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Lecture 1

Models and Behaviors

Lecturer: Jan C. Willems
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Outline

◮ Mathematical models

◮ The behavior

◮ Dynamical systems

◮ Linear time-invariant systems

◮ Kernel representations

◮ Latent variables

◮ The elimination theorem
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Mathematical models

A bit of mathematics & philosophy
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Mathematical models

Assume that we have a ‘real’ phenomenon that produces
‘events’, ‘outcomes’.

Phenomenon

event, outcome   
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Mathematical models

Assume that we have a ‘real’ phenomenon that produces
‘events’, ‘outcomes’.

Phenomenon

event, outcome   

We view a deterministic mathematical model for a
phenomenon as a prescription of which eventscanoccur,
and which eventscannotoccur.
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Aim of this lecture

◮ In the first part of this lecture, we develop this point of
view into a mathematical formalism.
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Aim of this lecture

◮ In the first part of this lecture, we develop this point of
view into a mathematical formalism.

◮ In the second part, we apply this formalism to dynamical
systems, especially to linear time-invariant differential
systems.
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The universum
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Mathematization

The outcomes can be described in the language of
mathematics, as mathematical objects, by answering:

To which universum do the (unmodelled) events belong?
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Mathematization

The outcomes can be described in the language of
mathematics, as mathematical objects, by answering:

To which universum do the (unmodelled) events belong?

◮ Do the events belong to a discrete set?
; discrete event phenomena.

◮ Are the events real numbers, or vectors of real numbers?
; continuous phenomena.

◮ Are the events functions of time?
; dynamical phenomena.

◮ Are the events functions of space, or time & space?
; distributed phenomena.
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Mathematization

The outcomes can be described in the language of
mathematics, as mathematical objects, by answering:

To which universum do the (unmodelled) events belong?

◮ Do the events belong to a discrete set?
; discrete event phenomena.

◮ Are the events real numbers, or vectors of real numbers?
; continuous phenomena.

◮ Are the events functions of time?
; dynamical phenomena.

◮ Are the events functions of space, or time & space?
; distributed phenomena.

The set where the events belong to is called theuniversum ,
denoted byU .
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Discrete event phenomena

Examples:

◮ Words in a natural language
U = {a,b,c, . . . ,x,y,z}n

with n = the number of letters in the longest word
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Discrete event phenomena

Examples:

◮ Words in a natural language
U = {a,b,c, . . . ,x,y,z}n

with n = the number of letters in the longest word
Sentences in a natural language

◮ DNA sequences

◮ Fortran code
LATEX code

◮ Error detecting and correcting codes
ISBN numbers
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Continuous phenomena

Examples:

◮ The pressure, volume, quantity, and temperature of a gas
in a vessel

Gas

(pressure, volume, quantity, temperature)     

; U = (0,∞)× (0,∞)× (0,∞)× (0,∞)
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Continuous phenomena

◮ The gravitational attraction of two bodies

 2

+

force     

position  

 1position 

1mass

mass

 2

Event = mass1, mass2, position1, position2, force

; U = (0,∞)× (0,∞)×R
3×R

3×R
3

– p. 11/127



Continuous phenomena

◮ The voltage across and the current through a resistor

I

V R
+

−

Event = (voltage, current) ; U = R2
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Continuous phenomena

◮ The voltage across and the current through a resistor

I

V R
+

−

Event = (voltage, current) ; U = R2

◮ Price/demand ; U = [0,∞)× [0,∞)

Price/supply ; U = [0,∞)× [0,∞)

Supply/demand ; U = [0,∞)× [0,∞)
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Dynamical phenomena

Dynamical phenomena; this course.

Examples:

◮ Planetary motion

SUN

PLANET

The events are maps fromR to R
3

; U = {w : R→ R
3}
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Dynamical phenomena

Dynamical phenomena; this course.

Examples:

◮ Planetary motion

SUN

PLANET

The events are maps fromR to R
3

; U = {w : R→ R
3} =

(

R
3)R

AB := the set of maps from A to B = { f : A→ B}
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Dynamical phenomena

◮ The voltage across and the current into an electrical port
with ‘dynamics’

V

I

−

+
�
�
�
�

R
L

C

C

LR ��

��

The events are maps fromR to R2

; U = {(V, I) : R→ R
2}
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Dynamical phenomena

◮ Heat flows, temperatures, and work in a thermodynamic
system

terminal(Q  ,T )hh
Working

W

(Q  ,T )cc

terminal
Cooling

Heating
terminal

Thermodynamic
Engine

Events: maps fromR to [0,∞)× [0,∞)× [0,∞)× [0,∞)×R

; U = {(Qh,Th,Qc,Tc,W ) : R→ ·· ·}
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Dynamical phenomena

◮ The input and the output of a signal processor

output  input    processor    
Signal  

Events: maps from Z to R×R

; U = {(u,y) : Z→ R
2}
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Dynamical phenomena

◮ The input and the output of a signal processor

output  input    processor    
Signal  

Events: maps from Z to R×R

; U = {(u,y) : Z→ R
2}

◮ Variables associated with mechanical devices, electrical
instruments, chemical systems, multi-domain constructs,
economic processes, ... Phenomena with ‘memory’.
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Distributed phenomena

◮ Temperature profile of, and heat absorbed by, a rod

���������������
���������������
���������������
����������������

�
�
�

q(x,t)

T(x,t)x

Events: maps from R×R to [0,∞)×R

; U = {(T,q) : R
2→ [0,∞)×R}
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Distributed phenomena

◮ EM fields.

In each point of space & at each time, there is an

electric field ~E(t,x,y,z)
magnetic field ~B(t,x,y,z)
current density ~j(t,x,y,z)
charge density ρ(t,x,y,z)

Events: maps from R×R3 to R3×R3×R3×R

; U = {(~E,~B,~j,ρ) : R
4→ R

10}
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Distributed phenomena

◮ EM fields.

In each point of space & at each time, there is an

electric field ~E(t,x,y,z)
magnetic field ~B(t,x,y,z)
current density ~j(t,x,y,z)
charge density ρ(t,x,y,z)

Events: maps from R×R3 to R3×R3×R3×R

; U = {(~E,~B,~j,ρ) : R
4→ R

10}

◮ Images

◮ Phenomena in which things happen simultaneously at
different points in space
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A model is a subset: the ‘behavior’
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The behavior

Given is a phenomenon with universumU .
Without further scrutiny, any event in U is possible.

After studying the situation, the conclusion is reached that the
events are constrained, that some laws are in force.
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The behavior

Given is a phenomenon with universumU .
Without further scrutiny, any event in U is possible.

After studying the situation, the conclusion is reached that the
events are constrained, that some laws are in force.

Modeling means that certain events are declared to be
impossible, that they cannot occur.

The possibilities that remain constitute what we call the
‘behavior’ of the model.
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The behavior

Given is a phenomenon with universumU .
Without further scrutiny, any event in U is possible.

After studying the situation, the conclusion is reached that the
events are constrained, that some laws are in force.

Modeling means that certain events are declared to be
impossible, that they cannot occur.

The possibilities that remain constitute what we call the
‘behavior’ of the model.

A model is a subsetB of U

B is called the behavior of the model
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The behavior

Every “good” scientific theory is prohibition:
it forbids certain things to happen...
The more a theory forbids, the better it is.

