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Linear time-invariant systems
Kernel representations
Latent variables
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Mathematical models

A bit of mathematics & philosophy
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Assume that we have a ‘real’ phenomenon that produces

‘events’, ‘outcomes.

Phenomenor

event, outcome
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Assume that we have a ‘real’ phenomenon that produces
‘events), ‘outcomes.

Phenomenon

event, outcome

We view a deterministic mathematical model for a
phenomenon as a prescription of which eventsan occur,
and which eventscannotoccur.
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>

In the first part of this lecture, we develop this point of
view into a mathematical formalism.
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>

>

In the first part of this lecture, we develop this point of
view into a mathematical formalism.

In the second part, we apply this formalism to dynamical
systems, especially to linear time-invariant differentia
systems.
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The universum
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The outcomes can be described in the language of
mathematics, as mathematical objects, by answering:

To which universum do the (unmodelled) events belong?
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The outcomes can be described in the language of
mathematics, as mathematical objects, by answering:

To which universum do the (unmodelled) events belong?

» Do the events belong to a discrete set?
~» discrete event phenomena

» Are the events real numbers, or vectors of real numbers?
~»  continuous phenomena

» Are the events functions of time?
~» dynamical phenomena

» Are the events functions of space, or time & space?
~» distributed phenomena
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The outcomes can be described in the language of
mathematics, as mathematical objects, by answering:

To which universum do the (unmodelled) events belong?

» Do the events belong to a discrete set?
~» discrete event phenomena

» Are the events real numbers, or vectors of real numbers?
~»  continuous phenomena

» Are the events functions of time?
~» dynamical phenomena

» Are the events functions of space, or time & space?
~» distributed phenomena

The set where the events belong to is called tr universum ,
denoted by% .
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Examples

» Words in a natural language
% ={ab,c,...,xy,z}"
with n = the number of letters in the longest word
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Examples

» Words in a natural language
% ={ab,c,...,xy,z}"
with n = the number of letters in the longest word
Sentences in a natural language

» DNA sequences

» Fortran code
IATEX code

» Error detecting and correcting codes
ISBN numbers
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Examples

» The pressure, volume, guantity, and temperature of a gas
In a vessel

(pressure, volume, quantity, temperature)

~ Y = (0,00) x (0,00) x (0,00) x (0, 00)
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» The gravitational attraction of two bodies

mass force

position mass

position,

Event = massg, mass, positiony, positiony, force
~ U =(0,0) x (0,00) x R®x R3x R3
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Continuous phenomense

» The voltage across and the current through a resistor

Event = (voltage, current) ~ Y =TR?
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» The voltage across and the current through a resistor

Event = (voltage, current) ~ Y =R?

» Price/demand ~» % =]0,) X [0,0)
Price/supply ~ Y =|0,00) x |0, 00)
Supply/demand ~» % =1[0,) x [0, )
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Dynamical phenomene

Dynamical phenomena~ this course.

Examples

PLANET

» Planetary motion

SUN

The events are maps fromR to R3

~ U ={w:R—R3}
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Dynamical phenomena-~- this course.

Examples Bl ANET

» Planetary motion

SUN
The events are maps fromR to R3
~ U ={w:R — R} :(IR{?’)R

AB = the set of maps from Ato B={f:A— B}
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Dynamical phenomene

» The voltage across and the current into an electrical port
with ‘dynamics’

1

V

The events are maps fronR to R?

~ U ={(\V,]):R —R?}
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» Heat flows, temperatures, and work in a thermodynamic

system Working

Heating Ch- ) terminal

terminal
Thermodynamic
Engine

Qe T) ¢

Cooling
terminal

Events: maps fromR to [0, ) x [0,00) x [0,00) x [0,00) x R

7 %:{(QI’UTWQC)TC)W):RH”C}
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» The input and the output of a signal processor

. Signal
iInput processor output

Events: maps from Z to R xR

~ U ={(uy):7Z—R*}
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» The input and the output of a signal processor

. Signal
iInput processor output

Events: maps from Z to R xR
~ U ={(uy):Z— R?}

» Variables associated with mechanical devices, electrical
Instruments, chemical systems, multi-domain constructs,
economic processes, ... Phenomena with ‘memory’.
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» Temperature profile of, and heat absorbed by, a rod

q(x,1)
W

X ¢ T(X,1)

Events: maps from R xR to [0,0) xR

v % ={(T,0):R2—[0,0) xR}
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» EM fields.

In each point of space & at each time, there is an

electric field E(t,Xx,Y,2)
magnetic field (t,X,Y,2)
currentdensity  j(t,x,y,2)
charge density  p(t,x,y,2)

CO!

{

Events: maps from R x R3 to RExR3xR3x R

~ U ={(EB]Jp) :R*-R®
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EM fields.
In each point of space & at each time, there is an

electric field E(t,Xx,Y,2)
magnetic field (t,X,Y,2)
currentdensity  j(t,x,y,2)
charge density  p(t,x,y,2)

CO!

{

Events: maps from R x R3 to RExR3xR3x R
~> %:{(E,LS;, T,p) :IR{4—>IR{10}

Images

Phenomena in which things happen simultaneously at
different points in space
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A model Is a subset: the ‘behavior]
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Given is a phenomenon with universunv/Z .
Without further scrutiny, any event in % is possible.

After studying the situation, the conclusion is reached thathe
events are constrained, that some laws are in force.
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Given is a phenomenon with universunv/Z .
Without further scrutiny, any event in % is possible.

After studying the situation, the conclusion is reached thathe
events are constrained, that some laws are in force.

Modeling means that certain events are declared to be
Impossible, that they cannot occur.

The possibilities that remain constitute what we call the
‘behavior’ of the model.
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Given is a phenomenon with universunv/Z .
Without further scrutiny, any event in % is possible.

After studying the situation, the conclusion is reached thathe
events are constrained, that some laws are in force.

Modeling means that certain events are declared to be
Impossible, that they cannot occur.

The possibilities that remain constitute what we call the
‘behavior’ of the model.

A model Is a subset%# of %

A IS called the behavior of the model
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Every “good” scientific theory is prohibition:
it forbids certain things to happen...
The more a theory forbids, the better it is.

Karl Popper

Conjectures and Refutations:

The Growth of Scientific Knowledge
Routhledge, 1963

Karl Popper
(1902-1994)
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Examples
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Examples

» Words in a natural language
% ={ab,c,...,xy,z}"
with n = the number of letters in the longest word

2% = all words recognized by the spelling checker.
For example, SPQR¢ Z.

% is basically defined by enumeration, by listing its
elements.
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Examples

» Words in a natural language
% ={ab,c,...,xy,z}"
with n = the number of letters in the longest word

2% = all words recognized by the spelling checker.
For example, SPQR¢ £.

% is basically defined by enumeration, by listing its
elements.

Sentences in a natural language.
% = all ‘legal’ sentences.
Usually determined using grammars.
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Examples

» Words in a natural language
% ={ab,c,...,xy,z}"
with n = the number of letters in the longest word

2% = all words recognized by the spelling checker.
For example, SPQR¢ Z.

% is basically defined by enumeration, by listing its
elements.

Sentences in a natural language.
% = all ‘legal’ sentences.
Usually determined using grammars.

» DNA sequencesZ =777
» [ATEX code. Z = all LATEX files that ‘run’.
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» 32-bit binary strings with a parity check.
U =1{0,1}3

31
93—{alaZ"’331332|ak€{071} and ag = Zak}
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» 32-bit binary strings with a parity check.

