Summer Course

Linear System Theory
 Control
 \&

Matrix Computations

Lecture 1

Models and Behaviors

Lecturer: Jan C. Willems

- Mathematical models
- The behavior
- Dynamical systems
- Linear time-invariant systems
- Kernel representations
- Latent variables
- The elimination theorem

Mathematical models

A bit of mathematics \& philosophy

Mathematical models

Assume that we have a 'real' phenomenon that produces 'events', 'outcomes'.

Mathematical models

Assume that we have a 'real' phenomenon that produces 'events', 'outcomes'.

We view a deterministic mathematical model for a phenomenon as a prescription of which events can occur, and which events cannot occur.

Aim of this lecture

In the first part of this lecture, we develop this point of view into a mathematical formalism.

Aim of this lecture

In the first part of this lecture, we develop this point of view into a mathematical formalism.

In the second part, we apply this formalism to dynamical systems, especially to linear time-invariant differential systems.

The universum

Mathematization

The outcomes can be described in the language of mathematics, as mathematical objects, by answering:

To which universum do the (unmodelled) events belong?

Mathemativation

The outcomes can be described in the language of mathematics, as mathematical objects, by answering:

To which universum do the (unmodelled) events belong?

- Do the events belong to a discrete set?
$~$ discrete event phenomena.
- Are the events real numbers, or vectors of real numbers?
\leadsto continuous phenomena.
- Are the events functions of time?
\leadsto dynamical phenomena.
- Are the events functions of space, or time $\&$ space?
\leadsto distributed phenomena.

Mathemativation

The outcomes can be described in the language of mathematics, as mathematical objects, by answering:

To which universum do the (unmodelled) events belong?
Do the events belong to a discrete set?
\leadsto discrete event phenomena.
Are the events real numbers, or vectors of real numbers?
\leadsto continuous phenomena.

- Are the events functions of time?
$~$ dynamical phenomena.
- Are the events functions of space, or time \& space?
\sim distributed phenomena.

The set where the events belong to is called the universum, denoted by \mathscr{U}.

Discrete event phenomena

Examples:

Words in a natural language
$\mathscr{U}=\{a, b, c, \ldots, x, y, z\}^{\mathrm{n}}$
with $\mathrm{n}=$ the number of letters in the longest word

Discrete event phenomena

Examples:

- Words in a natural language
$\mathscr{U}=\{a, b, c, \ldots, x, y, z\}^{\mathrm{n}}$
with $\mathrm{n}=$ the number of letters in the longest word
Sentences in a natural language
DNA sequences
Fortran code
IATEX code
- Error detecting and correcting codes ISBN numbers

Continuous phenomena

Examples:

- The pressure, volume, quantity, and temperature of a gas in a vessel

Continuous phenomena

- The gravitational attraction of two bodies

Event $=$ mass $_{1}$, mass $_{2}$, position $_{1}$, position $_{2}$, force

$$
\leadsto \mathscr{U}=(0, \infty) \times(0, \infty) \times \mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}^{3}
$$

Continuous phenomena

The voltage across and the current through a resistor

Event $=($ voltage, current $)$
$\leadsto \quad \mathscr{U}=\mathbb{R}^{2}$

Continuous phenomena

The voltage across and the current through a resistor

Event $=($ voltage, current $) \quad \leadsto \mathscr{U}=\mathbb{R}^{2}$

- Price/demand $\leadsto \mathscr{U}=[0, \infty) \times[0, \infty)$

Price/supply $\sim \mathscr{U}=[0, \infty) \times[0, \infty)$
Supply/demand $\leadsto \mathscr{U}=[0, \infty) \times[0, \infty)$

Dynamical phenomena

Dynamical phenomena \leadsto this course.
Examples:

- Planetary motion

The events are maps from \mathbb{R} to \mathbb{R}^{3}

$$
\leadsto \quad \mathscr{U}=\left\{w: \mathbb{R} \rightarrow \mathbb{R}^{3}\right\}
$$

Dynamical phenomena

Dynamical phenomena \leadsto this course.

Examples:

- Planetary motion

The events are maps from \mathbb{R} to \mathbb{R}^{3}

$$
\leadsto \quad \mathscr{U}=\left\{w: \mathbb{R} \rightarrow \mathbb{R}^{3}\right\} \quad=\left(\mathbb{R}^{3}\right)^{\mathbb{R}}
$$

$A^{B}:=$ the set of maps from A to $B=\{f: A \rightarrow B\}$

Dynamical phenomena

The voltage across and the current into an electrical port with 'dynamics'

The events are maps from \mathbb{R} to \mathbb{R}^{2}

$$
\leadsto \quad \mathscr{U}=\left\{(V, I): \mathbb{R} \rightarrow \mathbb{R}^{2}\right\}
$$

Dynamical phenomena

- Heat flows, temperatures, and work in a thermodynamic system

Events: maps from \mathbb{R} to $[0, \infty) \times[0, \infty) \times[0, \infty) \times[0, \infty) \times \mathbb{R}$

$$
\leadsto \quad \mathscr{U}=\left\{\left(Q_{h}, T_{h}, Q_{c}, T_{c}, W\right): \mathbb{R} \rightarrow \cdots\right\}
$$

Dynamical phenomena

- The input and the output of a signal processor

Events: maps from \mathbb{Z} to $\mathbb{R} \times \mathbb{R}$

$$
\leadsto \quad \mathscr{U}=\left\{(u, y): \mathbb{Z} \rightarrow \mathbb{R}^{2}\right\}
$$

Dynamical phenomena

The input and the output of a signal processor

Events: maps from \mathbb{Z} to $\mathbb{R} \times \mathbb{R}$

$$
\leadsto \quad \mathscr{U}=\left\{(u, y): \mathbb{Z} \rightarrow \mathbb{R}^{2}\right\}
$$

Variables associated with mechanical devices, electrical instruments, chemical systems, multi-domain constructs, economic processes, ... Phenomena with 'memory'.

Distributed phenomena

Temperature profile of, and heat absorbed by, a rod

Events: maps from $\mathbb{R} \times \mathbb{R}$ to $[0, \infty) \times \mathbb{R}$

$$
\leadsto \quad \mathscr{U}=\left\{(T, q): \mathbb{R}^{2} \rightarrow[0, \infty) \times \mathbb{R}\right\}
$$

Distributed phenomena

EM fields.

In each point of space $\boldsymbol{\&}$ at each time, there is an

$$
\begin{array}{ll}
\text { electric field } & \vec{E}(t, x, y, z) \\
\text { magnetic field } & \vec{B}(t, x, y, z) \\
\text { current density } & \vec{j}(t, x, y, z) \\
\text { charge density } & \rho(t, x, y, z)
\end{array}
$$

Events: maps from $\mathbb{R} \times \mathbb{R}^{3}$ to $\mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}$

$$
\leadsto \quad \mathscr{U}=\left\{(\vec{E}, \vec{B}, \vec{j}, \rho): \mathbb{R}^{4} \rightarrow \mathbb{R}^{10}\right\}
$$

Distributed phenomena

EM fields.

In each point of space $\boldsymbol{\&}$ at each time, there is an

$$
\begin{array}{ll}
\text { electric field } & \vec{E}(t, x, y, z) \\
\text { magnetic field } & \vec{B}(t, x, y, z) \\
\text { current density } & \vec{j}(t, x, y, z) \\
\text { charge density } & \rho(t, x, y, z)
\end{array}
$$

Events: maps from $\mathbb{R} \times \mathbb{R}^{3}$ to $\mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}$

$$
\leadsto \quad \mathscr{U}=\left\{(\vec{E}, \vec{B}, \vec{j}, \rho): \mathbb{R}^{4} \rightarrow \mathbb{R}^{10}\right\}
$$

- Images

Phenomena in which things happen simultaneously at different points in space

A model is a subset: the 'behavior'

The behavior

Given is a phenomenon with universum \mathscr{U}. Without further scrutiny, any event in \mathscr{U} is possible.

After studying the situation, the conclusion is reached that the events are constrained, that some laws are in force.

The behavior

Given is a phenomenon with universum \mathscr{U}. Without further scrutiny, any event in \mathscr{U} is possible.

After studying the situation, the conclusion is reached that the events are constrained, that some laws are in force.

Modeling means that certain events are declared to be impossible, that they cannot occur.

The possibilities that remain constitute what we call the 'behavior' of the model.

The behavior

Given is a phenomenon with universum \mathscr{U}. Without further scrutiny, any event in \mathscr{U} is possible.

After studying the situation, the conclusion is reached that the events are constrained, that some laws are in force.

Modeling means that certain events are declared to be impossible, that they cannot occur.

The possibilities that remain constitute what we call the 'behavior' of the model.

A model is a subset \mathscr{B} of \mathscr{U}
\mathscr{B} is called the behavior of the model

The behavior

Every "good" scientific theory is prohibition: it forbids certain things to happen... The more a theory forbids, the better it is.

Karl Popper

Conjectures and Refutations:
The Growth of Scientific Knowledge
Routhledge, 1963

Karl Popper (1902-1994)

Examples

Discrete event phenomena

Examples:

- Words in a natural language
$\mathscr{U}=\{a, b, c, \ldots, x, y, z\}^{n}$
with $\mathrm{n}=$ the number of letters in the longest word
$\mathscr{B}=$ all words recognized by the spelling checker. For example, $\mathrm{SPQR} \notin \mathscr{B}$.
\mathscr{B} is basically defined by enumeration, by listing its elements.

Discrete event phenomena

Examples:

- Words in a natural language
$\mathscr{U}=\{a, b, c, \ldots, x, y, z\}^{n}$
with $\mathrm{n}=$ the number of letters in the longest word
$\mathscr{B}=$ all words recognized by the spelling checker. For example, $\mathrm{SPQR} \notin \mathscr{B}$.
\mathscr{B} is basically defined by enumeration, by listing its elements.

Sentences in a natural language.
$\mathscr{B}=$ all 'legal' sentences.
Usually determined using grammars.

Discrete event phenomena

Examples:

- Words in a natural language
$\mathscr{U}=\{a, b, c, \ldots, x, y, z\}^{n}$
with $\mathrm{n}=$ the number of letters in the longest word
$\mathscr{B}=$ all words recognized by the spelling checker.
For example, $\mathrm{SPQR} \notin \mathscr{B}$.
\mathscr{B} is basically defined by enumeration, by listing its elements.

Sentences in a natural language.
$\mathscr{B}=$ all 'legal' sentences.
Usually determined using grammars.

- DNA sequences. $\mathscr{B}=$???
- IAT $_{\mathbf{E}} \mathrm{X}$ code. $\mathscr{B}=$ all IAT $\mathbf{E} X$ files that 'run'.

Discrete event phenomena

32-bit binary strings with a parity check.

$$
\begin{aligned}
\mathscr{U} & =\{0,1\}^{32} \\
\mathscr{B} & =\left\{a_{1} a_{2} \cdots a_{31} a_{32} \mid a_{\mathrm{k}} \in\{0,1\} \text { and } a_{32} \stackrel{(\bmod 2)}{=} \sum_{\mathrm{k}=1}^{31} a_{\mathrm{k}}\right\}
\end{aligned}
$$

Discrete event phenomena

- 32-bit binary strings with a parity check.
$\mathscr{U}=\{0,1\}^{32}$
$\mathscr{B}=\left\{a_{1} a_{2} \cdots a_{31} a_{32} \mid a_{\mathrm{k}} \in\{0,1\}\right.$ and $\left.a_{32} \stackrel{(\bmod 2)}{=} \sum_{\mathrm{k}=1}^{31} a_{\mathrm{k}}\right\}$
\mathscr{B} can be expressed in other ways. For example,

$$
\begin{aligned}
& \mathscr{B}=\left\{a_{1} a_{2} \cdots a_{31} a_{32} \mid a_{\mathrm{k}} \in\{0,1\} \text { and } \sum_{\mathrm{k}=1}^{32} a_{\mathrm{k}} \stackrel{(\bmod 2)}{=} 0\right\} \\
& \mathscr{B}=\left\{\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{31} \\
a_{32}
\end{array}\right] \left\lvert\, \exists\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{30} \\
b_{31}
\end{array}\right]\right. \text { s.t. }\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{31} \\
a_{32}
\end{array}\right]=\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
-1 & 1 & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & 0 & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & -1 & 1 \\
0 & 0 & \cdots & 0 & -1
\end{array}\right]\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{30} \\
b_{31}
\end{array}\right]\right\}
\end{aligned}
$$

Discrete event phenomena

- 32-bit binary strings with a parity check.
$\mathscr{U}=\{0,1\}^{32}$
$\mathscr{B}=\left\{a_{1} a_{2} \cdots a_{31} a_{32} \mid a_{\mathrm{k}} \in\{0,1\}\right.$ and $\left.a_{32} \stackrel{(\bmod 2)}{=} \sum_{\mathrm{k}=1}^{31} a_{\mathrm{k}}\right\}$
input/output representation
\mathscr{B} can be expressed in other ways. For example,

$$
\begin{aligned}
& \mathscr{B}=\left\{a_{1} a_{2} \cdots a_{31} a_{32} \mid a_{\mathrm{k}} \in\{0,1\} \text { and } \sum_{\mathrm{k}=1}^{32} a_{\mathrm{k}} \stackrel{(\bmod 2)}{=} 0\right\} \\
& \text { kernel representation } \\
& \mathscr{B}=\left\{\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{31} \\
a_{32}
\end{array}\right] \left\lvert\, \exists\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{30} \\
b_{31}
\end{array}\right]\right. \text { s.t. }\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{31} \\
a_{32}
\end{array}\right]=\left[\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
-1 & 1 & 0 & \cdots & 0 \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & 0 & \ddots & \vdots \\
0 & 0 & \cdots & -1 & 1 \\
0 & 0 & \cdots & 0 & -1
\end{array}\right]\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{30} \\
b_{31}
\end{array}\right]\right\}
\end{aligned}
$$

