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Some German

Zu einer neuen Wissenschaft, die gänzlich isoliert und die einzige ihrer
Art ist, mit dem Vorurteil gehen, als könne man sie vermittelst seiner
schon sonsts erworbenen vermeinten Kentnisse beuerteilen, obgleich
die es eben sind, an deren Realität zuvor gänzlich gezweifelt werden
muß, bringt nichts anderes zuwege, als daßman allenthalben das zu
sehen glaubt, was einem schon sonst bekannt war, weil etwa die Aus-
drücke jenem ähnlich lauten; nur daßeinem alles äußerst verunstaltet,
widersinning und kauderwelsch vorkommen muß, weil man nicht die
Gedanken des Verfassers, sondern immer nur seine eigene, durch lange
Gewonhnheit zur Natur gewordene Denkungsart dabei zum Grunde legt.

(I. Kant, Prolegomena zu einer jeden künftigen Metaphysik, 1783)



Some German

To approach a new science - one that is entirely isolated and is the only
one of its kind - with the prejudice that it can be judged by means of
one’s putative cognitions already otherwise obtained, even though it is
precisely the reality of those that must first be completely called into
question, results only in believing that one sees everywhere something
that was already otherwise known, because the expressions perhaps
sound similar; except that everything must seem to be extremely
deformed, contradictory, and nonsensical, because one does not
thereby make the author’s thoughts fundamental, but always simply
one’s own, made natural through long habit.

(I. Kant, Prolegomena to Any Future Metaphysics, 1783)
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dt

x = Ax + Bu

y = Cx + Du

always a “natural” starting point for modeling?

• Mechanics ;

2nd order differential equations;

SYSID, transfer functions ;

high-order differential equations;

• First principles and “tearing and zooming" modelling ;

high-order differential equations, with auxiliary variables

• Algebraic constraints among variables
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Questions

• Are state representations

d
dt

x = Ax + Bu

y = Cx + Du

always “natural"?

NO! NO! NO!
• Are state representations important?

• First-order, input/output partition ; choice of initial
condition, choice of input ; ease of simulation;

• First-order ; algorithms based on linear algebra

• Sometimes, “state” is natural: think electric circuits,
position and momentum variables in mechanics, etc.



Questions

• Are state representations

d
dt

x = Ax + Bu

y = Cx + Du

always “natural"?

NO! NO! NO!
• Are state representations important?

YES! YES! YES!
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Issues

• What is a first principles definition of “state"?

• What does that imply for the equations?

• How to construct a state from the equations?

• How to construct a state representation from the
equations?

Higher-order differential equations

;

state representation



The basic idea

It’s the quarter final of the World Cup. You’re late...

The current score is what matters...
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The basic idea

• The state contains all the relevant information to
determine the future behavior of the system

• The state is the memory of the system

• Independence of past and future given the state:
Markovianity



The state property

Σ = (T,W,X,Bfull) is a state system if

(w1, x1), (w2, x2) ∈ Bfull and x1(T ) = x2(T )

⇓
(w1, x1) ∧

T
(w2, x2) ∈ Bfull

∧
T

is concatenation at T :

(f1 ∧
T

f2)(t) :=

{
f1(t) for t < T
f2(t) for t ≥ T



Graphically...
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Graphically...

(w1, x1), (w2, x2) ∈ Bfull and x1(T ) = x2(T )

⇓
(w1, x1) ∧

T
(w2, x2) ∈ Bfull
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Example 1: discrete-time system

Σ = (Z,Rw,Rl,Bfull), with

Bfull := {(w , `) | F (`(t + 1), `(t),w(t)) = 0 for all t}

where

σ : (Rl)Z → (Rl)Z

(σ(`))(t) := `(t + 1)

Special case: input-state-output equations

σx = f (x, u)

y = h(x, u)

w = (u, y)
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Example 2: continuous-time system

Σ = (R,Rw,Rl,Bfull), with

Bfull := {(w , `) | F ◦ ( d
dt `, `,w) = 0}

Special case: input-state-output equations

d
dt

x = f (x, u)

y = h(x, u)

w = (u, y)
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• State equations are not always the most natural
way of modeling systems...

• ...but they are important!

• A first-principles definition of “state"

• A research program: from higher-order to state
space equations
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First-order discrete-time representations

Theorem: A ‘complete’ latent variable system

Σ = (Z,Rw,Rx,Bfull)

is a state system iff Bfull can be described by

F ◦ (σx, x,w) = 0

0-th order in w , 1st order in xLinear case:

Eσx +Fx +Gw = 0

1st order in x is equivalent to state property!



