
Summer Course

Linear System Theory
Control

&
Matrix Computations

Monopoli September 8–12, 2008



Lecture 12: State and state construction

Lecturer: Paolo Rapisarda

University of Southampton, United Kingdom



Some German

Zu einer neuen Wissenschaft, die gänzlich isoliert und die einzige ihrer
Art ist, mit dem Vorurteil gehen, als könne man sie vermittelst seiner
schon sonsts erworbenen vermeinten Kentnisse beuerteilen, obgleich
die es eben sind, an deren Realität zuvor gänzlich gezweifelt werden
muß, bringt nichts anderes zuwege, als daßman allenthalben das zu
sehen glaubt, was einem schon sonst bekannt war, weil etwa die Aus-
drücke jenem ähnlich lauten; nur daßeinem alles äußerst verunstaltet,
widersinning und kauderwelsch vorkommen muß, weil man nicht die
Gedanken des Verfassers, sondern immer nur seine eigene, durch lange
Gewonhnheit zur Natur gewordene Denkungsart dabei zum Grunde legt.

(I. Kant, Prolegomena zu einer jeden künftigen Metaphysik, 1783)



Some German

To approach a new science - one that is entirely isolated and is the only
one of its kind - with the prejudice that it can be judged by means of
one’s putative cognitions already otherwise obtained, even though it is
precisely the reality of those that must first be completely called into
question, results only in believing that one sees everywhere something
that was already otherwise known, because the expressions perhaps
sound similar; except that everything must seem to be extremely
deformed, contradictory, and nonsensical, because one does not
thereby make the author’s thoughts fundamental, but always simply
one’s own, made natural through long habit.

(I. Kant, Prolegomena to Any Future Metaphysics, 1783)



Outline
The state property

Discrete-time systems

First-order representations

State maps

The shift-and-cut map

Algebraic characterization

State maps for hybrid representations

Continuous-time systems

Computation of state-space representations



Questions

• Are state representations

d
dt

x = Ax + Bu

y = Cx + Du

always a “natural” starting point for modeling?



Questions

• Are state representations

d
dt

x = Ax + Bu

y = Cx + Du

always a “natural” starting point for modeling?

• Mechanics ;

2nd order differential equations;

SYSID, transfer functions ;

high-order differential equations;

• First principles and “tearing and zooming" modelling ;

high-order differential equations, with auxiliary variables

• Algebraic constraints among variables



Questions

• Are state representations

d
dt

x = Ax + Bu

y = Cx + Du

always “natural"?

NO! NO! NO!



Questions

• Are state representations

d
dt

x = Ax + Bu

y = Cx + Du

always “natural"?

NO! NO! NO!
• Are state representations important?



Questions

• Are state representations

d
dt

x = Ax + Bu

y = Cx + Du

always “natural"?

NO! NO! NO!
• Are state representations important?

• First-order, input/output partition ; choice of initial
condition, choice of input ; ease of simulation;

• First-order ; algorithms based on linear algebra

• Sometimes, “state” is natural: think electric circuits,
position and momentum variables in mechanics, etc.



Questions

• Are state representations

d
dt

x = Ax + Bu

y = Cx + Du

always “natural"?

NO! NO! NO!
• Are state representations important?

YES! YES! YES!



Issues

• What is a first principles definition of “state"?



Issues

• What is a first principles definition of “state"?

• What does that imply for the equations?



Issues

• What is a first principles definition of “state"?

• What does that imply for the equations?

• How to construct a state from the equations?



Issues

• What is a first principles definition of “state"?

• What does that imply for the equations?

• How to construct a state from the equations?

• How to construct a state representation from the
equations?



Issues

• What is a first principles definition of “state"?

• What does that imply for the equations?

• How to construct a state from the equations?

• How to construct a state representation from the
equations?

Higher-order differential equations

;

state representation



The basic idea

It’s the quarter final of the World Cup. You’re late...

The current score is what matters...



The basic idea

• The state contains all the relevant information to
determine the future behavior of the system



The basic idea

• The state contains all the relevant information to
determine the future behavior of the system

• The state is the memory of the system



The basic idea

• The state contains all the relevant information to
determine the future behavior of the system

• The state is the memory of the system

• Independence of past and future given the state:
Markovianity



The state property

Σ = (T,W,X,Bfull) is a state system if

(w1, x1), (w2, x2) ∈ Bfull and x1(T ) = x2(T )

⇓
(w1, x1) ∧

T
(w2, x2) ∈ Bfull

∧
T

is concatenation at T :

(f1 ∧
T

f2)(t) :=

{
f1(t) for t < T
f2(t) for t ≥ T



Graphically...

(w1, x1), (w2, x2) ∈ Bfull and x1(T ) = x2(T )

⇓
(w1, x1) ∧

T
(w2, x2) ∈ Bfull

(w ,x )
1 1

X

W

2
(w ,x )

2

time

(w ,x )    (w ,x )

W

1 20^1 2X

time



Graphically...

(w1, x1), (w2, x2) ∈ Bfull and x1(T ) = x2(T )

⇓
(w1, x1) ∧

T
(w2, x2) ∈ Bfull

(w ,x )
1 1

X

W

2
(w ,x )

2

time

(w ,x )    (w ,x )

W

1 20^1 2X

time



Graphically...

(w1, x1), (w2, x2) ∈ Bfull and x1(T ) = x2(T )

⇓
(w1, x1) ∧

T
(w2, x2) ∈ Bfull

(w ,x )
1 1

X

W

2
(w ,x )

2

time

(w ,x )    (w ,x )

W

1 20^1 2X

time



Example 1: discrete-time system

Σ = (Z,Rw,Rl,Bfull), with

Bfull := {(w , `) | F (`(t + 1), `(t),w(t)) = 0 for all t}

where

σ : (Rl)Z → (Rl)Z

(σ(`))(t) := `(t + 1)

Special case: input-state-output equations

σx = f (x, u)

y = h(x, u)

w = (u, y)



Example 1: discrete-time system

Σ = (Z,Rw,Rl,Bfull), with

Bfull := {(w , `) | F (`(t + 1), `(t),w(t)) = 0 for all t}

where

σ : (Rl)Z → (Rl)Z

(σ(`))(t) := `(t + 1)

Special case: input-state-output equations

σx = f (x, u)

y = h(x, u)

w = (u, y)



Example 2: continuous-time system

Σ = (R,Rw,Rl,Bfull), with

Bfull := {(w , `) | F ◦ ( d
dt `, `,w) = 0}

Special case: input-state-output equations

d
dt

x = f (x, u)

y = h(x, u)

w = (u, y)



Recapitulation

• State equations are not always the most natural
way of modeling systems...

• ...but they are important!

• A first-principles definition of “state"

• A research program: from higher-order to state
space equations



Recapitulation

• State equations are not always the most natural
way of modeling systems...

• ...but they are important!

• A first-principles definition of “state"

• A research program: from higher-order to state
space equations



Recapitulation

• State equations are not always the most natural
way of modeling systems...

• ...but they are important!

• A first-principles definition of “state"

• A research program: from higher-order to state
space equations



Recapitulation

• State equations are not always the most natural
way of modeling systems...