Continuous phenomena

Examples:

- The pressure, volume, quantity, and temperature of a gas in a vessel

$$
\mathscr{U}=(0, \infty) \times(0, \infty) \times(0, \infty) \times(0, \infty)
$$

Gas law: $\mathscr{B}=\{(P, V, N, T) \in \mathscr{U} \mid P V=N T$

Continuous phenomena

- The gravitational attraction of two bodies

$\sim \mathscr{U}=(0, \infty) \times(0, \infty) \times \mathbb{R}^{3} \times \mathbb{R}^{3} \times \mathbb{R}^{3}$
$\mathscr{B}=\left\{\vec{F}=\frac{M_{1} M_{2} \overrightarrow{1}_{M_{2} \rightarrow M_{1}}}{\left\|\vec{q}_{1}-\vec{q}_{2}\right\|^{2}}\right\}$
'inverse square law'

Isaac Newton, 1642-1727

Continuous phenomena

The voltage across and the current through a resistor

Event $=($ voltage, current $) \leadsto \mathscr{U}=\mathbb{R}^{2}$
'Ohm's law'

$$
\mathscr{B}=\{(V, I) \mid V=R I\}
$$

Continuous phenomena

- Price/demand:

Demand

$$
\mathscr{U}=[0, \infty) \times[0, \infty)
$$

Supply
Demand

Continuous phenomena

- Price/demand:

Demand

$$
\mathscr{U}=[0, \infty) \times[0, \infty)
$$

Supply
Demand

Dynamical phenomena

Kepler's laws $\leadsto \mathscr{B}$

Dynamical phenomena

- Planetary motion $\quad \mathscr{U}=\left(\mathbb{R}^{3}\right)^{\mathbb{R}}$

Kepler's laws $\leadsto \mathscr{B}=$ the orbits $\mathbb{R} \rightarrow \mathbb{R}^{3}$ with:
K. 1 periodic, ellipses, with the sun in one of the foci;
K. 2 the vector from sun to planet sweeps out equal areas in equal time;
K. 3 the square of the period divided by the third power of the major axis is the same for all the planets

Dynamical phenomena

- The second law

Isaac Newton by William Blake

$$
\begin{gathered}
\mathscr{U}=\left(\mathbb{R}^{3} \times \mathbb{R}^{3}\right)^{\mathbb{R}} \\
\mathscr{B}=\left\{(F, q): \mathbb{R} \rightarrow \mathbb{R}^{3} \times \mathbb{R}^{3} \left\lvert\, F=\frac{d^{2}}{d t^{2}} q\right.\right\}
\end{gathered}
$$

Dynamical phenomena

- Heat flows, temperatures, and work

$$
\begin{array}{r}
\mathscr{B} \leadsto \int_{-\infty}^{+\infty}\left(Q_{h}-Q_{c}-W\right) d t=0 \\
\quad \text { and } \int_{-\infty}^{+\infty}\left(\frac{Q_{h}}{T_{h}}-\frac{Q_{c}}{T_{c}}\right) d t \leq 0
\end{array}
$$

Dynamical phenomena

Heat flows, temperatures, and work

$$
\begin{aligned}
\mathscr{B} & \int_{-\infty}^{+\infty}\left(Q_{h}-Q_{c}-W\right) d t=0 \\
& \text { and } \int_{-\infty}^{+\infty}\left(\frac{Q_{h}}{T_{h}}-\frac{Q_{c}}{T_{c}}\right) d t \leq 0
\end{aligned}
$$

First and second law of thermodynamics

Rudolf Clausius 1822-1888

Dynamical phenomena

The input and the output of a signal processor

Events: maps from \mathbb{Z} to $\mathbb{R} \times \mathbb{R} \leadsto \mathscr{U}=\left\{(u, y): \mathbb{Z} \rightarrow \mathbb{R}^{2}\right\}$
For an MA system

$$
\mathscr{B}=\left\{(u, y): \mathbb{Z} \rightarrow \mathbb{R}^{2} \left\lvert\, y(t)=\frac{1}{2 T+1} \sum_{t^{\prime}=t-T}^{t+T} u\left(t^{\prime}\right)\right.\right\}
$$

many variations

Distributed phenomena

The temperature profile of, and heat absorbed by, a rod

Events: maps from $\mathbb{R} \times \mathbb{R}$ to $[0, \infty) \times \mathbb{R}$

$$
\begin{gathered}
\mathscr{U}=\left\{(T, q): \mathbb{R}^{2} \rightarrow[0, \infty) \times \mathbb{R}\right\} \\
\mathscr{B}=\left\{(T, q): \mathbb{R}^{2} \rightarrow[0, \infty) \times \mathbb{R} \left\lvert\, \frac{\partial}{\partial t} T=\frac{\partial^{2}}{\partial x^{2}} T+q\right.\right\}
\end{gathered}
$$

Distributed phenomena

- Maxwell's equations for EM fields in free space

$$
\begin{aligned}
\nabla \cdot \vec{E} & =\frac{1}{\varepsilon_{0}} \rho, \\
\nabla \times \vec{E} & =-\frac{\partial}{\partial t} \vec{B}, \\
\nabla \cdot \vec{B} & =0 \\
c^{2} \nabla \times \vec{B} & =\frac{1}{\varepsilon_{0}} \vec{j}+\frac{\partial}{\partial t} \vec{E} .
\end{aligned}
$$

independent variables: (t, x, y, z) time and space dependent variables: $(\vec{E}, \vec{B}, \vec{j}, \rho)$
electric \& magnetic field, current \& charge density

Stochastic and Fuzzy

Stochastic models

In this lecture, we consider only deterministic models.
Stochastic models : \Leftrightarrow there is a map P (the 'probability')
$P: \mathscr{A} \rightarrow[0,1]$
with \mathscr{A} a ' σ-algebra'
of subsets of \mathscr{U}
$\&$ certain axioms on \mathscr{A} and P.

Pierre-Simon Laplace

Andrey Kolmogorov 1903-1989
$P(\mathscr{B})=$ 'the degree of certainty' (relative frequency, propensity, plausibility, belief) that outcomes (elements from \mathscr{U}) are in $\mathscr{B} ; \quad \cong$ 'the degree of validity of \mathscr{B} as a model'.

Stochastic models

In this lecture, we consider only deterministic models.
Stochastic models : \Leftrightarrow there is a map P (the 'probability')
$P: \mathscr{A} \rightarrow[0,1]$
with \mathscr{A} a ' σ-algebra'
of subsets of \mathscr{U}
$\&$ certain axioms on \mathscr{A} and P.

Pierre-Simon Laplace

Andrey Kolmogorov 1903-1989
$P(\mathscr{B})=$ 'the degree of certainty' (relative frequency, propensity, plausibility, belief) that outcomes (elements from \mathscr{U}) are in $\mathscr{B} ; \quad \cong$ 'the degree of validity of \mathscr{B} as a model'.

Determinism : P is a $\{0,1\}$-law

$$
\mathscr{A}=\left\{\varnothing, \mathscr{B}, \mathscr{B}^{\text {complement }}, \mathscr{U}\right\}, P(\mathscr{B})=1 .
$$

Furry models

Fuzzy models: there is a map μ ('the membership function')
Lotfi Zadeh born 1921

$$
\mu: \mathscr{U} \rightarrow[0,1]
$$

$\mu(x)=$ 'the extent to which x belongs to the model's behavior'.

Furray models

Fuzzy models: there is a map μ ('the membership function')

$$
\mu: \mathscr{U} \rightarrow[0,1]
$$

$\mu(x)=$ 'the extent to which x belongs to the model's behavior'.
Determinism: μ is 'crisp':

$$
\begin{gathered}
\text { image }(\mu)=\{0,1\}, \\
\mathscr{B}=\mu^{-1}(\{1\}):=\{x \in \mathscr{U} \mid \mu(x)=1\}
\end{gathered}
$$

Behavioral models

Behavioral models fit the tradition of modeling, but have not been approached as such in a deterministic setting. The behavior captures the essence of a model.

> The behavior is all there is.
> Equivalence of models, properties of models, symmetry, system identification, etc., must all refer to the behavior.

Every 'good' scientific theory is prohibition: it forbids certain things to happen... The more a theory forbids, the better it is.

Replace 'scientific theory' by 'mathematical model' !

Recapitulation

A model deals with events
The events belong to an universum, \mathscr{U}
A model is specified by its behavior \mathscr{B},
a subset of the event set \mathscr{C}
In dynamical systems, the events are functions of time and the behavior \mathscr{B} is hence a family of time-trajectories.

The dynamic behavior

In dynamical systems, 'events' are maps, with the time axis as domain, hence functions of time.

It is convenient to distinguish in the notation
the domain of the maps, the time set
and the codomain, the signal space
the set where the functions take on their values.

The dynamic behavior

In dynamical systems, 'events' are maps, with the time axis as domain, hence functions of time.

It is convenient to distinguish in the notation
the domain of the maps, the time set
and the codomain, the signal space
the set where the functions take on their values. The behavior of a dynamical system is usually described by a system of ordinary differential equations (ODEs) or difference equations.

In contrast to distributed phenomena
\leadsto partial differential equations (PDEs)

The dynamic behavior

A dynamical system $: \Leftrightarrow(\mathbb{T}, \mathbb{W}, \mathscr{B})$

$$
\begin{aligned}
& \mathbb{T} \subseteq \mathbb{R} \\
& \mathbb{W} \\
& \mathscr{B} \subseteq \mathbb{W}^{\mathbb{T}}
\end{aligned}
$$

'time set'
'signal space'
the 'behavior'
a family of trajectories $\mathbb{T} \rightarrow \mathbb{W}$

The dynamic behavior

A dynamical system $: \Leftrightarrow(\mathbb{T}, \mathbb{W}, \mathscr{B})$

$$
\begin{array}{ll}
\mathbb{T} \subseteq \mathbb{R} & \text { 'time set' } \\
\mathbb{W} & \text { 'signal space' } \\
\mathscr{B} \subseteq \mathbb{W}^{\mathbb{T}} & \text { the 'behavior' }
\end{array}
$$

a family of trajectories $\mathbb{T} \rightarrow \mathbb{W}$
mostly, $\quad \mathbb{T}=\mathbb{R}, \mathbb{R}_{+}, \mathbb{Z}$, or $\mathbb{N}\left(\cong \mathbb{Z}_{+}\right)$,
and, in this course, $\mathbb{W}=\mathbb{R}^{w}$,
\mathscr{B} is a family of
(finite dimensional) vector-valued time trajectories

The dynamic behavior

A dynamical system $: \Leftrightarrow(\mathbb{T}, \mathbb{W}, \mathscr{B})$
$\begin{array}{ll}\mathbb{T} \subseteq \mathbb{R} & \text { 'time set' } \\ \mathbb{W} & \text { 'signal space' } \\ \mathscr{B} \subseteq \mathbb{W}^{\mathbb{T}} & \text { the 'behavior' }\end{array}$
a family of trajectories $\mathbb{T} \rightarrow \mathbb{W}$
mostly, $\quad \mathbb{T}=\mathbb{R}, \mathbb{R}_{+}, \mathbb{Z}$, or $\mathbb{N}\left(\cong \mathbb{Z}_{+}\right)$,
and, in this course, $\mathbb{W}=\mathbb{R}^{\mathrm{W}}$,
\mathscr{B} is a family of
(finite dimensional) vector-valued time trajectories
$w: \mathbb{T} \rightarrow \mathbb{R}^{\mathrm{w}} \in \mathscr{B} \Leftrightarrow{ }^{6} w$ is compatible with the model'
$w: \mathbb{T} \rightarrow \mathbb{R}^{\mathrm{w}} \notin \mathscr{B} \Leftrightarrow{ }^{\text {'the model forbids } w^{\prime}}$

The dynamic behavior

A dynamical system $: \Leftrightarrow(\mathbb{T}, \mathbb{W}, \mathscr{B})$

$\mathbb{T} \subseteq \mathbb{R}$
\mathbb{W}

$\mathscr{B} \subseteq \mathbb{W}^{\mathbb{T}} \quad$ the 'behavior'
a family of trajectories $\mathbb{T} \rightarrow \mathbb{W}$
mostly, $\quad \mathbb{T}=\mathbb{R}, \mathbb{R}_{+}, \mathbb{Z}$, or $\mathbb{N}\left(\cong \mathbb{Z}_{+}\right)$,
and, in this course, $\mathbb{W}=\mathbb{R}^{\mathrm{W}}$,
\mathscr{B} is a family of
(finite dimensional) vector-valued time trajectories
$w: \mathbb{T} \rightarrow \mathbb{R}^{\mathrm{w}} \in \mathscr{B} \Leftrightarrow{ }^{6} w$ is compatilble with the model'
$w: \mathbb{T} \rightarrow \mathbb{R}^{\mathrm{w}} \notin \mathscr{B} \Leftrightarrow{ }^{\text {'the model forbids } w '}$
$\mathbb{T}=\mathbb{R}$ or $\mathbb{R}_{+} \leadsto$ 'continuous-time' systems and ODEs
$\mathbb{T}=\mathbb{Z}$ or $\mathbb{N} \leadsto$ 'discrete-time' systems and difference eqn's
We deal extensively with the case $\mathbb{T}=\mathbb{R}$ first.

