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Lecture 13

Modeling

Interconnected Systems

Lecturer: Jan C. Willems

– p. 2/96



Outline

◮ Open, connected, and modular

◮ How do paradigms cope with this?

◮ Classical dynamical systems

◮ Input/output systems

◮ Modeling by tearing, zooming, and linking

◮ Bond graphs

◮ Control as interconnection
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Systems
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Features

◮ open

◮ interconnected

◮ modular

◮ dynamic
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Features

◮ open

◮ interconnected

◮ modular

◮ dynamic

Theme of this lecture:

develop a suitable mathematical language

aimed at computer-assisted modeling.

– p. 6/96



Open, connected, and modular
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Open

SYSTEM

ENVIRONMENT

Boundary

Systems interact with their environment
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Connected

Architecture

Systems consist of subsystems, interconnected

– p. 9/96



Modular

Systems consist of an interconnection of‘building blocks’
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The development of the notion

of a dynamical system

a brief causerie
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Mathematization

1. Get the physics right

2. The rest is mathematics

R.E. Kalman
Opening lecture

IFAC World Congress
Prague, July 4, 2005
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Mathematization

1. Get the physics right

2. The rest is mathematics

R.E. Kalman
Opening lecture

IFAC World Congress
Prague, July 4, 2005

Prima la fisica, poi la matematica
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How it all began ...
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The celestial question

Planet ???

How, for heaven’s sake, does it move?
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Kepler’s laws

Johannes Kepler
1571-1630

PLANET

SUN

D
C

B

A 1 year

34 months

Kepler’s laws:
Ellipse, sun in focus;
= areas in = times;
(period)2 ∼= (diameter)3
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The equation of the planet

Consequence:
acceleration = function of position and velocity

d2

dt2w(t) = A(w(t),
d
dt

w(t))

; via calculusand calculation

d2

dt2
w(t)+

1w(t)

|w(t)|2
= 0

Isaac Newton (1643-1727)
– p. 16/96



The equation of the planet

Consequence:
acceleration = function of position and velocity

d2

dt2w(t) = A(w(t),
d
dt

w(t))

; via calculusand calculation

d2

dt2
w(t)+

1w(t)

|w(t)|2
= 0

Isaac Newton (1643-1727)

Hypotheses 
 non

 fingo

∼= another representation
of K.1, K.2, K.3
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Newton’s laws

2-nd law F ′(t) = m d2

dt2w(t)

gravity F ′′(t) = m
1w(t)

|w(t)|2

3-rd law F ′(t)+F ′′(t) = 0

⇓

d2

dt2
w(t)+

1w(t)

|w(t)|2
= 0
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Newton’s laws

2-nd law F ′(t) = m d2

dt2w(t)

gravity F ′′(t) = m
1w(t)

|w(t)|2

3-rd law F ′(t)+F ′′(t) = 0
Isaac Newton by William Blake

⇓

d2

dt2
w(t)+

1w(t)

|w(t)|2
= 0

Viewing as interconnection is the key to generalization
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The paradigm of closedsystems
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‘Axiomatization’

K.1, K.2, & K.3

;
d2

dt2w(t)+
1w(t)

| d
dt w(t)|2

= 0

; with x = (w, d
dt w) d

dt x = f (x)
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‘Axiomatization’

K.1, K.2, & K.3

;
d2

dt2w(t)+
1w(t)

| d
dt w(t)|2

= 0

; with x = (w, d
dt w) d

dt x = f (x)

; generalization d
dt x = f (x)

; ‘dynamical systems’, flows

; flows as paradigm of dynamics ; closed systems

Motion determined by internal initial conditions.
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‘Axiomatization’

Henri Poincaré (1854-1912)

George Birkhoff (1884-1944)

Stephen Smale (1930- )
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‘Axiomatization’

X

A dynamical systemis defined by
a state spaceX and
a state transition function

φ : · · · such that · · ·

φ(t,x) = state at timet starting from state x
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‘Axiomatization’

X

A dynamical systemis defined by
a state spaceX and
a state transition function

φ : · · · such that · · ·

φ(t,x) = state at timet starting from state x

This framework of closed systems is universally
used for dynamics in mathematics and physics
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‘Axiomatization’

How could they forget Newton’s2nd law,
about Maxwell’s eq’ns,

about thermodynamics,
about tearing & zooming & linking, ...?

