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Consider the following system with nd inputs and ne outputs:

ẋ = Ax + Bd

e = Cx + Dd

If A is Hurwitz, this system defines a map

M : L2(R, Rnd) 3 d → e ∈ L2(R, Rne).

The worst-case effect of d onto e can be quantified by the induced norm

‖M‖ = sup
d∈L2(R,Rnd ), d6=0

‖Md‖L2(R,Rne )

‖d‖L2(R,Rnd )

.

If T (s) is the system’s transfer matrix C(sI − A)−1B + D then

‖M‖ = ‖T‖H∞ := sup
ω∈R

σmax(T (iω)).
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Given a sinusoidal input d(t) = d0e
iωt, the response of the system up

to transients is given by

e(t) = e0e
iωt with e0 = T (iω)d0

This implies the following relation between input- and output-amplitudes:

‖e0‖ = ‖T (iω)d0‖ ≤ σmax(T (iω))‖d0‖

Analyze frequency-by-frequency attenuation with Bode-plot of T :

σmax(T(iω))

ω
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Given P determine a stabilizing controller

K which minimizes the H∞-norm of the

closed-loop transfer matrix T (K):

minimize ‖T (K)‖H∞

subject to K stabilizes P
K

P

e

y u

d

• Due to energy-gain interpretation of the H∞-norm: Optimal atten-

uation of disturbances d ∈ L2(R+, Rnd) at e ∈ L2(R+, Rne).

• This problem formulation is muuuuch more flexible, as we will only

touch upon on the next couple of slides.
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In a tracking problem, a major emphasis is laid on shaping the sensitivity

(reference to tracking error), under the constraint that the control effort

(reference to control) does not peak too much and rolls off at high

frequencies. In view of this rough specs, consider

GK+

-1

reference error control

which indicates the relevant performance signals.
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Choose a low-pass scalar weighting function w1 and a constant or high-

pass weight w2. Define W1 = w1I and W2 = w2I and consider the

following interconnection with weighted performance channels:

GK+

-1

d y u

W1 W2

e1 e2

Then design a controller K which stabilizes this interconnection and

minimizes the H∞-norm of d → e = col(e1, e2).
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S = (I + GK)−1 and R = KS = K(I + GK)−1

this means that

σmax

(
w1(iω)S(iω)

w2(iω)R(iω)

)
≤ γ for all ω ∈ [0,∞]
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low-pass characteristics for σmax(R) as desired at the outset.
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σmax(S(iω)) ≤ γ

|w1(iω)|
, σmax(R(iω)) ≤ γ

|w2(iω)|
for all ω ∈ [0,∞].

• If γ ≈ 1, we achieve a high-pass characteristics for σmax(S) and a

low-pass characteristics for σmax(R) as desired at the outset.

• If the optimal achievable norm is large, the imposed specifications are

too tight and not achievable. The plots of

σmax

(
w1(iω)S(iω)

w2(iω)R(iω)

)
, σmax(S(iω)),

1

|w1(iω)|
, σmax(R(iω)),

1

|w2(iω)|

over frequency provide an indication about the frequency range on

which the specifications were too tight. This information allows to

adapt the weights for a next (better) design.
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In summary: With a stabilizing controller we try to achieve a small

minimal H∞-norm for the open-loop interconnection

G+

-1

d y u

W1 W2

e1 e2

which is written in the so-called generalized plant format:

P

e

y u

d
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Open-loop interconnection and controller are described as ẋ

e

y

 =

 A B1 B

C1 D1 E

C F 0


 x

d

u

 and

(
ẋc

u

)
=

(
AK BK

CK DK

)(
xc

y

)
.
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ẋc

u

)
=

(
AK BK

CK DK

)(
xc

y

)
.

Controlled closed-loop system described with calligraphic matrices:(
ξ̇

e

)
=

(
A B
C D

)(
ξ

d

)
and T (s) = C(sI −A)−1B +D.

Given γ > 0 determine a controller such that A is Hurwitz and

‖T ‖H∞ < γ.



System Descriptions and Problem Formulation

10/60

Carsten Scherer
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e

y

 =

 A B1 B

C1 D1 E

C F 0


 x

d

u

 and

(
ẋc
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)
=

(
AK BK

CK DK

)(
xc

y

)
.

Controlled closed-loop system described with calligraphic matrices:(
ξ̇

e

)
=

(
A B
C D

)(
ξ

d

)
and T (s) = C(sI −A)−1B +D.

Given γ > 0 determine a controller such that A is Hurwitz and

‖T ‖H∞ < γ.