Linear time-invariant differential systems

LTIDSs

LTIDSs

The dynamical system $\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}, \mathscr{B}\right) \sim \mathscr{B}$ is said to be
\llbracket linear $\rrbracket: \Leftrightarrow \llbracket \llbracket w_{1}, w_{2} \in \mathscr{B}, \alpha \in \mathbb{R} \rrbracket \Rightarrow \llbracket w_{1}+w_{2} \in \mathscr{B} \rrbracket \rrbracket$

LIIDSs

The dynamical system $\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}, \mathscr{B}\right) \leadsto \mathscr{B}$ is said to be
\llbracket linear $\rrbracket: \Leftrightarrow \llbracket \llbracket w_{1}, w_{2} \in \mathscr{B}, \alpha \in \mathbb{R} \rrbracket \Rightarrow \llbracket \alpha w_{1}+w_{2} \in \mathscr{B} \rrbracket \rrbracket$
\llbracket time-invariant $\rrbracket: \Leftrightarrow \llbracket \llbracket w \in \mathscr{B}, \sigma^{t}$ the t-shift $\rrbracket \Rightarrow \llbracket \sigma^{t} w \in \mathscr{B} \rrbracket \rrbracket$

LTIDSs

The dynamical system $\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}, \mathscr{B}\right) \leadsto \mathscr{B}$ is said to be
\llbracket linear $\rrbracket: \Leftrightarrow \llbracket \llbracket w_{1}, w_{2} \in \mathscr{B}, \alpha \in \mathbb{R} \rrbracket \Rightarrow \llbracket \alpha w_{1}+w_{2} \in \mathscr{B} \rrbracket \rrbracket$
\llbracket time-invariant $\rrbracket: \Leftrightarrow \llbracket \llbracket w \in \mathscr{B}, \sigma^{t}$ the t-shift $\rrbracket \Rightarrow \llbracket \sigma^{t} w \in \mathscr{B} \rrbracket \rrbracket$

\llbracket differential $\rrbracket: \Leftrightarrow \llbracket \mathscr{B}$ is 'described' by an ODE \rrbracket.

Linearity

This definition of linearity has as a special case

$$
u \mapsto y=L(u) \quad L \text { a linear map }
$$

$u \in$ a space of inputs, $y \in$ a space of outputs, $\quad w=\left[\begin{array}{l}u \\ y\end{array}\right]$.

$$
\mathscr{B}=\left\{\left.w=\left[\begin{array}{l}
u \\
y
\end{array}\right] \right\rvert\, y=L(u)\right\}=\text { the 'graph' of } L
$$

Linearity

This definition of linearity has as a special case

$$
u \mapsto y=L(u) \quad L \text { a linear map }
$$

$u \in$ a space of inputs, $y \in$ a space of outputs, $\quad w=\left[\begin{array}{l}u \\ y\end{array}\right]$.

$$
\mathscr{B}=\left\{\left.w=\left[\begin{array}{l}
u \\
y
\end{array}\right] \right\rvert\, y=L(u)\right\}=\text { the 'graph' of } L
$$

But, a dynamical system, also an input/output system, is seldom a map!

LTIDSs

The dynamical system $\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}, \mathscr{B}\right)$ is

a linear time-invariant differential system (LTIDS) : \Leftrightarrow the behavior consists of the set of solutions of a system of linear, constant coefficient, ODEs

$$
R_{0} w+R_{1} \frac{d}{d t} w+\cdots+R_{\mathrm{n}} \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} w=0
$$

$R_{0}, R_{1}, \cdots, R_{\mathrm{n}} \in \mathbb{R}^{\bullet \times \mathrm{w}}$ real matrices that parametrize the system, and $w: \mathbb{R} \rightarrow \mathbb{R}^{\mathrm{W}}$.

The dynamical system $\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}, \mathscr{B}\right)$ is

a linear time-invariant differential system (LTIDS) : \Leftrightarrow the behavior consists of the set of solutions of a system of linear, constant coefficient, ODEs

$$
R_{0} w+R_{1} \frac{d}{d t} w+\cdots+R_{\mathrm{n}} \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} w=0
$$

$R_{0}, R_{1}, \cdots, R_{\mathrm{n}} \in \mathbb{R}^{\bullet \times \mathrm{w}}$ real matrices that parametrize the system, and $w: \mathbb{R} \rightarrow \mathbb{R}^{\mathrm{w}}$. In polynomial matrix notation

$$
\leadsto \quad R\left(\frac{d}{d t}\right) w=0
$$

with $R(\xi)=R_{0}+R_{1} \xi+\cdots+R_{\mathrm{n}} \xi^{\mathrm{n}} \in \mathbb{R}[\xi]^{\bullet \times \mathrm{w}}$
a polynomial matrix, usually 'wide' \square

LTIDS

We should define what we mean by a solution of

$$
R\left(\frac{d}{d t}\right) w=0
$$

For ease of exposition, we take $\mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right)$ solutions. Hence the behavior defined is

$$
\mathscr{B}=\left\{w \in \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right) \left\lvert\, R\left(\frac{d}{d t}\right) w=0\right.\right\}
$$

LTIDS

We should define what we mean by a solution of

$$
R\left(\frac{d}{d t}\right) w=0
$$

For ease of exposition, we take $\mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right)$ solutions. Hence the behavior defined is

$$
\mathscr{B}=\left\{w \in \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right) \left\lvert\, R\left(\frac{d}{d t}\right) w=0\right.\right\}
$$

$\mathscr{B}=\mathbf{k e r n e l}\left(R\left(\frac{d}{d t}\right)\right) \quad$ 'kernel representation' of this \mathscr{B}.
Notation:

$$
\mathscr{B} \in \mathscr{L}^{\mathrm{w}}
$$

$\mathscr{L}^{\mathrm{w}}=$ the LTIDSs with w variables

$$
\mathscr{B} \in \mathscr{L}^{\bullet}, \quad \mathscr{L}^{\bullet}=\text { the LTIDSs. }
$$

Smoothness of solutions

There are many possibilities for the def'n of the solution set of

$$
R\left(\frac{d}{d t}\right) w=0
$$

-

$\mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right)$ solutions - our choice

Smoothness of solutions

There are many possibilities for the def'n of the solution set of

$$
R\left(\frac{d}{d t}\right) w=0
$$

- $\mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right)$ solutions - our choice
- Strong solutions : all derivatives appearing in the eqn'ns exist and the ODEs are satisfied. Has very few 'invariance' properties.
- Weak solutions : $w \in \mathscr{L}^{\text {local }}\left(\mathbb{R}, \mathbb{R}^{m}\right)$, solutions interpreted in the sense of distributions.

Includes steps, ramps, jumps, jerks, etc.

Smoothness of solutions

There are many possibilities for the def'n of the solution set of

$$
R\left(\frac{d}{d t}\right) w=0
$$

- $\mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathbf{W}}\right)$ solutions - our choice

Strong solutions : all derivatives appearing in the eqn'ns exist and the ODEs are satisfied. Has very few 'invariance' properties.

- Weak solutions : $w \in \mathscr{L}^{\text {local }}\left(\mathbb{R}, \mathbb{R}^{\mathrm{m}}\right)$, solutions interpreted in the sense of distributions.
Includes steps, ramps, jumps, jerks, etc.
- Distributional solutions include impulses and such frivolities.

Representations of LTIDSs

We will meet numerous representations of LTIDSs

- As the set of solutions of $R\left(\frac{d}{d t}\right) w=0 \quad R \in \mathbb{R}[\xi]^{\bullet \times w}$ (our def.) $R\left(\frac{d}{d t}\right): \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\text {coldim }(R)}\right) \rightarrow \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\text {rowdim }(R)}\right)$ 'kernel repr'n'

Representations of UTIDSs

We will meet numerous representations of LTIDSs

- As the set of solutions of $R\left(\frac{d}{d t}\right) w=0 \quad R \in \mathbb{R}[\xi]^{\bullet \times \mathrm{w}}$ (our def.) $R\left(\frac{d}{d t}\right): \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\text {coldim }(R)}\right) \rightarrow \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\text {rowdim }(R)}\right)$ 'kernel repr'n'
- With input/output partition

$$
P\left(\frac{d}{d t}\right) y=Q\left(\frac{d}{d t}\right) u \quad w \cong\left[\begin{array}{l}
u \\
y
\end{array}\right] \quad \operatorname{det}(P) \neq 0, P^{-1} Q \text { proper }
$$

Representations of LTIDSs

We will meet numerous representations of LTIDSs

- As the set of solutions of $R\left(\frac{d}{d t}\right) w=0 \quad R \in \mathbb{R}[\xi]^{\bullet \times w}$ (our def.) $R\left(\frac{d}{d t}\right): \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\text {coldin }(R)}\right) \rightarrow \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\text {rowdim }(R)}\right)$ 'kernel repr'n'
- With input/output partition

$$
P\left(\frac{d}{d t}\right) y=Q\left(\frac{d}{d t}\right) u \quad w \cong\left[\begin{array}{l}
u \\
y
\end{array}\right] \quad \operatorname{det}(P) \neq 0, P^{-1} Q \text { proper }
$$

- Input/state/output representation in terms of matrices A, B, C, D such that \mathscr{B} consists of all $w^{\prime} s$ generated by

$$
\frac{d}{d t} x=A x+B u, y=C x+D u \quad w \cong\left[\begin{array}{l}
u \\
y
\end{array}\right]
$$

Rudolf E. Kalman born 1930

Representations of LTIDSs

- $w=M\left(\frac{d}{d t}\right) \ell \quad$ with $M \in \mathbb{R}[\xi]^{\mathrm{w} \times \bullet}$

$$
\begin{aligned}
& M\left(\frac{d}{d t}\right): \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\operatorname{coldim}(M)}\right) \rightarrow \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\text {rowdim }(M)}\right) \text { 'image repr'n' } \\
& \mathscr{B}=\text { image }\left(M\left(\frac{d}{d t}\right)\right)
\end{aligned}
$$

Representations of UTIDSs

- $w=M\left(\frac{d}{d t}\right) \ell \quad$ with $M \in \mathbb{R}[\xi]^{\mathrm{w} \times \bullet}$
$M\left(\frac{d}{d t}\right): \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\text {coldim }(M)}\right) \rightarrow \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\text {rowdim }(M)}\right)$ 'image repr'n' $\mathscr{B}=$ image $\left(M\left(\frac{d}{d t}\right)\right)$
- First principles models often contain 'latent variables’ (see later) $\leadsto R\left(\frac{d}{d t}\right) w=M\left(\frac{d}{d t}\right) \ell \quad$ 'latent variable representation'

$$
\mathscr{B}=\{w \mid \exists \ell \text { such that } \ldots\}
$$

Representations of UTIDSs

- $w=M\left(\frac{d}{d t}\right) \ell \quad$ with $M \in \mathbb{R}[\xi]^{\mathrm{w} \times \bullet}$
$M\left(\frac{d}{d t}\right): \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\text {coldim }(M)}\right) \rightarrow \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\text {rowdim }(M)}\right)$ 'image repr'n' $\mathscr{B}=$ image $\left(M\left(\frac{d}{d t}\right)\right)$
- First principles models often contain 'latent variables’ (see later) $\leadsto R\left(\frac{d}{d t}\right) w=M\left(\frac{d}{d t}\right) \ell \quad$ 'latent variable representation'

$$
\mathscr{B}=\{w \mid \exists \ell \text { such that } \ldots\}
$$

- Special case: $\frac{d}{d t} F x=A x+B w \quad$ DAEs

$$
\mathscr{B}=\{w \mid \exists x \text { such that } \ldots\}
$$

Representations of UTIDSs

representations with rational symbols
$R\left(\frac{d}{d t}\right) w=0, w=M\left(\frac{d}{d t}\right) \ell$, etc.
with $R, M \in \mathbb{R}(\xi)^{\bullet \bullet \bullet}$, or proper stable rational, etc. (see lecture 7)

Representations of UTIDSs

- representations with rational symbols
$R\left(\frac{d}{d t}\right) w=0, w=M\left(\frac{d}{d t}\right) \ell$, etc.
with $R, M \in \mathbb{R}(\xi)^{\bullet \times \bullet}$, or proper stable rational, etc. (see lecture 7)
- and then, there are the convolution representations

$$
\int_{-\infty}^{+\infty} H\left(t^{\prime}\right) w\left(t-t^{\prime}\right) d t^{\prime}=0
$$

(see lecture 4)
with the kernel, input/output, image versions

Representations of UTIDSs

- representations with rational symbols
$R\left(\frac{d}{d t}\right) w=0, w=M\left(\frac{d}{d t}\right) \ell$, etc.
with $R, M \in \mathbb{R}(\xi)^{\bullet \times \bullet}$, or proper stable rational, etc. (see lecture 7)
- and then, there are the convolution representations

$$
\int_{-\infty}^{+\infty} H\left(t^{\prime}\right) w\left(t-t^{\prime}\right) d t^{\prime}=0
$$

(see lecture 4)
with the kernel, input/output, image versions

- Rich ... but confusing!

Injectivity, surjectivity, and bijectivity of differential operators

It is convenient to have the following proposition at hand.
Proposition: Let $P \in \mathbb{R}[\xi]^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$ and consider the map

$$
P\left(\frac{d}{d t}\right): \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{n}_{2}}\right) \rightarrow \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{n}_{1}}\right)
$$

- $P\left(\frac{d}{d t}\right)$ is injective iff the complex matrix $P(\lambda)$ has rank n_{2} for all $\lambda \in \mathbb{C}$. That is, iff $P(\lambda)$ has full column rank for all $\lambda \in \mathbb{C}$
- $P\left(\frac{d}{d t}\right)$ is surjective iff the polynomial matrix P has rank n_{1} (i.e. P is of full row rank). That is, iff there exists a $\mathrm{n}_{1} \times \mathrm{n}_{1}$ submatrix of P with non-zero determinant.
- $P\left(\frac{d}{d t}\right)$ is surjective iff P is unimodular. That is iff $\mathrm{n}_{1}=\mathrm{n}_{2}$ and determinant (P) is a non-zero constant polynomial.
This proposition will be proven in lecture 2.