• ...but they are important!

• A first-principles definition of “state"

• A research program: from higher-order to state
space equations



Outline
The state property

Discrete-time systems

First-order representations

State maps

The shift-and-cut map

Algebraic characterization

State maps for hybrid representations

Continuous-time systems

Computation of state-space representations



First-order discrete-time representations

Theorem: A ‘complete’ latent variable system

Σ = (Z,Rw,Rx,Bfull)

is a state system iff Bfull can be described by

F ◦ (σx, x,w) = 0

0-th order in w , 1st order in xLinear case:

Eσx +Fx +Gw = 0

1st order in x is equivalent to state property!



First-order discrete-time representations

Theorem: A ‘complete’ latent variable system

Σ = (Z,Rw,Rx,Bfull)

is a state system iff Bfull can be described by

F ◦ (σx, x,w) = 0

0-th order in w , 1st order in x

Linear case:

Eσx +Fx +Gw = 0

1st order in x is equivalent to state property!



First-order discrete-time representations

Theorem: A ‘complete’ latent variable system

Σ = (Z,Rw,Rx,Bfull)

is a state system iff Bfull can be described by

F ◦ (σx, x,w) = 0

0-th order in w , 1st order in x

Linear case:

Eσx +Fx +Gw = 0

1st order in x is equivalent to state property!



First-order discrete-time representations

Theorem: A ‘complete’ latent variable system

Σ = (Z,Rw,Rx,Bfull)

is a state system iff Bfull can be described by

F ◦ (σx, x,w) = 0

0-th order in w , 1st order in x

Linear case:

Eσx +Fx +Gw = 0

1st order in x is equivalent to state property!



State construction: basic idea

Problem: Given kernel or image or hybrid description,
find a state representation

Eσx + Fx + Gw = 0



State construction: basic idea

Problem: Given kernel or image or hybrid description,
find a state representation

Eσx + Fx + Gw = 0

First compute polynomial operator in the shift acting
on system variables, inducing a state variable:

X(σ)w = x X(σ)` = x X(σ)

[
w
`

]
= x



State construction: basic idea

Problem: Given kernel or image or hybrid description,
find a state representation

Eσx + Fx + Gw = 0

First compute polynomial operator in the shift acting
on system variables, inducing a state variable:

X(σ)w = x X(σ)` = x X(σ)

[
w
`

]
= x

Then use original eqs. and X to obtain 1st order rep-
resentation.



State construction: basic idea

Problem: Given kernel or image or hybrid description,
find a state representation

Eσx + Fx + Gw = 0

First compute polynomial operator in the shift acting
on system variables, inducing a state variable:

X(σ)w = x X(σ)` = x X(σ)

[
w
`

]
= x

Then use original eqs. and X to obtain 1st order rep-
resentation.

X(σ) is called a state map



State maps for kernel representations

X ∈ R•×w[ξ] induces a state map X(σ) for ker(R(σ))

if the behavior Bfull with latent variable x , consisting of
all (w , x) such that

R(σ)w = 0
X(σ)w = x

satisfies the state property.



State maps for kernel representations

X ∈ R•×w[ξ] induces a state map X(σ) for ker(R(σ))

if the behavior Bfull with latent variable x , consisting of
all (w , x) such that

R(σ)w = 0
X(σ)w = x

satisfies the state property.

• State maps exist



State maps for kernel representations

X ∈ R•×w[ξ] induces a state map X(σ) for ker(R(σ))

if the behavior Bfull with latent variable x , consisting of
all (w , x) such that

R(σ)w = 0
X(σ)w = x

satisfies the state property.

• State maps exist

• Minimality



State maps for kernel representations

X ∈ R•×w[ξ] induces a state map X(σ) for ker(R(σ))

if the behavior Bfull with latent variable x , consisting of
all (w , x) such that

R(σ)w = 0
X(σ)w = x

satisfies the state property.

• State maps exist

• Minimality

• State map ; state representation



Minimal state maps

State system (R,Rw,Rn,Bf ) is (state)-minimal if every
other state system (R,Rw,Rn′,B′f ) with same external
behavior is such that n′ ≥ n

Minimal state dimension: n(B), McMillan degree of B



Minimal state maps

State system (R,Rw,Rn,Bf ) is (state)-minimal if every
other state system (R,Rw,Rn′,B′f ) with same external
behavior is such that n′ ≥ n

Minimal state dimension: n(B), McMillan degree of B



Minimal state maps

State system (R,Rw,Rn,Bf ) is (state)-minimal if every
other state system (R,Rw,Rn′,B′f ) with same external
behavior is such that n′ ≥ n

Minimal state dimension: n(B), McMillan degree of B

Minimal state map ; minimal state variable



Minimal state maps

State system (R,Rw,Rn,Bf ) is (state)-minimal if every
other state system (R,Rw,Rn′,B′f ) with same external
behavior is such that n′ ≥ n

Minimal state dimension: n(B), McMillan degree of B

Minimal state map ; minimal state variable

Minimality of (R,Rw,Rn,Bf ) equivalent with:
• Trimness: for every x0 ∈ Rn exists (w , x) ∈ Bf

such that x(0) = x0;



Minimal state maps

State system (R,Rw,Rn,Bf ) is (state)-minimal if every
other state system (R,Rw,Rn′,B′f ) with same external
behavior is such that n′ ≥ n

Minimal state dimension: n(B), McMillan degree of B

Minimal state map ; minimal state variable

Minimality of (R,Rw,Rn,Bf ) equivalent with:
• Trimness: for every x0 ∈ Rn exists (w , x) ∈ Bf

such that x(0) = x0;
• Observability of x from w ⇐⇒ exists

X ∈ R•×w[ξ] s.t. x = X
( d

dt

)
w .



Minimal state maps

State system (R,Rw,Rn,Bf ) is (state)-minimal if every
other state system (R,Rw,Rn′,B′f ) with same external
behavior is such that n′ ≥ n

Minimal state dimension: n(B), McMillan degree of B

Minimal state map ; minimal state variable

Minimality of (R,Rw,Rn,Bf ) equivalent with:
• Trimness: for every x0 ∈ Rn exists (w , x) ∈ Bf

such that x(0) = x0;
• Observability of x from w ⇐⇒ exists

X ∈ R•×w[ξ] s.t. x = X
( d

dt

)
w .

¡Minimal state variable induced by state map!



Example

B = {w | r(σ)w = 0}

where r ∈ R[ξ], deg(r) = n.

(Minimal) state map induced by


1
ξ
...

ξn−1

 ;


w
σw

...
σn−1w





The state property revisited

A linear system Σ = (T,W,X,Bfull) with latent
variable x is a state system if

(w , x) ∈ Bfull and x(T ) = 0
⇓

(0, 0) ∧
T

(w , x) ∈ Bfull

• Time-invariance =⇒ can choose T = 0;

• Concatenability with zero trajectory is key;

• x = X(σ)w and w ∈ B =⇒ concatenability of w
with zero is key.