U = {0,132
31
(mod 2
B=(aar---azjas | a; € {0,1}and az; = Z Ay
k=1
2% can be expressed in other ways. For example,
32
(mod 2
#={ajay---az1as2| ax € {0,1} and Z a = 0}
k=1
(- a - - b1 - a - "1 0 0 -~ 07 b7
as by ay 11 0 - O by
B=q | |13 st il=]: "]y
azj b3g azl O 0O --- -1 1 b3g
| La32. | baq_ _ a3 | 0 0 - 0 —1J Lbgd )
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» 32-bit binary strings with a parity check.

U = {0,132
31
(mod 2
B=(aar---azjas | a; € {0,1}and az; = Z Ay
k=1
2% can be expressed in other ways. For example,
32
(mod 2
#={ajay---az1as2| ax € {0,1} and Z a = 0}
k=1
(- a - - b1 - a - "1 0 0 -~ 07 b7
as by ay 11 0 - O by
B=q | |13 st il=]: "]y
azj b3g azl O 0O --- -1 1 b3g
| La32. | baq_ _ a3 | 0 0 - 0 —1J Lbgd )
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Examples

» The pressure, volume, guantity, and temperature of a gas
In a vessel

(pressure, volume, quantity, temperature)

U = (0,00) x (0,00) x (0,00) x (0,0)
Gaslaw: #Z={(PV,N,T)e Z | PV =NT } #{ e
Vol d

(Y
v
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Continuous phenomene

» The gravitational attraction of two bodies

mass My

position qu - mass M,

position q,

~ U = (0,0) x (0,00) x R3x R3 x R3

B—J) E— M1MoIm,—my
10102l

‘inverse square law’

Isaac Newton, 1642-1727
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» The voltage across and the current through a resistor

I
.%
+
v =R
|

Event = (voltage, current) ~ % =R?

‘Ohm'’s law’ AB={V,1)| V=R}

"1,+ Vg P,
Georg Ohm, 1789 — 1854
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Demand

Price/demand:
U = [07 OO) X [07 OO)

B

Supply
A

Price/supply:
U = [Ov oo) X [Ov oo)

B

Pri?e
Demaid Supply

Supply/demand:
% = |0,0) x |0, )
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Demand

Price/demand:
U = [07 OO) X [07 OO)

B

Supply
A

Price/supply:
U = [Ov oo) X [Ov oo)

B

Pri?e
Demaid Supply

Supply/demand:
% = |0,0) x |0, )
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Dynamical phenomene

» Planetary motion Y = (R3)R

PLANET
ETq. . c 34 monts
.* ) e ‘*\..D ....' \
: B_.- : - '
SUN . AA """""" o 1 year

Kepler's laws ~» %

" yeded-opdoy

Kepl

‘[MAGYAR POSTA

epler b |} VARY
1571-1630 | ¢ frga Sy
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. R
» Planetary motion U = (R
PLAN ET 34 months

Ld
L] L3
..........
......
..........

Kepler's laws ~ Z = the orbits R — R3 with:

K.1 periodic, ellipses, with the sun in one of the foci;

K.2 the vector from sun to planet sweeps out equal areas
In equal time;

K.3 the square of the period
divided by the third power
of the major axis is the
same for all the planets

MAGYAR POSTA

cpler . on
15 1167)0 : "
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Dynamical phenomene

» The second law

unit mass
position q
force F
Isaac Newton
by William Blake
U = (R?x R?’)R

%:{(F,q):R->R3><R3| Fngzzq}
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Working
Ch' T terminal

Thermodynamic
Engine

Heating
terminal

» Heat flows,
temperatures,
and work

B~ [13(Qn—Qc—W)dt =0
(QC,TC)\L
and fjo?(% — &)dt <0 Cooling

T, T —
h ¢ terminal
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Working

Heating Qh' T terminal
» Heat flows, rerminel
temperatures,
and work

Thermodynamic
Engine

P~ f_*o?(Qh— Qc—W)dt =0
(QC,TC)\L

and fj-ozo((_?_: — %)dt <0 Cooling

terminal

First and second law
of thermodynamics

| e

Rudolf Clausius
1706 — 1749 1822 — 1888
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» The input and the output of a signal processor

. Signal
iInput processor output

Events: maps fromZ to R xR ~ % = {(u,y) : Z — R?}
For an MA system

B = {(U Y):Z—R*|y(t) = 57 51T U(t/)}

t/=t—T
many variations
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» The temperature profile of, and heat absorbed by, a rod

q(x,1)
W

X ¢ T(X,t)

Events: maps fromR xR to [0,0) xR

% ={(T.q) : R? - [0,0) x R}
%= {(T,0):R?— [0,00) xR §T = 2T +q}
X
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» Maxwell's equations for EM fields in free space

i 1
0-E = =
80P7
~ 0 -
[IxE = ——B
8 ot
1-B = 0,
-, 1. 0~
c’OxB = —j4+—
James Clerk Maxwell €0 ot

1831 -1879

independent variables:(t,x,y,z) time and space

dependent variables:(E,B, j, p)
electric & magnetic field, current & charge density
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Stochastic and Fuzzy




In this lecture, we consider onlydeterministic models.

Stochastic models = there is a mapP (the ‘probability’)

PZCQ/—>[O,1]

with o7 a ‘o-algebra’
of subsets of%/
& certain axioms on .« and P.

Pierre-Simon Laplace  Andrey Kolmogorov
1903 — 1989

P (%) ='the degree of certainty’ (relative frequency,
propensity, plausibility, belief) that outcomes (elemerg from
) arein A, = '‘the degree of validity ofZ as a model.

—n. 36/1



In this lecture, we consider onlydeterministic models.

Stochastic models = there is a mapP (the ‘probability’)

PZCQ/—>[O,1]

with o7 a ‘o-algebra’
of subsets of%/
& certain axioms on .« and P.

Pierre-Simon Laplace  Andrey Kolmogorov
1903 — 1989

P (%) ='the degree of certainty’ (relative frequency,
propensity, plausibility, belief) that outcomes (elemerg from
) arein A, = '‘the degree of validity ofZ as a model.

Determinism : Pis a{0,1}-law
o = {@,PB,98°0mpPlementa, . p () = 1.
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Fuzzy models

Fuzzy models:there is a mapu
(‘the membership functionj

Lotfi Zadeh
born 1921

p:% — 10,1

L (X) = ‘the extent to whichx belongs to the model’s behaviar’
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Fuzzy models:there is a mapu
(‘the membership function)

Lotfi Zadeh
born 1921

u:u —0,1]
L (X) = ‘the extent to whichx belongs to the model’s behaviar’
Determinism: U IS ‘crisp’:
image(p) = {0,1},

2= ut({1}) = {xe % | p(x) = 1)
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Behavioral models fit the tradition of modeling, but have not
been approached as such in a deterministic setting. The
behavior captures the essence of a model.

The behavior is all there is.
Equivalence of models, properties of models,
symmetry, system identification, etc.,

must all refer to the behavior.

Every ‘good’ scientific theory is prohibition: it forbids
certain things to happen...
The more a theory forbids, the better it is.

Replace ‘scientific theory’ by ‘mathematical model’ !
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A model deals with events
The events belong to an universumz/

A model is specified by its behavior#,
a subset of the event set/

In dynamical systems, the events are functions of
time and the behavior % is hence a family of
time-trajectories.



Dynamical systems
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In dynamical systems, ‘events’ are maps, with the time axissa
domain, hence functions of time.

It IS convenient to distinguish in the notation

the domain of the maps, the time set
and the codomain, the signal space

the set where the functions take on their values.
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In dynamical systems, ‘events’ are maps, with the time axissa
domain, hence functions of time.

It IS convenient to distinguish in the notation

the domain of the maps, the time set
and the codomain, the signal space

the set where the functions take on their values.
The behavior of a dynamical system is usually described by a
system of ordinary differential equations (ODES) or
difference equations.