Karl Popper
Conjectures and Refutations:
The Growth of Scientific Knowledge
Routhledge, 1963

Karl Popper
(1902-1994)
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Examples
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Discrete event phenomena

Examples:

◮ Words in a natural language
U = {a,b,c, . . . ,x,y,z}n

with n = the number of letters in the longest word

B = all words recognized by the spelling checker.
For example, SPQR/∈B.

B is basically defined by enumeration, by listing its
elements.
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Discrete event phenomena

Examples:

◮ Words in a natural language
U = {a,b,c, . . . ,x,y,z}n

with n = the number of letters in the longest word

B = all words recognized by the spelling checker.
For example, SPQR/∈B.

B is basically defined by enumeration, by listing its
elements.

Sentences in a natural language.
B = all ‘legal’ sentences.
Usually determined using grammars.
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Discrete event phenomena

Examples:

◮ Words in a natural language
U = {a,b,c, . . . ,x,y,z}n

with n = the number of letters in the longest word

B = all words recognized by the spelling checker.
For example, SPQR/∈B.

B is basically defined by enumeration, by listing its
elements.

Sentences in a natural language.
B = all ‘legal’ sentences.
Usually determined using grammars.

◮ DNA sequences.B =???

◮ LATEX code.B = all LATEX files that ‘run’.
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Discrete event phenomena

◮ 32-bit binary strings with a parity check.

U = {0,1}32

B =

{

a1a2 · · ·a31a32 | ak ∈ {0,1} and a32
(mod 2)

=
31

∑
k=1

ak

}
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Discrete event phenomena

◮ 32-bit binary strings with a parity check.

U = {0,1}32

B =

{

a1a2 · · ·a31a32 | ak ∈ {0,1} and a32
(mod 2)

=
31

∑
k=1

ak

}

B can be expressed in other ways. For example,

B = {a1a2 · · ·a31a32 | ak ∈{0,1} and
32

∑
k=1

ak
(mod 2)

= 0}

B =





















a1
a2
...

a31
a32






| ∃









b1
b2
...

b30
b31









s.t.







a1
a2
...

a31
a32






=









1 0 0 ··· 0
−1 1 0 ··· 0... ... ... ...... ... ... ...
0 0 ··· −1 1
0 0 ··· 0 −1

















b1
b2
...

b30
b31






















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Discrete event phenomena

◮ 32-bit binary strings with a parity check.

U = {0,1}32

B =

{

a1a2 · · ·a31a32 | ak ∈ {0,1} and a32
(mod 2)

=
31

∑
k=1

ak

}

B can be expressed in other ways. For example,

B = {a1a2 · · ·a31a32 | ak ∈{0,1} and
32

∑
k=1

ak
(mod 2)

= 0}

B =





















a1
a2
...

a31
a32






| ∃









b1
b2
...

b30
b31









s.t.







a1
a2
...

a31
a32






=









1 0 0 ··· 0
−1 1 0 ··· 0... ... ... ...... ... ... ...
0 0 ··· −1 1
0 0 ··· 0 −1

















b1
b2
...

b30
b31























input/output representation

kernel representation

image representation
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Continuous phenomena

Examples:

◮ The pressure, volume, quantity, and temperature of a gas
in a vessel

Gas

(pressure, volume, quantity, temperature)     

U = (0,∞)× (0,∞)× (0,∞)× (0,∞)

Gas law: B = {(P,V,N,T ) ∈U | PV = NT }
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Continuous phenomena

◮ The gravitational attraction of two bodies

1

+

position q mass M 1  2
force   F   

position  q
 2

mass M

; U = (0,∞)× (0,∞)×R
3×R

3×R
3

B =

{

~F =
M1M2~1M2→M1
||~q1−~q2||2

}

‘inverse square law’
Isaac Newton, 1642-1727
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Continuous phenomena

◮ The voltage across and the current through a resistor

V

I

R
+

−

Event = (voltage, current) ; U = R2

‘Ohm’s law’ B = {(V, I) | V = RI }

Georg Ohm, 1789 – 1854
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Continuous phenomena

◮ Price/demand:
U = [0,∞)× [0,∞)

B

Demand

Price

◮ Price/supply:
U = [0,∞)× [0,∞)

B

Supply

Price

◮ Supply/demand:
U = [0,∞)× [0,∞)

Price

Supply
Demand Supply

Demand

B
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Continuous phenomena

◮ Price/demand:
U = [0,∞)× [0,∞)

B

Demand

Price

◮ Price/supply:
U = [0,∞)× [0,∞)

B

Supply

Price

◮ Supply/demand:
U = [0,∞)× [0,∞)

Price

Supply
Demand Supply

Demand

B

price becomes a
‘latent variable’
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Dynamical phenomena

◮ Planetary motion U =
(

R3
)R

PLANET

SUN

D
C

B

A 1 year

34 months

Kepler’s laws ; B
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Dynamical phenomena

◮ Planetary motion U =
(

R3
)R

PLANET

SUN

D
C

B

A 1 year

34 months

Kepler’s laws ; B = the orbits R→ R
3 with:

K.1 periodic, ellipses, with the sun in one of the foci;
K.2 the vector from sun to planet sweeps out equal areas

in equal time;
K.3 the square of the period

divided by the third power
of the major axis is the
same for all the planets
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Dynamical phenomena

◮ The second law

Isaac Newton
by William Blake

unit mass

+

force   F   

position  q

U =
(

R
3×R

3)R

B =

{

(F,q) : R→ R
3×R

3 | F = d2

dt2 q

}
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Dynamical phenomena

◮ Heat flows,
temperatures,
and work

terminal(Q  ,T )hh
Working

W

(Q  ,T )cc

terminal
Cooling

Heating
terminal

Thermodynamic
Engine

B ;

∫ +∞
−∞ (Qh−Qc−W )dt = 0

and
∫ +∞
−∞ (Qh

Th
− Qc

Tc
)dt ≤ 0
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Dynamical phenomena

◮ Heat flows,
temperatures,
and work

terminal(Q  ,T )hh
Working

W

(Q  ,T )cc

terminal
Cooling

Heating
terminal

Thermodynamic
Engine

B ;

∫ +∞
−∞ (Qh−Qc−W )dt = 0

and
∫ +∞
−∞ (Qh

Th
− Qc

Tc
)dt ≤ 0

First and second law
of thermodynamics

Émilie du Châtelet
1706 – 1749

Rudolf Clausius
1822 – 1888
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Dynamical phenomena

◮ The input and the output of a signal processor

output  input    processor    
Signal  

Events: maps fromZ to R×R ; U = {(u,y) : Z→ R
2}

For an MA system

B =
{

(u,y) : Z→ R
2 | y(t) = 1

2T+1 ∑t+T
t′=t−T

u(t ′)
}

many variations
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Distributed phenomena

◮ The temperature profile of, and heat absorbed by, a rod

���������������
���������������
���������������
����������������

�
�
�

q(x,t)

T(x,t)x

Events: maps fromR×R to [0,∞)×R

U = {(T,q) : R
2→ [0,∞)×R}

B =
{

(T,q) : R
2→ [0,∞)×R | ∂

∂ t T = ∂ 2

∂ x2 T +q
}
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Distributed phenomena

◮ Maxwell’s equations for EM fields in free space

∇ ·~E =
1
ε0

ρ ,

∇×~E = −
∂
∂ t

~B,

∇ ·~B = 0 ,

c2∇×~B =
1
ε0

~j +
∂
∂ t

~E.

independent variables:(t,x,y,z) time and space
dependent variables:(~E,~B,~j,ρ)

electric & magnetic field, current & charge density

James Clerk Maxwell
1831 – 1879
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Stochastic and Fuzzy
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Stochastic models

In this lecture, we consider onlydeterministic models.