The state property revisited

A linear system Σ = (T,W,X,Bfull) with latent
variable x is a state system if

(w , x) ∈ Bfull and x(T ) = 0
⇓

(0, 0) ∧
T

(w , x) ∈ Bfull

• Time-invariance =⇒ can choose T = 0;

• Concatenability with zero trajectory is key;

• x = X(σ)w and w ∈ B =⇒ concatenability of w
with zero is key.



The state property revisited

A linear system Σ = (T,W,X,Bfull) with latent
variable x is a state system if

(w , x) ∈ Bfull and x(T ) = 0
⇓

(0, 0) ∧
T

(w , x) ∈ Bfull

• Time-invariance =⇒ can choose T = 0;

• Concatenability with zero trajectory is key;

• x = X(σ)w and w ∈ B =⇒ concatenability of w
with zero is key.



The state property revisited

A linear system Σ = (T,W,X,Bfull) with latent
variable x is a state system if

(w , x) ∈ Bfull and x(T ) = 0
⇓

(0, 0) ∧
T

(w , x) ∈ Bfull

• Time-invariance =⇒ can choose T = 0;

• Concatenability with zero trajectory is key;

• x = X(σ)w and w ∈ B =⇒ concatenability of w
with zero is key.



When is w ∈ B concatenable with zero?

R0w + R1σw + . . . + RLσ
Lw = 0

. . . 0 0 w(0) w(1) w(2) w(3) . . .

. . . k = −2 k = −1 k = 0 k = 1 k = 2 k = 3 . . .

R0w(0) + R1w(1) + . . . + RLw(L) = 0

R1w(0) + R2w(1) + . . . + RLw(L− 1) = 0

R2w(0) + R3w(1) + . . . + RLw(L− 2) = 0

... =
...

RL−1w(0) + RLw(1) = 0

RLw(0) = 0



When is w ∈ B concatenable with zero?

R0w + R1σw + . . . + RLσ
Lw = 0

. . . 0 0 R0 R1 R2 R3 . . .

. . . 0 0 w(0) w(1) w(2) w(3) . . .

. . . k = −2 k = −1 k = 0 k = 1 k = 2 k = 3 . . .

R0w(0) + R1w(1) + . . . + RLw(L) = 0

R1w(0) + R2w(1) + . . . + RLw(L− 1) = 0

R2w(0) + R3w(1) + . . . + RLw(L− 2) = 0

... =
...

RL−1w(0) + RLw(1) = 0

RLw(0) = 0



When is w ∈ B concatenable with zero?

R0w + R1σw + . . . + RLσ
Lw = 0

. . . 0 R0 R1 R2 R3 R4 . . .

. . . 0 0 w(0) w(1) w(2) w(3) . . .

. . . k = −2 k = −1 k = 0 k = 1 k = 2 k = 3 . . .

R0w(0) + R1w(1) + . . . + RLw(L) = 0

R1w(0) + R2w(1) + . . . + RLw(L− 1) = 0

R2w(0) + R3w(1) + . . . + RLw(L− 2) = 0

... =
...

RL−1w(0) + RLw(1) = 0

RLw(0) = 0



When is w ∈ B concatenable with zero?

R0w + R1σw + . . . + RLσ
Lw = 0

. . . R0 R1 R2 R3 R4 R5 . . .

. . . 0 0 w(0) w(1) w(2) w(3) . . .

. . . k = −2 k = −1 k = 0 k = 1 k = 2 k = 3 . . .

R0w(0) + R1w(1) + . . . + RLw(L) = 0

R1w(0) + R2w(1) + . . . + RLw(L− 1) = 0

R2w(0) + R3w(1) + . . . + RLw(L− 2) = 0

... =
...

RL−1w(0) + RLw(1) = 0

RLw(0) = 0



When is w ∈ B concatenable with zero?

R0w + R1σw + . . . + RLσ
Lw = 0

. . . 0 0 w(0) w(1) w(2) w(3) . . .

. . . k = −2 k = −1 k = 0 k = 1 k = 2 k = 3 . . .

R0w(0) + R1w(1) + . . . + RLw(L) = 0

R1w(0) + R2w(1) + . . . + RLw(L− 1) = 0

R2w(0) + R3w(1) + . . . + RLw(L− 2) = 0

... =
...

RL−1w(0) + RLw(1) = 0

RLw(0) = 0



When is w ∈ B concatenable with zero?

R0w + R1σw + . . . + RLσ
Lw = 0

. . . RL−3 RL−2 RL−1 RL 0 0 . . .

. . . 0 0 w(0) w(1) w(2) w(3) . . .

. . . k = −2 k = −1 k = 0 k = 1 k = 2 k = 3 . . .

R0w(0) + R1w(1) + . . . + RLw(L) = 0

R1w(0) + R2w(1) + . . . + RLw(L− 1) = 0

R2w(0) + R3w(1) + . . . + RLw(L− 2) = 0

... =
...

RL−1w(0) + RLw(1) = 0

RLw(0) = 0



When is w ∈ B concatenable with zero?

R0w + R1σw + . . . + RLσ
Lw = 0

. . . RL−2 RL−1 RL 0 0 0 . . .

. . . 0 0 w(0) w(1) w(2) w(3) . . .

. . . k = −2 k = −1 k = 0 k = 1 k = 2 k = 3 . . .

R0w(0) + R1w(1) + . . . + RLw(L) = 0

R1w(0) + R2w(1) + . . . + RLw(L− 1) = 0

R2w(0) + R3w(1) + . . . + RLw(L− 2) = 0

... =
...

RL−1w(0) + RLw(1) = 0

RLw(0) = 0



The shift-and-cut map

σ+ : R[ξ]→ R[ξ]

σ+(
∑n

i=0 piξ
i) :=

∑n−1
i=0 pi+1ξ

i

“Divide by ξ and take polynomial part"

Extended componentwise to vectors and matrices



Example

R(ξ) = R0 + R1ξ + . . . + RL−1ξ
L−1 + RLξ

L

σ+(R(ξ)) = R1+. . .+RL−1ξ
L−2+RLξ

L−1

σ2
+(R(ξ)) = R2+. . .+RL−1ξ

L−3+RLξ
L−2

... =
...

σL
+(R(ξ)) = RL



Example

R(ξ) = R0 + R1ξ + . . . + RL−1ξ
L−1 + RLξ

L

σ+(R(ξ)) = R1+. . .+RL−1ξ
L−2+RLξ

L−1

σ2
+(R(ξ)) = R2+. . .+RL−1ξ

L−3+RLξ
L−2

... =
...

σL
+(R(ξ)) = RL



Example

R(ξ) = R0 + R1ξ + . . . + RL−1ξ
L−1 + RLξ

L

σ+(R(ξ)) = R1+. . .+RL−1ξ
L−2+RLξ

L−1

σ2
+(R(ξ)) = R2+. . .+RL−1ξ

L−3+RLξ
L−2

... =
...

σL
+(R(ξ)) = RL



Example

R(ξ) = R0 + R1ξ + . . . + RL−1ξ
L−1 + RLξ

L

σ+(R(ξ)) = R1+. . .+RL−1ξ
L−2+RLξ

L−1

σ2
+(R(ξ)) = R2+. . .+RL−1ξ

L−3+RLξ
L−2

... =
...