In contrast to distributed phenomena
~» partial differential equations (PDES)
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A dynamical system (T,W, %)
TCR ‘time set’
W ‘sighal space’
#CW!'  the ‘behavior’
a family of trajectories T — W
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A dynamical system (T,W, %)
TCR ‘time set’
W ‘sighal space’
#CW!'  the ‘behavior’
a family of trajectories T — W

mostly, T=R,R,,Z,orN(=ZZ,),
and, in this course,W = R¥,
% is a family of
(finite dimensional) vector-valued time trajectories
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A dynamical system (T,W, %)
TCR ‘time set’
W ‘sighal space’
#CW!'  the ‘behavior’
a family of trajectories T — W

mostly, T=R,R,,Z,orN(=ZZ,),
and, in this course,W = R",

% is a family of
(finite dimensional) vector-valued time trajectories

W.:T—-R"€c X<
w:T — R ¢ # < ‘the model forbids w
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A dynamical system (T,W, %)
TCR ‘time set’
W ‘sighal space’
#CW!'  the ‘behavior’
a family of trajectories T — W

mostly, T=R,R,,Z,orN(=ZZ,),
and, in this course,W = R¥,
% is a family of
(finite dimensional) vector-valued time trajectories

W.:T—-R"€c X<
w:T — R ¢ # < ‘the model forbids w

T =Ror R, ~» ‘continuous-time’ systems and ODEs
T=ZorN ~-‘discrete-time’ systems and difference eqn’s

We deal extensively with the cas& = R first.
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Linear time-invariant differential systems

LTIDSS




The dynamical system (R, R, %) ~ % is saidto be

[linear | :< [ [wi,We € #,a € R]| = [awy +W2 € A |
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The dynamical system (R, R, %) ~ % is saidto be

[linear | :< [ [wi,We € #,a € R]| = [awy +W2 € A |

[ time-invariant | :< [ [we 4, a' the t-shift] = [o'w e 4] |
A

olf .

o
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The dynamical system (R, R, %) ~ % is saidto be

[linear | :< [ [wi,We € #,a € R]| = [awy +W2 € A |

[ time-invariant | :< [ [we 4, a' the t-shift] = [o'w e 4] |
A

olf .

t

| differential | :< [% is ‘described’ by an ODE].

o
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This definition of linearity has as a special case
u—y=>L(u) Lalinearmap

U € a space of inputsy € a space of outputs, w= v|

B ={w= y ly=L(u)} = the ‘graph’ of L
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This definition of linearity has as a special case
u—y=>L(u) Lalinearmap

U € a space of inputsy € a space of outputs, w= v|

B ={w= y ly=L(u)} = the ‘graph’ of L

But, a dynamical system, also an input/output system,
IS seldom a map'!
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The dynamical system(R,R", %) is

a linear time-invariant differential system (LTIDS) <

the behavior consists of the set of solutions of a system of
linear, constant coefficient, ODEs

d d®
R — .-+ R,—w=0.
Row + 1dtW+ + dtnw

Ro,R1, -, R, € R**¥ real matrices that parametrize the
system, andw : R — R".
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The dynamical system(R,R", %) is

a linear time-invariant differential system (LTIDS) <

the behavior consists of the set of solutions of a system of
linear, constant coefficient, ODEs

d d®
R — .-+ R,—w=0.
Row + 1dtW+ + dtnw

Ro,R1, -, R, € R**¥ real matrices that parametrize the
system, andw : R — R". In polynomial matrix notation

~> R(%)W:O

a polynomial matrix, usually ‘wide’ or square.
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We should define what we mean by a solution of
d
R(g)w=0

For ease of exposition, we tak& (R, R") solutions.
Hence the behavior defined is

B = {we ¢ (R,R") | R(%)w:o}
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We should define what we mean by a solution of

R(§)w=0

For ease of exposition, we tak& (R, R") solutions.

Hence the behavior defined is

B = {we ¢ (R,R") | R(%)w:o}

% =kernel (R(&)) ‘kernel representatiohof this .

Notation:

Bec L | LY =the LTIDSs with w variables

BeL ZL*=thelTIDSs.
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There are many possibilities for the def’n of the solution seof
d )y
R(g)w=0

» % (R,R") solutions — our choice
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There are many possibilities for the def’n of the solution seof
d )y
R(g)w=0

» % (R,R") solutions — our choice

» Strong solutions : all derivatives appearing in the egn’ns

exist and the ODEs are satisfied. Has very few
‘iInvariance’ properties.

» Weak solutions :w € #'°c@ (R, R™), solutions
Interpreted in the sense of distributions.

Includes steps, ramps, jumps, jerks, etc.
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There are many possibilities for the def’n of the solution seof
d )y
R(g)w=0

» % (R,R") solutions — our choice

» Strong solutions : all derivatives appearing in the egn’ns

exist and the ODEs are satisfied. Has very few
‘iInvariance’ properties.

» Weak solutions :w € #'°c@ (R, R™), solutions
Interpreted in the sense of distributions.

Includes steps, ramps, jumps, jerks, etc.

» Distributional solutions include impulses and such
frivolities.
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We will meet numerous representations of LTIDSs

> Asthe setof solutions 0 R(&)w=0 ReR[&]"" (our

def.) R(Q): &> (R,RWnR)) _, @ (R, R¥in(R)) kernel
reprn’
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We will meet numerous representations of LTIDSs

> Asthe setof solutions 0 R(&)w=0 ReR[&]"" (our

def.) R(Q): &> (R,RWnR)) _, @ (R, R¥in(R)) kernel
reprn’

» With input/output partition
P()y=Q(d)u w= H detP) # 0,P~1Q proper

y
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We will meet numerous representations of LTIDSs

>

As the set of solutions 0 R(&)w=0 RecR[&]**" (our

def) R(&): €> (R,Reo2din(R) _, @ (R, Rrov4n(R) kernel
reprn’

With input/output partition
P(@)y=Q(d)u w-|!| detP) 20 *Qproper

Input/state/output representation : : 'Q g
A consists of allw's generated by

d N g5 s, L
GX= Ax+Bu, y=Cx+Du w = I
y born 1930
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Representations of LTIDSs

> w=M ()7 with MeR[E]""
M($): 6™ (R,Re0MinM) _, @ (R, Rrov4in(M)) image repr'n’
% = image (M (§))
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> w=M(&)¢ with M e R[E]™
M () : €™ (R,RectdinM)) _ @~ (R RrovdinM)) image repr'n’
X = image (I\/I (%))

» First principles models often contain ‘latent variables’

(see later) ~ R(§)w=M($)¢ ‘latentvariable
representation’

A ={w| F/suchthat...}
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> w=M(&)¢ with M e R[E]™
M () : €™ (R,RectdinM)) _ @~ (R RrovdinM)) image repr'n’
X = image (I\/I (%))

» First principles models often contain ‘latent variables’
(see later) ~ R(§)w=M($)¢ ‘latentvariable
representation’

A ={w| F/suchthat...}
» Special case:iFx=Ax+Bw DAEs

%A ={w| dxsuchthat...}
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» representations withrational symbols
R(&)w=0,w=M (%), etc.

with RM € R (&)***, or proper stable rational, etc. (see
lecture 7)
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» representations withrational symbols

R(&)w=0,w=M (%), etc.

with RM € R (&)***, or proper stable rational, etc. (see
lecture 7)

» and then, there are theconvolution representations
—+00
H({t)w(t —t)dt'=0

—00

(see lecture 4)
with the kernel, input/output, image versions
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» representations withrational symbols
R(&)w=0,w=M (%), etc.

with RM € R (&)***, or proper stable rational, etc. (see
lecture 7)

» and then, there are theconvolution representations

—+00
H({t)w(t —t)dt'=0

—00

(see lecture 4)
with the kernel, input/output, image versions

» Rich ... but confusing!
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It Is convenient to have the following proposition at hand.