Stochastic models :⇔ there is a mapP (the ‘probability’ )

P : A → [0,1]

with A a ‘σ -algebra’
of subsets ofU
& certain axioms on A and P.

Pierre-Simon Laplace Andrey Kolmogorov
1903 – 1989

P(B) =‘the degree of certainty’ (relative frequency,
propensity, plausibility, belief) that outcomes (elements from
U ) are in B; ∼= ‘the degree of validity ofB as a model’.
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Stochastic models

In this lecture, we consider onlydeterministic models.

Stochastic models :⇔ there is a mapP (the ‘probability’ )

P : A → [0,1]

with A a ‘σ -algebra’
of subsets ofU
& certain axioms on A and P.

Pierre-Simon Laplace Andrey Kolmogorov
1903 – 1989

P(B) =‘the degree of certainty’ (relative frequency,
propensity, plausibility, belief) that outcomes (elements from
U ) are in B; ∼= ‘the degree of validity ofB as a model’.

Determinism : P is a{0,1}-law
A = {∅,B,Bcomplement,U },P(B) = 1.
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Fuzzy models

Lotfi Zadeh
born 1921

Fuzzy models:there is a mapµ
(‘the membership function’)

µ : U → [0,1]

µ (x) = ‘the extent to whichx belongs to the model’s behavior’.
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Fuzzy models

Lotfi Zadeh
born 1921

Fuzzy models:there is a mapµ
(‘the membership function’)

µ : U → [0,1]

µ (x) = ‘the extent to whichx belongs to the model’s behavior’.

Determinism: µ is ‘crisp’ :

image(µ) = {0,1},

B = µ−1({1}) := {x ∈U | µ (x) = 1}
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Behavioral models

Behavioral models fit the tradition of modeling, but have not
been approached as such in a deterministic setting. The
behavior captures the essence of a model.

The behavior is all there is.
Equivalence of models, properties of models,

symmetry, system identification, etc.,
must all refer to the behavior.

Every ‘good’ scientific theory is prohibition: it forbids
certain things to happen...
The more a theory forbids, the better it is.

Replace ‘scientific theory’ by ‘mathematical model’ !
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Recapitulation

◮ A model deals with events

◮ The events belong to an universum,U

◮ A model is specified by its behaviorB,

a subset of the event setU

◮ In dynamical systems, the events are functions of

time and the behaviorB is hence a family of

time-trajectories.
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Dynamical systems

– p. 40/127



The dynamic behavior

In dynamical systems, ‘events’ are maps, with the time axis as
domain, hence functions of time.

It is convenient to distinguish in the notation

the domain of the maps, thetime set
and the codomain, thesignal space

the set where the functions take on their values.
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The dynamic behavior

In dynamical systems, ‘events’ are maps, with the time axis as
domain, hence functions of time.

It is convenient to distinguish in the notation

the domain of the maps, thetime set
and the codomain, thesignal space

the set where the functions take on their values.
The behavior of a dynamical system is usually described by a
system of ordinary differential equations (ODEs) or
difference equations.

In contrast to distributed phenomena
; partial differential equations (PDEs)
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The dynamic behavior

A dynamical system:⇔ (T,W,B)

T⊆ R ‘time set’
W ‘signal space’
B ⊆WT the ‘behavior’

a family of trajectories T→W
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The dynamic behavior

A dynamical system:⇔ (T,W,B)

T⊆ R ‘time set’
W ‘signal space’
B ⊆WT the ‘behavior’

a family of trajectories T→W

mostly, T = R,R+,Z, or N (∼= Z+),
and, in this course,W = Rw,
B is a family of

(finite dimensional) vector-valued time trajectories
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The dynamic behavior

A dynamical system:⇔ (T,W,B)

T⊆ R ‘time set’
W ‘signal space’
B ⊆WT the ‘behavior’

a family of trajectories T→W

mostly, T = R,R+,Z, or N (∼= Z+),
and, in this course,W = Rw,
B is a family of

(finite dimensional) vector-valued time trajectories

w : T→ R
w ∈B⇔ ‘w is compatible with the model’

w : T→ Rw /∈B⇔ ‘the model forbids w’
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The dynamic behavior

A dynamical system:⇔ (T,W,B)

T⊆ R ‘time set’
W ‘signal space’
B ⊆WT the ‘behavior’

a family of trajectories T→W

mostly, T = R,R+,Z, or N (∼= Z+),
and, in this course,W = Rw,
B is a family of

(finite dimensional) vector-valued time trajectories

w : T→ R
w ∈B⇔ ‘w is compatible with the model’

w : T→ Rw /∈B⇔ ‘the model forbids w’

T = R or R+ ; ‘continuous-time’ systems and ODEs
T = Z or N ; ‘discrete-time’ systems and difference eqn’s
We deal extensively with the caseT = R first.
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Linear time-invariant differential systems

LTIDSs
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LTIDSs

The dynamical system(R,Rw,B) ; B is said to be

[[ linear ]] :⇔ [[ [[w1,w2 ∈B,α ∈ R]]⇒ [[αw1 +w2 ∈B]] ]]
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LTIDSs

The dynamical system(R,Rw,B) ; B is said to be

[[ linear ]] :⇔ [[ [[w1,w2 ∈B,α ∈ R]]⇒ [[αw1 +w2 ∈B]] ]]

[[ time-invariant ]] :⇔ [[ [[w ∈B, σ t the t-shift]]⇒ [[σ tw ∈B]] ]]

σ

t−shift        

f

map  

t        f

t        
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LTIDSs

The dynamical system(R,Rw,B) ; B is said to be

[[ linear ]] :⇔ [[ [[w1,w2 ∈B,α ∈ R]]⇒ [[αw1 +w2 ∈B]] ]]

[[ time-invariant ]] :⇔ [[ [[w ∈B, σ t the t-shift]]⇒ [[σ tw ∈B]] ]]

σ

t−shift        

f

map  

t        f

t        

[[ differential ]] :⇔ [[B is ‘described’ by an ODE]].
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Linearity

This definition of linearity has as a special case

u 7→ y = L(u) L a linear map

u ∈ a space of inputs,y ∈ a space of outputs, w =

[

u
y

]

.

B = {w =

[

u
y

]

| y = L(u)}= the ‘graph’ of L
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Linearity

This definition of linearity has as a special case

u 7→ y = L(u) L a linear map

u ∈ a space of inputs,y ∈ a space of outputs, w =

[

u
y

]

.

B = {w =

[

u
y

]

| y = L(u)}= the ‘graph’ of L

But, a dynamical system, also an input/output system,
is seldom a map !
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LTIDSs

The dynamical system(R,Rw,B) is

a linear time-invariant differential system (LTIDS) :⇔
the behavior consists of the set of solutions of a system of
linear, constant coefficient, ODEs

R0w+R1
d
dt

w+ · · ·+Rn

dn

dtn
w = 0.

R0,R1, · · · ,Rn ∈ R•×w real matrices that parametrize the
system, andw : R→ Rw.
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LTIDSs

The dynamical system(R,Rw,B) is

a linear time-invariant differential system (LTIDS) :⇔
the behavior consists of the set of solutions of a system of
linear, constant coefficient, ODEs

R0w+R1
d
dt

w+ · · ·+Rn

dn

dtn
w = 0.