Injectivity, surjectivity, and bijectivity of differential operators

It is convenient to have the following proposition at hand.
Proposition: Let $P \in \mathbb{R}[\xi]^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$ and consider the map

$$
P\left(\frac{d}{d t}\right): \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{n}_{2}}\right) \rightarrow \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{n}_{1}}\right)
$$

- $P\left(\frac{d}{d t}\right)$ is injective iff the complex matrix $P(\lambda)$ has rank n_{2} for all $\lambda \in \mathbb{C}$. That is, iff $P(\lambda)$ has full column rank for all $\lambda \in \mathbb{C}$
- $P\left(\frac{d}{d t}\right)$ is surjective iff the polynomial matrix P has rank n_{1} (i.e. P is of full row rank). That is, iff there exists a $\mathrm{n}_{1} \times \mathrm{n}_{1}$ submatrix of P with non-zero determinant.
- $P\left(\frac{d}{d t}\right)$ is surjective iff P is unimodular. That is iff $\mathrm{n}_{1}=\mathrm{n}_{2}$ and determinant (P) is a non-zero constant polynomial.
This proposition will be proven in lecture 2.

The mathematical structure of LTIDSs

What is the mathematical structure of \mathscr{L}^{w} ?

What is the mathematical structure of $\mathscr{L}^{\text {w }}$?

In order to cope with this question, we need a few concepts from algebra: rings and modules.

A ring is a mathematical notion that has been introduced in order to capture the structure of the integers, the polynomials, square matrices, etc., and modules are like vector spaces over a ring, instead of over a field, as is officially required for a vector space.
Our interest is mainly is the ring of polynomials and in polynomial modules

These notions are briefly reviewed in the appendix

What is the mathematical structure of \mathscr{L}^{w} ?

Let $\mathscr{B} \in \mathscr{L}^{\text {w }}, \mathbf{s a y}, \mathscr{B}=\operatorname{kernel}\left(R\left(\frac{d}{d t}\right)\right)$
R determines \mathscr{B}, but \mathscr{B} does not determine R. For example, if U is unimodular, then R and $U R$ determine the same behavior!

What property of R really determines \mathscr{B} ?
When do

$$
R_{1}\left(\frac{d}{d t}\right) w=0 \quad \text { and } \quad R_{2}\left(\frac{d}{d t}\right) w=0
$$

define the same behavior?

$\mathscr{L}^{\text {w }}$ and polynomial submodules

Theorem

There is a one-to-one relation between \mathscr{L}^{W} and the $\mathbb{R}[\xi]$-submodules of $\mathbb{R}[\xi]^{1 \times \mathrm{w}}$.

$\mathscr{L}^{\text {w }}$ and polynomial submodules

Theorem

There is a one-to-one relation between \mathscr{L}^{w} and the $\mathbb{R}[\xi]$-submodules of $\mathbb{R}[\xi]^{1 \times \mathrm{w}}$.

We now describe this $1 \leftrightarrow 1$ relation.
One direction involves the annihilators of $\mathscr{B} \in \mathscr{L}^{\mathrm{w}}$. $\mathrm{n} \in \mathbb{R}[\xi]^{1 \times \mathrm{w}}$ is said to be an annihilator of $\mathscr{B}: \Leftrightarrow$

$$
n\left(\frac{d}{d t}\right) \mathscr{B}=0 \quad \text { i.e. } \quad n\left(\frac{d}{d t}\right) w=0 \text { for all } w \in \mathscr{B}
$$

Denote the annihilators of \mathscr{B} by $\mathscr{N}_{\mathscr{B}}$, a submodule of $\mathbb{R}[\xi]^{1 \times \mathrm{w}}$.

The submodule associated with \mathscr{B} by the thm is

```
\mathscr{B}\mapsto\mp@subsup{\mathscr{N}}{\mathscr{B}}{}
```


\mathscr{L}^{w} and polynomial submodules

The other direction is also as expected. The \mathscr{M} be an $\mathbb{R}[\xi]$-submodule of $\mathbb{R}[\xi]^{1 \times w}$. Define

$$
\mathscr{M} \mapsto \mathscr{S}_{\mathscr{M}}:=\left\{w \in \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{W}}\right) \left\lvert\, n\left(\frac{d}{d t}\right) w=0\right. \text { for all } n \in \mathscr{M}\right\}
$$

The right hand side defines an element of \mathscr{L}^{w}, even though it involves an ∞ number of ODEs.
A kernel representation (with a finite number of ODEs) is easily constructed, by taking for R the polynomial matrix with as rows a basis of \mathscr{M}.
sol'n set of ∞-number of linear constant coefficient ODEs \Leftrightarrow ∞-number of linear constant coefficient ODEs!

The behavior associated with \mathscr{M} by the thm is \square
$\mathscr{M} \mapsto \mathscr{S}_{\mathscr{M}}$

$\mathscr{L}^{\text {w }}$ and polynomial submodules

In pictures:

\mathscr{L}^{W} and polynomial submodules

In pictures:

We will prove that this association is one-to-one, by showing that the maps \mathscr{N} and \mathscr{S} are inverses of each other.

Sulbmodules \& LIIDSs

Notation

- For $R \in \mathbb{R}[\xi]^{\bullet \times \mathrm{w}}$, denote by $<R>$ the $\mathbb{R}[\xi]$-submodule of $\mathbb{R}[\xi]^{1 \times \mathrm{w}}$ generated by its rows.

Submodules \& LTIDSs

Notation

- For $R \in \mathbb{R}[\xi]^{\bullet \times \mathrm{w}}$, denote by $<R>$ the $\mathbb{R}[\xi]$-submodule of $\mathbb{R}[\xi]^{1 \times \mathrm{w}}$ generated by its rows.

The essence of the proof of the thm is the following lemma
Lemma: $\llbracket n \in \mathscr{N}_{\text {kernel }\left(R\left(\frac{d}{d t}\right)\right) \rrbracket} \Leftrightarrow \llbracket n \in<R>\rrbracket$
The proof is given later.
Therefore
(i) $\mathscr{N}_{\text {kernel }\left(R\left(\frac{d}{d t}\right)\right)}=<R>\quad$ (by the lemma)
(ii) $\mathscr{S}_{<R>}=$ kernel $\left(R\left(\frac{d}{d t}\right)\right)$ (by the def. of \mathscr{S})

Submodules \& LTIDSs

Corollary: The following are equivalent:

1. $\left\langle R_{1}\right\rangle=\left\langle R_{2}\right\rangle$
2. $\mathscr{S}_{\left\langle R_{1}\right\rangle}=\mathscr{S}_{\left\langle R_{2}\right\rangle}$
3. $\operatorname{kernel}\left(R_{1}\left(\frac{d}{d t}\right)\right)=\operatorname{kernel}\left(R_{2}\left(\frac{d}{d t}\right)\right)$
4. $\mathscr{N}_{\text {kernel }}\left(R_{1}\left(\frac{d}{d t}\right)\right)=\mathscr{N}_{\text {kernel }}\left(R_{2}\left(\frac{d}{d t}\right)\right)$

Sulomodules \& LTIDSs

Corollary: The following are equivalent:

1. $\left\langle R_{1}\right\rangle=\left\langle R_{2}\right\rangle$
2. $\mathscr{S}_{\left\langle R_{1}\right\rangle}=\mathscr{S}_{\left\langle R_{2}\right\rangle}$
3. $\operatorname{kernel}\left(R_{1}\left(\frac{d}{d t}\right)\right)=\operatorname{kernel}\left(R_{2}\left(\frac{d}{d t}\right)\right)$
4. $\mathscr{N}_{\text {kernel }}\left(R_{1}\left(\frac{d}{d t}\right)\right)=\mathscr{N}_{\text {kernel }}\left(R_{2}\left(\frac{d}{d t}\right)\right)$

Proof of the Corollary:

1. $\Rightarrow 2$. is trivial
2. \Leftrightarrow 3. is consequence (ii)
3. \Rightarrow 4. is trivial
4. $\Leftrightarrow 1$. is consequence (i)

Submodules \& LTIDSs

3. \Leftrightarrow 4. implies that $\mathscr{B} \mapsto \mathscr{N}_{\mathscr{B}}$ is injective
4. \Leftrightarrow 2. implies that $\mathscr{M} \mapsto \mathscr{S}_{\mathscr{M}}$ is injective

Hence the maps $\mathscr{B} \mapsto \mathscr{N}_{\mathscr{B}}$ and $\mathscr{M} \mapsto \mathscr{S}_{\mathscr{M}}$ are each other's inverse.

Proof of the lemma

Lemma: $\llbracket n \in \mathscr{N}_{\text {kernel }}\left(R\left(\frac{d}{d t}\right)\right) \rrbracket \Leftrightarrow \llbracket n \in<R>\rrbracket$.
In other words,

$$
\begin{aligned}
\llbracket \llbracket R\left(\frac{d}{d t}\right) w=0 \rrbracket \Rightarrow \llbracket & n\left(\frac{d}{d t}\right) w=0 \rrbracket \rrbracket \\
& \Leftrightarrow \llbracket \exists f \in \mathbb{R}[\xi]^{1 \times \bullet} \text { such that } n=f R \rrbracket
\end{aligned}
$$

This lemma states that that the module of annihilators is exactly the module generated by the rows of R. All annihilators are linear combinations of the rows of R.

No new annihilators sneek in.

Proof of the lemma

Observe first the scalar version of the lemma. Let $d, n \in \mathbb{R}[\xi]$.

$$
\llbracket \llbracket d\left(\frac{d}{d t}\right) w=0 \rrbracket \Rightarrow \llbracket n\left(\frac{d}{d t}\right) w=0 \rrbracket \rrbracket \Leftrightarrow \llbracket d \text { is a factor of } n \rrbracket
$$

The proof is an exercise.
Note that even in this special case, the lemma does not hold if we had defined the behavior in terms of compact support solutions, instead of in terms of \mathscr{C}^{∞} solutions.

Example: Consider $R\left(\frac{d}{d t}\right) w=0$ with $0 \neq R \in \mathbb{R}[\xi]$. With \mathscr{B} the \mathscr{C}^{∞} solutions, the annihilators are the polynomials that have R as a factor, indeed the module generated by R. Take for \mathscr{B} the compact support solutions instead.
Then $\mathscr{B}=\{0\}$. The module of annihilators is then $\mathbb{R}[\xi]$ (for all $R \neq 0$), while the module generated by R consists only of the polynomials that have R as a factor.

Proof of the lemma

We now indicate the proof of the lemma. The proof uses the Smith form. This form implies (prove!) that we can assume without loss of generality that R is of the form

$$
R=\left[\begin{array}{cc}
\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{\mathrm{r}}\right) & 0 \\
0 & 0
\end{array}\right] \text { with } d_{1}, d_{2}, \cdots, d_{\mathrm{r}} \neq 0
$$

Proof of the lemma

We now indicate the proof of the lemma. The proof uses the Smith form. This form implies (prove!) that we can assume without loss of generality that R is of the form

$$
R=\left[\begin{array}{cc}
\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{\mathrm{r}}\right) & 0 \\
0 & 0
\end{array}\right] \text { with } d_{1}, d_{2}, \cdots, d_{\mathrm{r}} \neq 0
$$

With R of this form, we have
$\llbracket R\left(\frac{d}{d t}\right) w=0 \rrbracket \Leftrightarrow \llbracket d_{1}\left(\frac{d}{d t}\right) w_{1}=d_{2}\left(\frac{d}{d t}\right) w_{2}=\cdots=d_{\mathrm{r}}\left(\frac{d}{d t}\right) w_{\mathrm{r}}=0 \rrbracket$.

Proof of the lemma

We now indicate the proof of the lemma. The proof uses the Smith form. This form implies (prove!) that we can assume without loss of generality that R is of the form

$$
R=\left[\begin{array}{cc}
\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{\mathrm{r}}\right) & 0 \\
0 & 0
\end{array}\right] \text { with } d_{1}, d_{2}, \cdots, d_{\mathrm{r}} \neq 0
$$

With R of this form, we have
$\llbracket R\left(\frac{d}{d t}\right) w=0 \rrbracket \Leftrightarrow \llbracket d_{1}\left(\frac{d}{d t}\right) w_{1}=d_{2}\left(\frac{d}{d t}\right) w_{2}=\cdots=d_{\mathrm{r}}\left(\frac{d}{d t}\right) w_{\mathrm{r}}=0 \rrbracket$.
Hence, with $n=\left[\begin{array}{llll}n_{1} & n_{2} & \cdots & n_{r}\end{array}\right]$, we conclude, from the scalar case, that $R\left(\frac{d}{d t}\right) w=0$ implies $n\left(\frac{d}{d t}\right) w=0$ iff d_{k} is a factor of n_{k} for all k . The lemma follows.

Relations between kernel representations

Inclusion

Let $\mathscr{B}_{1}, \mathscr{B}_{2} \in \mathscr{L}^{\mathrm{W}} . \mathscr{B}_{1} \leadsto R_{1}\left(\frac{d}{d t}\right) w=0, \mathscr{B}_{2} \leadsto R_{2}\left(\frac{d}{d t}\right) w=0$.

$$
\mathscr{B}_{1} \subseteq \mathscr{B}_{2} \text { iff } \exists F \in \mathbb{R}[\xi]^{\bullet \times \bullet} \text { such that } R_{2}=F R_{1}
$$

Proof: \Rightarrow : trivial. $\quad \Leftarrow$: takes a bit of work.

Inclusion

Let $\mathscr{B}_{1}, \mathscr{B}_{2} \in \mathscr{L}^{\mathrm{W}} . \mathscr{B}_{1} \leadsto R_{1}\left(\frac{d}{d t}\right) w=0, \mathscr{B}_{2} \leadsto R_{2}\left(\frac{d}{d t}\right) w=0$.

$$
\mathscr{B}_{1} \subseteq \mathscr{B}_{2} \mathbf{i f f} \exists F \in \mathbb{R}[\xi]^{\bullet \times \bullet} \text { such that } R_{2}=F R_{1}
$$

Proof: \Rightarrow : trivial. $\quad \Leftarrow$: takes a bit of work.
$\mathscr{B}_{1}=\mathscr{B}_{2}$ iff $\exists F_{1}, F_{2} \in \mathbb{R}[\xi]^{\bullet \bullet}$ such that $R_{1}=F_{2} R_{2}, R_{2}=F_{1} R_{1}$

In particular, $\mathscr{B}_{1}=\mathscr{B}_{2}$ if $R_{1}=U R_{2}, U$ unimodular.
Equations specify behavior, but not the other way around

The kernel representation $R\left(\frac{d}{d t}\right) w=0$ of \mathscr{B} is said to be minimal if among all kernel representations of \mathscr{B}, R has a minimal number of rows.