– p. 22/96



‘Axiomatization’

How could they forget Newton’s2nd law,
about Maxwell’s eq’ns,

about thermodynamics,
about tearing & zooming & linking, ...?

Reply: assume‘fixed boundary conditions’
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‘Axiomatization’

How could they forget Newton’s2nd law,
about Maxwell’s eq’ns,

about thermodynamics,
about tearing & zooming & linking, ...?

Reply: assume‘fixed boundary conditions’

SYSTEM

ENVIRONMENT

Boundary

; to model a system, we have to model also the environment!
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‘Axiomatization’

How could they forget Newton’s2nd law,
about Maxwell’s eq’ns,

about thermodynamics,
about tearing & zooming & linking, ...?

Reply: assume‘fixed boundary conditions’

SYSTEM

ENVIRONMENT

Boundary

; to model a system, we have to model also the environment!

Chaos theory, cellular automata, sync, etc., function in this
framework ...

– p. 22/96



Inputs and outputs

meanwhile, in engineering...
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Input/output systems

SYSTEMstimulus response

cause
input

effect
output

SYSTEM output  input    

– p. 24/96



The originators

Oliver Heaviside (1850-1925) Norbert Wiener (1894-1964)

and the many electrical circuit theorists ...
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Mathematical description

SYSTEM output  input    

u: input, y: output ,

SISO, LTI case ; G(s) = q(s)
p(s) transfer functions,

impedances, admittances.

Circuit analysis and synthesis
Classical control
Bode, Nyquist, root-locus.
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Mathematical description

SYSTEM output  input    

y(t) =
∫ t

0 or −∞ H(t − t ′)u(t ′) dt ′
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Mathematical description

SYSTEM output  input    

y(t) =
∫ t

0 or −∞ H(t − t ′)u(t ′) dt ′

y(t) = H0(t)+
∫ t

−∞
H1(t − t ′)u(t ′) dt ′+

∫ t

−∞

∫ t ′

−∞
H2(t − t ′,t ′− t ′′)u(t ′)u(t ′′) dt ′dt ′′ + · · ·

Awkward nonlinear — far from the physics
Fail to deal with ‘initial conditions’.
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Input/state/output systems

Around 1960: aparadigm shift to

d
dt x = f (x,u), y = g(x,u)

Rudolf Kalman (1930- )
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Input/state/output systems

Around 1960: aparadigm shift to

d
dt x = f (x,u), y = g(x,u)

Rudolf Kalman (1930- )

◮ open

◮ ready to be interconnected
outputs of one system7→ inputs of another

◮ deals with initial conditions

◮ incorporates nonlinearities, time-variation

◮ models many physical phenomena

◮ · · ·
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‘Axiomatization’

State transition function:
φ(t,x,u) : state reached at timet from x using input u.

X

d
dt x = f (x,u), y = g(x,u)

Read-out function:
g(x,u) : output value with statex and input value u.
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The input/state/output paradigm

The input/state/output view turned out to be
very effective and fruitful

◮ for modeling

◮ for control (stabilization, robustness, ...)

�
�
�
�
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The input/state/output paradigm

The input/state/output view turned out to be
very effective and fruitful

◮ for modeling

◮ for control (stabilization, robustness, ...)

�
�
�
�

to−be−controlled outputs

Actuators PLANT

FEEDBACK
CONTROLLER

control
inputs

measured
outputs

CLOSED−LOOP
SYSTEM

exogenous inputs

Sensors
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The input/state/output paradigm

The input/state/output view turned out to be
very effective and fruitful

◮ for modeling

◮ for control (stabilization, robustness, ...)

◮ prediction of one signal from another, filtering

◮ understanding system representations
(transfer f’n, input/state/output repr., etc.)