Proposition: Let P € R[£]™""2 and consider the map

p (%) €% (R, R™2) — ¢ (R, R™)

» P(3)is injective iff the complex matrix P(A) has rank
ny forall A € C. Thatis, iff P(A) has full column rank for
all A € C

> P(%) IS surjective Iff the polynomial matrix P has rank
nj (Il.e. P is of full row rank). That is, iff there exists a

ni1 X n1 submatrix of P with non-zero determinant.

» P(%)is surjective iff Pis unimodular. That s iff ny =n,

and determinant(P) is a non-zero constant polynomial.
This proposition will be proven in lecture 2.
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It Is convenient to have the following proposition at hand.

Proposition: Let P € R[£]™""2 and consider the map

p (%) €% (R, R™2) — ¢ (R, R™)

» P(3)is injective iff the complex matrix P(A) has rank
ny forall A € C. Thatis, iff P(A) has full column rank for
all A € C

> P(%) IS surjective Iff the polynomial matrix P has rank
nj (Il.e. P is of full row rank). That is, iff there exists a

ni1 X n1 submatrix of P with non-zero determinant.

» P(%)is surjective iff Pis unimodular. That s iff ny =n,

and determinant(P) is a non-zero constant polynomial.
This proposition will be proven in lecture 2.
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The mathematical structure of LTIDSS




What is the mathematical structure of ¥v?
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What is the mathematical structure of ¥v?

In order to cope with this question, we need
a few concepts from algebraxrings and modules

A ring is a mathematical notion that has been introduced in
order to capture the structure of the integers, the

polynomials, square matrices, etc.,

and modules are like vector spaces over a ring, instead of ove
a field, as is officially required for a vector space.

Our interest is mainly is the ring of polynomials and in
polynomial modules

These notions are briefly reviewed in the appendix
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What is the mathematical structure of ¥v?

Let B € £, say,# = kernel(R(2))

R determines.%, but % does not determineR. For example, if
U is unimodular, then Rand UR determine the same

behavior!
What property of Rreally determines.%?

When do
d d
Ry <&>W:0 and Ry <a>w_0

define the same behavior?
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Theorem
There Is a one-to-one relation between
#¥ and the R [€]-submodules ofR [£]".
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Theorem
There Is a one-to-one relation between
#¥ and the R [€]-submodules ofR [£]".

We now describe thisl «— 1 relation.
One direction involves the annihilators of % € ¥V.
n € R[&]™¥ is said to be anannihilator of % :<

n(%)%:O .e. n(%)W:Ofor all we #

Denote the annihilators of.% by .4, a submodule ofR [£]**¥.

The submodule associated withZ by the thmis| & — 45
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The other direction is also as expected. TheZ be an
R [€]-submodule of R [£]*¥. Define

M Sy ={we €™ (R,RY) |n(&)w=0forall ne .z}

The right hand side defines an element af#¥, even though it
Involves anc number of ODESs.

A kernel representation (with a finite number of ODES) is
easily constructed, by taking forR the polynomial matrix with
as rows a basis of# .

sol’'n set ofo-number of linear constant coefficient ODEs
oo-number of linear constant coefficient ODES!

The behavior associated with# by the thmis| . # — . 4
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V¥ and polynomial submodules

In pictures:

Submodules
¥\
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" and polynomial submodules

In pictures:

Submodules

\\

We will prove that this association is one-to-one, by showampn
that the maps./” and . are inverses of each other.
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Notation

» For ReR[&]*"Y, denote by< R> the R []-submodule of
R [E]**¥ generated by its rows.
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Notation
» For ReR[&]*"Y, denote by< R> the R []-submodule of
R [E]**¥ generated by its rows.

The essence of the proof of the thm is the following lemma

Lemma: [nc . A . (R(%))]] & [ne<R>|

The proof is given later.

Therefore
() Meernel (R($)) =<R> (bythe lemma)

dt

(i) “r>=Kkernel (R(&)) (bythe def. of.7)
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Corollary : The following are equivalent:

1. <RI >=<Ry>
2. 5”<R1> — y<R2>

3. kernel (R ($)) =kernel (Rx(&))
4 Meernel (Ru($)) — Mernel (Re(§))

dt
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Corollary : The following are equivalent:

1. <R >=<Ry>
2. SR> =S<R>
3. kernel (R ($)) =kernel (Rx(&))

4 Meernel (Ru(d)) — kerne (Re(&))

Proof of the Corollary:

1.= 2. is trivial
2. < 3. Is conseqguence (ii)
3. = 4. Is trivial
4. < 1. Is consequence (i)
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Submodules & LTIDSs

3. < 4. implies that # — 4 Is injective
1. < 2. implies that .7 — . 4 IS Injective

Submodules

\|

Hence the maps% — V% and .# — .¥ , are each other’s
Inverse.
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Lemma: [ne€ .4 . (R(%))]] & [ne< R>|.

In other words,

[[[[R(%)W:O]] = [n (%)W:O]]]]

& [3f e R[E]Y such thatn = fR]

This lemma states that that the module of annihilators is
exactly the module generated by the rows oR.
All annihilators are linear combinations of the rows of R.

No new annihilators sneek in.
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Observe first the scalar version of the lemma. Letd,n€ R [£].

[[[[d( )w 0] = [[n((i)w:O]]]]@[[d IS a factor of n|

The proof is an exercise.

Note that even in this special case, the lemma does not hold if
we had defined the behavior in terms of compact support
solutions, instead of in terms of£® solutions.

Example: Consider R($)w=0with 0#£Re R[&]. With

the ¥ solutions, the annihilators are the polynomials that
haveR as a factor, indeed the module generated bR

Take for % the compact support solutions instead.

Then % = {0}. The module of annihilators is thenR [&] (for
all R# 0), while the module generated byR consists only of
the polynomials that haveR as a factor.
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We now indicate the proof of the lemma. The proof uses the

Smith form. This form implies (prove!) that we can assume

without loss of generality thatR is of the form

R =

diag(dy,dp,...,d;) O

0

0

with dq,ds,---,d,. #£ 0.
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We now indicate the proof of the lemma. The proof uses the
Smith form. This form implies (prove!) that we can assume
without loss of generality thatR is of the form

R =

With R of this form, we have

[[R(%)w:O]] & [[dl(

diag(dy,dp,...,d;) O

0

0

t)Wl:d2<

with dq,ds,---,d,. #£ 0.

d d
dt)wgz---:dr (&)Wr: -
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We now indicate the proof of the lemma. The proof uses the
Smith form. This form implies (prove!) that we can assume
without loss of generality thatR is of the form

dlag(dla(:)&---vdr) (()) with dy,dp, -+ ,dy # 0.

R =

With R of this form, we have

[[R(%)W:O]]@[[dl (%)ledz (%)wzz---:dr (%)Wr:O]]

Hence, withn=|n; n, --- n.], we conclude, from the

scalar case, thaR (&) w= 0implies n(&)w= 0iff dy is a
factor of n, for all k. The lemma follows.
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Relations between kernel representations
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Let B, PBo € LY. B ~ Rl(dg)W 0, %> ~» Rz(dg) = 0.

PBrC Boriff AF € R[E].X. such thatRy = FR4

Proof: =: trivial. «: takes a bit of work.
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Let B, PBo € LY. B ~ Rl(dg)W 0, %> ~» Rz(dg) = 0.