Minimal kernel representations

The kernel representation $R\left(\frac{d}{d t}\right) w=0$ of \mathscr{B} is said to be minimal if among all kernel representations of \mathscr{B}, R has a minimal number of rows.
Proposition: The following are equivalent.

- $R\left(\frac{d}{d t}\right) w=0$ is minimal.
- The rows of R are linearly independent. They form a basis for the $\mathbb{R}[\xi]$-module generated by the rows of R.
- $\quad R$ has full row rank.
- $R\left(\frac{d}{d t}\right)$ is surjective.

Minimal kernel representations

The kernel representation $R\left(\frac{d}{d t}\right) w=0$ of \mathscr{B} is said to be minimal if among all kernel representations of \mathscr{B}, R has a minimal number of rows.
Proposition: The following are equivalent.

- $R\left(\frac{d}{d t}\right) w=0$ is minimal.
- The rows of R are linearly independent. They form a basis for the $\mathbb{R}[\xi]$-module generated by the rows of R.
- $\quad R$ has full row rank.
- $R\left(\frac{d}{d t}\right)$ is surjective.

All minimal kernel representations of $\mathscr{B} \in \mathscr{L}^{w}$ are generated from a minimal one, $R\left(\frac{d}{d t}\right) w=0$, by the transformation group

$$
R \xrightarrow{U \text { unimodular }} U R
$$

\leadsto canonical forms, invariants, etc.

Recapitulation

Dynamical systems $\sim \Sigma=(\mathbb{T}, \mathbb{W}, \mathscr{B})$ with behavior $\mathscr{B} \subseteq(\mathbb{W})^{\mathbb{T}}$ a family of time trajectories LTIDSs: \mathscr{B} is the sol'n set of a system of linear constant coefficient ODEs

LTIDSs $1 \leftrightarrow 1 \mathbb{R}[\xi]$-modules
A minimal kernel repr. of a LTIDS is uniquely defined up to unimodular premultiplication

Latent variables

Kernels, images, and projections

A model is a subset . There are many ways to specify a subset. For example,

- as the solution set of equations
- as an image of a map
- as a projection

Kernels, images, and projections

A model \mathscr{B} is a subset of \mathscr{U}. There are many ways to specify a subset. For example,

- as the solution set of equations

$$
f: \mathscr{U} \rightarrow \bullet ; \quad \mathscr{B}=\{w \mid f(w)=0\}
$$

- as an image of a map

$$
f: \bullet \rightarrow \mathscr{U} ; \quad \mathscr{B}=\{w \mid \exists \ell \text { such that } w=f(\ell)\}
$$

- as a projection
$\mathscr{B}_{\text {extended }} \subseteq \mathscr{U} \times \mathscr{L} ; \quad \mathscr{B}=\left\{w \mid \exists \ell\right.$ such that $\left.(w, \ell) \in \mathscr{B}_{\text {extended }}\right\}$

Kernels, images, and projections

A model \mathscr{B} is a subset of \mathscr{U}. There are many ways to specify a subset. For example,

- as the solution set of equations 'kernel representation'

$$
f: \mathscr{U} \rightarrow \bullet ; \quad \mathscr{B}=\{w \mid f(w)=0\}
$$

- as an image of a map 'image representation'

$$
f: \bullet \rightarrow \mathscr{U} ; \quad \mathscr{B}=\{w \mid \exists \ell \text { such that } w=f(\ell)\}
$$

- as a projection ‘latent variable representation’
$\mathscr{B}_{\text {extended }} \subseteq \mathscr{U} \times \mathscr{L} ; \quad \mathscr{B}=\left\{w \mid \exists \ell\right.$ such that $\left.(w, \ell) \in \mathscr{B}_{\text {extended }}\right\}$

Projection

Latent variable representations

Combining equations with latent variables \sim
$\mathscr{B}_{\text {extended }}$ specified by

$$
\begin{gathered}
\mathscr{B}_{\text {extended }}=\{(w, \ell) \mid f(w, \ell)=0=0\} \\
\mathscr{B}=\{w \mid \exists \ell \text { such that } f(w, \ell)=0\}
\end{gathered}
$$

Latent variable representations

Combining equations with latent variables \sim
$\mathscr{B}_{\text {extended }}$ specified by

$$
\begin{gathered}
\mathscr{B}_{\text {extended }}=\{(w, \ell) \mid f(w, \ell)=0=0\} \\
\mathscr{B}=\{w \mid \exists \ell \text { such that } f(w, \ell)=0\}
\end{gathered}
$$

First principles models usually come in this form. Latent variables naturally emerge from interconnections.

Two springs interconnected in series

'!'! Model relation between L and F !!

Two springs interconnected in series

'!'! Model relation between L and F !!

View as interconnection of two springs

Two springs interconnected in series

Model for (L, F) (assume that for the individual springs the length is a function of the force exerted).

$$
\begin{array}{rlrl}
L_{1} & =\rho_{1}\left(F_{1}\right) & L_{2} & =\rho_{1}\left(F_{2}\right) \\
F & =F_{1}=F_{2} & L & =L_{1}+L_{2}
\end{array}
$$

Two springs interconnected in series

Model for (L, F) (assume that for the individual springs the length is a function of the force exerted).

$$
\begin{array}{rlrl}
L_{1} & =\rho_{1}\left(F_{1}\right) & & L_{2}=\rho_{1}\left(F_{2}\right) \\
F & =F_{1}=F_{2} & L & =L_{1}+L_{2}
\end{array}
$$

L, F : 'manifest variables' $L_{1}, F_{1}, L_{2}, F_{2}$: 'Iatent variables'
$\leadsto \quad L=\rho_{1}(F)+\rho_{2}(F)$
Latent variables are easily eliminated, for this example.

Two springs interconnected in series

Model for (L, F) (assume that for the individual springs the length is a function of the force exerted).

$$
\begin{array}{rlrl}
L_{1} & =\rho_{1}\left(F_{1}\right) & & L_{2}=\rho_{1}\left(F_{2}\right) \\
F & =F_{1}=F_{2} & L & =L_{1}+L_{2}
\end{array}
$$

L, F : 'manifest variables' $L_{1}, F_{1}, L_{2}, F_{2}$: 'Iatent variables'
$\leadsto \quad L=\rho_{1}(F)+\rho_{2}(F)$
Latent variables are easily eliminated, for this example.
In the linear case: $\quad L_{1}=L_{1}^{*}+\rho_{1} F_{1} \quad L_{2}=L_{2}^{*}+\rho_{2} F_{2}$
After elimination $\leadsto L=L_{1}^{*}+L_{2}^{*}+\left(\rho_{1}+\rho_{2}\right) F$

Two springs interconnected in paralled

'!! Model relation between L and F !!

Two springs interconnected in parallel

'!'! Model relation between L and F !!
View as interconnection of two springs

Two springs interconnected in parallel

Model for (L, F) (assume that for the individual springs the length is a function of the force exerted, and neglect the dimensions of the interconnecting mechanism).

$$
\begin{aligned}
& L_{1}=\rho_{1}\left(F_{1}\right) \quad L_{2}=\rho_{1}\left(F_{2}\right) \\
& F=F_{1}+F_{2} \quad L=L_{1}=L_{2}
\end{aligned}
$$

Two springs interconnected in parallel

Model for (L, F) (assume that for the individual springs the length is a function of the force exerted, and neglect the dimensions of the interconnecting mechanism).

$$
\begin{aligned}
& L_{1}=\rho_{1}\left(F_{1}\right) \quad L_{2}=\rho_{1}\left(F_{2}\right) \\
& F=F_{1}+F_{2} \quad L=L_{1}=L_{2}
\end{aligned}
$$

L, F : 'manifest variables' $L_{1}, F_{1}, L_{2}, F_{2}$: 'latent variables'
$\leadsto \quad \mathscr{B}=\left\{(L, F) \mid \exists \alpha: L=\rho_{1}(\alpha), \quad \rho_{1}(\alpha)=\rho_{2}(F-\alpha)\right\}$
Latent variables are not easily eliminated, for this example,

Two springs interconnected in parallel

Model for (L, F) (assume that for the individual springs the length is a function of the force exerted, and neglect the dimensions of the interconnecting mechanism).

$$
\begin{aligned}
& L_{1}=\rho_{1}\left(F_{1}\right) \quad L_{2}=\rho_{1}\left(F_{2}\right) \\
& F=F_{1}+F_{2} \quad L=L_{1}=L_{2}
\end{aligned}
$$

L, F : 'manifest variables' $L_{1}, F_{1}, L_{2}, F_{2}$: 'latent variables'
$\leadsto \quad \mathscr{B}=\left\{(L, F) \mid \exists \alpha: L=\rho_{1}(\alpha), \quad \rho_{1}(\alpha)=\rho_{2}(F-\alpha)\right\}$
Latent variables are not easily eliminated, for this example, unless we are in the linear case: $L_{1}=L_{1}^{*}+\rho_{1} F_{1}, L_{2}=L_{2}^{*}+\rho_{2} F_{2}$

After elimination $\leadsto L=\frac{\rho_{2}}{\rho_{1}+\rho_{2}} L_{1}^{*}+\frac{\rho_{1}}{\rho_{1}+\rho_{2}} L_{2}^{*}+\frac{\rho_{1} \rho_{2}}{\rho_{1}+\rho_{2}} F$

A dynamic example

RLC circuit

First principles models invariably contain (many) auxiliary variables in addition to the variables whose behavior we wish to model.

RLC circuit

First principles models invariably contain (many) auxiliary variables in addition to the variables whose behavior we wish to model.

Can these latent variables be eliminated?

We illustrate the emergence of latent variables and the elimination question by means of an extensive example in the dynamic systems case.

RLC circuit

Model the port behavior of

by tearing, zooming, and linking (see lecture 13).

RLC circuit

Model the port behavior of

by tearing, zooming, and linking (see lecture 13).
In each node there is an element \leadsto module equations involving 2 variables (potential, current) for each terminal,
In each branch a connection \leadsto interconnection equations

capacitor C

resistor R_{C}

resistor R_{L}

inductor L

connector 2

Module equations

vertex 1 : $\quad V_{\text {connector }_{1}, 1}=V_{\text {connector }_{1}, 2}=V_{\text {connector }_{1}, 3}$

$$
I_{\text {connector }_{1}, 1}+I_{\text {connector }_{1}, 2}+I_{\text {connector }_{1}, 3}=0
$$

vertex 2 : $\quad V_{R_{C}, 1}-V_{R_{C}, 2}=R_{C} I_{R_{C}, 1}, I_{R_{C}, 1}+I_{R_{C}, 2}=0$
vertex 3 : $\quad L \frac{d}{d t} I_{L, 1}=V_{L, 1}-V_{L, 2}, I_{L, 1}+I_{L, 2}=0$
vertex 4 : $C \frac{d}{d t}\left(V_{C, 1}-V_{C, 2}\right)=I_{C, 1}, I_{C, 1}+I_{C, 2}=0$
vertex 5 : $\quad V_{R_{L}, 1}-V_{R_{L}, 2}=R_{L} I_{R_{L}, 1}$

$$
I_{R_{L}, 1}+I_{R_{L}, 2}=0
$$

vertex 6 : $\quad V_{\text {connector }_{2}, 1}=V_{\text {connector }_{2}, 2}=V_{\text {connector }_{2}, 3}$ $I_{\text {connector }_{2}, 1}+I_{\text {connector }_{2}, 2}+I_{\text {connector }_{2}, 3}=0$

Interconnection equations:

potential left $=$ potential right

current left + current right $=0$

Interconnection equations

edge c: $\quad V_{R_{C, 1}}=V_{\text {connectorl }_{2}} \quad I_{R_{C, 1}}+I_{\text {connector } 1,2}=0$
edge d : $\quad V_{L_{1}}=V_{\text {connectorl }_{3}} \quad I_{L_{1}}+I_{\text {connector1 }_{3}}=0$
edge e: $\quad V_{R_{C, 2}}=V_{C_{1}}$
$I_{R_{C, 2}}+I_{C_{1}}$
$=0$
edge f: $\quad V_{L_{2}}=V_{R_{C, 1}}$
$I_{L_{2}}+I_{R_{L, 1}}=0$
edge g: $\quad V_{C_{2}}=V_{\text {connector2 }} \quad I_{C_{2}}+I_{\text {connector } 2_{1}}=0$
edge h: $\quad V_{R_{L, 2}}=V_{\text {connector } 2_{2}} \quad I_{R_{L, 2}}+I_{\text {connector } 2_{2}}=0$
$\begin{array}{ll}V_{\text {externalport }} & =V_{\text {connector }_{1}, 1}-V_{\text {connector }_{2}, 3} \\ I_{\text {externalport }} & =I_{\text {connector }_{1}}\end{array}$

Manifest variable assignment

In total 28 latent variables $V_{\text {connector }_{1}, 1}, \ldots, V_{R_{C, 1}}, I_{R_{C, 1}}, \ldots, I_{\text {connector }_{2}, 3}$
2 manifest variables, ($\left.V_{\text {externalport }}, I_{\text {externalport }}\right)$
26 equations.
Which equation(s) govern(s) ($\left.V_{\text {externalport }}, I_{\text {externalport }}\right)$
A constant-coefficient linear differential equation?
One that does not contain the branch variables?
Does the fact that all the equations before elimination of the latent (auxiliary) variables are constant-coefficient linear differential equations imply the same after elimination?