◮ model simplification, reduction

◮ system ID: models from data

◮ etc., etc., etc.
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Theme
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Theme of this lecture

We are accustomed to view an open
dynamical system as aninput/output structure

SYSTEMENVIRONMENT

SYSTEM output  input    

Is this appropriate for modeling physical systems?

– p. 33/96



Theme of this lecture

and interconnection as output-to-input assignment

SYSTEM

SYSTEM

Is this appropriate for modeling physical systems?
– p. 34/96



Theme of this lecture

and interconnection as output-to-input assignment

SYSTEM

SYSTEM

SYSTEM

Feedback Series Parallel

Is this appropriate for modeling physical systems?
– p. 34/96



Interconnection in physical systems

We have seen an extensive example in lecture 1.
We now give a simple example from hydraulics.
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Tearing

(pressure, flow)  (pressure, flow)
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left     left
p     , f

(pressure, flow)

p      , fright     right

(pressure, flow)
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Tearing

(pressure, flow)  (pressure, flow)
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left     left
p     , f

(pressure, flow)

p      , fright     right

(pressure, flow)

31 2
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Zooming

Subsystems 1 and 3:

(pressure, flow)(pressure, flow)

(pressure, flow) (pressure, flow)

p’, f’p, f

h
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Zooming

Subsystems 1 and 3:

(pressure, flow)(pressure, flow)

(pressure, flow) (pressure, flow)

p’, f’p, f

h
A d

dt h = f + f ′,

B f =







√

|p− p0−ρh| if p− p0 ≥ ρh,

−
√

|p− p0−ρh| if p− p0 ≤ ρh,

C f ′ =







√

|p′− p0−ρh| if p′− p0 ≥ ρh,

−
√

|p′− p0−ρh| if p′− p0 ≤ ρh,
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Zooming

Subsystem 2:
p’, f’p, f

– p. 38/96



Zooming

Subsystem 2:
p’, f’p, f

f = − f ′, p− p′ = α f

– p. 38/96



Linking

Interconnection laws:

p’, f’ p, f

– p. 39/96



Linking

Interconnection laws:

p’, f’ p, f

p = p′, f + f ′ = 0.
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Linking

Interconnection laws:

p’, f’ p, f

p = p′, f + f ′ = 0.

Leads to the complete model:
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A1
d
dt h1 = f1 + f ′1,

B1 f1 =







√

|p1− p0−ρh1| if p1− p0 ≥ ρh1,

−
√

|p1− p0−ρh1| if p1− p0 ≤ ρh1,
(blackbox 1)

C1 f ′1 =







√

|p′1− p0−ρh1| if p′1− p0 ≥ ρh1,

−
√

|p′1− p0−ρh1| if p′1− p0 ≤ ρh1,

f2 = − f ′2, p2− p′2 = α f2, (blackbox 2)

A3
d
dt h3 = f3 + f ′3,

C f3 =







√

|p3− p0−ρh3| if p3− p0 ≥ ρh3,

−
√

|p3− p0−ρh3| if p3− p0 ≤ ρh3,
(blackbox 3)

C3 f ′3 =







√

|p′3− p0−ρh3| if p′3− p0 ≥ ρh3,

−
√

|p′3− p0−ρh3| if p′3− p0 ≤ ρh3,

p′1 = p2, f ′1 + f2 = 0, p′2 = p3, f ′2 + f3 = 0. (interconnection)

pleft = p1, fleft = f1, pright = p′3, fright = f ′3. (manifest variable assignment)
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◮ Unclear input/output structure for terminal variables

◮ Many variables, indivisibly, at the same terminal

◮ Interconnection = variable sharing

◮ No signal flows, no output-to-input assignment

These remarks pertain to every physical interconnection.
And, ultimately, every interconnection is physical

– p. 41/96



◮ Unclear input/output structure for terminal variables

◮ Many variables, indivisibly, at the same terminal

◮ Interconnection = variable sharing

◮ No signal flows, no output-to-input assignment

These remarks pertain to every physical interconnection.
And, ultimately, every interconnection is physical

“Block diagrams unsuitable for serious physical modeling

- the control/physics barrier”

“Behavior based (declarative) modeling is a good alternative”

Karl Åstr öm (born 1934)

from K.J. Åstr öm, Present Developments in Control Applications

IFAC 50-th Anniversary Celebration
Heidelberg, September 12, 2006.
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Behavioral systems
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Behavioral approach

A dynamical system

:⇔ a family of time functions, ‘the behavior’

Interconnection :⇔ ‘variable sharing’.