PBrC Boriff AF € R[E].X. such thatRy = FR4

Proof: =: trivial. «: takes a bit of work.

%1 = @2 Iff 4 F1, FeR [f].x. such that R = F2R2, R = FHRy

In particular, %, = %> If R = UR>,U unimodular.

Equations specify behavior, but not the other way around
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The kernel representationR(%) w = 0 of # Is said to be

minimal if among all kernel representations of%,
R has a minimal number of rows.
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The kernel representationR(%) w = 0 of # Is said to be
minimal if among all kernel representations of%,

R has a minimal number of rows.

Proposition: The following are equivalent.

» R($)w=0is minimal.

» The rows of Rare linearly independent. They form a
basis for theR |£|-module generated by the rows oR.

» Rhas full row rank.

» R(J) is surjective.
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The kernel representationR(%) w = 0 of # Is said to be
minimal if among all kernel representations of%,

R has a minimal number of rows.

Proposition: The following are equivalent.

» R($)w=0is minimal.

» The rows ofRare linearly independent. They form a
basis for theR |£|-module generated by the rows oR.

» Rhas full row rank.

» R(J) is surjective.

All minimal kernel representations of & € ¥ are generated

from a minimal one, R(:&) w = 0, by the transformation group

U unimodular

UR

~» canonical forms, invariants, etc.
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Dynamical systemsw: > = (T, W, %) with
behavior 2 C (W) a family of time trajectories

LTIDSs:. & Is the sol'n set of a system of linear
constant coefficient ODEs

LTIDSs 1+ 1R [&]-modules

A minimal kernel repr. of a LTIDS Is uniquely
defined up to unimodular premultiplication



L atent variables
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A model Is a subset . There are many ways to specify a
subset. For example,

» as the solution set of equations

» as animage of a map

» as a projection
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A model # is a subset ofZ. There are many ways to specify a
subset. For example,

» as the solution set of equations
f:% —eo;, HF={w]| f(w)=0}
» asanimage of amap
f.e—>%; A={w|3Ilsuchthat w= f(/) }
» as aprojection

%extendecg % X CZ, % — {W| EI g SUCh that (W7 6) c %extended}
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A model # is a subset ofZ. There are many ways to specify a
subset. For example,

» as the solution set of equations ‘kernel representation’
f:% —eo;, HB={w]| f(w)=0}
» asanimage of amap ‘image representation’
f.e—>%; A={w]|3Ilsuchthat w= (/) }
» as aprojection ‘latent variable representation’

%extendecg % X CZ, % — {W| EI 6 SUCh that (W, 6) & %extended}
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%’extended
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Combining equations with latent variables~

PextendedSPECIfied by
Pextended= 1 (W, £) | f(w,£) =0 =0}

A ={w |3 /¢ suchthat f(w,¢) =0}
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Combining equations with latent variables~

PextendedSPECIfied by
Pextended= 1 (W, £) | f(w,£) =0 =0}

A ={w |3 /¢ suchthat f(w,¢) =0}

First principles models usually come in this form.

Latent variables naturally emerge from interconnections.
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Two springs interconnected in serie

'I'l Model relation between L and F !
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'I'l Model relation between L and F !

View as interconnection of two springs
L1 )

P1
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Model for (L,F) (assume that for the individual springs the
length is a function of the force exerted).

L1 = pu(F) L, = p(F)
F-—R=-Fk L = L+l
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Model for (L,F) (assume that for the individual springs the
length is a function of the force exerted).

L1 = pu(F) L, = p(F)
F-=R=R L = L+l

L, F: ‘manifest variables’ Lq,F1,Lo,F: ‘latent variables’

~ L = p1(F) + p2(F)

Latent variables are easily eliminated, for this example.
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Model for (L,F) (assume that for the individual springs the
length is a function of the force exerted).

L1 = pu(F) L, = p(F)
F-=R=R L = L+l

L, F: ‘manifest variables’ Lq,F1,Lo,F: ‘latent variables’

~ L = p1(F) + p2(F)

Latent variables are easily eliminated, for this example.

Inthe linear case: Li=L;+pF Ly=Li+pk
After elimination ~» L =L}+L5+ (p1+p2)F
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Two springs interconnected in parallel

'I'l Model relation between L and F !
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'I'l Model relation between L and F !

View as interconnection of two springs
L1 Lo
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Model for (L,F) (assume that for the individual s
length is a function of the force exerted, and neg
dimensions of the interconnecting mechanism).

Li = p(F) Lo = pi(R)

F=Rh+FR L =L =L

orings the

ect the
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Model for (L,F) (assume that for the individual s
length is a function of the force exerted, and neg
dimensions of the interconnecting mechanism).

L1 = pu(F) L, = pi(R)
F=Rh+FR L =L =L

orings the

ect the

L, F: ‘manifest variables’ Lq,F1,Lo, F: ‘latent variables’

~ |(B={(LF)|Fa:L=pi(a), p(a)=p2(F-a)}

Latent variables are not easily eliminated, for this exampg,
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Model for (L,F) (assume that for the individual springs the
length is a function of the force exerted, and neglect the
dimensions of the interconnecting mechanism).

L1 = pu(F) L, = pi(R)
F =FRh+FkR L =L =L

L, F: ‘manifest variables’ Lq,F1,Lo, F: ‘latent variables’
~ | #B={(LF)[Ja:L=pm(a), pi(a)=px(F—a)}

Latent variables are not easily eliminated, for this exampg,
unless we are in the linear casel; = L] + p1F1,Lo = L5 + pob

imi ' __ _P2 | x P1 | * P1P2
After elimination ~ L = 72211 + 5215+ 22 F
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A dynamic example




First principles models invariably contain (many) auxiliary
variables in addition to the variables whose behavior we wis
to model.
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First principles models invariably contain (many) auxiliary
variables in addition to the variables whose behavior we wis
to model.

Can these latent variables be eliminated?

We illustrate the emergence of latent variables and the
elimination question by means of an extensive example in the
dynamic systems case.
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Model the port behavior of

by tearing, zooming, and linking (see lecture 13).
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Model the port behavior of

by tearing, zooming, and linking (see lecture 13).

In each node there is an element> module equations
Involving 2 variables (potential, current) for each terminal,

In each branch a connection~» interconnection equations

—n. 81/1



B B @

connector 1 resistor Re inductor L

T

capacitorC resistor R connector 2

—n. 82/1



vertex 1:

vertex 2:
vertex 3:
vertex 4:

vertex 5:

vertex 6:

VconnectoI,l — VconnectoI,Z — VconnectoI,B
Iconnectoi,l + Iconnect0{,2 + |connect0{,3 =0
VRC,l _VF\’C,Z = Rc||:\>c71, IRC,]-—'_ IRC,Z =0
L%'L,l =WV1—V2 lLa+lL2=0

C% (Mc1—Vez2) =lc1, Ici+1c2=0
VRi1—VrR2=RLIRr 1

IR 1+Ir 2=0

Vconnectog,l — Vconnectoi,z — Vconnectog,B

IconnectOf,l T Iconnectog,Z T Iconnectog,B =0
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current left current right
R —

potential left potential right

Interconnection of two electrical terminals

Interconnection equations

potential left = potential right

current left + currentright =0

—n. 84/1



edge

edge d.

edge €

edge f:

edge g.
edge h:

Vconnectori
Vconnector@

Ve

1
VRC,l
Vconnectorz

Vconnectora

|RC,1 + IconnectorJZ
|L1 + |connector§
IRe2 Tl

I|—2 + IRL,l

|C2 + Iconnectorz

|RL,2 + Iconnectorg

o O O O O O
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Manifest variable assignment

Vexternalport — Vconnecto;[,l — Vconnectog,S

Iexternalport — Iconnector1
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In tOtaI 28 Iatent Varlab|eS VCOﬂﬂGCtO;[,].) . e 7VRC,17 IRC,l’ c ey Iconnectof73

2 manifest variables, (Vexternalport Iexternalpor)
26 equations.