R0,R1, · · · ,Rn ∈ R•×w real matrices that parametrize the
system, andw : R→ Rw. In polynomial matrix notation

; R
(

d
dt

)

w = 0

with R(ξ ) = R0 +R1ξ + · · ·+Rnξ n ∈ R [ξ ]•×w

a polynomial matrix , usually ‘wide’ or square.
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LTIDS

We should define what we mean by a solution of

R
(

d
dt

)

w = 0

For ease of exposition, we takeC ∞ (R,Rw) solutions.
Hence the behavior defined is

B =

{

w ∈ C
∞ (R,Rw) | R

(

d
dt

)

w = 0

}
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LTIDS

We should define what we mean by a solution of

R
(

d
dt

)

w = 0

For ease of exposition, we takeC ∞ (R,Rw) solutions.
Hence the behavior defined is

B =

{

w ∈ C
∞ (R,Rw) | R

(

d
dt

)

w = 0

}

B = kernel
(

R
(

d
dt

))

‘kernel representation’ of this B.

Notation:
B ∈L w L w = the LTIDSs with w variables

B ∈L •, L • = the LTIDSs.
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Smoothness of solutions

There are many possibilities for the def’n of the solution set of

R
(

d
dt

)

w = 0

◮ C ∞ (R,Rw) solutions — our choice
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Smoothness of solutions

There are many possibilities for the def’n of the solution set of

R
(

d
dt

)

w = 0

◮ C ∞ (R,Rw) solutions — our choice

◮ Strong solutions : all derivatives appearing in the eqn’ns
exist and the ODEs are satisfied. Has very few
‘invariance’ properties.

◮ Weak solutions : w ∈L local(R,Rm), solutions
interpreted in the sense of distributions.

Includes steps, ramps, jumps, jerks, etc.
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Smoothness of solutions

There are many possibilities for the def’n of the solution set of

R
(

d
dt

)

w = 0

◮ C ∞ (R,Rw) solutions — our choice

◮ Strong solutions : all derivatives appearing in the eqn’ns
exist and the ODEs are satisfied. Has very few
‘invariance’ properties.

◮ Weak solutions : w ∈L local(R,Rm), solutions
interpreted in the sense of distributions.

Includes steps, ramps, jumps, jerks, etc.

◮ Distributional solutions include impulses and such
frivolities.
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Representations of LTIDSs

We will meet numerous representations of LTIDSs

◮ As the set of solutions ofR
(

d
dt

)

w = 0 R ∈ R [ξ ]•×w (our

def.) R
(

d
dt

)

: C ∞ (

R,Rcoldim(R)
)

→ C ∞ (

R,Rrowdim(R)
)

‘kernel
repr’n’
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Representations of LTIDSs

We will meet numerous representations of LTIDSs

◮ As the set of solutions ofR
(

d
dt

)

w = 0 R ∈ R [ξ ]•×w (our

def.) R
(

d
dt

)

: C ∞ (

R,Rcoldim(R)
)

→ C ∞ (

R,Rrowdim(R)
)

‘kernel
repr’n’

◮ With input/output partition

P
(

d
dt

)

y = Q
(

d
dt

)

u w ∼=

[

u

y

]

det(P) 6= 0,P−1Q proper
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Representations of LTIDSs

We will meet numerous representations of LTIDSs

◮ As the set of solutions ofR
(

d
dt

)

w = 0 R ∈ R [ξ ]•×w (our

def.) R
(

d
dt

)

: C ∞ (

R,Rcoldim(R)
)

→ C ∞ (

R,Rrowdim(R)
)

‘kernel
repr’n’

◮ With input/output partition

P
(

d
dt

)

y = Q
(

d
dt

)

u w ∼=

[

u

y

]

det(P) 6= 0,P−1Q proper

◮ Input/state/output representation
in terms of matrices A,B,C,D such that
B consists of allw′s generated by

d
dt x = Ax +Bu, y = Cx+Du w∼=

[

u
y

]

Rudolf E. Kalman
born 1930
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Representations of LTIDSs

◮ w = M
(

d
dt

)

ℓ with M ∈ R [ξ ]w×•

M
(

d
dt

)

: C ∞ (

R,Rcoldim(M)
)

→ C ∞ (

R,Rrowdim(M)
)

‘image repr’n’

B = image
(

M
(

d
dt

))
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Representations of LTIDSs

◮ w = M
(

d
dt

)

ℓ with M ∈ R [ξ ]w×•

M
(

d
dt

)

: C ∞ (

R,Rcoldim(M)
)

→ C ∞ (

R,Rrowdim(M)
)

‘image repr’n’

B = image
(

M
(

d
dt

))

◮ First principles models often contain ‘latent variables’
(see later) ; R

(

d
dt

)

w = M
(

d
dt

)

ℓ ‘latent variable
representation’

B = {w | ∃ ℓ such that ...}
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Representations of LTIDSs

◮ w = M
(

d
dt

)

ℓ with M ∈ R [ξ ]w×•

M
(

d
dt

)

: C ∞ (

R,Rcoldim(M)
)

→ C ∞ (

R,Rrowdim(M)
)

‘image repr’n’

B = image
(

M
(

d
dt

))

◮ First principles models often contain ‘latent variables’
(see later) ; R

(

d
dt

)

w = M
(

d
dt

)

ℓ ‘latent variable
representation’

B = {w | ∃ ℓ such that ...}

◮ Special case:ddt Fx = Ax +Bw DAEs

B = {w | ∃ x such that ...}
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Representations of LTIDSs

◮ representations withrational symbols
R

(

d
dt

)

w = 0, w = M
(

d
dt

)

ℓ, etc.

with R,M ∈ R(ξ )•×•, or proper stable rational, etc. (see
lecture 7)
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Representations of LTIDSs

◮ representations withrational symbols
R

(

d
dt

)

w = 0, w = M
(

d
dt

)

ℓ, etc.

with R,M ∈ R(ξ )•×•, or proper stable rational, etc. (see
lecture 7)

◮ and then, there are theconvolution representations

∫ +∞

−∞
H(t ′)w(t− t ′)dt ′ = 0

(see lecture 4)
with the kernel, input/output, image versions
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Representations of LTIDSs

◮ representations withrational symbols
R

(

d
dt

)

w = 0, w = M
(

d
dt

)

ℓ, etc.

with R,M ∈ R(ξ )•×•, or proper stable rational, etc. (see
lecture 7)

◮ and then, there are theconvolution representations

∫ +∞

−∞
H(t ′)w(t− t ′)dt ′ = 0

(see lecture 4)
with the kernel, input/output, image versions

◮ Rich ... but confusing!
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Injectivity, surjectivity, and bijectivity of differenti al operators

It is convenient to have the following proposition at hand.

Proposition: Let P ∈ R [ξ ]n1×n2 and consider the map

P

(

d
dt

)

: C
∞ (R,Rn2)→ C

∞ (R,Rn1)

◮ P
(

d
dt

)

is injective iff the complex matrix P(λ ) has rank
n2 for all λ ∈C. That is, iff P(λ ) has full column rank for
all λ ∈ C

◮ P
(

d
dt

)

is surjective iff the polynomial matrix P has rank
n1 (i.e. P is of full row rank). That is, iff there exists a
n1×n1 submatrix of P with non-zero determinant.

◮ P
(

d
dt

)

is surjective iff P is unimodular. That is iff n1 = n2

and determinant(P) is a non-zero constant polynomial.