Analysis: LMI-test for checking wether a controller achieves the specs.
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If T is stable recall that, by definition of the H∞-norm, ‖T ‖H∞ < γ iff

σmax(T (iω)) < γ or T (iω)∗T (iω) ≺ γ2I or 1
γ
T (iω)∗T (iω) ≺ γI or(

I

T (iω)

)∗(
−γI 0

0 1
γ
I

)
︸ ︷︷ ︸

Pγ

(
I

T (iω)

)
≺ 0 for all ω ∈ R ∪ {∞}.

The celebrated bounded real lemma turns this “difficult-to-verify”

frequency domain inequality into a genuine LMI.

A is stable and ‖C(sI − A)−1B + D‖H∞ < γ holds iff there exist

some X � 0 such that(
ATX + XA XB

BTX 0

)
+

(
0 I

C D

)T

Pγ

(
0 I

C D

)
≺ 0. (LMI)
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• The left-upper block of the LMI is ATX + XA+ 1
γ
CTC ≺ 0. Hence

X � 0 implies that A is Hurwitz.

• The right-lower block is the FDI at ω = ∞.

• Finally, one easily checks for finite ω ∈ R that(
(iωI −A)−1B

I

)∗(
ATX + XA XB

BTX 0

)(
(iωI −A)−1B

I

)
= 0.

Hence (LMI) implies for ω ∈ R that

0 � 0

(
(iωI −A)−1B

I

)∗
lhs of (LMI)

(
(iωI −A)−1B

I

)
=(

I

T (iω)

)∗
Pγ

(
I

T (iω)

)
.
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• To show “only if” is harder, and very many different techniques of

proof have been suggested in the literature.

The most recent new proofs are based on LMI duality theory.

Rantzer (1996), Balakrishnan/Vandenberghe (2003)

• Note that X � 0 is only related to guaranteeing stability of A.

• LetA have no eigenvalues on the imaginary axis. Then the frequency-

domain inequality holds iff (LMI) has a symmetric solution X .

This true if Pγ is replaced by any symmetric matrix, and is then called

Kalman, Yakubovich, Popov (KYP) Lemma.

• The result is best understood if embedded into dissipation theory for

linear dynamical systems.
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Observe that(
ATX + XA XB

BTX 0

)
+

(
0 I

C D

)T (
−γI 0

0 1
γ
I

)(
0 I

C D

)
≺ 0

if and only if(
ATX + XA XB

BTX −γI

)
+

1

γ

(
CT

DT

)(
C D

)
≺ 0

if and only if (Schur) ATX + XA XB CT

BTX −γI DT

C D −γI

 ≺ 0.

The latter inequality is just more convenient to work with!
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Open-loop interconnection and controller are described as

ẋ = Ax + B1d + Bu

e = C1x + D1d + Eu
and u = DKx.

This leads to controlled closed-loop system described with(
A B
C D

)
=

(
A + BDK B1

C1 + EDK D1

)
defining T .

Stability of A and ‖T ‖H∞ < γ iff exists X with

X � 0,

 (A+BDK)TX+X (A+BDK) XB1 (C1+EDK)T

BT
1 X −γI DT

1

C1+EDK D1 −γI

≺0.

This is obviously not an LMI in the green variables. Remedy?
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X � 0,

 (A+BDK)TX+X (A+BDK) XB1 (C1+EDK)T

BT
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X � 0,

 (A+BDK)TX+X (A+BDK) XB1 (C1+EDK)T

BT
1 X −γI DT

1

C1+EDK D1 −γI

≺0.

• Perform congruence transformation with X−1 and diag(X−1, I, I):

X−1 � 0, X−1(A+BDK)T +(A+BDK)X−1 B1 X−1(C1+EDK)T

BT
1 −γI DT

1

(C1+EDK)X−1 D1 −γI

≺0.

• Perform the change of variables Y = X−1 and M := DKX−1.

This clearly results in an LMI in Y and M as shown on the next slide.
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Synthesis inequalities for static state-feedback design:

Y � 0,

 (AY +BM)T +(AY +BM) B1 (C1Y +EM)T

BT
1 −γI DT

1

(C1Y +EM) D1 −γI

≺0.

• Check whether the synthesis inequalities have solution Y , M .

• If no we are sure that the level γ cannot be achieved.

• If yes then DK = MY −1 is a stabilizing state-feedback gain

which achieves ‖T ‖H∞ < γ.