The port equation

The port $\Sigma=\left(\mathbb{R}, \mathbb{R}^{2}, \mathscr{B}\right)$ behavior \mathscr{B} is specified by:
Case 1: $\quad C R_{C} \neq \frac{L}{R_{L}}$

$$
\begin{aligned}
\left(\frac{R_{C}}{R_{L}}+\left(1+\frac{R_{C}}{R_{L}}\right) C R_{C} \frac{d}{d t}\right. & \left.+C R_{C} \frac{L}{R_{L}} \frac{d^{2}}{d t^{2}}\right) V_{\text {externalport }} \\
& =\left(1+C R_{C} \frac{d}{d t}\right)\left(1+\frac{L}{R_{L}} \frac{d}{d t}\right) R_{C} I_{\text {externalport }}
\end{aligned}
$$

Case 2: $\quad C R_{C}=\frac{L}{R_{L}}$

$$
\left(\frac{R_{C}}{R_{L}}+C R_{C} \frac{d}{d t}\right) V_{\text {externalport }}=\left(1+C R_{C}\right) \frac{d}{d t} R_{C} I_{\text {externalport }}
$$

The elimination theorem

Elimination theorem

Theorem
 \mathscr{L}^{\bullet} is closed under projection

Dlimination theorem

Theorem
 \mathscr{L}^{\bullet} is closed under projection

Consider

$$
\mathscr{B}=\left\{\left(w_{1}, w_{2}\right): \mathbb{R} \rightarrow \mathbb{R}^{\mathrm{w}_{1}} \times \mathbb{R}^{\mathrm{w}_{2}} \mid\left(w_{1}, w_{2}\right) \in \mathscr{B}\right\}
$$

Define the projection

$$
\mathscr{B}_{1}=\left\{w_{1}: \mathbb{R} \rightarrow \mathbb{R}^{w_{1}} \mid \exists w_{2}: \mathbb{R} \rightarrow \mathbb{R}^{w_{1}} \text { such that }\left(w_{1}, w_{2}\right) \in \mathscr{B}\right\}
$$

The theorem states that $\llbracket \mathscr{B} \in \mathscr{L}^{\mathrm{w}_{1}+\mathrm{w}_{2}} \rrbracket \Rightarrow \llbracket \mathscr{B}_{1} \in \mathscr{L}^{\mathrm{w}_{1}} \rrbracket$
This is, as seen, important in modeling.

Proof of the elimination theorem

We indicate the proof. Consider

$$
R_{1}\left(\frac{d}{d t}\right) w_{1}+R_{2}\left(\frac{d}{d t}\right) w_{2}=0 \leadsto \text { behavior } \mathscr{B}
$$

Proof of the elimination theorem

We indicate the proof. Consider

$$
R_{1}\left(\frac{d}{d t}\right) w_{1}+R_{2}\left(\frac{d}{d t}\right) w_{2}=0 \leadsto \text { behavior } \mathscr{B}
$$

Pre-multiply by a unimodular polynomial matrix U. Then
$U\left(\frac{d}{d t}\right) R_{1}\left(\frac{d}{d t}\right) w_{1}+U\left(\frac{d}{d t}\right) R_{2}\left(\frac{d}{d t}\right) w_{2}=0 \leadsto$ also behavior \mathscr{B}

Proof of the elimination theorem

We indicate the proof. Consider

$$
R_{1}\left(\frac{d}{d t}\right) w_{1}+R_{2}\left(\frac{d}{d t}\right) w_{2}=0 \leadsto \text { behavior } \mathscr{B}
$$

Pre-multiply by a unimodular polynomial matrix U. Then
$U\left(\frac{d}{d t}\right) R_{1}\left(\frac{d}{d t}\right) w_{1}+U\left(\frac{d}{d t}\right) R_{2}\left(\frac{d}{d t}\right) w_{2}=0 \leadsto$ also behavior \mathscr{B}
Define $\quad \mathscr{B}_{1}:=\left\{w_{1} \mid \exists w_{2}\right.$ such that $\left.\left(w_{1}, w_{2}\right) \in \mathscr{B}\right\}$

Proof of the elimination theorem

We indicate the proof. Consider

$$
R_{1}\left(\frac{d}{d t}\right) w_{1}+R_{2}\left(\frac{d}{d t}\right) w_{2}=0 \leadsto \text { behavior } \mathscr{B}
$$

Pre-multiply by a unimodular polynomial matrix U. Then
$U\left(\frac{d}{d t}\right) R_{1}\left(\frac{d}{d t}\right) w_{1}+U\left(\frac{d}{d t}\right) R_{2}\left(\frac{d}{d t}\right) w_{2}=0 \leadsto$ also behavior \mathscr{B}
Define $\quad \mathscr{B}_{1}:=\left\{w_{1} \mid \exists w_{2}\right.$ such that $\left.\left(w_{1}, w_{2}\right) \in \mathscr{B}\right\}$
Let V be unimodular.
$U\left(\frac{d}{d t}\right) R_{1}\left(\frac{d}{d t}\right) w_{1}+U\left(\frac{d}{d t}\right) R_{2}\left(\frac{d}{d t}\right) V\left(\frac{d}{d t}\right) \tilde{w}_{2}=0 \leadsto$ behavior $\tilde{\mathscr{B}}$

Proof of the elimination theorem

We indicate the proof. Consider

$$
R_{1}\left(\frac{d}{d t}\right) w_{1}+R_{2}\left(\frac{d}{d t}\right) w_{2}=0 \leadsto \text { behavior } \mathscr{B}
$$

Pre-multiply by a unimodular polynomial matrix U. Then
$U\left(\frac{d}{d t}\right) R_{1}\left(\frac{d}{d t}\right) w_{1}+U\left(\frac{d}{d t}\right) R_{2}\left(\frac{d}{d t}\right) w_{2}=0 \leadsto$ also behavior \mathscr{B}
Define $\quad \mathscr{B}_{1}:=\left\{w_{1} \mid \exists w_{2}\right.$ such that $\left.\left(w_{1}, w_{2}\right) \in \mathscr{B}\right\}$
Let V be unimodular.
$U\left(\frac{d}{d t}\right) R_{1}\left(\frac{d}{d t}\right) w_{1}+U\left(\frac{d}{d t}\right) R_{2}\left(\frac{d}{d t}\right) V\left(\frac{d}{d t}\right) \tilde{w}_{2}=0 \leadsto$ behavior $\tilde{\mathscr{B}}$
Then $\quad \mathscr{B}_{1}:=\left\{w_{1} \mid \exists \tilde{w}_{2}\right.$ such that $\left.\left(w_{1}, \tilde{w}_{2}\right) \in \tilde{\mathscr{B}}\right\}$

Proof of the elimination theorem

The Smith form implies that we can choose U and V such that

$$
U R_{2} V=\left[\begin{array}{cc}
\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{\mathrm{r}}\right) & 0 \\
0 & 0
\end{array}\right]
$$

with $d_{1}, d_{2}, \cdots, d_{\mathrm{r}} \neq 0$.

Proof of the elimination theorem

The Smith form implies that we can choose U and V such that

$$
U R_{2} V=\left[\begin{array}{cc}
\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{r}\right) & 0 \\
0 & 0
\end{array}\right]
$$

with $d_{1}, d_{2}, \cdots, d_{\mathrm{r}} \neq 0$. Partition $U R_{1}$ conformably as

Proof of the elimination theorem

The Smith form implies that we can choose U and V such that

$$
U R_{2} V=\left[\begin{array}{cc}
\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{\mathrm{r}}\right) & 0 \\
0 & 0
\end{array}\right]
$$

with $d_{1}, d_{2}, \cdots, d_{\mathrm{r}} \neq 0$. Partition $U R_{1}$ conformably as $\left[\begin{array}{l}R_{1}^{\prime} \\ R_{1}^{\prime \prime}\end{array}\right]$.
Note that $\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{\mathrm{r}}\right)\left(\frac{d}{d t}\right)$ is surjective. Conclude that $\quad R_{1}^{\prime \prime}\left(\frac{d}{d t}\right) w_{1}=0 \leadsto$ behavior \mathscr{B}_{1}. QED.

Applications of the elimination theorem

$$
\begin{gathered}
\llbracket \frac{d}{d t} x=A x+B u, y=C x+D u \rrbracket \Rightarrow \llbracket P\left(\frac{d}{d t}\right) y=Q\left(\frac{d}{d t}\right) u \rrbracket \\
\llbracket E \frac{d}{d t} x=A x+B w \rrbracket \Rightarrow \llbracket R\left(\frac{d}{d t}\right) w=0 \rrbracket
\end{gathered}
$$

linear DAE's allow elimination of nuisance variables

$$
\llbracket R\left(\frac{d}{d t}\right) w=M\left(\frac{d}{d t}\right) \ell \rrbracket \Rightarrow \llbracket R^{\prime}\left(\frac{d}{d t}\right) w=0 \rrbracket
$$

elimination of latent variables in LTIDSs is always possible.

$$
\llbracket w=M\left(\frac{d}{d t}\right) \ell \rrbracket \Rightarrow \llbracket R^{\prime}\left(\frac{d}{d t}\right) w=0 \rrbracket
$$

There is no nonlinear elimination theorem

The interconnection is described by an ODE if systems 1 and 2 are LTIDSs.

There is no nonlinear elimination theorem

The interconnection is described by an ODE if systems 1 and 2 are LTIDSs.

In the nonlinear case, very unlikely that the interconnection is described by an ODE, even if systems 1 and 2 are!

Why are ODE's so common?

Models are usually given as equations
First principles models invariantly contain (many) latent variables

In LTIDSs, latent variables can be completely climinated

There is no nonlinear elimination theorem

Other time sets

Continuous time

The theory is identical for LTIDSs with time set

$$
[0, \infty),(-\infty, 0] \quad \text { or }\left[t_{1}, t_{2}\right] .
$$

The appropriate ring is still $\mathbb{R}[\xi]$

Discrete time

For discrete time systems with time axis \mathbb{N} or \mathbb{Z}_{+}, the appropriate ring is still $\mathbb{R}[\xi]$.

Discrete time

For discrete time systems with time axis \mathbb{N} or \mathbb{Z}_{+}, the appropriate ring is still $\mathbb{R}[\xi]$.

For discrete time systems with time axis \mathbb{Z}, however, the appropriate ring is $\mathbb{R}\left[\xi, \xi^{-1}\right]$.

Elements of this ring are called 'Laurent polynomials'. An element of $\mathbb{R}\left[\xi, \xi^{-1}\right]^{\mathrm{n} \times \mathrm{n}}$ is unimodular iff its determinant is a non-zero monomial.

Discrete time

Example:

$$
\begin{aligned}
w(t+1) & =w(t) & \leadsto & \xi-1 \\
w(t) & =w(t-1) & \leadsto & 1-\xi-1 \\
w(t+2) & =w(t+1) & \leadsto & \xi^{2}-\xi
\end{aligned}
$$

Discrete time

Example:

$$
\begin{aligned}
w(t+1) & =w(t) & \leadsto & \leadsto-1 \\
w(t) & =w(t-1) & \leadsto & 1-\xi^{-1} \\
w(t+2) & =w(t+1) & \leadsto & \xi^{2}-\xi
\end{aligned}
$$

All these equations are equivalent for $\mathbb{T}=\mathbb{Z}$.
Transformations:
second equation $=\xi^{-1} *$ first;
third equation $=\xi *$ first
None of these equations are equivalent for $\mathbb{T}=\mathbb{Z}_{+}$.
The 2nd equation does not really make sense. What is $w(0)$?

Summary of Lecture 1

- A model is a subset \mathscr{B} of a universum \mathscr{U}. \mathscr{B} is the behavior of the model.
- A model is a subset \mathscr{B} of a universum \mathscr{U}. \mathscr{B} is the behavior of the model.

First principles models contain latent variables

The main points

- A model is a subset \mathscr{B} of a universum \mathscr{U}. \mathscr{B} is the behavior of the model.
- First principles models contain latent variables

LTIDSs are described by linear, constant-coefficient differential equations

$$
\leadsto \quad R\left(\frac{d}{d t}\right) w=0, R \in \mathbb{R}[\xi]^{\bullet \times w}
$$

Notation: $\mathscr{L}^{\mathrm{w}}, \mathscr{L}^{\bullet}$

The main points

- A model is a subset \mathscr{B} of a universum \mathscr{U}. \mathscr{B} is the behavior of the model.
- First principles models contain latent variables
- LTIDSs are described by linear, constant-coefficient differential equations

$$
\leadsto \quad R\left(\frac{d}{d t}\right) w=0, R \in \mathbb{R}[\xi]^{\bullet \times w}
$$

Notation: $\mathscr{L}^{\mathrm{w}}, \mathscr{L}^{\bullet}$

- $\mathscr{L}^{\mathrm{w}} \stackrel{\text { one-to-one }}{\longleftrightarrow} \mathbb{R}[\xi]$-submodules of $\mathbb{R}[\xi]^{1 \times \mathrm{w}}$

The main points

- A model is a subset \mathscr{B} of a universum \mathscr{U}.
\mathscr{B} is the behavior of the model.
- First principles models contain latent variables
- LTIDSs are described by linear, constant-coefficient differential equations

$$
\leadsto \quad R\left(\frac{d}{d t}\right) w=0, R \in \mathbb{R}[\xi]^{\bullet \times \mathbb{W}}
$$

Notation: $\mathscr{L}^{\mathbb{w}}, \mathscr{L}^{\bullet}$

- $\mathscr{L}^{\mathrm{W}} \xrightarrow{\text { one-to-one }} \mathbb{\longrightarrow}[\xi]$-submodules of $\mathbb{R}[\xi]^{1 \times \mathrm{w}}$

The elimination theorem: \mathscr{L}^{\bullet} is closed under projection.
Latent variables can be eliminated from linear constant coefficient ODEs

The main points

- A model is a subset \mathscr{B} of a universum \mathscr{U}.
\mathscr{B} is the behavior of the model.
- First principles models contain latent variables
- LTIDSs are described by linear, constant-coefficient differential equations

$$
\leadsto \quad R\left(\frac{d}{d t}\right) w=0, R \in \mathbb{R}[\xi]^{\bullet \times w}
$$

Notation: $\mathscr{L}^{\mathbb{w}}, \mathscr{L}^{\bullet}$

- $\mathscr{L}^{\mathrm{W}} \xrightarrow{\text { one-to-one }} \mathbb{\longrightarrow}[\xi]$-submodules of $\mathbb{R}[\xi]^{1 \times \mathrm{w}}$

The elimination theorem: \mathscr{L}^{\bullet} is closed under projection. Latent variables can be eliminated from linear constant coefficient ODEs

$$
\text { End of lecture } 1
$$

Mathematical Appendix

Groups

A group is a set G, with

- a binary operation $G \times G \rightarrow G$, called multiplication. Multiplication is usually written as juxtaposition of the multiplied elements.
- a unary operation ${ }^{-1}: G \rightarrow G$, called inversion. The inverse of g is written as g^{-1}.
- an identity $e \in G$ (often denoted as 1).