This proposition will be proven in lecture 2.
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Injectivity, surjectivity, and bijectivity of differenti al operators

It is convenient to have the following proposition at hand.

Proposition: Let P ∈ R [ξ ]n1×n2 and consider the map

P

(

d
dt

)

: C
∞ (R,Rn2)→ C

∞ (R,Rn1)

◮ P
(

d
dt

)

is injective iff the complex matrix P(λ ) has rank
n2 for all λ ∈C. That is, iff P(λ ) has full column rank for
all λ ∈ C

◮ P
(

d
dt

)

is surjective iff the polynomial matrix P has rank
n1 (i.e. P is of full row rank). That is, iff there exists a
n1×n1 submatrix of P with non-zero determinant.

◮ P
(

d
dt

)

is surjective iff P is unimodular. That is iff n1 = n2

and determinant(P) is a non-zero constant polynomial.

This proposition will be proven in lecture 2.
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The mathematical structure of LTIDSs
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L w

What is the mathematical structure ofL w?
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L w

What is the mathematical structure ofL w?

In order to cope with this question, we need
a few concepts from algebra:rings and modules.

A ring is a mathematical notion that has been introduced in
order to capture the structure of the integers, the
polynomials, square matrices, etc.,
and modules are like vector spaces over a ring, instead of over
a field, as is officially required for a vector space.

Our interest is mainly is the ring of polynomials and in
polynomial modules

These notions are briefly reviewed in the appendix
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L w

What is the mathematical structure ofL w?

Let B ∈L w, say,B = kernel
(

R
(

d
dt

))

R determinesB, but B does not determineR. For example, if
U is unimodular, then R and UR determine the same
behavior!

What property of R really determinesB?

When do

R1

(

d
dt

)

w = 0 and R2

(

d
dt

)

w = 0

define the same behavior?
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L w and polynomial submodules

Theorem
There is a one-to-one relation between

L w and theR [ξ ]-submodules ofR [ξ ]1×w.
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L w and polynomial submodules

Theorem
There is a one-to-one relation between

L w and theR [ξ ]-submodules ofR [ξ ]1×w.

We now describe this1↔ 1 relation.
One direction involves the annihilators ofB ∈L w.
n ∈ R [ξ ]1×w is said to be an annihilator of B :⇔

n(
d
dt

)B = 0 i.e. n(
d
dt

)w = 0 for all w ∈B

Denote the annihilators ofB by NB, a submodule ofR [ξ ]1×w.

The submodule associated withB by the thm is B 7→NB
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L w and polynomial submodules

The other direction is also as expected. TheM be an
R [ξ ]-submodule ofR [ξ ]1×w. Define

M 7→SM :=
{

w ∈ C ∞ (R,Rw) | n
(

d
dt

)

w = 0 for all n ∈M
}

The right hand side defines an element ofL w, even though it
involves an∞ number of ODEs.
A kernel representation (with a finite number of ODEs) is
easily constructed, by taking forR the polynomial matrix with
as rows a basis ofM .
sol’n set of∞-number of linear constant coefficient ODEs⇔
∞-number of linear constant coefficient ODEs!

The behavior associated withM by the thm is M 7→SM
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L w and polynomial submodules

In pictures:

LTIDSs

Submodules
N

S

– p. 58/127



L w and polynomial submodules

In pictures:

LTIDSs

Submodules
N

S

We will prove that this association is one-to-one, by showing
that the mapsN and S are inverses of each other.
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Submodules & LTIDSs

Notation

◮ For R ∈ R [ξ ]•×w, denote by< R > the R [ξ ]-submodule of
R [ξ ]1×w generated by its rows.
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Submodules & LTIDSs

Notation

◮ For R ∈ R [ξ ]•×w, denote by< R > the R [ξ ]-submodule of
R [ξ ]1×w generated by its rows.

The essence of the proof of the thm is the following lemma

Lemma: [[n ∈Nkernel(R( d
dt ))

]]⇔ [[n ∈< R >]]

The proof is given later.

Therefore

(i) Nkernel(R( d
dt ))

=< R > (by the lemma)

(ii) S<R> = kernel
(

R
(

d
dt

))

(by the def. ofS )
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Submodules & LTIDSs

Corollary : The following are equivalent:

1. < R1 >=< R2 >

2. S<R1> = S<R2>

3. kernel
(

R1
(

d
dt

))

= kernel
(

R2
(

d
dt

))

4. Nkernel(R1( d
dt ))

= Nkernel(R2( d
dt ))
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Submodules & LTIDSs

Corollary : The following are equivalent:

1. < R1 >=< R2 >

2. S<R1> = S<R2>

3. kernel
(

R1
(

d
dt

))

= kernel
(

R2
(

d
dt

))

4. Nkernel(R1( d
dt ))

= Nkernel(R2( d
dt ))

Proof of the Corollary:

1.⇒ 2. is trivial
2.⇔ 3. is consequence (ii)
3.⇒ 4. is trivial
4.⇔ 1. is consequence (i)
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Submodules & LTIDSs

3.⇔ 4. implies that B 7→NB is injective

1.⇔ 2. implies that M 7→SM is injective

LTIDSs

Submodules
N

S

Hence the mapsB 7→NB and M 7→SM are each other’s
inverse.
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Proof of the lemma

Lemma: [[n ∈Nkernel(R( d
dt ))

]]⇔ [[n ∈< R >]].

In other words,

[[ [[R

(

d
dt

)

w = 0]]⇒ [[n

(

d
dt

)

w = 0]] ]]

⇔ [[∃ f ∈ R [ξ ]1×• such that n = f R]]

This lemma states that that the module of annihilators is
exactly the module generated by the rows ofR.
All annihilators are linear combinations of the rows of R.

No new annihilators sneek in.
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Proof of the lemma

Observe first the scalar version of the lemma. Letd,n ∈ R [ξ ].

[[ [[d

(

d
dt

)

w = 0]]⇒ [[n

(

d
dt

)

w = 0]] ]]⇔ [[d is a factor of n]]

The proof is an exercise.

Note that even in this special case, the lemma does not hold if
we had defined the behavior in terms of compact support
solutions, instead of in terms ofC ∞ solutions.

Example: Consider R
(

d
dt

)

w = 0 with 0 6= R ∈ R [ξ ]. With B

the C ∞ solutions, the annihilators are the polynomials that
haveR as a factor, indeed the module generated byR.
Take for B the compact support solutions instead.
Then B = {0}. The module of annihilators is thenR [ξ ] (for
all R 6= 0), while the module generated byR consists only of
the polynomials that haveR as a factor.
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Proof of the lemma

We now indicate the proof of the lemma. The proof uses the
Smith form. This form implies (prove!) that we can assume
without loss of generality thatR is of the form

R =

[

diag(d1,d2, . . . ,dr) 0
0 0

]

with d1,d2, · · · ,dr 6= 0.
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Proof of the lemma

We now indicate the proof of the lemma. The proof uses the
Smith form. This form implies (prove!) that we can assume
without loss of generality thatR is of the form

R =

[

diag(d1,d2, . . . ,dr) 0
0 0

]

with d1,d2, · · · ,dr 6= 0.