Note that γ enters affinely. We can hence directly compute the optimal

achievable H∞-level by minimizing γ over the synthesis LMIs.
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Open-loop interconnection and controller are described as ẋ

e

y

 =

 A B1 B

C1 D1 E

C F 0


 x

d

u

 and

(
ẋc

u

)
=

(
AK BK

CK DK

)(
xc

y

)
.

This leads to controlled closed-loop system described with(
A B
C D

)
=

 A + BDKC BCK B1 + BDKF

BKC AK BKF

C1 + EDKC ECK D1 + EDKF

 .

Need to solve the nonlinear matrix inequalities

X � 0,

 ATX + XA XB CT

BTX −γI DT

C D −γI

 ≺ 0.
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Carsten Scherer

According the partition of A introduce the following notations for the

sub-blocks of X and its inverse:

X =

(
X U

UT ∗

)
, X−1 =

(
Y V

V T ∗

)
.

Recall for later that Y X + V UT = I.

Let us define(
K L

M N

)
=

(
XAY 0

0 0

)
+

(
U XB

0 I

)(
AK BK

CK DK

)(
V T 0

CY I

)
.

This obviously transforms the variables X , AK , BK , CK , DK into the

new variables X, Y and K, L, M , N .

This transformation is motivated by its linearizing effect as shown next.



Output-Feedback: Block Transformation
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With Y =

(
Y I

V T 0

)
a short computation reveals

YTXY =

(
Y I

I X

)
,(

YT (XA)Y YT (XB)

CY D

)
=

=

 AY + BM A + BNC B1 + BNF

K XA + LC XB1 + LF

C1Y + EM C1 + ENC D1 + ENF

 .

Observe the affine dependence on X, Y and K, L, M , N !
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For necessity: Can assume w.l.o.g. that Y has full column rank.

For sufficiency: Make sure that Y is square and non-singular.

Transform

X � 0,

 ATX + XA XB CT

BTX −γI DT

C D −γI

 ≺ 0

by congruence with matrices Y and diag(Y , I, I) into

YTXY � 0,

 YT (ATX )Y + YT (XA)Y YT (XB) YTCT

(BTX )Y −γI DT

CY D −γI

 ≺ 0.

Substitute formulas on previous slide to obtain synthesis inequalities.
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There exists a controller that renders A Hurwitz and which achieves ‖T ‖H∞ <

γ iff there exist X, Y and K, L, M , N such that(
Y I

I X

)
� 0,

sym(AY +BM) (A+BNC)+KT (B1+BNF ) (C1Y +EM)T

(A+BNC)+K sym(XA+LC) (XB1+LF ) (C1+ENC)T

(B1+BNF )T (XB1+LF )T −γI (D1+ENF )T

(C1Y +EM) (C1+ENC) (D1+ENF ) −γI

≺0

where we use the abbreviation sym(A) = AT + A.

These are LMIs in X, Y and K, L, M , N ! Also γ enters affinely!
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• Solve synthesis inequalities to determine X, Y and K, L, M , N .

• Determine non-singular U , V with V UT = I − Y X.

• Then the inequalities on slide 18 are satisfied for

X =

(
Y V

I 0

)−1(
I 0

X U

)
(

AK BK

CK DK

)
=

(
U XB

0 I

)−1(
K −XAY L

M N

)(
V T 0

CY I

)−1

• AK has the same size as A (full order controller).

• Freedom in choosing U , V only affects the controller realization (and

not its transfer matrix). Example choice: U = X, V = X−1 − Y .
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• No hypotheses on system required.

• Can directly optimize affine functional of involved variables.

Since γ enters affinely it is for example possible to directly compute

inf
A stable

‖C(sI −A)−1B +D‖H∞

• Warning: Optimal controllers do in general not exist.

If γ approaches optimal value, the poles of closed-loop system move

to imaginary axis and/or the controller parameters blow up.

• Take precautions to render controller construction well-conditioned.

The proposed linearizing change of variables can be applied to many

other performance specifications which can be expressed by LMIs.
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• Rewrite analysis inequalities in terms of blocks X , XA, XB, C, D.

• Find formal congruence transformation involving Y to transform into

inequalities in terms of blocks YTXY , YT (XA)Y , YT (XB), CY , D.

• Obtain synthesis inequalities by substitution

YTXY → X(v),

(
YT [XA]Y YT [XB]

C D

)
→

(
A(v) B(v)

C(v) D(v)

)

with affine A(v), B(v), C(v), D(v) in new variables v on next slide.

• Controller construction independent of particular analysis inequalities!

Construction leads to controller of same order as plant.