σL
+(R(ξ)) = RL



Example

R(ξ) = R0 + R1ξ + . . . + RL−1ξ
L−1 + RLξ

L

σ+(R(ξ)) = R1+. . .+RL−1ξ
L−2+RLξ

L−1

σ2
+(R(ξ)) = R2+. . .+RL−1ξ

L−3+RLξ
L−2

... =
...

σL
+(R(ξ)) = RL



Shift-and-cut and concatenability with zero

w is
concatenable

with zero
⇔

(σ+(R)(σ)w)(0) = 0
(σ2

+(R)(σ)w)(0) = 0
... =

...
(σL

+(R)(σ)w)(0) = 0

col((σi
+(R))i=1,...,L(σ) is a state map!



Shift-and-cut and concatenability with zero

w is
concatenable

with zero
⇔

(σ+(R)(σ)w)(0) = 0
(σ2

+(R)(σ)w)(0) = 0
... =

...
(σL

+(R)(σ)w)(0) = 0

col((σi
+(R))i=1,...,L(σ) is a state map!



From kernel representation to state map

Denote col((σi
+(R)))i=1,...,L =: ΣR .

Theorem: Let B = ker(R(σ)). Then

R(σ)w = 0
ΣR(σ)w = x

is a state representation of B with state variable x .



Recapitulation

• State ; first order equations in x , zeroth in w

• State map: acts on variables, yields state

• Concatenability is key

• Shift-and-cut operation

• Shift-and-cut state map



Recapitulation

• State ; first order equations in x , zeroth in w

• State map: acts on variables, yields state

• Concatenability is key

• Shift-and-cut operation

• Shift-and-cut state map



Recapitulation

• State ; first order equations in x , zeroth in w

• State map: acts on variables, yields state

• Concatenability is key

• Shift-and-cut operation

• Shift-and-cut state map



Recapitulation

• State ; first order equations in x , zeroth in w

• State map: acts on variables, yields state

• Concatenability is key

• Shift-and-cut operation

• Shift-and-cut state map



Recapitulation

• State ; first order equations in x , zeroth in w

• State map: acts on variables, yields state

• Concatenability is key

• Shift-and-cut operation

• Shift-and-cut state map



There’s more than the shift-and-cut state map

Many systems of equations are equivalent to shift-
and-cut ones:

(σ+(R)(σ)w)(0) = 0
(σ2

+(R)(σ)w)(0) = 0
... =

...
(σL

+(R)(σ)w)(0) = 0



There’s more than the shift-and-cut state map

Many systems of equations are equivalent to shift-
and-cut ones:

(σ+(R)(σ)w)(0) = 0
(σ2

+(R)(σ)w)(0) = 0
... =

...
(σL

+(R)(σ)w)(0) = 0

=⇒ different state maps are possible!



There’s more than the shift-and-cut state map

Many systems of equations are equivalent to shift-
and-cut ones:

(σ+(R)(σ)w)(0) = 0
(σ2

+(R)(σ)w)(0) = 0
... =

...
(σL

+(R)(σ)w)(0) = 0

=⇒ different state maps are possible!

¿How to characterize this nonuniqueness?



Example: scalar systems

r0w + r1σw + . . . + σnw = 0



Example: scalar systems

r0w + r1σw + . . . + σnw = 0

Observe w concatenable with zero iff w = 0. Indeed,

σn
+(r)(σ)w = w

σn−1
+ (r)(σ)w = rn−1w + σw

... =
...

σ+(r)(σ)w = r1w + . . . + σn−1w



Example: scalar systems

r0w + r1σw + . . . + σnw = 0

Observe w concatenable with zero iff w = 0. Indeed,

σn
+(r)(σ)w = w

σn−1
+ (r)(σ)w = rn−1w + σw

... =
...

σ+(r)(σ)w = r1w + . . . + σn−1w

Zero at t = 0 iff (σk w)(0) = 0 for k = 0, . . . , n − 1.



Example: scalar systems

r0w + r1σw + . . . + σnw = 0

Note also “shift-and-cut state map" different from
“standard state map"

w
rn−1w + σw
...
r1w + . . . + σn−1w

w
σw
...
σn−1w



Example: scalar systems

r0w + r1σw + . . . + σnw = 0

Note also “shift-and-cut state map" different from
“standard state map"

w
rn−1w + σw
...
r1w + . . . + σn−1w

w
σw
...
σn−1w

...although each is “equivalent" to the other...



Algebraic characterization

Theorem: LetB = ker(R(σ)), and define ΣR as above.
Define

ΞR := {f ∈ R1×w[ξ] | ∃ α ∈ R1×• s.t. f = αΣR}
〈R〉 := {f ∈ R1×w[ξ] | ∃ g ∈ R1×•[ξ] s.t. f = gR}



Algebraic characterization

Theorem: LetB = ker(R(σ)), and define ΣR as above.
Define

ΞR := {f ∈ R1×w[ξ] | ∃ α ∈ R1×• s.t. f = αΣR}
〈R〉 := {f ∈ R1×w[ξ] | ∃ g ∈ R1×•[ξ] s.t. f = gR}

X ∈ R•×w[ξ] is state map for B
if and only if

rowspanR(X)⊕ 〈R〉 = ΞR + 〈R〉



Algebraic characterization

Theorem: LetB = ker(R(σ)), and define ΣR as above.
Define

ΞR := {f ∈ R1×w[ξ] | ∃ α ∈ R1×• s.t. f = αΣR}
〈R〉 := {f ∈ R1×w[ξ] | ∃ g ∈ R1×•[ξ] s.t. f = gR}

X ∈ R•×w[ξ] is state map for B
if and only if

rowspanR(X)⊕ 〈R〉 = ΞR + 〈R〉

X is minimal state map if and only if its rows are basis
for complementary subspace of 〈R〉 in ΞR + 〈R〉.



Example

(σ2 + 2σ + 3)y = (σ + 3)u
[
ξ2 + 2ξ + 3 | −ξ − 3

]



Example

(σ2 + 2σ + 3)y = (σ + 3)u
[
ξ2 + 2ξ + 3 | −ξ − 3

]
σ+ ;

[
ξ + 2 | −1

]
;
[
σ + 2 | −1

]



Example

(σ2 + 2σ + 3)y = (σ + 3)u
[
ξ2 + 2ξ + 3 | −ξ − 3

]
σ+ ;

[
ξ + 2 | −1

]
;
[
σ + 2 | −1

]
If (y , u) ∈ B, then for all g ∈ R[ξ]

[
σ + 2 | −1

] [y
u

]
=

[
σ + 2 | −1

] [y
u

]
+ g(σ)

[
σ2 + 2σ + 3 | −σ − 3

]︸ ︷︷ ︸
=0 onB

[
y
u

]



Example

(σ2 + 2σ + 3)y = (σ + 3)u
[
ξ2 + 2ξ + 3 | −ξ − 3

]
σ+ ;

[
ξ + 2 | −1

]
;
[
σ + 2 | −1

]
If (y , u) ∈ B, then for all g ∈ R[ξ]

[
σ + 2 | −1

] [y
u

]
=

[
σ + 2 | −1

] [y
u

]
+ g(σ)