Which equation(s) govern(s) (Vextemalport lexternalpor)

A constant-coefficient linear differential equation?
One that does not contain the branch variables?

Does the fact that all the equations before elimination of tk
latent (auxiliary) variables are constant-coefficient lirear
differential equations imply the same after elimination?
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The port % = (R,R?, %) behavior £ is specified by:

Casel CR:# %

L d?
<% + <1—1— %) CRC CRc— R dt2> Vexternalport

L d
— (1+CRCE> ( RL dt) Relexternalport

L
Case2 CR-c=—

R

d

d
(% +CRc— dt ) Vexternalport— (1‘|‘ CRC) Rclexternalport
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The elimination theorem
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Theorem
Z* Is closed under projection
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Theorem
Z* Is closed under projection

Consider
B = {(W1,W2) : R — R"1 x R¥2 | (W,W>) € £}
Define the projection

P#1={w1:R— R"|dwy: R — R" such that (wy,w,) € £}

The theorem states thal| [Z € £L"11¥2] = [#, € L™

This Is, as seen, important in modeling.
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We indicate the proof. Consider

d d

Ry <&> w1+ R (ﬁ) wo, =0 ~+ behavior #
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We indicate the proof. Consider

d d .
Ry <&> w1+ Ry (ﬁ) wo, =0 ~» behavior #

Pre-multiply by a unimodular polynomial matrix U. Then

d d d d .
U (ﬁ) Ry (ﬁ) wi +U (a) R, (a) wo> = 0~» also behavior%#
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We indicate the proof. Consider

d d .
Ry <&> w1+ Ry (ﬁ) wo, =0 ~» behavior #

Pre-multiply by a unimodular polynomial matrix U. Then

d d d d .
U (ﬁ) Ry (ﬁ) wi +U (a) R, (a) wo> = 0~» also behavior%#

Define % :={w; | 3w, such that (w1,w) € $}
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We indicate the proof. Consider

d d .
Ry <&> w1+ Ry (ﬁ) wo, =0 ~» behavior #

Pre-multiply by a unimodular polynomial matrix U. Then

d d d d
U (dt) Ry (dt>wl+u (dt) R, (dt)wz_of\» also behavior%

Define % :={w; | 3w, such that (w1,w) € $}

Let V be unimodular.

d d d d d\ . .o~
U (dt) Ry (&) wq+U (dt) Rz(dt>v (a) W» = 0~ behavior
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We indicate the proof. Consider

d d .
Ry <&> w1+ Ry (ﬁ) wo, =0 ~» behavior #

Pre-multiply by a unimodular polynomial matrix U. Then

d d d d
U (dt) Ry (dt>wl+u (dt) R, (dt)wz_of\» also behavior%

Define % :={w; | 3w, such that (w1,w) € $}

Let V be unimodular.

d d d d d\ . .o~
U (dt) Ry (a>w1+u (d )Rz(dt>v(a) W» = 0~ behavior

~

Then %, :={w; | 3 Wy such that (wy,W,) € 4}
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The Smith formimplies that we can choosé&J andV such that

URYV =

with dq,dp,---,d,. #O.

diag(dy,dy, ..., d;) O

0 0
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The Smith formimplies that we can choosé&J andV such that

diag(dy,dy, ..., d;) O
0 0

URYV =

with dq,dy,---,d,. £ 0. Partition UR; conformably as
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The Smith formimplies that we can choosé&J andV such that

diag(dy,dy, ..., d;) O
0 0

URYV =

with dq,dy,---,d,. £ 0. Partition UR; conformably as

R

Note that diag(dy,dy, ..., d;) (%) is surjective. Conclude

that R{(&)wi =0~ behavior #;. QED.

1
e
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[[ (X = Ax+Bu,y = Cx+Du]]:>[[P<CCIIt>y:Q(%>u]]

[[E%x: Ax+Bw| = [R (%) w = 0]

linear DAE’s allow elimination of nuisance variables

(g uu(§)1 - (oo

elimination of latent variables in LTIDSs is always possibé.

[[W:M<d)£]] = [[R’( )W 0]
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SYSTEM 11-

Il

SYSTEM 5

ODE ODE

1| sYsTEm, |: . | SYSTEM,
ODE ODE

The interconnection is described by an ODE if systems 1 and
2 are LTIDSs.

ODE?
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SYSTEM :

1 SYSTEM

2

Il

ODE ODE

1| sYsTEm, |: . | SYSTEM,
ODE ODE

The interconnection is described by an ODE if systems 1 and
2 are LTIDSs.

In the nonlinear case, very unlikely that the interconnecton is
described by an ODE, even if systems 1 and 2 are!

ODE?

Why are ODE’s so common?
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Models are usually given as equations

First principles models invariantly contain
(many) latent variables

In LTIDSS, latent variables can be completely
eliminated

There i1s no nonlinear elimination theorem



Other time sets
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The theory is identical for LTIDSs with time set
[07 00)7 (_007 O] or [tlatZ] .

The appropriate ring is still R [¢]
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For discrete time systems with time axifN or Z_, the
appropriate ring is still R [£].
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For discrete time systems with time axifN or Z_, the
appropriate ring is still R [£].

For discrete time systems with time axisZ, however, the
appropriate ring is R[&,& 1.

Elements of this ring are called'Laurent polynomials’. An

element ofR[€, € ~1|**® is unimodular iff its determinant is a
non-zero monomial.
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wit+1) = wt) ~  &—1
wit) = wt—1) -~ 1-&-1
Wit+2) = wt+1) -~ E2-¢
All these eqguations are equivalent fofT = Z.

Transformations:
second equation =€ ~1x first;
third equation = & x first

None of these equations are equivalent foff = 7Z, .
The 2nd equation does not really make sense. What vg(0)?
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Summary of Lecture 1
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» A modelis a subsetZ of a universum % .
A 1s the behavior of the model.
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» A modelis a subsetZ of a universum % .
A 1s the behavior of the model.

» First principles models contain latent variables
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A model Is a subsetZ of a universum % .
A 1s the behavior of the model.

First principles models contain latent variables

LTIDSs are described by linear, constant-coefficient
differential equations

~ R(&)w=0,Re R[&]"*"
Notation: .£¥, . ¥*
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A model Is a subsetZ of a universum % .
A 1s the behavior of the model.

First principles models contain latent variables

LTIDSs are described by linear, constant-coefficient
differential equations

~ R(&)w=0Rec R[]
Notation: .£¥, . ¥*

C,%W one-to-one

&P R[&]-submodules ofR [£]M
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A model Is a subsetZ of a universum % .
A 1s the behavior of the model.

First principles models contain latent variables

LTIDSs are described by linear, constant-coefficient
differential equations

~ R(&)w=0,Re R[&]"*"
Notation: .£¥, . ¥*
v ONEOPN® wrgl-submodules ofR [E]1F

The elimination theorem: .Z* is closed under projection.

Latent variables can be eliminated from linear constant
coefficient ODEs
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A model Is a subsetZ of a universum % .
A 1s the behavior of the model.

First principles models contain latent variables

LTIDSs are described by linear, constant-coefficient
differential equations

~ R(&)w=0,Re R[&]"*"
Notation: .£¥, . ¥*

v ONEOPN® wrgl-submodules ofR [E]1F

The elimination theorem: .Z* is closed under projection.