With R of this form, we have

[[R

(

d
dt

)

w = 0]]⇔ [[d1

(

d
dt

)

w1 = d2

(

d
dt

)

w2 = · · ·= dr

(

d
dt

)

wr = 0]].
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Proof of the lemma

We now indicate the proof of the lemma. The proof uses the
Smith form. This form implies (prove!) that we can assume
without loss of generality thatR is of the form

R =

[

diag(d1,d2, . . . ,dr) 0
0 0

]

with d1,d2, · · · ,dr 6= 0.

With R of this form, we have

[[R

(

d
dt

)

w = 0]]⇔ [[d1

(

d
dt

)

w1 = d2

(

d
dt

)

w2 = · · ·= dr

(

d
dt

)

wr = 0]].

Hence, withn = [n1 n2 · · · nr], we conclude, from the

scalar case, thatR
(

d
dt

)

w = 0 implies n
(

d
dt

)

w = 0 iff dk is a
factor of nk for all k. The lemma follows.
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Relations between kernel representations
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Inclusion

Let B1,B2 ∈L w. B1 ; R1
(

d
dt

)

w = 0, B2 ; R2
(

d
dt

)

w = 0.

B1⊆B2 iff ∃ F ∈ R [ξ ]•×• such that R2 = FR1

Proof: ⇒: trivial. ⇐: takes a bit of work.
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Inclusion

Let B1,B2 ∈L w. B1 ; R1
(

d
dt

)

w = 0, B2 ; R2
(

d
dt

)

w = 0.

B1⊆B2 iff ∃ F ∈ R [ξ ]•×• such that R2 = FR1

Proof: ⇒: trivial. ⇐: takes a bit of work.

B1 = B2 iff ∃ F1,F2 ∈ R [ξ ]•×• such that R1 = F2R2,R2 = F1R1

In particular, B1 = B2 if R1 = UR2,U unimodular.

Equations specify behavior, but not the other way around
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Minimal kernel representations

The kernel representationR
(

d
dt

)

w = 0 of B is said to be
minimal if among all kernel representations ofB,
R has a minimal number of rows.
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Minimal kernel representations

The kernel representationR
(

d
dt

)

w = 0 of B is said to be
minimal if among all kernel representations ofB,
R has a minimal number of rows.
Proposition: The following are equivalent.

◮ R
(

d
dt

)

w = 0 is minimal.

◮ The rows of R are linearly independent. They form a
basis for theR [ξ ]-module generated by the rows ofR.

◮ R has full row rank.

◮ R
(

d
dt

)

is surjective.
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Minimal kernel representations

The kernel representationR
(

d
dt

)

w = 0 of B is said to be
minimal if among all kernel representations ofB,
R has a minimal number of rows.
Proposition: The following are equivalent.

◮ R
(

d
dt

)

w = 0 is minimal.

◮ The rows of R are linearly independent. They form a
basis for theR [ξ ]-module generated by the rows ofR.

◮ R has full row rank.

◮ R
(

d
dt

)

is surjective.

All minimal kernel representations of B ∈L w are generated
from a minimal one, R

(

d
dt

)

w = 0, by the transformation group

R
U unimodular
−−−−−−−−→ UR

; canonical forms, invariants, etc.
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Recapitulation

◮ Dynamical systems; Σ = (T,W,B) with

behavior B ⊆ (W)T a family of time trajectories

◮ LTIDSs: B is the sol’n set of a system of linear

constant coefficient ODEs

◮ LTIDSs 1↔ 1 R [ξ ]-modules

◮ A minimal kernel repr. of a LTIDS is uniquely

defined up to unimodular premultiplication
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Latent variables
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Kernels, images, and projections

A model is a subset . There are many ways to specify a
subset. For example,

◮ as the solution set of equations

◮ as an image of a map

◮ as a projection
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Kernels, images, and projections

A model B is a subset ofU . There are many ways to specify a
subset. For example,

◮ as the solution set of equations

f : U →•; B = {w | f (w) = 0 }

◮ as an image of a map

f : •→U ; B = {w | ∃ ℓ such that w = f (ℓ) }

◮ as a projection

Bextended⊆U ×L ; B = {w | ∃ ℓ such that (w, ℓ) ∈Bextended}
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Kernels, images, and projections

A model B is a subset ofU . There are many ways to specify a
subset. For example,

◮ as the solution set of equations ‘kernel representation’

f : U →•; B = {w | f (w) = 0 }

◮ as an image of a map ‘image representation’

f : •→U ; B = {w | ∃ ℓ such that w = f (ℓ) }

◮ as a projection ‘latent variable representation’

Bextended⊆U ×L ; B = {w | ∃ ℓ such that (w, ℓ) ∈Bextended}
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Kernel

f

0B

U
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Image

f

B

U

– p. 72/127



Projection

Bextended

B

U
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Latent variable representations

Combining equations with latent variables;

Bextendedspecified by

Bextended= {(w, ℓ) | f (w, ℓ) = 0 = 0}

B = {w | ∃ ℓ such that f (w, ℓ) = 0}
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Latent variable representations

Combining equations with latent variables;

Bextendedspecified by

Bextended= {(w, ℓ) | f (w, ℓ) = 0 = 0}

B = {w | ∃ ℓ such that f (w, ℓ) = 0}

First principles models usually come in this form.
Latent variables naturally emerge from interconnections.
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Two springs interconnected in series

FF

L

k1 k2

’!’! Model relation between L and F !!
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Two springs interconnected in series

FF

L

k1 k2

’!’! Model relation between L and F !!

View as interconnection of two springs

F1F1

L1

F2 F2

L2

ρ1 ρ2

– p. 75/127



Two springs interconnected in series

Model for (L,F) (assume that for the individual springs the
length is a function of the force exerted).

L1 = ρ1(F1) L2 = ρ1(F2)

F = F1 = F2 L = L1 +L2
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Two springs interconnected in series

Model for (L,F) (assume that for the individual springs the
length is a function of the force exerted).

L1 = ρ1(F1) L2 = ρ1(F2)

F = F1 = F2 L = L1 +L2

L,F: ‘manifest variables’ L1,F1,L2,F2: ‘latent variables’

; L = ρ1(F)+ρ2(F)

Latent variables are easily eliminated, for this example.
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Two springs interconnected in series

Model for (L,F) (assume that for the individual springs the
length is a function of the force exerted).

L1 = ρ1(F1) L2 = ρ1(F2)

F = F1 = F2 L = L1 +L2

L,F: ‘manifest variables’ L1,F1,L2,F2: ‘latent variables’

; L = ρ1(F)+ρ2(F)

Latent variables are easily eliminated, for this example.

In the linear case: L1 = L∗1 +ρ1F1 L2 = L∗2 +ρ2F2

After elimination ; L = L∗1 +L∗2 +(ρ1 +ρ2)F
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Two springs interconnected in parallel

F F

L

k1

k2

’!’! Model relation between L and F !!
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Two springs interconnected in parallel

F F

L

k1

k2

’!’! Model relation between L and F !!

View as interconnection of two springs

F1F1

L1

F2 F2

L2

ρ1 ρ2
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Two springs interconnected in parallel

Model for (L,F) (assume that for the individual springs the
length is a function of the force exerted, and neglect the
dimensions of the interconnecting mechanism).

L1 = ρ1(F1) L2 = ρ1(F2)

F = F1 + F2 L = L1 = L2
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Two springs interconnected in parallel

Model for (L,F) (assume that for the individual springs the
length is a function of the force exerted, and neglect the
dimensions of the interconnecting mechanism).