First-order discrete-time representations

Theorem: A ‘complete’ latent variable system

Σ = (Z,Rw,Rx,Bfull)

is a state system iff Bfull can be described by

F ◦ (σx, x,w) = 0

0-th order in w , 1st order in x

Linear case:

Eσx +Fx +Gw = 0

1st order in x is equivalent to state property!



First-order discrete-time representations

Theorem: A ‘complete’ latent variable system

Σ = (Z,Rw,Rx,Bfull)

is a state system iff Bfull can be described by

F ◦ (σx, x,w) = 0

0-th order in w , 1st order in x

Linear case:

Eσx +Fx +Gw = 0

1st order in x is equivalent to state property!



First-order discrete-time representations

Theorem: A ‘complete’ latent variable system

Σ = (Z,Rw,Rx,Bfull)

is a state system iff Bfull can be described by

F ◦ (σx, x,w) = 0

0-th order in w , 1st order in x

Linear case:

Eσx +Fx +Gw = 0

1st order in x is equivalent to state property!



State construction: basic idea

Problem: Given kernel or image or hybrid description,
find a state representation

Eσx + Fx + Gw = 0



State construction: basic idea

Problem: Given kernel or image or hybrid description,
find a state representation

Eσx + Fx + Gw = 0

First compute polynomial operator in the shift acting
on system variables, inducing a state variable:

X(σ)w = x X(σ)` = x X(σ)

[
w
`

]
= x



State construction: basic idea

Problem: Given kernel or image or hybrid description,
find a state representation

Eσx + Fx + Gw = 0

First compute polynomial operator in the shift acting
on system variables, inducing a state variable:

X(σ)w = x X(σ)` = x X(σ)

[
w
`

]
= x

Then use original eqs. and X to obtain 1st order rep-
resentation.



State construction: basic idea

Problem: Given kernel or image or hybrid description,
find a state representation

Eσx + Fx + Gw = 0

First compute polynomial operator in the shift acting
on system variables, inducing a state variable:

X(σ)w = x X(σ)` = x X(σ)

[
w
`

]
= x

Then use original eqs. and X to obtain 1st order rep-
resentation.

X(σ) is called a state map



State maps for kernel representations

X ∈ R•×w[ξ] induces a state map X(σ) for ker(R(σ))

if the behavior Bfull with latent variable x , consisting of
all (w , x) such that

R(σ)w = 0
X(σ)w = x

satisfies the state property.
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State maps for kernel representations

X ∈ R•×w[ξ] induces a state map X(σ) for ker(R(σ))

if the behavior Bfull with latent variable x , consisting of
all (w , x) such that

R(σ)w = 0
X(σ)w = x

satisfies the state property.

• State maps exist

• Minimality

• State map ; state representation



Minimal state maps

State system (R,Rw,Rn,Bf ) is (state)-minimal if every
other state system (R,Rw,Rn′,B′f ) with same external
behavior is such that n′ ≥ n

Minimal state dimension: n(B), McMillan degree of B
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Minimal state maps

State system (R,Rw,Rn,Bf ) is (state)-minimal if every
other state system (R,Rw,Rn′,B′f ) with same external
behavior is such that n′ ≥ n

Minimal state dimension: n(B), McMillan degree of B

Minimal state map ; minimal state variable

Minimality of (R,Rw,Rn,Bf ) equivalent with:
• Trimness: for every x0 ∈ Rn exists (w , x) ∈ Bf

such that x(0) = x0;
• Observability of x from w ⇐⇒ exists

X ∈ R•×w[ξ] s.t. x = X
( d

dt

)
w .

¡Minimal state variable induced by state map!



Example

B = {w | r(σ)w = 0}

where r ∈ R[ξ], deg(r) = n.

(Minimal) state map induced by


1
ξ
...

ξn−1

 ;


w
σw

...
σn−1w





The state property revisited

A linear system Σ = (T,W,X,Bfull) with latent
variable x is a state system if

(w , x) ∈ Bfull and x(T ) = 0
⇓

(0, 0) ∧
T

(w , x) ∈ Bfull

• Time-invariance =⇒ can choose T = 0;

• Concatenability with zero trajectory is key;

• x = X(σ)w and w ∈ B =⇒ concatenability of w
with zero is key.
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When is w ∈ B concatenable with zero?

R0w + R1σw + . . . + RLσ
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... =
...

RL−1w(0) + RLw(1) = 0

RLw(0) = 0
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The shift-and-cut map

σ+ : R[ξ]→ R[ξ]

σ+(
∑n

i=0 piξ
i) :=

∑n−1
i=0 pi+1ξ

i

“Divide by ξ and take polynomial part"

Extended componentwise to vectors and matrices
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... =
...