[
σ2 + 2σ + 3 | −σ − 3

]︸ ︷︷ ︸
=0 onB

[
y
u

]

‘equivalence modulo R’



Example

(σ2 + 2σ + 3)y = (σ + 3)u
[
ξ2 + 2ξ + 3 | −ξ − 3

]
σ+ ;

[
ξ + 2 | −1

]
;
[
σ + 2 | −1

]
σ2

+ ;
[
1 | 0

]
;

[
1 | 0

]



Example

(σ2 + 2σ + 3)y = (σ + 3)u
[
ξ2 + 2ξ + 3 | −ξ − 3

]
σ+ ;

[
ξ + 2 | −1

]
;
[
σ + 2 | −1

]
σ2

+ ;
[
1 | 0

]
;

[
1 | 0

]
If (y , u) ∈ B, then for all g ∈ R[ξ]

[
1 | 0

] [y
u

]
=

[
1 | 0

] [y
u

]
+ g(σ)

[
σ2 + 2σ + 3 | −σ − 3

]︸ ︷︷ ︸
=0 onB

[
y
u

]



Example

(σ2 + 2σ + 3)y = (σ + 3)u
[
ξ2 + 2ξ + 3 | −ξ − 3

]
σ+ ;

[
ξ + 2 | −1

]
;
[
σ + 2 | −1

]
σ2

+ ;
[
1 | 0

]
;

[
1 | 0

]
ΞR = {α

[
ξ + 2 | −1

]
+ β

[
1 | 0

]
| α, β ∈ R}



Example

(σ2 + 2σ + 3)y = (σ + 3)u
[
ξ2 + 2ξ + 3 | −ξ − 3

]
σ+ ;

[
ξ + 2 | −1

]
;
[
σ + 2 | −1

]
σ2

+ ;
[
1 | 0

]
;

[
1 | 0

]
ΞR = {α

[
ξ + 2 | −1

]
+ β

[
1 | 0

]
| α, β ∈ R}

Any set of generators of ΞR ; a state map



Example

(σ2 + 2σ + 3)y = (σ + 3)u
[
ξ2 + 2ξ + 3 | −ξ − 3

]
σ+ ;

[
ξ + 2 | −1

]
;
[
σ + 2 | −1

]
σ2

+ ;
[
1 | 0

]
;

[
1 | 0

]
ΞR = {α

[
ξ + 2 | −1

]
+ β

[
1 | 0

]
| α, β ∈ R}

A basis of ΞR ; a minimal state map



Example

(σ2 + 2σ + 3)y = (σ + 3)u
[
ξ2 + 2ξ + 3 | −ξ − 3

]
ΞR = {α

[
ξ + 2 | −1

]
+ β

[
1 | 0

]
| α, β ∈ R}

Observe that

X(ξ) =

[
ξ + 2 | −1

1 | 0

]
+f (ξ)R(ξ), f ∈ R2×1[ξ]

takes same values of[
ξ + 2 | −1

1 | 0

]
on ker R(σ).



State maps for hybrid representations

R(σ)w = M(σ)`

(0, 0) ∧
0

(w , `) ∈ Bfull =⇒ 0 ∧
0

w ∈ B
⇓

State map for Bfull is also state map for B
⇓

Use shift-and-cut on
[

R −M
]

=⇒ only sufficient: state for Bfull vs. state for B.

“Reduction" needed for characterization.



State maps for hybrid representations

R(σ)w = M(σ)`

(0, 0) ∧
0

(w , `) ∈ Bfull =⇒ 0 ∧
0

w ∈ B
⇓

State map for Bfull is also state map for B
⇓

Use shift-and-cut on
[

R −M
]

=⇒ only sufficient: state for Bfull vs. state for B.

“Reduction" needed for characterization.



Special case: image representations

w = M(σ)`

• B has observable image representation iff
controllable

• W.l.o.g. M =

[
D
N

]
with ND−1 proper

• input→
output→

[
u
y

]
=

[
D(σ)
N(σ)

]
`



Special case: image representations

w = M(σ)`

• B has observable image representation iff
controllable

• W.l.o.g. M =

[
D
N

]
with ND−1 proper

• input→
output→

[
u
y

]
=

[
D(σ)
N(σ)

]
`



Special case: image representations

w = M(σ)`

• B has observable image representation iff
controllable

• W.l.o.g. M =

[
D
N

]
with ND−1 proper

• input→
output→

[
u
y

]
=

[
D(σ)
N(σ)

]
`



Special case: image representations

w = M(σ)`

• B has observable image representation iff
controllable

• W.l.o.g. M =

[
D
N

]
with ND−1 proper

• input→
output→

[
u
y

]
=

[
D(σ)
N(σ)

]
`



State maps for image representations

Theorem: Let B = im(M(σ)), with M =

[
D
N

]
, ND−1

proper. Then

w = M(σ)`

x = X(σ)`

is state representation of B with state variable x IFF

row span (X) = row span (ΣD)

= {r ∈ R1×l[ξ] | rD−1 strictly proper}



State maps for image representations

Theorem: Let B = im(M(σ)), with M =

[
D
N

]
, ND−1

proper. Then

w = M(σ)`

x = X(σ)`

is state representation of B with state variable x IFF

row span (X) = row span (ΣD)

= {r ∈ R1×l[ξ] | rD−1 strictly proper}



Recapitulation

• State maps are not unique

• Algebraic characterization of state maps

• State maps for hybrid representations



Recapitulation

• State maps are not unique

• Algebraic characterization of state maps

• State maps for hybrid representations



Recapitulation

• State maps are not unique

• Algebraic characterization of state maps

• State maps for hybrid representations



Outline
The state property

Discrete-time systems

First-order representations

State maps

The shift-and-cut map

Algebraic characterization

State maps for hybrid representations

Continuous-time systems

Computation of state-space representations



On the space of solutions

C∞-solutions too restrictive: no step, no ramp, etc.

Lloc
1 := {f : R→ Rw |

∫
K |f |dx finite ∀ compact K ⊂ R}



On the space of solutions

C∞-solutions too restrictive: no step, no ramp, etc.

Lloc
1 := {f : R→ Rw |

∫
K |f |dx finite ∀ compact K ⊂ R}

Equality in the sense of distributions:

R
( d

dt

)
w = 0 ⇔

∫ +∞
−∞ w(t)>(R(− d

dt )>f )(t)dt = 0

for all testing functions f .



On the space of solutions

C∞-solutions too restrictive: no step, no ramp, etc.

Lloc
1 := {f : R→ Rw |

∫
K |f |dx finite ∀ compact K ⊂ R}

Equality in the sense of distributions:

R
( d

dt

)
w = 0 ⇔

∫ +∞
−∞ w(t)>(R(− d

dt )>f )(t)dt = 0

for all testing functions f .

Testing function: C∞ with compact support (a ’blip’)



On the space of solutions

C∞-solutions too restrictive: no step, no ramp, etc.

Lloc
1 := {f : R→ Rw |

∫
K |f |dx finite ∀ compact K ⊂ R}

Equality in the sense of distributions:

R
( d

dt

)
w = 0 ⇔

∫ +∞
−∞ w(t)>(R(− d

dt )>f )(t)dt = 0

for all testing functions f .