L1 = ρ1(F1) L2 = ρ1(F2)

F = F1 + F2 L = L1 = L2

L,F: ‘manifest variables’ L1,F1,L2,F2: ‘latent variables’

; B = {(L,F) | ∃ α : L = ρ1(α), ρ1(α) = ρ2(F−α)}

Latent variables are not easily eliminated, for this example,
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Two springs interconnected in parallel

Model for (L,F) (assume that for the individual springs the
length is a function of the force exerted, and neglect the
dimensions of the interconnecting mechanism).

L1 = ρ1(F1) L2 = ρ1(F2)

F = F1 + F2 L = L1 = L2

L,F: ‘manifest variables’ L1,F1,L2,F2: ‘latent variables’

; B = {(L,F) | ∃ α : L = ρ1(α), ρ1(α) = ρ2(F−α)}

Latent variables are not easily eliminated, for this example,
unless we are in the linear case:L1 = L∗1 +ρ1F1,L2 = L∗2 +ρ2F2

After elimination ; L = ρ2
ρ1+ρ2

L∗1 + ρ1
ρ1+ρ2

L∗2 + ρ1ρ2
ρ1+ρ2

F
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A dynamic example
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RLC circuit

First principles models invariably contain (many) auxiliary
variables in addition to the variables whose behavior we wish
to model.
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RLC circuit

First principles models invariably contain (many) auxiliary
variables in addition to the variables whose behavior we wish
to model.

Can these latent variables be eliminated?

We illustrate the emergence of latent variables and the
elimination question by means of an extensive example in the
dynamic systems case.
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RLC circuit

Model the port behavior of

��

R
L

C

C

LRI

V
−

+
��

��

�� ��

��
��
��
��

����

��

by tearing, zooming, and linking (see lecture 13).
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RLC circuit

Model the port behavior of

��

R
L

C

C

LRI

V
−

+
��

��

d

f

b

c

h

��

1

4

6

3

5

2

a

e

g

��

��
��
��
��

����

��

;

by tearing, zooming, and linking (see lecture 13).

In each node there is an element; module equations
involving 2 variables (potential, current) for each terminal,

In each branch a connection; interconnection equations
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Modules

1

3

2

22

1
1 1

1
1

2

322

��
��
��

��
��
��

��
��
��

��
��
��

connector 1

capacitor C connector 2

inductor Lresistor RC

resistor RL
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Module equations

vertex 1 : Vconnector1,1 = Vconnector1,2 = Vconnector1,3

Iconnector1,1 + Iconnector1,2 + Iconnector1,3 = 0

vertex 2 : VRC,1−VRC,2 = RCIRC,1, IRC,1 + IRC,2 = 0

vertex 3 : L d
dt IL,1 = VL,1−VL,2, IL,1 + IL,2 = 0

vertex 4 : C d
dt

(

VC,1−VC,2
)

= IC,1, IC,1 + IC,2 = 0

vertex 5 : VRL,1−VRL,2 = RLIRL,1

IRL,1+ IRL,2 = 0

vertex 6 : Vconnector2,1 = Vconnector2,2 = Vconnector2,3

Iconnector2,1 + Iconnector2,2 + Iconnector2,3 = 0
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Interconnection

current left current right

potential left potential right

Interconnection of two electrical terminals

Interconnection equations:

potential left = potential right

current left + current right = 0
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Interconnection equations

edge c: VRC,1 = Vconnector12 IRC,1 + Iconnector1,2 = 0

edge d: VL1 = Vconnector13 IL1 + Iconnector13 = 0

edge e: VRC,2 = VC1 IRC,2 + IC1 = 0

edge f: VL2 = VRC,1 IL2 + IRL,1 = 0

edge g: VC2 = Vconnector21 IC2 + Iconnector21 = 0

edge h: VRL,2 = Vconnector22 IRL,2 + Iconnector22 = 0
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Manifest variable assignment

Vexternalport = Vconnector1,1−Vconnector2,3

Iexternalport = Iconnector11
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Manifest variable assignment

In total 28 latent variables Vconnector1,1, . . . ,VRC,1, IRC,1, . . . , Iconnector2,3

2 manifest variables,
(

Vexternalport, Iexternalport
)

26 equations.

Which equation(s) govern(s)
(

Vexternalport, Iexternalport
)

A constant-coefficient linear differential equation?
One that does not contain the branch variables?

Does the fact that all the equations before elimination of the
latent (auxiliary) variables are constant-coefficient linear
differential equations imply the same after elimination?
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The port equation

The port Σ = (R,R2,B) behavior B is specified by:

Case 1: CRC 6=
L

RL

(

RC

RL
+

(

1+
RC

RL

)

CRC
d
dt

+CRC
L

RL

d2

dt2

)

Vexternalport

=

(

1+CRC
d
dt

)(

1+
L

RL

d
dt

)

RCIexternalport

Case 2: CRC =
L

RL
(

RC

RL
+CRC

d
dt

)

Vexternalport= (1+CRC)
d
dt

RCIexternalport
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The elimination theorem
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Elimination theorem

Theorem
L • is closed under projection
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Elimination theorem

Theorem
L • is closed under projection

Consider

B = {(w1,w2) : R→ R
w1×R

w2 | (w1,w2) ∈B}

Define the projection

B1 = {w1 : R→ R
w1 | ∃ w2 : R→ R

w1 such that (w1,w2) ∈B}

The theorem states that [[B ∈L w1+w2]]⇒ [[B1 ∈L w1]]

This is, as seen, important in modeling.
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Proof of the elimination theorem

We indicate the proof. Consider

R1

(

d
dt

)

w1 +R2

(

d
dt

)

w2 = 0 ; behavior B
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Proof of the elimination theorem

We indicate the proof. Consider

R1

(

d
dt

)

w1 +R2

(

d
dt

)

w2 = 0 ; behavior B

Pre-multiply by a unimodular polynomial matrix U . Then

U

(

d
dt

)

R1

(

d
dt

)

w1 +U

(

d
dt

)

R2

(

d
dt

)

w2 = 0 ; also behaviorB
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Proof of the elimination theorem

We indicate the proof. Consider

R1

(

d
dt

)

w1 +R2

(

d
dt

)

w2 = 0 ; behavior B

Pre-multiply by a unimodular polynomial matrix U . Then

U

(

d
dt

)

R1

(

d
dt

)

w1 +U

(

d
dt

)

R2

(

d
dt

)

w2 = 0 ; also behaviorB

Define B1 := {w1 | ∃ w2 such that (w1,w2) ∈B}
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Proof of the elimination theorem

We indicate the proof. Consider

R1

(

d
dt

)

w1 +R2

(

d
dt

)

w2 = 0 ; behavior B

Pre-multiply by a unimodular polynomial matrix U . Then

U

(

d
dt

)

R1

(

d
dt

)

w1 +U

(

d
dt

)

R2

(

d
dt

)

w2 = 0 ; also behaviorB

Define B1 := {w1 | ∃ w2 such that (w1,w2) ∈B}

Let V be unimodular.

U

(

d
dt

)

R1

(

d
dt

)

w1 +U

(

d
dt

)

R2

(

d
dt

)

V

(

d
dt

)

w̃2 = 0 ; behavior B̃
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Proof of the elimination theorem

We indicate the proof. Consider

R1

(

d
dt

)

w1 +R2

(

d
dt

)

w2 = 0 ; behavior B

Pre-multiply by a unimodular polynomial matrix U . Then

U

(

d
dt

)

R1

(

d
dt

)

w1 +U

(

d
dt

)

R2

(

d
dt

)

w2 = 0 ; also behaviorB

Define B1 := {w1 | ∃ w2 such that (w1,w2) ∈B}

Let V be unimodular.