Control :⇔ interconnection.

Modeling of interconnected physical systems is the strongest
case for ‘behaviors’.
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Interconnection architecture
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Objective

Formalize mathematically interconnection of systems.
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Architecture & module embedding

Architecture

leaf edge

vertex

nodes ; systems with terminals
edges ; connected terminals
leaves ; interaction with environment
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Architecture & module embedding

Modules (systems) in the vertices

module
vertex     

nodes ; systems with terminals
edges ; connected terminals
leaves ; interaction with environment
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Architecture & module embedding

Terminals in the edges

module       

terminals

edges & leaves       

vertex

nodes ; systems with terminals
edges ; connected terminals
leaves ; interaction with environment
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Interconnection architecture

A graph with leavesis defined asG = (V,E,L,A )

V the set ofvertices,
E the set ofedges,
L the set ofleaves,
A the adjacency map.

A associates
with each edgee ∈ E an unordered pair

A (e) = [v1,v2] v1,v2 ∈ V,

with each leafℓ ∈ L an elementA (ℓ) = v ∈ V.
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Module embedding

The module embeddingassociates

a module with each vertex,
a 1↔ 1 assignment between the

edges and leaves adjacent to the vertex and
the terminals of the associated module.

– p. 50/96



Module embedding

The module embeddingassociates

a module with each vertex,
a 1↔ 1 assignment between the

edges and leaves adjacent to the vertex and
the terminals of the associated module.

vertices specify the subsystems,
edges how terminals of subsystems are connected,

leaves how the interconnected system interacts
with the environment.
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Module embedding

The module embeddingassociates

a module with each vertex,
a 1↔ 1 assignment between the

edges and leaves adjacent to the vertex and
the terminals of the associated module.

vertices specify the subsystems,
edges how terminals of subsystems are connected,

leaves how the interconnected system interacts
with the environment.

Vertices ; Subsystems Edges ; Interconnections

Contrast with circuit theory:
systems in the edges, interconnections in vertices.
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Manifest variables

The manifest variable assignmentis a map
that assigns the manifest variables
as a function of the terminal
(or, more generally, the module) variables.

The terminal variables are henceforth considered
as latent (auxiliary) variables.
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Behavioral equations

1. Module equations for each vertex.
Relation among the variables on the terminals.

2. Interconnection equations for each edge.
Equating the variables on the terminals associated
with the same edge.

3. Manifest variable assignment
Specifies the variables of interest.
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Behavioral equations

1. Module equations for each vertex.
Relation among the variables on the terminals.

Behavioral equations stored as (parametrized) modules
in a data-base

2. Interconnection equations for each edge.
Equating the variables on the terminals associated
with the same edge.

Interconnection laws stored in a data-base.
Laws depend on terminal type:
electrical / mechanical / hydraulic / etc.

3. Manifest variable assignment
Specifies the variables of interest.
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A classical example

already discussed in lecture 1

– p. 53/96



RLC circuit

Model the port behavior of

��

R
L

C

C

LRI

V
−

+
��

��

�� ��

��
��
��
��

����

��

by tearing, zooming, and linking.
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RLC circuit

Model the port behavior of

��

R
L

C

C

LRI

V
−

+
��

��

d

f

b

c

h

��

1

4

6

3

5

2

a

e

g

��

��
��
��
��

����

��

;

by tearing, zooming, and linking.