From now,

ker R
(

d
dt

)
:=

{
w ∈ Lloc

1 (R,Rw) | R
(

d
dt

)
w = 0

in the sense of distributions}



The state property revisited

Σ = (T,W,X,Bfull) is a state system if

(w1, x1), (w2, x2) ∈ Bfull and x1(T ) = x2(T )

and x1, x2 continuous at T
⇓

(w1, x1) ∧
T

(w2, x2) ∈ Bfull

‘State map’ X
( d

dt

)



From kernel representation to state map

Denote col((σi
+(R)))i=1,...,L =: ΣR .

Theorem: Let B = ker(R
( d

dt

)
). Then

R
(

d
dt

)
w = 0

ΣR

(
d
dt

)
w = x

is a state representation of B with state variable x .

¿How to prove it?



When is w ∈ B concatenable with zero?

0 ∧
0

w ∈ B ⇐⇒
∫ +∞

−∞
(0 ∧

0
w)(t)>(R(−

d
dt

)>f )(t)dt = 0

⇐⇒
∫ +∞

0
w(t)>(R(−

d
dt

)>f )(t)dt = 0

for all testing functions f

Integrating repeatedly by parts on f yields:∑deg(R)
k=1

∑deg(R)
j=k (−1)k−1( d j−k

dt j−k w)(0)>R>j ( dk−1

dtk−1 f )(0)

+
∫ +∞

0 (R
( d

dt

)
w)(t)>f (t)dt = 0

Integrating repeatedly by parts on f yields:∑deg(R)
k=1

∑deg(R)
j=k (−1)k−1( d j−k

dt j−k w)(0)>R>j ( dk−1

dtk−1 f )(0)

+
∫ +∞

0 (R
( d

dt

)
w)(t)>f (t)dt = 0



When is w ∈ B concatenable with zero?

0 ∧
0

w ∈ B ⇐⇒
∫ +∞

−∞
(0 ∧

0
w)(t)>(R(−

d
dt

)>f )(t)dt = 0

⇐⇒
∫ +∞

0
w(t)>(R(−

d
dt

)>f )(t)dt = 0

for all testing functions f

Integrating repeatedly by parts on f yields:∑deg(R)
k=1

∑deg(R)
j=k (−1)k−1( d j−k

dt j−k w)(0)>R>j ( dk−1

dtk−1 f )(0)

+
∫ +∞

0 (R
( d

dt

)
w)(t)>f (t)dt = 0

Integrating repeatedly by parts on f yields:∑deg(R)
k=1

∑deg(R)
j=k (−1)k−1( d j−k

dt j−k w)(0)>R>j ( dk−1

dtk−1 f )(0)

+
∫ +∞

0 (R
( d

dt

)
w)(t)>f (t)dt = 0



When is w ∈ B concatenable with zero?

0 ∧
0

w ∈ B ⇐⇒
∫ +∞

−∞
(0 ∧

0
w)(t)>(R(−

d
dt

)>f )(t)dt = 0

⇐⇒
∫ +∞

0
w(t)>(R(−

d
dt

)>f )(t)dt = 0

for all testing functions f

Integrating repeatedly by parts on f yields:∑deg(R)
k=1

∑deg(R)
j=k (−1)k−1( d j−k

dt j−k w)(0)>R>j ( dk−1

dtk−1 f )(0)

+
∫ +∞

0 (R
( d

dt

)
w)(t)>f (t)dt = 0

Integrating repeatedly by parts on f yields:∑deg(R)
k=1

∑deg(R)
j=k (−1)k−1( d j−k

dt j−k w)(0)>R>j ( dk−1

dtk−1 f )(0)

+
∫ +∞

0 (R
( d

dt

)
w)(t)>f (t)dt = 0



w ∈ B concatenable with zero if and only if...

∑deg(R)
k=1

∑deg(R)
j=k (−1)k−1( d j−k

dt j−k w)(0)>R>j ( dk−1

dtk−1 f )(0) = 0
m

f (0)
( d

dt f )(0)
...

(−1)deg(R)−1( ddeg(R)−1

dtdeg(R)−1 f )(0)


>

(ΣR
( d

dt

)
w)(0) = 0

m

(ΣR
( d

dt

)
w)(0) = 0

The shift-and-cut state map!



Furthermore...

• Algebraic characterization, minimality: as in
discrete-time case

• Systems with latent variables: shift-and-cut on
full equations; “reduction"

• State equations: also first order in state variable
and zeroth in w , as in discrete-time case



Furthermore...

• Algebraic characterization, minimality: as in
discrete-time case

• Systems with latent variables: shift-and-cut on
full equations; “reduction"

• State equations: also first order in state variable
and zeroth in w , as in discrete-time case



Furthermore...

• Algebraic characterization, minimality: as in
discrete-time case

• Systems with latent variables: shift-and-cut on
full equations; “reduction"

• State equations: also first order in state variable
and zeroth in w , as in discrete-time case



Example- 1

! 

m
1

! 

m
2

! 

k
1

! 

k
2

! 

F

! 

c
1

m1
d2w1

dt2
+ c1

„ d

dt
w1 −

d

dt
w2

«
+ k1(w1 − w2)− F = 0

−k1w1 + m2
d2w2

dt2
+ c1

„ d

dt
w2 −

d

dt
w1

«
+ (k1 + k2)w2 = 0



Example- 1

! 

m
1

! 

m
2

! 

k
1

! 

k
2

! 

F

! 

c
1

m1
d2w1

dt2
+ c1

„ d

dt
w1 −

d

dt
w2

«
+ k1(w1 − w2)− F = 0

−k1w1 + m2
d2w2

dt2
+ c1

„ d

dt
w2 −

d

dt
w1

«
+ (k1 + k2)w2 = 0

R(ξ) :=

[
m1ξ

2 + c1ξ + k1 −c1ξ − k1 −1
−c1ξ − k1 m2ξ

2 + c1ξ + k1 + k2 0

]



Example- 1

! 

m
1

! 

m
2

! 

k
1

! 

k
2

! 

F

! 

c
1

m1
d2w1

dt2
+ c1

„ d

dt
w1 −

d

dt
w2

«
+ k1(w1 − w2)− F = 0

−k1w1 + m2
d2w2

dt2
+ c1

„ d

dt
w2 −

d

dt
w1

«
+ (k1 + k2)w2 = 0

R(ξ) :=

[
m1ξ

2 + c1ξ + k1 −c1ξ − k1 −1
−c1ξ − k1 m2ξ

2 + c1ξ + k1 + k2 0

]
Shift-and-cut:

σ+(R(ξ)) =

[
m1ξ + c1 −c1 0
−c1 m2ξ + c1 0

]
σ2

+(R(ξ)) =

[
m1 0 0
0 m2 0

]



Example- 2

X(ξ) :=


m1ξ + c1 −c1 0
−c1 m2ξ + c1 0
m1 0 0
0 m2 0


• linearly independent rows

over R;
• spans rowspan(ΞR)



Example- 2

X(ξ) :=


m1ξ + c1 −c1 0
−c1 m2ξ + c1 0
m1 0 0
0 m2 0


• linearly independent rows

over R;
• spans rowspan(ΞR)

X(ξ) is a state map



Example- 2

X(ξ) :=


m1ξ + c1 −c1 0
−c1 m2ξ + c1 0
m1 0 0
0 m2 0


• linearly independent rows

over R;
• spans rowspan(ΞR)

X(ξ) is a state map

X1(ξ) + f (ξ)R(ξ) =
[
m1ξ + c1 −c1 0

]
+ f1(ξ)

[
m1ξ

2 + c1ξ + k1 −c1ξ − k1 −1
]

+ f2(ξ)
[
−c1ξ − k1 m2ξ

2 + c1ξ + k1 + k2 0
]

induces the same value as X1( d
dt ) on any trajectory of

B = ker R
( d

dt

)
.