σL
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Shift-and-cut and concatenability with zero

w is
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with zero
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(σ2
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... =
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From kernel representation to state map

Denote col((σi
+(R)))i=1,...,L =: ΣR .

Theorem: Let B = ker(R(σ)). Then

R(σ)w = 0
ΣR(σ)w = x

is a state representation of B with state variable x .
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• Concatenability is key

• Shift-and-cut operation

• Shift-and-cut state map
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There’s more than the shift-and-cut state map

Many systems of equations are equivalent to shift-
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¿How to characterize this nonuniqueness?
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σn
+(r)(σ)w = w

σn−1
+ (r)(σ)w = rn−1w + σw

... =
...

σ+(r)(σ)w = r1w + . . . + σn−1w

Zero at t = 0 iff (σk w)(0) = 0 for k = 0, . . . , n − 1.
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Example: scalar systems

r0w + r1σw + . . . + σnw = 0

Note also “shift-and-cut state map" different from
“standard state map"

w
rn−1w + σw
...
r1w + . . . + σn−1w

w
σw
...
σn−1w

...although each is “equivalent" to the other...
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Theorem: LetB = ker(R(σ)), and define ΣR as above.
Define

ΞR := {f ∈ R1×w[ξ] | ∃ α ∈ R1×• s.t. f = αΣR}
〈R〉 := {f ∈ R1×w[ξ] | ∃ g ∈ R1×•[ξ] s.t. f = gR}

X ∈ R•×w[ξ] is state map for B
if and only if

rowspanR(X)⊕ 〈R〉 = ΞR + 〈R〉

X is minimal state map if and only if its rows are basis
for complementary subspace of 〈R〉 in ΞR + 〈R〉.
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(σ2 + 2σ + 3)y = (σ + 3)u
[
ξ2 + 2ξ + 3 | −ξ − 3

]
σ+ ;

[
ξ + 2 | −1

]
;
[
σ + 2 | −1

]
σ2

+ ;
[
1 | 0

]
;

[
1 | 0

]
ΞR = {α

[
ξ + 2 | −1

]
+ β

[
1 | 0

]
| α, β ∈ R}

A basis of ΞR ; a minimal state map



Example

(σ2 + 2σ + 3)y = (σ + 3)u
[
ξ2 + 2ξ + 3 | −ξ − 3

]
ΞR = {α

[
ξ + 2 | −1

]
+ β

[
1 | 0

]
| α, β ∈ R}

Observe that

X(ξ) =

[
ξ + 2 | −1

1 | 0

]
+f (ξ)R(ξ), f ∈ R2×1[ξ]

takes same values of[
ξ + 2 | −1

1 | 0

]
on ker R(σ).



State maps for hybrid representations

R(σ)w = M(σ)`

(0, 0) ∧
0

(w , `) ∈ Bfull =⇒ 0 ∧
0

w ∈ B
⇓

State map for Bfull is also state map for B
⇓

Use shift-and-cut on
[

R −M
]

=⇒ only sufficient: state for Bfull vs. state for B.

“Reduction" needed for characterization.
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D
N

]
, ND−1

proper. Then
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is state representation of B with state variable x IFF
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Testing function: C∞ with compact support (a ’blip’)



On the space of solutions

C∞-solutions too restrictive: no step, no ramp, etc.

Lloc
1 := {f : R→ Rw |

∫
K |f |dx finite ∀ compact K ⊂ R}

Equality in the sense of distributions:

R
( d

dt

)
w = 0 ⇔

∫ +∞
−∞ w(t)>(R(− d

dt )>f )(t)dt = 0

for all testing functions f .

From now,

ker R
(

d
dt

)
:=

{
w ∈ Lloc

1 (R,Rw) | R
(

d
dt

)
w = 0

in the sense of distributions}



The state property revisited

Σ = (T,W,X,Bfull) is a state system if

(w1, x1), (w2, x2) ∈ Bfull and x1(T ) = x2(T )

and x1, x2 continuous at T
⇓

(w1, x1) ∧
T

(w2, x2) ∈ Bfull

‘State map’ X
( d

dt

)



From kernel representation to state map

Denote col((σi
+(R)))i=1,...,L =: ΣR .

Theorem: Let B = ker(R
( d

dt

)
). Then

R
(

d
dt

)
w = 0

ΣR

(
d
dt

)
w = x

is a state representation of B with state variable x .

¿How to prove it?
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w ∈ B concatenable with zero if and only if...