• Works both in continuous-time and discrete-time in identical fashion.
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State-Feedback: v =
(

Y , M
)

and

X(v) = Y ,

(
A(v) B(v)

C(v) D(v)

)
=

(
AY + BM B1

C1Y + EM D1

)

Output-Feedback: v =
(

X, Y , K, L, M, N
)

and

X(v) =

(
Y I

I X

)
(

A(v) B(v)

C(v) D(v)

)
=

 AY + BM A + BNC B1 + BNF

K XA + LC XB1 + LF

C1Y + EM C1 + ENC D1 + ENF


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F sea level

Y

sea floor

• Minimize drift Y resulting from lateral force F . Controller should

act on low-frequency component of force only.

• Suppress resonance of M → φ (moment to vertical angle).

• Keep thruster actuation bounded.
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With actuator dynamics we use the following interconnection structure:

• Keep |Y (t)| below 2.5cm and |φ(t)| below 3o.

• Thruster actuation |u(t)| should stay below 0.3.

• Push resonance peak of M → φ down below 1.5.
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H∞ design with LMI’s for

(
F

M

)
→

 Ȳ

0.1 φ

0.5 u

.

Closed-loop poles and time-domain specifications:

−1 −0.8 −0.6 −0.4 −0.2 0
0

5

10

0 50 100 150 200
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Frequency domain-domain characteristics:
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Outline
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• The H∞-Norm

• The H∞-Control Problem

• H∞-Analysis and the Bounded Real Lemma

• H∞-Synthesis with LMIs

• H∞-Synthesis with Riccati Equations

• H2-Analysis and Synthesis

• Mixed Controller Synthesis
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y
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d
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 with

{
ET C1 = 0, ET E = I

B1F
T = 0, FF T = I
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e

y

 =

 A B1 B

C1 0 E

C F 0


 x

d

u

 with

{
ET C1 = 0, ET E = I

B1F
T = 0, FF T = I

which has the following additional properties:

• (A, B2) is stabilizable and (A, C2) is detectable.

• (A, C1) is observable and (A, B1) is controllable.



From LMIs to Riccati Equations

30/60

Carsten Scherer

Consider the specific open-loop system ẋ
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Consider the specific open-loop system ẋ

e

y

 =

 A B1 B

C1 0 E

C F 0


 x

d

u

 with

{
ET C1 = 0, ET E = I

B1F
T = 0, FF T = I

which has the following additional properties:

• (A, B2) is stabilizable and (A, C2) is detectable.

• (A, C1) is observable and (A, B1) is controllable.

Also consider γ = 1 and design a strictly proper controller (DK = 0).

Much stronger than required but convenient for simple derivation.
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Since DK = 0 iff N = 0, the synthesis LMIs from slide 22 simplify to(
Y I

I X

)
� 0,

sym(AY +BM) (A+BNC)+KT B1 (C1Y +EM)T

(A+BNC)+K sym(XA+LC) (XB1+LF ) CT
1

(B1+BNF )T (XB1+LF )T −I 0

(C1Y +EM) C1 0 −I

≺0.

Due to the particular way in which K enters, it can be easily eliminated.



Intermezzo: Elimination
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There exists some K with(
Q S + KT

ST + K R

)
≺ 0

if and only if
Q ≺ 0 and R ≺ 0.

Proof. “Only if” is obvious. Choose K = −ST to prove “If”.
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Carsten Scherer

There exists some K with(
Q S + KT

ST + K R

)
≺ 0

if and only if
Q ≺ 0 and R ≺ 0.

Proof. “Only if” is obvious. Choose K = −ST to prove “If”.

There exists some L with

Q + (L + S)(L + S)T ≺ 0

if and only if
Q ≺ 0.

Proof. “Only if” is obvious. Choose L = −S to prove “If”.



Simplfied Synthesis Inequalities
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The resulting synthesis inequalities are(
Y I

I X

)
� 0,

 (XA + LC)T + (XA + LC) (XB1 + LF ) CT
1

(XB1 + LF )T −I 0

C1 0 −I

 ≺ 0,

 (AY + BM)T + (AY + BM) B1 (C1Y + EM)T

BT
1 −I 0

(C1Y + EM) 0 −I

 ≺ 0.
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Taking the Schur complements leads to(
Y I

I X

)
� 0,

(XA+LC)T +(XA+LC)+(XB1+LF )(XB1+LF )T +CT
1 C1 ≺ 0,

(AY +BM)T +(AY +BM)+B1B
T
1 +(C1Y +EM)T (C1Y +EM) ≺ 0.
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Carsten Scherer

Taking the Schur complements leads to(
Y I

I X

)
� 0,

(XA+LC)T +(XA+LC)+(XB1+LF )(XB1+LF )T +CT
1 C1 ≺ 0,

(AY +BM)T +(AY +BM)+B1B
T
1 +(C1Y +EM)T (C1Y +EM) ≺ 0.

