L}} \frac{d^{2}}{d t^{2}}\right) V=\left(1+C R_{C} \frac{d}{d t}\right)\left(1+\frac{L}{R_{L}} \frac{d}{d t}\right) R_{C} I$

Case 2: $\quad C R_{C}=\frac{L}{R_{L}}$

$$
\left(\frac{R_{C}}{R_{L}}+C R_{C} \frac{d}{d t}\right) V=\left(1+C R_{C} \frac{d}{d t}\right) R_{C} I
$$

\leadsto behavior $\mathscr{B}=$ all solutions $(V, I): \mathbb{R} \rightarrow \mathbb{R}^{2}$

Manifest behavior

\leadsto the dynamical system with behavior \mathscr{B} specified by:
Case 1: $\quad C R_{C} \neq \frac{L}{R_{L}}$
$\left(\frac{R_{C}}{R_{L}}+\left(1+\frac{R_{C}}{R_{L}}\right) C R_{C} \frac{d}{d t}+C R_{C} \frac{L}{R_{L}} \frac{d^{2}}{d t^{2}}\right) V=\left(1+C R_{C} \frac{d}{d t}\right)\left(1+\frac{L}{R_{L}} \frac{d}{d t}\right) R_{C} I$

Case 2: $\quad C R_{C}=\frac{L}{R_{L}}$

$$
\left(\frac{R_{C}}{R_{L}}+C R_{C} \frac{d}{d t}\right) V=\left(1+C R_{C} \frac{d}{d t}\right) R_{C} I
$$

\leadsto behavior $\mathscr{B}=$ all solutions $(V, I): \mathbb{R} \rightarrow \mathbb{R}^{2}$

Theorem: In LTIDSs latent variables can be eliminated

Other methodologies

Signal flow graphs

input/output thinking

There are many many examples where output-to-input connection is eminently natural:

input/output thinking

- shows terminal variables separate
- suggests that inputs and outputs occur at different physical points

Does not respect the physics

input/output thinking

allows impossible input-output connections

Does not respect the physics

input/output thinking

(a)

System $1 \sum \underset{\sim}{u_{1}=y_{2}} \boldsymbol{u _ { 2 } = y _ { 1 }}<$ System 2
(c)

(d)

For physical systems input-to-input \& output-to-output assignment very prevalent:
force to force; pressure to pressure; ...
Physical systems are not signal processors.

input/output thinking

"Block diagrams unsuitable for serious physical modeling

- the control/physics barrier"
"Behavior based (declarative) modeling is a good alternative"

Karl Åström (born 1934)
from K.J. Åström, Present Developments in Control Applications

IFAC 50-th Anniversary Celebration
Heidelberg, September 12, 2006.

Bond graphs

Bond graphs

Interconnection variables:

$$
\text { a flow and an effort product }=\text { power }
$$

- current \& voltage
- velocity \& force
- mass flow \& pressure
- heat flow\& temperature
heat flow
$\underset{\text { temperature }}{ } \&$ temperature

```
Bond graphs
```

1. Mechanical interconnections equate positions, not velocities
2. Not all interconnections involve equating energy transfer
3. Terminals are for interconnection, ports are for energy transfer

Terminals versus ports

Terminal variables and behavior:

$$
\left(V_{1}, I_{1}, V_{2}, I_{2}, \ldots, V_{\mathrm{n}}, I_{\mathrm{n}}\right) \leadsto \text { behavior } \mathscr{B} \subseteq\left(\mathbb{R}^{2 \mathrm{n}}\right)^{\mathbb{R}}
$$

Energy does not flow along the terminals!