∑deg(R)
k=1

∑deg(R)
j=k (−1)k−1( d j−k

dt j−k w)(0)>R>j ( dk−1

dtk−1 f )(0) = 0
m

f (0)
( d

dt f )(0)
...

(−1)deg(R)−1( ddeg(R)−1

dtdeg(R)−1 f )(0)


>

(ΣR
( d

dt

)
w)(0) = 0

m

(ΣR
( d

dt

)
w)(0) = 0

The shift-and-cut state map!



Furthermore...

• Algebraic characterization, minimality: as in
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• Systems with latent variables: shift-and-cut on
full equations; “reduction"

• State equations: also first order in state variable
and zeroth in w , as in discrete-time case
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+ k1(w1 − w2)− F = 0

−k1w1 + m2
d2w2

dt2
+ c1

„ d

dt
w2 −

d

dt
w1

«
+ (k1 + k2)w2 = 0

R(ξ) :=

[
m1ξ

2 + c1ξ + k1 −c1ξ − k1 −1
−c1ξ − k1 m2ξ

2 + c1ξ + k1 + k2 0

]
Shift-and-cut:

σ+(R(ξ)) =

[
m1ξ + c1 −c1 0
−c1 m2ξ + c1 0

]
σ2

+(R(ξ)) =

[
m1 0 0
0 m2 0

]
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Example- 2

X(ξ) :=


m1ξ + c1 −c1 0
−c1 m2ξ + c1 0
m1 0 0
0 m2 0


• linearly independent rows

over R;
• spans rowspan(ΞR)

X(ξ) is a state map

X1(ξ) + f (ξ)R(ξ) =
[
m1ξ + c1 −c1 0

]
+ f1(ξ)

[
m1ξ

2 + c1ξ + k1 −c1ξ − k1 −1
]

+ f2(ξ)
[
−c1ξ − k1 m2ξ

2 + c1ξ + k1 + k2 0
]

induces the same value as X1( d
dt ) on any trajectory of

B = ker R
( d

dt

)
.
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0 1 0
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Example- 3

Classical mechanics ’state’:

Xc(ξ) =


1 0 0
ξ 0 0
0 1 0
0 ξ 0


Shift-and-cut state map:

X(ξ) :=


m1ξ + c1 −c1 0
−c1 m2ξ + c1 0
m1 0 0
0 m2 0



X(ξ) =


c1 m1 −c1 0
−c1 0 c1 m2
m1 0 0 0
0 0 m2 0


︸ ︷︷ ︸

=:T

Xc(ξ)

T is nonsingular (’state isomorphism theorem’).
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• Algebra is analogous to discrete-time case.
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R ∈ Rg×w[ξ] ; state map X ∈ Rn×w[ξ]

Find:

E, F ∈ R(n+g)×n, G ∈ R(n+g)×w

T ∈ R(n+g)×g[ξ] with rank(T (λ)) = g ∀λ ∈ C

satisfying

EξX(ξ) + FX(ξ) + G = T (ξ)R(ξ)



From kernel representation to state representation

R ∈ Rg×w[ξ] ; state map X ∈ Rn×w[ξ]

Find:

E, F ∈ R(n+g)×n, G ∈ R(n+g)×w

T ∈ R(n+g)×g[ξ] with rank(T (λ)) = g ∀λ ∈ C

satisfying

EξX(ξ) + FX(ξ) + G = T (ξ)R(ξ)

Linear equations, Gröbner bases computations!



From I/O representation to I/O/S representation

I/O representation
R =

[
P −Q

] ;
state map[
Xy Xu

]
Find:

A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×p, D ∈ Rp×m

T ∈ R(n+p)×p[ξ] with rank(T (λ)) = g ∀λ ∈ C

satisfying

[
ξXy(ξ) ξXu(ξ)

Ip 0

]
=

[
A B
C D

] [
Xy(ξ) Xu(ξ)

0 Im

]
+ T (ξ)R(ξ)
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State equations are

d

dt
X
„ d

dt

«
w =

26666664
0 0 − k1

m1

k1
m2

0 0 k1
m1

− k1+k2
m2

1 0 − c1
m1

c1
m2

0 1 c1
m1

− c1
m2

37777775 X
„ d

dt

«
w +

241
0
0

35 ˆ0 0 1
˜

w
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With classical mechanics state map:

Xc(ξ) =

2664
1 0 0
ξ 0 0
0 1 0
0 ξ 0

3775 ; Ac =
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0 1 0 0
− k1
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− c1

m1
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m2

377775 , B =

264 1
m1
0
0
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