Latent variables can be eliminated from linear constant
coefficient ODEs

End of lecture 1
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Mathematical Appendix




Rings and modules
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A group Is a setG, with

» abinary operation G x G — G, called multiplication.
Multiplication is usually written as juxtaposition of the
multiplied elements.

» aunary operation ~!: G — G, calledinversion
The inverse ofg is written as g

» anidentitye < G (often denoted asl).

These operations satisfy, for alb,g1,92,93 € G:

» (0102)03 = 01(0203) (multiplication is associative);
ge=ey=0,09 " =0 ‘g=¢.
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A group Is a setG, with

» abinary operation G x G — G, called multiplication.
Multiplication is usually written as juxtaposition of the
multiplied elements.

» aunary operation ~!: G — G, calledinversion
The inverse ofg is written as g

» anidentitye < G (often denoted asl).

These operations satisfy, for alb,g1,92,93 € G:

» (0102)03 = 01(0203) (multiplication is associative);
ge=ey=0,09 " =0 ‘g=¢.

A group is called abelian (or commutativelf gi1g> = g»g; for

all g1,92 € G. For an abelian group multiplication is usually

denoted asg; + go (instead ofg;9»), and the identity asO
(instead ofe or 1).
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A ring Is a setR equipped with two binary operations

+'RxR—R and *x:RxR—R

called addition and multiplication. Multiplication is usually
just written as juxtaposition of the multiplied elements,
rather than with a .

These operations satisfy:

» (R +)is an abelian group with identity element0,

» multiplication is associative, with identity elementl,
» multiplication distributes over addition.

So, for all a,b,c € R, there holds:

(ab)c = a(bc) denoted asabc, al = la = a,
a(b+c)=ab—+ac,(a+ b)c=ac+ bc.
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Multipication need not be commutative.
If it Is, we call the ring commutative

Examples: Z (commutative), R ] (commutative), R**",
R[E]"™,R[&1, &, ..., &] (commutative).
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Multipication need not be commutative.
If it Is, we call the ring commutative

Examples: Z (commutative), R ] (commutative), R**",
R[E]"™,R[&1, &, ..., &] (commutative).

Every elementr € R has an additive inverse—r.

But it need not have a muliplicative inverse. For example,
In Z only 1 and — 1 have a multiplicative inverse.
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An elementa € Ris called aunit if it is invertible with respect
to multiplication: if 4 b € Rsuch thatab = ba = 1,

b is then uniquely determined bya and is writtes asa™*.
The set of all units inR forms a group under multiplication.

The term unimodular for (polynomial) matrices is used as a
synonym for ‘unit’.
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An elementa € Ris called aunit if it is invertible with respect
to multiplication: if 4 b € Rsuch thatab = ba = 1,

b is then uniquely determined bya and is writtes asa™*.
The set of all units inR forms a group under multiplication.

The term unimodular for (polynomial) matrices is used as a
synonym for ‘unit’.

M e R[&]"*" is unimodular iff detM) is a non-zero
polynomial of zero degree. That is, iffdetM) is a unitin R [].
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Let R be acommutativering.

A module.Z overR (also called anR-modulég is abelian group
(,.# ,+) with an operation, called scalar multiplication
mapping Rx .#Z — .7 . Multiplication is usually written by
juxtaposition, i.e. asrxforr e Randx e .#Z.

These operations satisfy, for alr,se R, and x,y € .#Z,
> I(X+Y)=rx+ry,

> (I +S)X=rx+sx,

» (rs)x=r(sx) (therefore written as rsx),

» IxX=X
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Let R be acommutativering.

A module.Z overR (also called anR-modulég is abelian group
(,.# ,+) with an operation, called scalar multiplication
mapping Rx .#Z — .7 . Multiplication is usually written by
juxtaposition, i.e. asrxforr e Randx e .#Z.

These operations satisfy, for alr,se R, and x,y € .#Z,
> I(X+Y)=rx+ry,

> (I +S)X=rx+sx,

» (rs)x=r(sx) (therefore written as rsx),

» IxX=X

The following example is especially important for us:

1xn

R [&]" is a module overR [€]. So is, of courseR [€]
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There is an enormous variety of rings and modules:

principal ideal domain, finitely generated, cyclic, free,
projective, injective, simple, semisimple, indecomposab,
Euclidean, Noetherian, Artinian, Bezoutian, Hermitian, etc.

Like visiting the zoo.
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An R-module .7 Is said to befinitely generatedf there exist a
set{d1,92, - ,0.} of elements of.# (called generatorsof .#)
such that each elemenm of .# is of the form

M= C101+Co0>+---+C.0r With c1,Co,....C. € R

An R-module .7 is said to befree if there exist a set of
generators{e;, ey, ---,e.} of .# (called abasisof .#)
such that thee,’s are independent, that is,

C16 +Co€+ -+ C6 =0Impliesc; =co=---=¢c. =0

The cardinality of the basis is uniquely defined, and is calle
the rank, order, or dimensionof .7 .
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Clearly R[&]" is anR [ ]-module. We are especially interested
in this module and its submodules. TheR [§|-submodules of

R [&]" are tame animals of our zoo: they are free
have a basis, and behave very much like vector spaces.
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Clearly R[&]" is anR [ ]-module. We are especially interested

in this module and its submodules. TheR [§|-submodules of

R [&]" are tame animals of our zoo: they are free
have a basis, and behave very much like vector spaces.

Let .# be anR [£]-submodule ofR [£]". It has a basis, say,
{e1,e2, -+ ,e.}. Any other basis{€],€,,--- €.} of # is
generated by the matrix multiplication

e(l
€

€

=U

with U € R[&]"*" unimodular.
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Elements ofR [£]"**"2 can be brought into

a simple canonical form by pre- and
postmultiplication by a unimodular matrix.
This canonical form is called theSmith form.

o~ A
‘.
Pr

Smith comes in exceedingly handy in proofs *

: . . ith
for the polynomial description of LTIDSs. 1828 - 1883
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Elements ofR [£]"**"2 can be brought into

a simple canonical form by pre- and
postmultiplication by a unimodular matrix.
This canonical form is called theSmith form.

ﬁ"""-

Smith comes in exceedingly handy in proofs *

: . . ith
for the polynomial description of LTIDSs. 1828 - 1883

Theorem The Smith form Let M € R [£]"1*"2. There exist
unimodular U € R[&]"**™ andV € R [£]"2""2 such that

diag(dy. 0., 0)  Orguyr)

UMV =
O(nl—r) XT O(nl—r) X (np—r)

with di,do,...,d, € R[&], monic, anddy a factor of dy 1 for
k=12---,r—1 They are called the invariant factors of M.
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Canonical forms and invariants

Another bit of nice-to-know mathematics
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A relation on an indexed family of setsS;,a € A, is a subset
Of S: naeAS].

Think of the elements ofsy, a € A, as being ‘related’ if
MNgecaSe € MNaeass.

‘Relation’ captures the notion of ‘model’ much better
than‘map’.

Note that we view a dynamical system basically as a relation
among the valuesw(t) for t € $. The behavior of a dynamical
system is a relation o<Wy, with all the W;’s equal to W.
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A relation on an indexed family of setsS;,a € A, is a subset
Of S: naeAS].

Think of the elements ofsy, a € A, as being ‘related’ if
MNgecaSe € MNaeass.

‘Relation’ captures the notion of ‘model’ much better
than‘map’.

Note that we view a dynamical system basically as a relation
among the valuesw(t) for t € $. The behavior of a dynamical
system is a relation o<Wy, with all the W;’s equal to W.
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A Dbinary relation involves only two sets, the cardinality ofA
equals 2. An n-ary relation, n sets, the cardinality ofA = n.
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A Dbinary relation involves only two sets, the cardinality ofA
equals 2. An n-ary relation, n sets, the cardinality ofA = n.