In each node there is a module; module equations
each terminal involves 2 variables (potential, current)
in each branch an electrical interconnection;
interconnection equations
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Modules

1

3

2

22

1
1 1

1
1

2

322

��
��
��

��
��
��

��
��
��

��
��
��

connector1 n = 3

capacitor C connector2 n = 3

inductor Lresistor1 RC

resistor2 RL
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Module equations

vertex 1 : Vconnector1,1 = Vconnector1,2 = Vconnector1,3

Iconnector1,1 + Iconnector1,2 + Iconnector1,3 = 0

vertex 2 : VRC,1−VRC,2 = RCIRC,1, IRC,1 + IRC,2 = 0

vertex 3 : L d
dt IL,1 = VL,1−VL,2, IL,1 + IL,2 = 0

vertex 4 : C d
dt

(

VC,1−VC,2
)

= IC,1, IC,1 + IC,2 = 0

vertex 5 : VRL,1−VRL,2 = RLIRL,1

IRL,1+ IRL,2 = 0

vertex 6 : Vconnector2,1 = Vconnector2,2 = Vconnector2,3

Iconnector2,1 + Iconnector2,2 + Iconnector2,3 = 0

– p. 56/96



Interconnection

All interconnection are of electrical type

current left current right

potential left potential right

Interconnection equations:

potential left = potential right

current left + current right = 0

– p. 57/96



Interconnection equations

edge c: VRC,1 = Vconnector12 IRC,1 + Iconnector1,2 = 0

edge d: VL1 = Vconnector13 IL1 + Iconnector13 = 0

edge e: VRC,2 = VC1 IRC,2 + IC1 = 0

edge f: VL2 = VRC,1 IL2 + IRL,1 = 0

edge g: VC2 = Vconnector21 IC2 + Iconnector21 = 0

edge h: VRL,2 = Vconnector22 IRL,2 + Iconnector22 = 0

– p. 58/96



Manifest variable assignment

Vexternalport = Vconnector1,1−Vconnector2,3

Iexternalport = Iconnector11

– p. 59/96



Manifest behavior

; the dynamical system with behaviorB specified by:

Case 1: CRC 6=
L

RL

(

RC
RL

+
(

1+ RC
RL

)

CRC
d
dt +CRC

L
RL

d2

dt2

)

V =
(

1+CRC
d
dt

)

(

1+ L
RL

d
dt

)

RCI

Case 2: CRC =
L

RL

(

RC
RL

+CRC
d
dt

)

V =
(

1+CRC
d
dt

)

RCI

; behavior B = all solutions (V, I) : R → R
2
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Manifest behavior

; the dynamical system with behaviorB specified by:

Case 1: CRC 6=
L

RL

(

RC
RL

+
(

1+ RC
RL

)

CRC
d
dt +CRC

L
RL

d2

dt2

)

V =
(

1+CRC
d
dt

)

(

1+ L
RL

d
dt

)

RCI

Case 2: CRC =
L

RL

(

RC
RL

+CRC
d
dt

)

V =
(

1+CRC
d
dt

)

RCI

; behavior B = all solutions (V, I) : R → R
2

Theorem: In LTIDSs latent variables can be eliminated
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Other methodologies
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Signal flow graphs
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input/output thinking

There are many many examples where output-to-input
connection is eminently natural:

fout

f in

(pressure, flow)
p     , f

right     right

(pressure, flow)

left     left

p      , f
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input/output thinking

SYSTEM SYSTEM

◮ shows terminal variables separate

◮ suggests that inputs and outputs occur at different
physical points

Does not respect the physics
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input/output thinking

SYSTEM SYSTEM

SYSTEM

◮ allows impossible input-output connections

Does not respect the physics
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input/output thinking

System 1 System 2

System 1 System 2
y  = y  

u  = u    1     2

1   2

System 1 System 2

System 2System 1

(a)

(c)

(b)

(d)

u  = y  2   1

u  = y  1   2

For physical systems
input-to-input & output-to-output

assignment very prevalent:
force to force; pressure to pressure; ...