Example- 3

Classical mechanics ’state’:

Xc(ξ) =


1 0 0
ξ 0 0
0 1 0
0 ξ 0


Shift-and-cut state map:

X(ξ) :=


m1ξ + c1 −c1 0
−c1 m2ξ + c1 0
m1 0 0
0 m2 0





Example- 3

Classical mechanics ’state’:

Xc(ξ) =


1 0 0
ξ 0 0
0 1 0
0 ξ 0


Shift-and-cut state map:

X(ξ) :=


m1ξ + c1 −c1 0
−c1 m2ξ + c1 0
m1 0 0
0 m2 0



X(ξ) =


c1 m1 −c1 0
−c1 0 c1 m2
m1 0 0 0
0 0 m2 0


︸ ︷︷ ︸

=:T

Xc(ξ)

T is nonsingular (’state isomorphism theorem’).



Recapitulation

• Lloc
1 -trajectories

• Equality in the sense of distributions +
concatenability with zero = state maps!

• Algebra is analogous to discrete-time case.



Recapitulation

• Lloc
1 -trajectories

• Equality in the sense of distributions +
concatenability with zero = state maps!

• Algebra is analogous to discrete-time case.



Recapitulation

• Lloc
1 -trajectories

• Equality in the sense of distributions +
concatenability with zero = state maps!

• Algebra is analogous to discrete-time case.



Outline
The state property

Discrete-time systems

First-order representations

State maps

The shift-and-cut map

Algebraic characterization

State maps for hybrid representations

Continuous-time systems

Computation of state-space representations



From kernel representation to state representation

R ∈ Rg×w[ξ] ; state map X ∈ Rn×w[ξ]



From kernel representation to state representation

R ∈ Rg×w[ξ] ; state map X ∈ Rn×w[ξ]

Find:

E, F ∈ R(n+g)×n, G ∈ R(n+g)×w

T ∈ R(n+g)×g[ξ] with rank(T (λ)) = g ∀λ ∈ C

satisfying

EξX(ξ) + FX(ξ) + G = T (ξ)R(ξ)



From kernel representation to state representation

R ∈ Rg×w[ξ] ; state map X ∈ Rn×w[ξ]

Find:

E, F ∈ R(n+g)×n, G ∈ R(n+g)×w

T ∈ R(n+g)×g[ξ] with rank(T (λ)) = g ∀λ ∈ C

satisfying

EξX(ξ) + FX(ξ) + G = T (ξ)R(ξ)

Linear equations, Gröbner bases computations!



From I/O representation to I/O/S representation

I/O representation
R =

[
P −Q

] ;
state map[
Xy Xu

]
Find:

A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×p, D ∈ Rp×m

T ∈ R(n+p)×p[ξ] with rank(T (λ)) = g ∀λ ∈ C

satisfying

[
ξXy(ξ) ξXu(ξ)

Ip 0

]
=

[
A B
C D

] [
Xy(ξ) Xu(ξ)

0 Im

]
+ T (ξ)R(ξ)



Example

! 

m
1

! 

m
2

! 

k
1

! 

k
2

! 

F

! 

c
1

m1
d2w1

dt2
+ c1

„ d

dt
w1 −

d

dt
w2

«
+ k1(w1 − w2)− F = 0

−k1w1 + m2
d2w2

dt2
+ c1

„ d

dt
w2 −

d

dt
w1

«
+ (k1 + k2)w2 = 0



Example

! 

m
1

! 

m
2

! 

k
1

! 

k
2

! 

F

! 

c
1

m1
d2w1

dt2
+ c1

„ d

dt
w1 −

d

dt
w2

«
+ k1(w1 − w2)− F = 0

−k1w1 + m2
d2w2

dt2
+ c1

„ d

dt
w2 −

d

dt
w1

«
+ (k1 + k2)w2 = 0

X(ξ) :=

2664
m1ξ + c1 −c1 0
−c1 m2ξ + c1 0
m1 0 0
0 m2 0

3775 R(ξ) =

"
m1ξ

2 + c1ξ + k1 −c1ξ− k1 −1
−c1ξ− k1 m2ξ

2 + c1ξ + k1 + k2 0

#



Example

X(ξ) :=

2664
m1ξ + c1 −c1 0
−c1 m2ξ + c1 0
m1 0 0
0 m2 0

3775 R(ξ) =

"
m1ξ

2 + c1ξ + k1 −c1ξ− k1 −1
−c1ξ− k1 m2ξ

2 + c1ξ + k1 + k2 0

#

Observe that

ξX1(ξ) = ξ
ˆ
m1ξ + c1 −c1 0

˜
= R1(ξ) +

h
0 0 − k1

m1

k1
m2

i
X(ξ) +

ˆ
0 0 1

˜



Example

X(ξ) :=

2664
m1ξ + c1 −c1 0
−c1 m2ξ + c1 0
m1 0 0
0 m2 0

3775 R(ξ) =

"
m1ξ

2 + c1ξ + k1 −c1ξ− k1 −1
−c1ξ− k1 m2ξ

2 + c1ξ + k1 + k2 0

#

Observe that

ξX1(ξ) = ξ
ˆ
m1ξ + c1 −c1 0

˜
= R1(ξ) +

h
0 0 − k1

m1

k1
m2

i
X(ξ) +

ˆ
0 0 1

˜
ξX2(ξ) = ξ

ˆ
−c1 m2ξ + c1 0

˜
= R2(ξ) +

h
0 0 k1

m1
− k1+k2

m2

i
X(ξ)



Example

X(ξ) :=

2664
m1ξ + c1 −c1 0
−c1 m2ξ + c1 0
m1 0 0
0 m2 0

3775 R(ξ) =

"
m1ξ

2 + c1ξ + k1 −c1ξ− k1 −1
−c1ξ− k1 m2ξ

2 + c1ξ + k1 + k2 0

#

Observe that

ξX1(ξ) = ξ
ˆ
m1ξ + c1 −c1 0

˜
= R1(ξ) +

h
0 0 − k1

m1

k1
m2

i
X(ξ) +

ˆ
0 0 1

˜
ξX2(ξ) = ξ

ˆ
−c1 m2ξ + c1 0

˜
= R2(ξ) +

h
0 0 k1

m1
− k1+k2

m2

i
X(ξ)

ξX3(ξ) = ξ
ˆ
m1 0 0

˜
=
h
1 0 − c1

m1

c1
m2

i
X(ξ)