The latter inequalities can be rearranged to

AT X + XA + XB1B
T
1 X + CT

1 C1 − CT C + (L + CT )(L + CT )T ≺ 0,

AY + Y AT + Y CT
1 C1Y + B1B

T
1 −BBT + (M + BT )T (M + BT ) ≺ 0.

Now we can also eliminate L and M .
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There exists a controller that renders A Hurwitz and which achieves

‖T ‖H∞ < 1 iff there exist X, Y such that(
Y I

I X

)
� 0,

AT X + XA + XB1B
T
1 X + CT

1 C1 − CT C ≺ 0,

AY + Y AT + Y CT
1 C1Y + B1B

T
1 −BBT ≺ 0.
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There exists a controller that renders A Hurwitz and which achieves

‖T ‖H∞ < 1 iff there exist X, Y such that(
Y I

I X

)
� 0,

AT X + XA + XB1B
T
1 X + CT

1 C1 − CT C ≺ 0,

AY + Y AT + Y CT
1 C1Y + B1B

T
1 −BBT ≺ 0.

• The Riccati inequalities can be turned into LMIs by Schur. These

synthesis inequalities only involve X, Y . (Reduced complexity!)

• Since (A, C1) is observable and (A, B1) is controllable, we can replace

the Riccati inequalities by the corresponding equations.
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Set R = B1B
T
1 and Q = CT

1 C1 − CT C. Equivalent are:

• The Hamiltonian

(
A R

−Q −AT

)
has no eigenvalue in C0.
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Set R = B1B
T
1 and Q = CT

1 C1 − CT C. Equivalent are:

• The Hamiltonian

(
A R

−Q −AT

)
has no eigenvalue in C0.

• The algebraic Riccati equation AT X+XA+XRX+Q = 0 has a

unique symmetric solution X+ for which A + RX+ is anti-stable.

• The algebraic Riccati inequality AT X + XA + XRX + Q ≺ 0

(ARI) has a symmetric solution X.

X+ is related to the solution set of the ARI as follows:

• Largest: Any solution X of the ARI satisfies X ≺ X+.

• Can come arbitrarily close: For all ε > 0 there exists a solution

X of the ARI which satisfies X+ − εI ≺ X.



Solution in Terms of Riccati Equations
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There exists a controller that renders A Hurwitz and which achieves

‖T ‖H∞ < 1 iff the Riccati equations

AT X + XA + XB1B
T
1 X + CT
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AY + Y AT + Y CT
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T
1 −BBT = 0

have anti-stabilizing solutions X+ and Y+ which satisfy(
X+ I

I Y+

)
� 0.
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37/60

Carsten Scherer

There exists a controller that renders A Hurwitz and which achieves

‖T ‖H∞ < 1 iff the Riccati equations

AT X + XA + XB1B
T
1 X + CT

1 C1 − CT C = 0,

AY + Y AT + Y CT
1 C1Y + B1B

T
1 −BBT = 0

have anti-stabilizing solutions X+ and Y+ which satisfy(
X+ I

I Y+

)
� 0.

• These conditions can be verified with standard Riccati solvers.

• Result is usually formulated for the inverses P = X+
−1 and

Q = Y+
−1 as shown next.
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There exists a controller that renders A Hurwitz and which achieves

‖T ‖H∞ < 1 iff the indefinite Riccati equations

AP + PAT + B1B
T
1 + P (CT

1 C1 − CT C)P = 0,

AT Q + QA + CT
1 C1 + Q(B1B

T
1 −BBT )Q = 0

have stabilizing solutions P and Q which satisfy

P � 0, Q � 0, max |λ(PQ)| < 1.

If all conditions are satisfied, a suitable controller is given by[
A + (B1B

T
1 −B2B

T
2 )Q + (Q−P−1)−1CT

2 C2 −(Q−P−1)−1CT
2

−BT
2 Q 0

]
.

Doyle, Glover, Khargonekar, Francis (1989)
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Suppose A is Hurwitz and D = 0. The H2-norm of T is defined as

‖T ‖H2 :=

√
1

2π
trace

∫ ∞

−∞
T (iω)∗T (iω) dω.
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√
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2π
trace

∫ ∞
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2 = trace
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2 = trace
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Suppose A is Hurwitz and D = 0. The H2-norm of T is defined as

‖T ‖H2 :=

√
1

2π
trace

∫ ∞

−∞
T (iω)∗T (iω) dω.