These operations satisfy, for all $g, g_{1}, g_{2}, g_{3} \in G$:

- $\quad\left(g_{1} g_{2}\right) g_{3}=g_{1}\left(g_{2} g_{3}\right)$ (multiplication is associative); $g e=e g=g ; g g^{-1}=g^{-1} g=e$.

Groups

A group is a set G, with

- a binary operation $G \times G \rightarrow G$, called multiplication. Multiplication is usually written as juxtaposition of the multiplied elements.
- a unary operation ${ }^{-1}: G \rightarrow G$, called inversion. The inverse of g is written as g^{-1}.
- an identity $e \in G$ (often denoted as 1).

These operations satisfy, for all $g, g_{1}, g_{2}, g_{3} \in G$:

- $\quad\left(g_{1} g_{2}\right) g_{3}=g_{1}\left(g_{2} g_{3}\right)$ (multiplication is associative); $g e=e g=g ; g g^{-1}=g^{-1} g=e$.

A group is called abelian (or commutative) if $g_{1} g_{2}=g_{2} g_{1}$ for all $g_{1}, g_{2} \in G$. For an abelian group multiplication is usually denoted as $g_{1}+g_{2}\left(\right.$ instead of $\left.g_{1} g_{2}\right)$, and the identity as 0 (instead of e or 1).

Rings

A ring is a set R equipped with two binary operations

$$
+: R \times R \rightarrow R \quad \text { and } \quad *: R \times R \rightarrow R
$$

called addition and multiplication. Multiplication is usually just written as juxtaposition of the multiplied elements, rather than with $\mathbf{a} *$.

These operations satisfy:

- $\quad(R,+)$ is an abelian group with identity element 0 ,
- multiplication is associative, with identity element 1 ,
- multiplication distributes over addition.

So, for all $a, b, c \in R$, there holds:
$(a b) c=a(b c)$ denoted as $a b c, a 1=1 a=a$,
$a(b+c)=a b+a c,(a+b) c=a c+b c$.

Commutative rings

Multipication need not be commutative. If it is, we call the ring commutative.

Examples: \mathbb{Z} (commutative), $\mathbb{R}[\xi]$ (commutative), $\mathbb{R}^{\mathrm{n} \times \mathrm{n}}$,

$$
\mathbb{R}[\xi]^{\mathrm{n} \times \mathrm{n}}, \mathbb{R}\left[\xi_{1}, \xi_{2}, \ldots, \xi_{\mathrm{n}}\right] \text { (commutative). }
$$

Commutative rings

Multipication need not be commutative.
If it is, we call the ring commutative.
Examples: \mathbb{Z} (commutative), $\mathbb{R}[\xi]$ (commutative), $\mathbb{R}^{\mathrm{n} \times \mathrm{n}}$,

$$
\mathbb{R}[\xi]^{\mathrm{n} \times \mathrm{n}}, \mathbb{R}\left[\xi_{1}, \xi_{2}, \ldots, \xi_{\mathrm{n}}\right] \text { (commutative). }
$$

Every element $r \in R$ has an additive inverse $-r$.
But it need not have a muliplicative inverse. For example, in \mathbb{Z} only 1 and - 1 have a multiplicative inverse.

Units

An element $a \in R$ is called a unit if it is invertible with respect to multiplication: if $\exists b \in R$ such that $a b=b a=1$;
b is then uniquely determined by a and is writtes as a^{-1}. The set of all units in R forms a group under multiplication. The term unimodular for (polynomial) matrices is used as a synonym for 'unit'.

Units

An element $a \in R$ is called a unit if it is invertible with respect to multiplication: if $\exists b \in R$ such that $a b=b a=1$;
b is then uniquely determined by a and is writtes as a^{-1}. The set of all units in R forms a group under multiplication. The term unimodular for (polynomial) matrices is used as a synonym for 'unit'.
$M \in \mathbb{R}[\xi]^{\mathrm{n} \times \mathrm{n}}$ is unimodular iff $\operatorname{det}(M)$ is a non-zero polynomial of zero degree. That is, iff $\operatorname{det}(M)$ is a unit in $\mathbb{R}[\xi]$.

Modules

Let R be a commutative ring.
A module \mathscr{M} over R (also called an R-module) is abelian group $(, \mathscr{M},+)$ with an operation, called scalar multiplication, mapping $R \times \mathscr{M} \rightarrow \mathscr{M}$. Multiplication is usually written by juxtaposition, i.e. as $r x$ for $r \in R$ and $x \in \mathscr{M}$.

These operations satisfy, for all $r, s \in R$, and $x, y \in \mathscr{M}$,

- $r(x+y)=r x+r y$,
- $(r+s) x=r x+s x$,
- $(r s) x=r(s x)$ (therefore written as $r s x$),
- $1 x=x$.

Modules

Let R be a commutative ring.
A module \mathscr{M} over R (also called an R-module) is abelian group
$(, \mathscr{M},+)$ with an operation, called scalar multiplication, mapping $R \times \mathscr{M} \rightarrow \mathscr{M}$. Multiplication is usually written by juxtaposition, i.e. as $r x$ for $r \in R$ and $x \in \mathscr{M}$.

These operations satisfy, for all $r, s \in R$, and $x, y \in \mathscr{M}$,

- $r(x+y)=r x+r y$,
- $(r+s) x=r x+s x$,
- $(r s) x=r(s x)$ (therefore written as $r s x$),
- $\quad 1 x=x$.

The following example is especially important for us:
$\mathbb{R}[\xi]^{\mathrm{n}}$ is a module over $\mathbb{R}[\xi]$. So is, of course, $\mathbb{R}[\xi]^{1 \times n}$.

Modules

There is an enormous variety of rings and modules:
principal ideal domain, finitely generated, cyclic, free, projective, injective, simple, semisimple, indecomposable, Euclidean, Noetherian, Artinian, Bézoutian, Hermitian, etc.

Like visiting the zoo.

Free modules

An R-module \mathscr{M} is said to be finitely generated if there exist a set $\left\{g_{1}, g_{2}, \cdots, g_{\mathrm{r}}\right\}$ of elements of \mathscr{M} (called generators of \mathscr{M}) such that each element m of \mathscr{M} is of the form

$$
m=c_{1} g_{1}+c_{2} g_{2}+\cdots+c_{\mathrm{r}} g_{\mathrm{r}} \text { with } c_{1}, c_{2}, \ldots, c_{\mathrm{r}} \in R
$$

An R-module \mathscr{M} is said to be free if there exist a set of generators $\left\{e_{1}, e_{2}, \cdots, e_{\mathrm{r}}\right\}$ of \mathscr{M} (called a basis of \mathscr{M}) such that the e_{k} 's are independent, that is,

$$
c_{1} e_{1}+c_{2} e_{2}+\cdots+c_{r} e_{r}=0 \text { implies } c_{1}=c_{2}=\cdots=c_{r}=0
$$

The cardinality of the basis is uniquely defined, and is called the rank, order, or dimension of \mathscr{M}.

Submodules of $\mathbb{R}[\xi]^{\mathrm{n}}$

Clearly $\mathbb{R}[\xi]^{\mathrm{n}}$ is an $\mathbb{R}[\xi]$-module. We are especially interested in this module and its submodules. The $\mathbb{R}[\xi]$-submodules of
$\mathbb{R}[\xi]^{\mathrm{n}}$ are tame animals of our zoo: they are free, have a basis, and behave very much like vector spaces.

Submodules of $\mathbb{R}[\xi]^{\mathrm{n}}$

Clearly $\mathbb{R}[\xi]^{\mathrm{n}}$ is an $\mathbb{R}[\xi]$-module. We are especially interested in this module and its submodules. The $\mathbb{R}[\xi]$-submodules of $\mathbb{R}[\xi]^{\mathrm{n}}$ are tame animals of our zoo: they are free, have a basis, and behave very much like vector spaces.

Let \mathscr{M} be an $\mathbb{R}[\xi]$-submodule of $\mathbb{R}[\xi]^{\mathrm{n}}$. It has a basis, say, $\left\{e_{1}, e_{2}, \cdots, e_{\mathrm{r}}\right\}$. Any other basis $\left\{e_{1}^{\prime}, e_{2}^{\prime}, \cdots, e_{r}^{\prime}\right\}$ of \mathscr{M} is generated by the matrix multiplication

$$
\left[\begin{array}{c}
e_{1}^{\prime} \\
e_{2}^{\prime} \\
\ldots \\
e_{\mathrm{r}}^{\prime}
\end{array}\right]=U\left[\begin{array}{c}
e_{1} \\
e_{2} \\
\ldots \\
e_{\mathrm{r}}
\end{array}\right]
$$

with $U \in \mathbb{R}[\xi]^{r \times r}$ unimodular.

The Smith form

Elements of $\mathbb{R}[\xi]^{n_{1} \times n_{2}}$ can be brought into a simple canonical form by pre- and postmultiplication by a unimodular matrix. This canonical form is called the Smith form.

Smith comes in exceedingly handy in proofs for the polynomial description of LTIDSs.

Henry Smith 1826-1883

The Smith form

Elements of $\mathbb{R}[\xi]^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$ can be brought into a simple canonical form by pre- and postmultiplication by a unimodular matrix. This canonical form is called the Smith form.

Smith comes in exceedingly handy in proofs for the polynomial description of LTIDSs.

Henry Smith 1826-1883

Theorem The Smith form Let $M \in \mathbb{R}[\xi]^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$. There exist unimodular $U \in \mathbb{R}[\xi]^{\mathrm{n}_{1} \times \mathrm{n}_{1}}$ and $V \in \mathbb{R}[\xi]^{\mathrm{n}_{2} \times \mathrm{n}_{2}}$ such that

$$
U M V=\left[\begin{array}{cc}
\operatorname{diag}\left(d_{1}, d_{2}, \ldots, d_{\mathrm{r}}\right) & 0_{\mathrm{r} \times\left(\mathrm{n}_{2}-\mathrm{r}\right)} \\
0_{\left(\mathrm{n}_{1}-\mathrm{r}\right) \times \mathrm{r}} & 0_{\left(\mathrm{n}_{1}-\mathrm{r}\right) \times\left(\mathrm{n}_{2}-\mathrm{r}\right)}
\end{array}\right]
$$

with $d_{1}, d_{2}, \ldots, d_{\mathrm{r}} \in \mathbb{R}[\xi]$, monic, and d_{k} a factor of $d_{\mathrm{k}+1}$ for $\mathrm{k}=1,2, \cdots, \mathrm{r}-1$. They are called the invariant factors of M.

Canonical forms and invariants

Another bit of nice-to-know mathematics

Relations

A relation on an indexed family of sets, $S_{\alpha}, \alpha \in A$, is a subset of $S=\Pi_{\alpha \in A} S_{\alpha}$.
Think of the elements of $s_{\alpha}, \alpha \in A$, as being 'related' if $\Pi_{\alpha \in A} s_{\alpha} \in \Pi_{\alpha \in A} S_{\alpha}$.
'Relation' captures the notion of 'model' much better than'map'.

Note that we view a dynamical system basically as a relation among the values $w(t)$ for $t \in \$$. The behavior of a dynamical system is a relation on $\Pi_{t \in \mathbb{T}} \mathbb{W}_{t}$, with all the \mathbb{W}_{t} 's equal to \mathbb{W}.

Relations

A relation on an indexed family of sets, $S_{\alpha}, \alpha \in A$, is a subset of $S=\Pi_{\alpha \in A} S_{\alpha}$.
Think of the elements of $s_{\alpha}, \alpha \in A$, as being 'related' if $\Pi_{\alpha \in A} s_{\alpha} \in \Pi_{\alpha \in A} S_{\alpha}$.
'Relation' captures the notion of 'model' much better than'map'.

Note that we view a dynamical system basically as a relation among the values $w(t)$ for $t \in \$$. The behavior of a dynamical system is a relation on $\Pi_{t \in \mathbb{T}} \mathbb{W}_{t}$, with all the \mathbb{W}_{t} 's equal to \mathbb{W}.

Relations

A relation on an indexed family of sets, $S_{\alpha}, \alpha \in A$, is a subset of $S=\Pi_{\alpha \in A} S_{\alpha}$.
Think of the elements of $s_{\alpha}, \alpha \in A$, as being 'related' if $\Pi_{\alpha \in A} s_{\alpha} \in \Pi_{\alpha \in A} S_{\alpha}$.
'Relation' captures the notion of 'model' much better than'map'.

Note that we view a dynamical system basically as a relation among the values $w(t)$ for $t \in \$$. The behavior of a dynamical system is a relation on $\Pi_{t \in \mathbb{T}} \mathbb{W}_{t}$, with all the \mathbb{W}_{t} 's equal to \mathbb{W}.

Relations

A binary relation involves only two sets, the cardinality of A equals 2 . An n -ary relation, n sets, the cardinality of $A=\mathrm{n}$.