Example

X(ξ) :=

2664
m1ξ + c1 −c1 0
−c1 m2ξ + c1 0
m1 0 0
0 m2 0

3775 R(ξ) =

"
m1ξ

2 + c1ξ + k1 −c1ξ− k1 −1
−c1ξ− k1 m2ξ

2 + c1ξ + k1 + k2 0

#

Observe that

ξX1(ξ) = ξ
ˆ
m1ξ + c1 −c1 0

˜
= R1(ξ) +

h
0 0 − k1

m1

k1
m2

i
X(ξ) +

ˆ
0 0 1

˜
ξX2(ξ) = ξ

ˆ
−c1 m2ξ + c1 0

˜
= R2(ξ) +

h
0 0 k1

m1
− k1+k2

m2

i
X(ξ)

ξX3(ξ) = ξ
ˆ
m1 0 0

˜
=
h
1 0 − c1

m1

c1
m2

i
X(ξ)

ξX4(ξ) = ξ
ˆ
0 m2 0

˜
=
h
0 1 c1

m1
− c1

m2

i
X(ξ)



Example

X(ξ) :=

2664
m1ξ + c1 −c1 0
−c1 m2ξ + c1 0
m1 0 0
0 m2 0

3775 R(ξ) =

"
m1ξ

2 + c1ξ + k1 −c1ξ− k1 −1
−c1ξ− k1 m2ξ

2 + c1ξ + k1 + k2 0

#

Observe that

ξX1(ξ) = ξ
ˆ
m1ξ + c1 −c1 0

˜
= R1(ξ) +

h
0 0 − k1

m1

k1
m2

i
X(ξ) +

ˆ
0 0 1

˜
ξX2(ξ) = ξ

ˆ
−c1 m2ξ + c1 0

˜
= R2(ξ) +

h
0 0 k1

m1
− k1+k2

m2

i
X(ξ)

ξX3(ξ) = ξ
ˆ
m1 0 0

˜
=
h
1 0 − c1

m1

c1
m2

i
X(ξ)

ξX4(ξ) = ξ
ˆ
0 m2 0

˜
=
h
0 1 c1

m1
− c1

m2

i
X(ξ)

State equations are

d

dt
X
„ d

dt

«
w =

26666664
0 0 − k1

m1

k1
m2

0 0 k1
m1

− k1+k2
m2

1 0 − c1
m1

c1
m2

0 1 c1
m1

− c1
m2

37777775 X
„ d

dt

«
w +

241
0
0

35 ˆ0 0 1
˜

w



On the choice of state map

State map
+

system equations

; state-space
equations

( d2

dt2 + 2 d
dt + 3)y = ( d

dt + 3)u
[
ξ2 + 2ξ + 3 −ξ − 3

]
Take X(ξ) =

[
1 0
ξ −1

]
. Then

A =

[
0 1
−3 −2

]
B =

[
1
1

]
C =

[
1 0

]
D =

[
0
]

‘observable canonical form’



On the choice of state map

State map
+

system equations

; state-space
equations

( d2

dt2 + 2 d
dt + 3)y = ( d

dt + 3)u
[
ξ2 + 2ξ + 3 −ξ − 3

]
Take X(ξ) =

[
1 0
ξ −1

]
. Then

A =

[
0 1
−3 −2

]
B =

[
1
1

]
C =

[
1 0

]
D =

[
0
]

‘observable canonical form’



On the choice of state map

State map
+

system equations

; state-space
equations

( d2

dt2 + 2 d
dt + 3)y = ( d

dt + 3)u
[
ξ2 + 2ξ + 3 −ξ − 3

]

Take X(ξ) =

[
1 0
ξ −1

]
. Then

A =

[
0 1
−3 −2

]
B =

[
1
1

]
C =

[
1 0

]
D =

[
0
]

‘observable canonical form’



On the choice of state map

State map
+

system equations

; state-space
equations

( d2

dt2 + 2 d
dt + 3)y = ( d

dt + 3)u
[
ξ2 + 2ξ + 3 −ξ − 3

]
Take X(ξ) =

[
1 0

ξ + 2 −1

]
(‘reverse shift-and-cut’).

Then

A =

[
−2 1
−3 0

]
B =

[
−1
−3

]
C =

[
1 0

]
D =

[
0
]

‘observer canonical form’

Take X(ξ) =

[
1 0
ξ −1

]
. Then

A =

[
0 1
−3 −2

]
B =

[
1
1

]
C =

[
1 0

]
D =

[
0
]

‘observable canonical form’



On the choice of state map

State map
+

system equations

; state-space
equations

( d2

dt2 + 2 d
dt + 3)y = ( d

dt + 3)u
[
ξ2 + 2ξ + 3 −ξ − 3

]
Take X(ξ) =

[
1 0
ξ −1

]
. Then

A =

[
0 1
−3 −2

]
B =

[
1
1

]
C =

[
1 0

]
D =

[
0
]

‘observable canonical form’



Example

In mechanical example,

X(ξ) =

2664
m1ξ + c1 −c1 0
−c1 m2ξ + c1 0
m1 0 0
0 m2 0

3775 ; A =

26666664
0 0 − k1

m1

k1
m2

0 0 k1
m1

− k1+k2
m2

1 0 − c1
m1

c1
m2

0 1 c1
m1

− c1
m2

37777775 , B =

241
0
0

35



Example

In mechanical example,

X(ξ) =

2664
m1ξ + c1 −c1 0
−c1 m2ξ + c1 0
m1 0 0
0 m2 0

3775 ; A =

26666664
0 0 − k1

m1

k1
m2

0 0 k1
m1

− k1+k2
m2

1 0 − c1
m1

c1
m2

0 1 c1
m1

− c1
m2

37777775 , B =

241
0
0

35

With classical mechanics state map:

Xc(ξ) =

2664
1 0 0
ξ 0 0
0 1 0
0 ξ 0

3775 ; Ac =

266664
0 1 0 0
− k1

m1
− c1

m1

k1
m1

c1
m1

0 0 0 1
k1
m2

c1
m2

− k1+k2
m2

− c1
m2

377775 , B =

264 1
m1
0
0

375



Summary

• The state is constructed!

• Axiom of state

• Concatenability with zero

• State maps

• State maps ; state-space equations

• Algorithms!



Summary

• The state is constructed!

• Axiom of state

• Concatenability with zero

• State maps

• State maps ; state-space equations

• Algorithms!



Summary

• The state is constructed!

• Axiom of state

• Concatenability with zero

• State maps

• State maps ; state-space equations

• Algorithms!



Summary

• The state is constructed!

• Axiom of state

• Concatenability with zero

• State maps

• State maps ; state-space equations

• Algorithms!



Summary

• The state is constructed!

• Axiom of state

• Concatenability with zero

• State maps

• State maps ; state-space equations

• Algorithms!



Summary

• The state is constructed!

• Axiom of state

• Concatenability with zero

• State maps

• State maps ; state-space equations

• Algorithms!



Summary

• The state is constructed!

• Axiom of state

• Concatenability with zero

• State maps

• State maps ; state-space equations

• Algorithms!