Easily computed by either one of following formulas:

‖T ‖2
2 = trace

(
CP0CT

)
where AP0 + P0AT + BBT = 0.

‖T ‖2
2 = trace

(
BT Q0B

)
where AT Q0 + Q0A+ CTC = 0.

Why? Recall that Q0 =
∫∞

0
eA

T tCTCeAt dt and apply Parseval:

‖T ‖2
2 = trace

∫ ∞

0

[CeAtB]T [CeAtB] dt =

= traceBT

[∫ ∞

0

eA
T tCTCeAt dt

]
B = trace

(
BT Q0B

)
.
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Let d be white noise in ξ̇ = Aξ + Bd.
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Carsten Scherer

Let d be white noise in ξ̇ = Aξ + Bd. Recall that the state-covariance

matrix P (t) = E[ξ(t)ξ(t)T ] can be computed by solving

Ṗ (t) = AP (t) + P (t)AT + BBT , P (0) = E[x(0)x(0)T ].

Therefore lim
t→∞

E[ξ(t)ξ(t)T ] = lim
t→∞

P (t) = P0. With e = Cξ we infer

lim
t→∞

E[e(t)T e(t)] = lim
t→∞

trace E[Cξ(t)ξ(t)TCT ] =

= trace(C lim
t→∞

E[ξ(t)ξ(t)T ]CT ) = trace(CP0CT ).

If d is white noise and ξ̇ = Aξ + Bd, e = Cξ then

lim
t→∞

E[e(t)T e(t)] = ‖T ‖2
H2

.

The squared H2-norm equals the asymptotic variance of output.
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Let dk be a standard unit vector and denote the output of

ξ̇(t) = Aξ(t), e = Cξ, ξ(0) = Bdk

by ek(.). This is just the response to an impulse in channel k.
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Let dk be a standard unit vector and denote the output of

ξ̇(t) = Aξ(t), e = Cξ, ξ(0) = Bdk

by ek(.). This is just the response to an impulse in channel k.

Since ek(t) = CeAtBdk we infer∫ ∞

0

ek(t)
T ek(t) dt = dT

kBT

[∫ ∞

0

eA
T tCTCeAt dt

]
Bdk = dT

k (BT Q0B)dk.

After summing over k the right-hand side is trace(BT Q0B) = ‖T ‖2
H2

.

Squared H2-norm is energy sum of transients of output responses:∑
k

∫ ∞

0

‖ek(t)‖2 dt = ‖T ‖2
H2

.
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H2-Analysis by LMIs
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Carsten Scherer

If A is Hurwitz it is easy to see that

AP0 + P0AT + BBT = 0 implies trace(CP0CT ) < γ2

iff there exists some P with

AP + PAT + BBT ≺ 0 and trace(CPCT ) < γ2.

A is Hurwitz and ‖T ‖H2 < γ iff D = 0 and there exists a P with

P � 0, AP + PAT + BBT ≺ 0,
ne∑

k=1

CkPCT
k < γ2.

For a fixed controller these are LMIs in P . However they are not in the

correct format in order to apply our general procedure.

Schur and congruence allow to rearrange these for X = γP−1 into ...
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... these equivalent versions:(
ATX + XA XB

BTX −γI

)
≺ 0,


γ C1 · · · Cne

CT
1 X · · · 0
...

...
. . .

...

CT
ne

0 · · · X

 � 0.



General Procedure: Illustration for H2-Synthesis
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Carsten Scherer

... these equivalent versions:(
ATX + XA XB

BTX −γI

)
≺ 0,


γ C1 · · · Cne

CT
1 X · · · 0
...

...
. . .

...

CT
ne

0 · · · X

 � 0.

Formal congruence trafo with diag(Y , I) and diag(1,Y , . . . ,Y):

There exists a controller which renders A Hurwitz and closed-loop

H2-norm smaller than γ iff exist v such that D(v) = 0 and

(
A(v)T + A(v) B(v)

B(v)T −γI

)
≺0,


γ C1(v) · · · Cne(v)

C1(v)T X(v) · · · 0
...

...
. . .

...

Cne(v)T 0 · · · X(v)

�0.
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Under the assumptions on slide 30 one can derive, in a similar fashion

as we sketched for H∞, the following classical H2-synthesis result.

Determine the (existing) stabilizing solutions of the Riccati equations

AP + PAT + B1B
T
1 + PCT CP = 0,

AT Q + QA + CT
1 C1 + QBBT Q = 0.