Relations

A binary relation involves only two sets, the cardinality of A equals 2. An n -ary relation, n sets, the cardinality of $A=\mathrm{n}$. A common example of a binary relation is obtained from a $\operatorname{map} f: X \rightarrow Y$, the relation being the graph of f :

$$
\operatorname{graph}(f)=\{(x, y) \in X \times Y \mid y=f(x)\}
$$

Binary relations

If in a n -ary relation all the A_{α} 's are equal, $A_{1}=A_{2}=\cdots=A_{\mathrm{n}}=A$, we call the relation an n -ary relation on A (the term endorelation is also used).
A binary relation on A is thus a subset of A^{2}.
The notation $a_{1} R a_{2}, a_{1} \stackrel{R}{\sim} a_{2}$, is often used if $\left(a_{1}, a_{2}\right)$ belongs to the binary relation $R \subseteq A^{2}$.
$a_{1} \sim a_{2}$ is also used when it is clear what R is.
Many important binary relations are obtained from additional structure on the subset that defines the relation.

```
Equivalence relations
```

An equivalence relation on A is a binary relation that is reflexive, symmetric, and transitive.

Equivalence relations

An equivalence relation on A is a binary relation that is reflexive, symmetric, and transitive. In other words, the following must hold for all $a, b, c \in A$:

- $\quad a \sim a \quad$ (reflexivity)
- $\quad a \sim b \rrbracket \Rightarrow \llbracket b \sim a \rrbracket$ (symmetry)
- $\quad a \sim b$ and $b \sim c \rrbracket \Rightarrow \llbracket a \sim c \rrbracket$ (transitivity)

Equivalence relations

An equivalence relation on A is a binary relation that is reflexive, symmetric, and transitive. In other words, the following must hold for all $a, b, c \in A$:

- $\quad a \sim a \quad$ (reflexivity)
- $\llbracket a \sim b \rrbracket \Rightarrow \llbracket b \sim a \rrbracket$ (symmetry)
- $\llbracket a \sim b$ and $b \sim c \rrbracket \Rightarrow \llbracket a \sim c \rrbracket$ (transitivity)
\sim partitions A into disjoint subsets, called equivalence classes.
All elements in a given equivalence class are equivalent among themselves, and no element is equivalent with any element from a different class. Think therefore of an equivalence relation on A as a partition of A into disjoint subsets and declaring elements of the same subset equivalent.

Equivalence relations

An equivalence relation on A is a binary relation that is reflexive, symmetric, and transitive. In other words, the following must hold for all $a, b, c \in A$:

- $\quad a \sim a \quad$ (reflexivity)
- $\llbracket a \sim b \rrbracket \Rightarrow \llbracket b \sim a \rrbracket$ (symmetry)
- $\llbracket a \sim b$ and $b \sim c \rrbracket \Rightarrow \llbracket a \sim c \rrbracket$ (transitivity)
\sim partitions A into disjoint subsets, called equivalence classes.
All elements in a given equivalence class are equivalent among themselves, and no element is equivalent with any element from a different class. Think therefore of an equivalence relation on A as a partition of A into disjoint subsets and declaring elements of the same subset equivalent.
The equivalence class of elements equivalent with a is denoted as $[a],[a]_{\sim}$, or $[a]_{R .}, a_{1}=a_{2}($ modulo $\sim)$ and $a_{1} \cong a_{2}$ mean that a_{1} and a_{2} belong to the same equivalence class.

Canonical form

Let \sim be an equivalence relation on A.
A canonical form (also called normal form, standard form) for \sim is a subset C of A such that

$$
C \cap[a]_{\sim} \neq \emptyset \quad \text { for all } a \in A .
$$

Canonical form

Let \sim be an equivalence relation on A.
A canonical form (also called normal form, standard form) for \sim is a subset C of A such that

$$
C \cap[a]_{\sim} \neq \emptyset \quad \text { for all } a \in A
$$

An invariant for \sim is a map I from A to a set B such that

$$
\llbracket a_{1} \sim a_{2} \rrbracket \Rightarrow \llbracket I\left(a_{1}\right)=I\left(a_{2}\right) \rrbracket .
$$

It is said to be a complete invariant if

$$
\llbracket a_{1} \sim a_{2} \rrbracket \Leftrightarrow \llbracket I\left(a_{1}\right)=I\left(a_{2}\right) \rrbracket .
$$

Canonical form \& invariant

Transformation group

A transformation group on A is a set of maps that form a subgroup of the bijections on A. In other words, there is a group G and a map T from G to the bijections on A, such that for all $g, g_{1}, g_{2} \in G$, there holds:

- $T_{1}=\mathrm{id}_{A}\left(\mathrm{id}_{A}\right.$ denotes the identity map on $\left.A\right)$
- $T_{g^{-1}}=T_{g}^{-1}$
- $T_{g_{1} g_{2}}=T_{g_{2}} \circ T_{g_{1}}$ (\circ denotes composition of maps)

Transformation group

A transformation group on A is a set of maps that form a subgroup of the bijections on A. In other words, there is a group G and a map T from G to the bijections on A, such that for all $g, g_{1}, g_{2} \in G$, there holds:

- $T_{1}=\mathrm{id}_{A}\left(\mathrm{id}_{A}\right.$ denotes the identity map on $\left.A\right)$
- $T_{g^{-1}}=T_{g}^{-1}$
- $T_{g_{1} g_{2}}=T_{g_{2}} \circ T_{g_{1}}$ (\circ denotes composition of maps)

The set

$$
\mathscr{O}_{a}:=\left\{a^{\prime} \in A \mid \exists g \in G \text { such that } a^{\prime}=T_{g}(a)\right\}
$$

is called the orbit of a under the transformation group T_{G}.

Transformation group

A transformation group on A induces an equivalence relation on A by declaring

$$
\llbracket a_{1} \sim a_{2} \rrbracket: \Leftrightarrow \llbracket a_{2} \in \mathscr{O}_{a_{1}} \rrbracket
$$

In other words, the partition consists of the orbits.

Transformation group

orbit of a
set A with orbits

Example: the Jordan form

Denote by $\mathscr{G} \ell(\mathrm{n})$ the invertible elements of $\mathbb{R}^{\mathrm{n} \times \mathrm{n}}$. $\mathscr{G} \ell(\mathrm{n})$ defines a transformation group on $\mathbb{R}^{\mathrm{n} \times \mathrm{n}}$ by

$$
M \xrightarrow{S \in \mathscr{G} \ell(\mathrm{n})} S M S^{-1} .
$$

This transformation corresponds to choosing a new basis on \mathbb{R}^{n}, and looking how the linear transformation $M: \mathbb{R}^{\mathrm{n}} \oslash$ acts in this new basis on \mathbb{R}^{n}.

Example: the Jordan form

Denote by $\mathscr{G} \ell(\mathrm{n})$ the invertible elements of $\mathbb{R}^{\mathrm{n} \times \mathrm{n}}$. $\mathscr{G} \ell(\mathrm{n})$ defines a transformation group on $\mathbb{R}^{\mathrm{n} \times \mathrm{n}}$ by

$$
M \xrightarrow{S \in \mathscr{G} \ell(\mathrm{n})} S M S^{-1} .
$$

This transformation corresponds to choosing a new basis on \mathbb{R}^{n}, and looking how the linear transformation $M: \mathbb{R}^{\mathrm{n}}$ acts in this new basis on \mathbb{R}^{n}.

Canonical form: Jordan form (work over \mathbb{C} or consider the real Jordan form).

Example: the Jordan form

Denote by $\mathscr{G} \ell(\mathrm{n})$ the invertible elements of $\mathbb{R}^{\mathrm{n} \times \mathrm{n}}$. $\mathscr{G} \ell(\mathrm{n})$ defines a transformation group on $\mathbb{R}^{\mathrm{n} \times \mathrm{n}}$ by

$$
M \xrightarrow{S \in \mathscr{G \ell (\mathrm { n })}} S M S^{-1} .
$$

This transformation corresponds to choosing a new basis on \mathbb{R}^{n}, and looking how the linear transformation $M: \mathbb{R}^{\mathrm{n}}$ acts in this new basis on \mathbb{R}^{n}.

Canonical form: Jordan form (work over \mathbb{C} or consider the real Jordan form).
Invariant: $I: \mathbb{R}^{\mathrm{n} \times \mathrm{n}} \rightarrow \mathbb{R}[\xi], \quad I(M):=\operatorname{det}(I \xi-M)$
Other invariants
$I: M \in \mathbb{R}^{\mathrm{n} \times \mathrm{n}} \mapsto$ the set of eigenvalues of M.
$I: M \in \mathbb{C}^{\mathrm{n} \times \mathrm{n}} \mapsto$ the minimal polynomial of M the rank, the trace, the determinant, etc.

Example: the rank as a complete invariant

Consider $\mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$. Define the transformation group

$$
M \xrightarrow{S_{1} \in \mathscr{G} \ell\left(\mathrm{n}_{1}\right), S_{2} \in \mathscr{G} \ell\left(\mathrm{n}_{2}\right)} S_{1} M S_{2} .
$$

This corresponds to looking how the linear transformation $M: \mathbb{R}^{\mathrm{n}_{2}} \rightarrow \mathbb{R}^{\mathrm{n}_{1}}$ acts like in new basis on $\mathbb{R}^{\mathrm{n}_{1}}$ and $\mathbb{R}^{\mathrm{n}_{2}}$.

Example: the rank as a complete invariant

Consider $\mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$. Define the transformation group

$$
M \xrightarrow{S_{1} \in \mathscr{G} \ell\left(\mathrm{n}_{1}\right), S_{2} \in \mathscr{G} \ell\left(\mathrm{n}_{2}\right)} S_{1} M S_{2} .
$$

This corresponds to looking how the linear transformation $M: \mathbb{R}^{\mathrm{n}_{2}} \rightarrow \mathbb{R}^{\mathrm{n}_{1}}$ acts like in new basis on $\mathbb{R}^{\mathrm{n}_{1}}$ and $\mathbb{R}^{\mathrm{n}_{2}}$.

Complete invariant: the rank
Canonical form: the set of matrices of the form

$$
\left[\begin{array}{cc}
I_{r \times r} & 0_{r \times\left(n_{2}-r\right)} \\
0_{\left(n_{1}-r\right) \times r} & 0_{\left(n_{1}-r\right) \times\left(n_{2}-r\right)}
\end{array}\right]
$$

Consider now $\mathbb{R}^{\mathrm{n}_{1}}$ and $\mathbb{R}^{\mathrm{n}_{2}}$ as Euclidean spaces, that is, with distances fixed by the usual Euclidean norm. Hence basis choices must respect distances. An element $M \in \mathbb{R}^{\mathrm{n} \times \mathrm{n}}$ is said to be orthogonal if $M^{\top} M=I_{\mathrm{n} \times \mathrm{n}}$.

Example: the SVD

Consider now $\mathbb{R}^{\mathrm{n}_{1}}$ and $\mathbb{R}^{\mathrm{n}_{2}}$ as Euclidean spaces, that is, with distances fixed by the usual Euclidean norm. Hence basis choices must respect distances. An element $M \in \mathbb{R}^{\mathrm{n} \times \mathrm{n}}$ is said to be orthogonal if $M^{\top} M=I_{\mathrm{n} \times \mathrm{n}}$.
Now consider the previous example in this Euclidean set-up. This corresponds to S_{1} and S_{2} being orthogonal matrices Consider $\mathbb{R}^{n_{1} \times n_{2}}$. Define the transformation group

$$
M \xrightarrow{S_{1} \in O \ell\left(\mathbf{n}_{1}\right), S_{2} \in \mathscr{O}\left(\mathrm{n}_{2}\right)} S_{1} M S_{2} .
$$

Example: the SVD

Consider now $\mathbb{R}^{\mathrm{n}_{1}}$ and $\mathbb{R}^{\mathrm{n}_{2}}$ as Euclidean spaces, that is, with distances fixed by the usual Euclidean norm. Hence basis choices must respect distances. An element $M \in \mathbb{R}^{\mathrm{n} \times \mathrm{n}}$ is said to be orthogonal if $M^{\top} M=I_{\mathrm{n} \times \mathrm{n}}$.
Now consider the previous example in this Euclidean set-up. This corresponds to S_{1} and S_{2} being orthogonal matrices Consider $\mathbb{R}^{n_{1} \times n_{2}}$. Define the transformation group

$$
M \xrightarrow{S_{1} \in O \ell\left(\mathbf{n}_{1}\right), S_{2} \in \mathscr{O}\left(\mathrm{n}_{2}\right)} S_{1} M S_{2} .
$$

This corresponds to looking how the linear transformation $M: \mathbb{R}^{\mathrm{n}_{2}} \rightarrow \mathbb{R}^{\mathrm{n}_{1}}$ acts like in new basis in $\mathbb{R}^{\mathrm{n}_{1}}$ and in $\mathbb{R}^{\mathrm{n}_{2}}$, that both respect distances.

Example: the SVD

Complete invariant:
$M \in \mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{2}} \mapsto$ the singular values $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{\mathrm{r}}>0$ of M.
Invariants: the rank, the induced norm, the Frobenius norm, the Schatten and Ky-Fan norms, etc.

Example: the SVD

Complete invariant:
$M \in \mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{2}} \mapsto$ the singular values $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{\mathrm{r}}>0$ of M.
Invariants: the rank, the induced norm, the Frobenius norm, the Schatten and Ky-Fan norms, etc.

Canonical form: the set of matrices of the form

$$
\left[\begin{array}{cc}
\Sigma & 0_{r \times\left(n_{2}-r\right)} \\
0_{\left(n_{1}-r\right) \times r} & 0_{\left(n_{1}-r\right) \times\left(n_{2}-r\right)}
\end{array}\right],
$$

with Σ diagonal, with positive elements on the diagonal in non-increasing order.
See lecture 3 for more details.

Example: the Smith form