Port : $\Leftrightarrow \quad$ sum currents = 0 potentials + constant \Rightarrow potentials

Terminals versus ports

Port : $\Leftrightarrow \quad$ sum currents = 0 potentials + constant \Rightarrow potentials

$$
\left(\boxed{V_{1}, I_{1} \ldots, V_{\mathrm{p}}, I_{\mathrm{p}}}, V_{\mathrm{p}+1}, \ldots, I_{\mathrm{n}}\right) \in \mathscr{B}, \alpha: \mathbb{R} \rightarrow \mathbb{R}
$$

$$
\Downarrow
$$

$$
\left(\boxed{V_{1}+\alpha, I_{1}, \ldots, V_{\mathrm{p}}+\alpha, I_{\mathrm{p}}}, V_{\mathrm{p}+1}, \ldots, I_{\mathrm{n}}\right) \in \mathscr{B}
$$

$$
I_{1}+\cdots+I_{\mathrm{p}}=0
$$

Terminals versus ports

Terminals versus ports

Interconnection via terminals, energy transfer via ports; one cannot talk about
"the energy transferred from circuit 1 to circuit 2 "
unless their interconnected terminals form a port.

Various facets of control

Path planning

$$
\frac{d}{d t} x=f(x, u)
$$

Choose time-function $u(\cdot):[0, T] \rightarrow \mathbb{U}$ so as to achieve (optimal) state transfer.
'open loop control'

Decision making

Choose a feedback system that processes sensor outputs and generates actuator inputs so as to achieve good (optimal) performance.
> 'feedback control'
> 'closed loop control' 'intelligent control'

Embedded systems control

Choose controller so as to achieve good (optimal) performance of the interconnected system
'control as interconnection' 'integrated system design'

Control as interconnection

Interconnecting a controller

Interconect via control terminals:

Controlled system

```
Many controllers are not sensor-to-actuator
```


Controlling turbulence:

Many controllers are not sensor-to-actuator

Controlling turbulence:

Nagano 1998 Winter Olympics

Strips op schaatspak verminderen drukweerstand en verhogen snelheid

Many controllers are not sensor-to-actuator

controlling drag:

Stabilization:

Control as Interconnection

- Are all interconnections 'reasonable'?

Which controlled behaviors can be achieved?
Parametrize all stabilizing controllers

Implementability

For simplicity, restrict attention to LTIDSs, \mathscr{L}^{\bullet}.
Let $\mathscr{B} \in \mathscr{L}^{\mathrm{w}+\mathrm{c}}$ be the plant behavior, $\mathscr{C} \in \mathscr{L}^{\text {c }} \quad$ be the controller behavior, and

$$
\mathscr{K}=\left\{w: \mathbb{R} \rightarrow \mathbb{R}^{\mathrm{w}} \mid \exists c \in \mathscr{C} \text { such that }(w, c) \in \mathscr{B}\right\}
$$

be the controlled behavior

Implementability

For simplicity, restrict attention to LTIDSs, \mathscr{L}^{\bullet}.
Let $\mathscr{B} \in \mathscr{L}^{\mathrm{w}+\mathrm{c}}$ be the plant behavior, $\mathscr{C} \in \mathscr{L}^{\text {c }} \quad$ be the controller behavior, and

$$
\mathscr{K}=\left\{w: \mathbb{R} \rightarrow \mathbb{R}^{\mathrm{w}} \mid \exists c \in \mathscr{C} \text { such that }(w, c) \in \mathscr{B}\right\}
$$

be the controlled behavior
Elimination theorem $\Rightarrow \mathscr{K} \in \mathscr{L}^{\mathrm{w}}$

Implementability

For a given $\mathscr{B} \in \mathscr{L}^{\mathrm{w}+\mathrm{c}}$, call $\mathscr{K} \in \mathscr{L}^{\mathrm{w}}$ implementable if there exists $\mathscr{C} \in \mathscr{L}^{\mathrm{c}}$ such that \mathscr{K} is the controlled behavior.

Which $\mathscr{K} \in \mathscr{L}^{\text {w }}$ are implementable?