A common example of a binary relation is obtained from a
map f : X — Y, the relation being thegraph of f:

graph(f) = {(xy) € XxY]y=f(X)}
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If iIn a n-ary relation all the Ay’s are equal,

A=A =---=A, = A, we call the relation ann-ary relation
on A (the term endorelationis also used).

A binary relation on A is thus a subset ofA°.

The notation a;Ray, a; R ap, Is often used if(a;,ay) belongs to

the binary relation R C A?.
a;~ay IS also used when it is clear whaR Is.

Many important binary relations are obtained from
additional structure on the subset that defines the relation
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An equivalence relation onAis a binary relation that is
reflexive, symmetric, and transitive.
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An equivalence relation onAis a binary relation that is

reflexive, symmetric, and transitive. In other words, the
following must hold for all a,b,c € A:

» a~a (reflexivity)
» [a~Db]=[b~a] (symmetry
» [a~bandb~c]=[a~c] (transitivity)
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An equivalence relation onAis a binary relation that is
reflexive, symmetric, and transitive. In other words, the
following must hold for all a,b,c € A:

» a~a (reflexivity)

» [a~Db]=[b~a] (symmetry

» [a~bandb~c]=[a~c] (transitivity)

~ partitions A into disjoint subsets, called equivalence classes.
All elements in a given equivalence class are equivalent
among themselves, and no element is equivalent with any
element from a different class. Think therefore of an

equivalence relation onA as a partition of A into disjoint
subsets and declaring elements of the same subset equivdlen
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An equivalence relation onAis a binary relation that is

reflexive, symmetric, and transitive. In other words, the
following must hold for all a,b,c € A:

» a~a (reflexivity)
» [a~Db]=[b~a] (symmetry
» [a~bandb~c]=[a~c] (transitivity)

~ partitions A into disjoint subsets, called equivalence classes.
All elements in a given equivalence class are equivalent
among themselves, and no element is equivalent with any
element from a different class. Think therefore of an
equivalence relation onA as a partition of A into disjoint
subsets and declaring elements of the same subset equivdlen

The equivalence class of elements equivalent witnis denoted

as(al, [a, or [a]gr. a1 = ap(modulo ~) and a; = a, mean that
a; and a; belong to the same equivalence class.
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Let ~ be an equivalence relation orA.

A canonical form (also callednormal form, standard form)
for ~ Is a subseC of A such that

Cnlal.#0 forall aeA.
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Let ~ be an equivalence relation orA.

A canonical form (also callednormal form, standard form)
for ~ Is a subseC of A such that

Cnlal.#0 forall aeA.

An invariant for ~isamapl from Ato a setB such that
[[al ~ az]] — [[l (al) — | (az)]].
It Is said to be a complete invariant if

[[al ~ az]] <~ [[l (al) — | (az)]].
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B invariant |

set A with partition

canonical form
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A transformation group on Ais a set of maps that form a

subgroup of the bijections onA. In other words, there is a

group Gand amapT from G to the bijections onA, such that
for all g,g1,02 € G, there holds:
» Tp=1ida (ida denotes the identity map onA)
_T-1
> Tg_l =Ty

» Tgq, = Iy, 0 Tg, (o denotes composition of maps)
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A transformation group on Ais a set of maps that form a

subgroup of the bijections onA. In other words, there is a
group Gand amapT from G to the bijections onA, such that
for all g,g1,02 € G, there holds:

» T1=1ida (ida denotes the identity map onA)

_ 11
_Tg

> Tg_l

» Tgq, = Iy, 0 Tg, (o denotes composition of maps)

The set

Ua:={a € A|3ge Gsuchthata =Ty(a)}

IS called theorbit of a under the transformation group Tg.

—n. 120/1



A transformation group on A induces an equivalence relation
on A by declaring

[an ~ ap] & [az € Oy ]

In other words, the partition consists of the orbits.
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orbit of a

setA with orbits

\ P
=

canonical form
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Denote by¥/(n) the invertible elements ofR™*".
¢/ (n) defines a transformation group onR*** by

Sc¥/l(n)
M . ams L.

This transformation corresponds to choosing a new basis on
R*, and looking how the linear transformation M : R*® @

acts in this new basis oriR®.

—n. 123/1



Denote by¥/(n) the invertible elements ofR™*".
¢/ (n) defines a transformation group onR*** by

Sc¥/l(n)
M . ams L.

This transformation corresponds to choosing a new basis on
R*, and looking how the linear transformation M : R*® @

acts in this new basis oriR®.

Canonical form: Jordan form (work over C or consider the
real Jordan form).
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Denote by¥/(n) the invertible elements ofR™*".
¢/ (n) defines a transformation group onR*** by

Sc¥/l(n)
M . ams L.

This transformation corresponds to choosing a new basis on
R*, and looking how the linear transformation M : R*® @

acts in this new basis oriR®.

Canonical form: Jordan form (work over C or consider the
real Jordan form).

Invariant: | :R>* >R[], 1(M):=det(I& —M)
Other invariants
| : M € R*™" — the set of eigenvalues d.
| : M € C**" — the minimal polynomial of M
the rank, the trace, the determinant, etc.
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Consider R*1*#2, Define the transformation group

S €94(n1), SEYL(n2)
M S

SIMS,.

This corresponds to looking how the linear transformation
M : R*2 — R™ acts like in new basis onR™! and R"2.
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Consider R*1*#2, Define the transformation group

S €94(n1), SEYL(n2)
M S

SIMS,.

This corresponds to looking how the linear transformation
M : R*2 — R™ acts like in new basis onR™! and R"2.

Complete invariant: the rank
Canonical form: the set of matrices of the form

|l Or><(n2—r)

O(nl—r) XT O(nl—r) X (no—r)
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Consider nowR" and R*2 asEuclidean spaceghat is, with
distances fixed by the usual Euclidean norm. Hence basis
choices must respect distances. An elemekt € R*** s said

to be orthogonalif M'M = I, .
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Consider nowR" and R*2 asEuclidean spaceghat is, with
distances fixed by the usual Euclidean norm. Hence basis
choices must respect distances. An elemekt € R*** s said

to be orthogonalif M'M = I, .

Now consider the previous example in this Euclidean set-up.
This corresponds toS; and S being orthogonal matrices
Consider R*1*22, Define the transformation group

$1€0¢(n1), SE0(ny)
M S

SMS.
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Consider nowR" and R*2 asEuclidean spaceghat is, with
distances fixed by the usual Euclidean norm. Hence basis
choices must respect distances. An elemekt € R*** s said

to be orthogonalif M'M = I, .

Now consider the previous example in this Euclidean set-up.
This corresponds toS; and S being orthogonal matrices
Consider R*1*22, Define the transformation group

$1€0¢(n1), SE0(ny)
M >

SMS.

This corresponds to looking how the linear transformation
M : R"*2 — R™ acts like in new basis InR™ and in R*2, that
both respect distances.
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Complete invariant:

M e R*"*"2 — the singular valueso; > 0> > --- > o0, > 0 of M.

Invariants: the rank, the induced norm, the Frobenius norm,
the Schatten and Ky-Fan norms, etc.
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Complete invariant:
M e R*"*"2 — the singular valueso; > 0> > --- > o0, > 0 of M.

Invariants: the rank, the induced norm, the Frobenius norm,
the Schatten and Ky-Fan norms, etc.

Canonical form: the set of matrices of the form

2 Or>< (np—r)
O(nl—r) XT O(nl—r) X (np—r)

with 2 diagonal, with positive elements on the diagonal in
non-increasing order.

See lecture 3 for more details.

—n. 126/1



Example: the Smith form
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