Then the unique optimal H2-controller is given by[
A−B2B

T
2 Q− PCT

2 C2 PCT
2

−BT
2 Q 0

]
.

Doyle, Glover, Khargonekar, Francis (1989)
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Interconnection for estimation:

System
dz

y

+
e
−

Estimator

All LMI results apply to estimator synthesis! It’s just a special case!

• Find estimator which minimizes H∞-norm of w → e ...

... render energy gain as small as possible.
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Interconnection for estimation:

System
dz

y

+
e
−

Estimator

All LMI results apply to estimator synthesis! It’s just a special case!

• Find estimator which minimizes H∞-norm of w → e ...

... render energy gain as small as possible.

• Find estimator which minimizes H2-norm of w → e ...

... optimally reduce asymptotic variance against white noise.
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• The H∞-Norm

• The H∞-Control Problem

• H∞-Analysis and the Bounded Real Lemma

• H∞-Synthesis with LMIs

• H∞-Synthesis with Riccati Equations

• H2-Analysis and Synthesis

• Mixed Controller Synthesis
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Design controller which achieves

multiple objectives on different

channels of closed-loop system:

• Loop-shaping:

‖Td1→e1‖H∞ < γ1

• Disturbance attenuation:

‖Td2→e2‖H2 < γ2

Plant

Controller

y u

d 1

d q

e 1

e q

e k dk

No loss of generality: Relevant channels are dk → ek, k = 1, . . . , q.



Multi-Channel System Description
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Open-loop system and controller:
ẋ

e1

...

eq

y




A B1 · · · Bq B

C1 D1 · · · D1q E1

...
...

. . .
...

...

Cq Dq1 · · · Dq Eq

C F1 · · · Fq 0




x

d1

...

dq

u

 ,

(
ẋc

u

)
=

(
AK BK

CK DK

)(
xc

y

)
.

Controlled closed-loop system:
ξ̇

e1

...

eq

 =


A B1 · · · Bq

C1 D1 · · · D1q

...
...

. . .
...

Cq Dq1 · · · Dq




ξ

d1

...

dq

 .



Multi-Objective H2/H∞-Control
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Find controller such that A is Hurwitz and

‖C1(sI −A)−1B1 +D1‖H∞ < γ1, ‖C2(sI −A)−1B2 +D2‖H2 < γ2.

Related analysis conditions: D2 = 0 and ATX 1 + X 1A X 1B1 CT
1

BT
1 X 1 −γ1I DT

1

C1 D1 −γ1I

 ≺ 0

(
ATX 2 + X 2A X 2B2

BT
2 X 2 −γ2I

)
≺ 0,

 γ (C2)1 · · ·
(C2)

T
1 X 2 · · ·

...
...

. . .
...

 � 0.

In general need X 1 6= X 2. Untractable in state-space.
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Find controller such that A is Hurwitz and

‖C1(sI −A)−1B1 +D1‖H∞ < γ1, ‖C2(sI −A)−1B2 +D2‖H2 < γ2.

Related analysis conditions: D2 = 0 and ATX 1 + X 1A X 1B1 CT
1

BT
1 X 1 −γ1I DT

1

C1 D1 −γ1I

 ≺ 0

(
ATX 2 + X 2A X 2B2

BT
2 X 2 −γ2I

)
≺ 0,

 γ (C2)1 · · ·
(C2)

T
1 X 2 · · ·

...
...

. . .
...

 � 0.

In general need X 1 6= X 2. Untractable in state-space.

Relaxation: Introduce extra constraint X 1 = X 2.



Mixed-Objective H2/H∞-Control
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Find controller such that D2 = 0 and that there exists X with ATX + XA XB1 CT
1

BT
1 X −γ1I DT

1

C1 D1 −γ1I

 ≺ 0

(
ATX + XA XB2

BT
2 X −γ2I

)
≺ 0,

 γ (C2)1 · · ·
(C2)

T
1 X · · ·

...
...

. . .

 � 0.



Mixed-Objective H2/H∞-Control
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Find controller such that D2 = 0 and that there exists X with ATX + XA XB1 CT
1

BT
1 X −γ1I DT

1

C1 D1 −γ1I

 ≺ 0

(
ATX + XA XB2

BT
2 X −γ2I

)
≺ 0,

 γ (C2)1 · · ·
(C2)

T
1 X · · ·

...
...

. . .

 � 0.

Solvability of mixed problem implies stability of A and the desired norm

inequalities. Can hence conclude in general that

Minimal mixed γ2 ≥ Minimal multi-objective γ2.