Physical systems are not signal processors.
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input/output thinking

“Block diagrams unsuitable for serious physical modeling

- the control/physics barrier”

“Behavior based (declarative) modeling is a good alternative”

Karl Åstr öm
(born 1934)

from K.J. Åstr öm, Present Developments in Control Applications

IFAC 50-th Anniversary Celebration
Heidelberg, September 12, 2006.
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Bond graphs
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Bond graphs

Interconnection variables:

a flow and an effort product = power

◮ current & voltage

◮ velocity & force

◮ mass flow & pressure

◮ heat flow& temperature
heat flow

temperature
& temperature

◮ ...
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Bond graphs

1. Mechanical interconnections equate positions, not
velocities

2. Not all interconnections involve equating energy transfer

3. Terminals are for interconnection,
ports are for energy transfer
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Terminals versus ports

(potential, current)    

Electrical
circuit

Terminal variables and behavior:

(V1, I1,V2, I2, . . . ,Vn, In) ; behavior B ⊆
(

R
2n)R

Energy does not flow along the terminals!
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Terminals versus ports

Port 1

Port 2

Port k

Circuit

Port :⇔ sum currents = 0
potentials + constant⇒ potentials
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Terminals versus ports

Port 1

Port 2

Port k

Circuit

Port :⇔ sum currents = 0
potentials + constant⇒ potentials

(

V1, I1 . . . ,Vp, Ip ,Vp+1, . . . , In
)

∈ B ,α : R → R

⇓

(

V1 +α , I1, . . . ,Vp +α , Ip ,Vp+1, . . . , In
)

∈ B

I1 + · · ·+ Ip = 0
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Terminals versus ports

Circuit 2Circuit 1

Circuit 3

Circuit 1

Circuit 3

Circuit 2
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Terminals versus ports

Circuit 2Circuit 1

Circuit 3

Circuit 1

Circuit 3

Circuit 2

Interconnection via terminals, energy transfer via ports;
one cannot talk about

“the energy transferred from circuit 1 to circuit 2”

unless their interconnected terminals form a port.
– p. 73/96



Various facets of control
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Path planning

d
dt

x = f (x,u)

Choose time-function u(·) : [0,T ] → U so as to achieve
(optimal) state transfer.

‘open loop control’

1

x2X
2

x
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Decision making

�
�
�
�

to−be−controlled outputs

Actuators PLANT

FEEDBACK
CONTROLLER

control
inputs

measured
outputs

CLOSED−LOOP
SYSTEM

exogenous inputs

Sensors

Choose afeedback system that processes sensor outputs and
generates actuator inputs so as to achieve good (optimal)
performance.

‘feedback control’
‘closed loop control’
‘intelligent control’
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Embedded systems control

ControllerPlant

Choose controller so as to achieve good (optimal)
performance of the interconnected system

‘control as interconnection’
‘integrated system design’
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Example

suspension spring

road profile

axle mass

body mass

damper

tire tire

axle mass

body mass

mechanical impedance     

road profile
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Control as interconnection
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Interconnecting a controller

to−be−controlled

variables

variables

control

control

CONTROLLER

variables PLANT
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Interconnecting a controller

to−be−controlled

variables

variables

control

control

CONTROLLER

variables PLANT

Interconect via control terminals:

c

to−be−controlled

w

terminals

terminals Plant Controller

Controlled system

control
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Many controllers are not sensor-to-actuator

Controlling turbulence:
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Many controllers are not sensor-to-actuator

Controlling turbulence:
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Nagano 1998 Winter Olympics
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Many controllers are not sensor-to-actuator

controlling drag:
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Many stabilizers are not sensor-to-actuator

Stabilization:
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Disturbance attenuation

tire

axle mass

body mass

mechanical impedance     

road profile

suspension spring

road profile

axle mass

body mass

damper

tire

active damper

actuator

road profile

sensors

tire

control algorithm

body mass

axle mass

spring
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Control as Interconnection

to−be−controlled
terminals

terminals Plant Controller

Controlled system

control

◮ Are all interconnections ‘reasonable’?

◮ Which controlled behaviors can be achieved?