Every lecture must have at least one theorem

Define the hidden behavior

$$
\mathscr{N}:=\{w \mid(w, 0) \in \mathscr{B}\}
$$

Every lecture must have at least one theorem

Hidden behavior

Uncontrolled plant behavior

Define the hidden behavior

$$
\mathscr{N}:=\{w \mid(w, 0) \in \mathscr{B}\}
$$

Define the

uncontrolled plant behavior

$$
\mathscr{P}:=\{w \mid \exists c:(w, c) \in \mathscr{B}\}
$$

Every lecture must have at least one theorem

Hidden behavior

Uncontrolled plant behavior

Define the hidden behavior

$$
\mathscr{N}:=\{w \mid(w, 0) \in \mathscr{B}\}
$$

Define the

 uncontrolled plant behavior$$
\mathscr{P}:=\{w \mid \exists c:(w, c) \in \mathscr{B}\}
$$

Implementability theorem

$\mathscr{K} \in \mathscr{L}^{\mathrm{W}}$ is implementable $\Leftrightarrow \mathscr{N} \subseteq \mathscr{K} \subseteq \mathscr{P}$

Proof of the implementability theorem

Summary of lecture 13

Interconnection = variable (terminal) sharing

Interconnection $=$ variable (terminal) sharing
Modeling by physical systems proceeds by
tearing, zooming, and linking

Main points

- Interconnection = variable (terminal) sharing Modeling by physical systems proceeds by tearing, zooming, and linking
- Hierarchical procedure

Main points

- Interconnection = variable (terminal) sharing

Modeling by physical systems proceeds by
tearing, zooming, and linking

- Hierarchical procedure
- Importance of latent variables and the elimination theorem

Main points

- Interconnection = variable (terminal) sharing
- Modeling by physical systems proceeds by tearing, zooming, and linking
- Hierarchical procedure
- Importance of latent variables and the elimination theorem
- Limitations of input/output thinking

Main points

- Interconnection = variable (terminal) sharing
- Modeling by physical systems proceeds by tearing, zooming, and linking
- Hierarchical procedure
- Importance of latent variables and the elimination theorem
- Limitations of input/output thinking
- Control is interconnection, sensor output to actuator input feedback important special case

Overview

- Gets the physics right
- Gets the physics right
- Starts with first principles models
- Gets the physics right
- Starts with first principles models
- Latent variables with state as a special case

Behavioral systems

- Gets the physics right
- Starts with first principles models
- Latent variables with state as a special case
- Avoids universal use of signal flow graphs

Behavioral systems

- Gets the physics right
- Starts with first principles models
- Latent variables with state as a special case
- Avoids universal use of signal flow graphs
- \mathbf{i} / o and $\mathrm{i} / \mathrm{s} / \mathrm{o}$ are important special cases

Behavioral systems

- Gets the physics right
- Starts with first principles models
- Latent variables with state as a special case
- Avoids universal use of signal flow graphs
- \mathbf{i} / o and $\mathrm{i} / \mathrm{s} / \mathrm{o}$ are important special cases
- Extends seamlessly to PDEs
- Controllability becomes genuine system property

Behavioral systems

- Controllability becomes genuine system property

Deals faithfully with interconnections: variable sharing

Behavioral systems

- Controllability becomes genuine system property Deals faithfully with interconnections: variable sharing Views control as interconnection

Behavioral systems

- Controllability becomes genuine system property

Deals faithfully with interconnections: variable sharing Views control as interconnection

Advantages in SYSID with the MPUM, etc.

Behavioral systems

- Controllability becomes genuine system property

Deals faithfully with interconnections: variable sharing
Views control as interconnection
Advantages in SYSID with the MPUM, etc.
Natural approach to dissipative systems

Behavioral systems

- Controllability becomes genuine system property Deals faithfully with interconnections: variable sharing Views control as interconnection Advantages in SYSID with the MPUM, etc. Natural approach to dissipative systems
Far easier pedagogically

1. A dynamical system $=$ a family of trajectories.
2. Interconnection $=$ variable sharing
3. Control = interconnection
4. A dynamical system $=$ a family of trajectories.
5. Interconnection $=$ variable sharing
6. Control = interconnection

$$
\text { End of lecture } 13
$$