X 1 = X 2 often implies that there is a gap and the inequality is strict.



Solution of Mixed H2/H∞-Control
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But X 1 = X 2 implies tractability: Can apply general procedure!

Mixed synthesis conditions: D2(v) = 0 and A(v)T + A(v) B1(v) C1(v)T

B1(v)T −γ1I D1(v)T

C1(v) D1(v) −γ1I

 ≺ 0

(
A(v)T + A(v) B2(v)

B2(v)T −γ2I

)
≺ 0,

 γ2 (C2(v))1 · · ·
(C2(v))T

1 X(v) · · ·
...

...
. . .

 � 0.

Can be solved by standard algorithms ...

... controller construction as usual ...

... controller order identical to order of system!



Extensions
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• For fixed α1, α2 and variable γ1, γ2, optimize α1γ1 + α2γ2.

Analyze trade-off between specifications by playing with α1, α2.

• Improve relaxation with tuning parameter α > 0: X 1 = αX 2.

Line-search over α. Might reduce conservatism.

• Can include more than two LMI performance on different channels.

Never forget conservatism.

• Possible to include other type of constraints.

Important example: Closed-loop poles in convex LMI region.



Example: Floating Platform
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With actuator dynamics we use the following interconnection structure:

• Keep |Y (t)| below 2.5cm and |φ(t)| below 3o.

• Thruster actuation |u(t)| should stay below 0.3.

• Push resonance peak of M → φ down below 1.5.



Example: Mixed Design
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H∞-bound 0.8:

(
F

M

)
→

(
Ȳ

0.1 φ

)
. H2-minimization:

(
F

M

)
→

u.

Closed-loop poles and time-domain specifications:

−1 −0.8 −0.6 −0.4 −0.2 0
0

5

10

0 50 100 150 200
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0

0.02

0 50 100 150 200
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Example: Mixed Design
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Frequency domain-domain characteristics:
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Reminder: Eigenvalues in LMI Region
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All eigenvalues of A ∈ Rn×n are contained in the LMI-region{
z ∈ C :

(
I

zI

)∗(
Q S

ST R

)(
I

zI

)
≺ 0

}
if and only if there exists a K � 0 such that(

I

A⊗ I

)T (
K ⊗Q K ⊗ S

K ⊗ ST K ⊗R

)(
I

A⊗ I

)
≺ 0.

Beautiful generalization of standard stability test!

Gahinet, Chilali (1996)



Closed-loop Poles in Convex LMI-Region
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Eigenvalues of A in LMI-region defined by Q, R, S iff exists X with

X � 0,

(
I

A⊗ I

)T (
X ⊗Q X ⊗ S

X ⊗ ST X ⊗R

)(
I

A⊗ I

)
≺ 0
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or equivalently
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Eigenvalues of A in LMI-region defined by Q, R, S iff exists X with

X � 0,

(
I

A⊗ I
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Eigenvalues of A in LMI-region defined by Q, R, S iff exists X with

X � 0,

(
I

A⊗ I

)T (
X ⊗Q X ⊗ S

X ⊗ ST X ⊗R

)(
I

A⊗ I

)
≺ 0

or equivalently

X � 0, X ⊗Q + (XA)⊗ S + (ATX )⊗ ST + (ATXA)⊗R ≺ 0.

Assumption: R < 0. Then we can factorize it as R = T T T .

LMIs equivalent to (Schur and properties of Kronecker product):(
X ⊗Q + (XA)⊗ S + (ATX )⊗ ST (ATX )⊗ T

(XA)⊗ T T −X ⊗ I

)
≺ 0.

Formal congruence trafo with diag(Y ⊗ I,Y ⊗ I). Done!
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With actuator dynamics we use the following interconnection structure:

• Keep |Y (t)| below 2.5cm and |φ(t)| below 3o.

• Thruster actuation |u(t)| should stay below 0.3.

• Push resonance peak of M → φ down below 1.5.
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Reduce resonance by pushing resonating pole away from axis.

Closed-loop poles and time-domain specifications:
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Example: Mixed + Pole-Placement
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Frequency domain-domain characteristics:
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Here is a summary of the main issues we addressed:

• Motivated H∞- and H2-control problems

• Showed how to characterize H∞- and H2-norm bounds by LMIs

• Revealed general procedure from LMI analysis to LMI synthesis

Convexification of state- and output-feedback synthesis

• Discussed flexibility for mixed synthesis

We were much too brief about

• Other performance specifications

• The relevance of the general KYP Lemma

• The relation to Riccati equations