◮ Parametrize all stabilizing controllers

◮ ...
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Implementability

to−be−controlled
terminals

terminals

control

w
c

B C

K

For simplicity, restrict attention to LTIDSs, L •.

Let B ∈ L w+c be the plant behavior,
C ∈ L c be the controller behavior, and

K = {w : R → R
w | ∃ c ∈ C such that (w,c) ∈ B}

be thecontrolled behavior
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Implementability

to−be−controlled
terminals

terminals

control

w
c

B C

K

For simplicity, restrict attention to LTIDSs, L •.

Let B ∈ L w+c be the plant behavior,
C ∈ L c be the controller behavior, and

K = {w : R → R
w | ∃ c ∈ C such that (w,c) ∈ B}

be thecontrolled behavior

Elimination theorem ⇒ K ∈ L w
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Implementability

to−be−controlled
terminals

terminals

control

w
c

B C

K

For a givenB ∈ L w+c, call K ∈ L w implementable if there
existsC ∈ L c such thatK is the controlled behavior.

Which K ∈ L w are implementable ?
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Every lecture must have at least one theorem

to−be−controlled

Hidden behavior

Plant

control
terminals

terminals

w
c = 0

Define thehidden behavior

N := {w|(w,0) ∈ B}

Uncontrolled plant behavior    
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Every lecture must have at least one theorem

to−be−controlled

Hidden behavior

Plant

control
terminals

terminals

w
c = 0

Define thehidden behavior

N := {w|(w,0) ∈ B}

to−be−controlled

Uncontrolled plant behavior    

Plant

control
terminals

terminals

w
c = free

Define the
uncontrolled plant behavior

P := {w|∃ c : (w,c) ∈ B}
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Every lecture must have at least one theorem

to−be−controlled

Hidden behavior

Plant

control
terminals

terminals

w
c = 0

Define thehidden behavior

N := {w|(w,0) ∈ B}

to−be−controlled

Uncontrolled plant behavior    

Plant

control
terminals

terminals

w
c = free

Define the
uncontrolled plant behavior

P := {w|∃ c : (w,c) ∈ B}

Implementability theorem

K ∈ L w is implementable ⇔ N ⊆ K ⊆ P
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Proof of the implementability theorem
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Summary of lecture 13
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Main points

◮ Interconnection = variable (terminal) sharing
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Main points

◮ Interconnection = variable (terminal) sharing

◮ Modeling by physical systems proceeds by
tearing, zooming, and linking
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Main points

◮ Interconnection = variable (terminal) sharing

◮ Modeling by physical systems proceeds by
tearing, zooming, and linking

◮ Hierarchical procedure

◮ Importance of latent variables and the
elimination theorem

◮ Limitations of input/output thinking

◮ Control is interconnection, sensor output to actuator
input feedback important special case
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Overview
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Behavioral systems

◮ Gets the physics right
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Behavioral systems

◮ Gets the physics right

◮ Starts with first principles models
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– p. 94/96



Behavioral systems
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◮ Starts with first principles models

◮ Latent variables with state as a special case

◮ Avoids universal use of signal flow graphs
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Behavioral systems

◮ Gets the physics right

◮ Starts with first principles models

◮ Latent variables with state as a special case

◮ Avoids universal use of signal flow graphs

◮ i/o and i/s/o are important special cases

◮ Extends seamlessly to PDEs
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Behavioral systems

◮ Controllability becomes genuine system property
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Behavioral systems

◮ Controllability becomes genuine system property

◮ Deals faithfully with interconnections: variable sharing
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Behavioral systems

◮ Controllability becomes genuine system property

◮ Deals faithfully with interconnections: variable sharing

◮ Views control as interconnection

◮ Advantages in SYSID with the MPUM, etc.

◮ Natural approach to dissipative systems

◮ Far easier pedagogically

– p. 95/96



1. A dynamical system = a family of trajectories.

2. Interconnection = variable sharing

3. Control = interconnection
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1. A dynamical system = a family of trajectories.

2. Interconnection = variable sharing

3. Control = interconnection

End of lecture 13
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