U

(

d
dt

)

R1

(

d
dt

)

w1 +U

(

d
dt

)

R2

(

d
dt

)

V

(

d
dt

)

w̃2 = 0 ; behavior B̃

Then B1 := {w1 | ∃ w̃2 such that (w1, w̃2) ∈ B̃}
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Proof of the elimination theorem

The Smith form implies that we can chooseU and V such that

UR2V =

[

diag(d1,d2, . . . ,dr) 0
0 0

]

with d1,d2, · · · ,dr 6= 0.
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Proof of the elimination theorem

The Smith form implies that we can chooseU and V such that

UR2V =

[

diag(d1,d2, . . . ,dr) 0
0 0

]

with d1,d2, · · · ,dr 6= 0. Partition UR1 conformably as

[

R′1
R′′1

]

.
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Proof of the elimination theorem

The Smith form implies that we can chooseU and V such that

UR2V =

[

diag(d1,d2, . . . ,dr) 0
0 0

]

with d1,d2, · · · ,dr 6= 0. Partition UR1 conformably as

[

R′1
R′′1

]

.

Note that diag(d1,d2, . . . ,dr)
(

d
dt

)

is surjective. Conclude

that R′′1
(

d
dt

)

w1 = 0 ; behavior B1. QED.
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Applications of the elimination theorem

[[
d
dt

x = Ax+Bu,y = Cx+Du]] ⇒ [[P

(

d
dt

)

y = Q

(

d
dt

)

u]]

[[E
d
dt

x = Ax+Bw]] ⇒ [[R

(

d
dt

)

w = 0]]

linear DAE’s allow elimination of nuisance variables

[[R

(

d
dt

)

w = M

(

d
dt

)

ℓ]] ⇒ [[R′
(

d
dt

)

w = 0]]

elimination of latent variables in LTIDSs is always possible.

[[w = M

(

d
dt

)

ℓ]] ⇒ [[R′
(

d
dt

)

w = 0]]
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There is no nonlinear elimination theorem

ODE ODE

SYSTEMSYSTEM1 2

ODE ODE

ODE? SYSTEMSYSTEM1 2

The interconnection is described by an ODE if systems 1 and
2 are LTIDSs.
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There is no nonlinear elimination theorem

ODE ODE

SYSTEMSYSTEM1 2

ODE ODE

ODE? SYSTEMSYSTEM1 2

The interconnection is described by an ODE if systems 1 and
2 are LTIDSs.

In the nonlinear case, very unlikely that the interconnection is
described by an ODE, even if systems 1 and 2 are!

Why are ODE’s so common?
– p. 94/127



Recapitulation

◮ Models are usually given as equations

◮ First principles models invariantly contain

(many) latent variables

◮ In LTIDSs, latent variables can be completely

eliminated

◮ There is no nonlinear elimination theorem
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Other time sets
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Continuous time

The theory is identical for LTIDSs with time set

[0,∞),(−∞,0] or [t1, t2] .

The appropriate ring is still R [ξ ]
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Discrete time

For discrete time systems with time axisN or Z+, the
appropriate ring is still R [ξ ].
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Discrete time

For discrete time systems with time axisN or Z+, the
appropriate ring is still R [ξ ].

For discrete time systems with time axisZ, however, the
appropriate ring is R[ξ ,ξ−1].

Elements of this ring are called‘Laurent polynomials’. An
element ofR[ξ ,ξ−1]n×n is unimodular iff its determinant is a
non-zero monomial.
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Discrete time

Example:

w(t +1) = w(t) ; ξ −1
w(t) = w(t−1) ; 1−ξ−1

w(t +2) = w(t +1) ; ξ 2−ξ
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Discrete time

Example:

w(t +1) = w(t) ; ξ −1
w(t) = w(t−1) ; 1−ξ−1

w(t +2) = w(t +1) ; ξ 2−ξ

All these equations are equivalent forT = Z.
Transformations:

second equation =ξ−1∗ first;
third equation = ξ∗ first

None of these equations are equivalent forT = Z+.
The 2nd equation does not really make sense. What isw(0)?
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Summary of Lecture 1
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The main points

◮ A model is a subsetB of a universumU .
B is the behavior of the model.
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The main points
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B is the behavior of the model.
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The main points

◮ A model is a subsetB of a universumU .
B is the behavior of the model.

◮ First principles models contain latent variables

◮ LTIDSs are described by linear, constant-coefficient
differential equations

; R
(

d
dt

)

w = 0,R ∈ R [ξ ]•×w

Notation: L w,L •
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The main points

◮ A model is a subsetB of a universumU .
B is the behavior of the model.

◮ First principles models contain latent variables

◮ LTIDSs are described by linear, constant-coefficient
differential equations

; R
(

d
dt

)

w = 0,R ∈ R [ξ ]•×w

Notation: L w,L •

◮ L w one-to-one
←→ R [ξ ]-submodules ofR [ξ ]1×w
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The main points

◮ A model is a subsetB of a universumU .
B is the behavior of the model.

◮ First principles models contain latent variables

◮ LTIDSs are described by linear, constant-coefficient
differential equations

; R
(

d
dt

)

w = 0,R ∈ R [ξ ]•×w

Notation: L w,L •

◮ L w one-to-one
←→ R [ξ ]-submodules ofR [ξ ]1×w

◮ The elimination theorem: L • is closed under projection.

Latent variables can be eliminated from linear constant
coefficient ODEs
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The main points

◮ A model is a subsetB of a universumU .
B is the behavior of the model.

◮ First principles models contain latent variables

◮ LTIDSs are described by linear, constant-coefficient
differential equations

; R
(

d
dt

)

w = 0,R ∈ R [ξ ]•×w

Notation: L w,L •

◮ L w one-to-one
←→ R [ξ ]-submodules ofR [ξ ]1×w

◮ The elimination theorem: L • is closed under projection.

Latent variables can be eliminated from linear constant
coefficient ODEs

End of lecture 1

– p. 101/127



Mathematical Appendix
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Rings and modules
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Groups

A group is a setG, with

◮ a binary operation G×G→ G, calledmultiplication.
Multiplication is usually written as juxtaposition of the
multiplied elements.

◮ a unary operation −1 : G→ G, called inversion.
The inverse ofg is written as g−1.

◮ an identity e ∈ G (often denoted as1).

These operations satisfy, for allg,g1,g2,g3 ∈ G:

◮ (g1g2)g3 = g1(g2g3) (multiplication is associative);
ge = eg = g; gg−1 = g−1g = e.
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Groups

A group is a setG, with

◮ a binary operation G×G→ G, calledmultiplication.
Multiplication is usually written as juxtaposition of the
multiplied elements.

◮ a unary operation −1 : G→ G, called inversion.
The inverse ofg is written as g−1.

◮ an identity e ∈ G (often denoted as1).

These operations satisfy, for allg,g1,g2,g3 ∈ G:

◮ (g1g2)g3 = g1(g2g3) (multiplication is associative);
ge = eg = g; gg−1 = g−1g = e.

A group is calledabelian (or commutative)if g1g2 = g2g1 for
all g1,g2 ∈ G. For an abelian group multiplication is usually
denoted asg1 +g2 (instead ofg1g2), and the identity as0
(instead ofe or 1).
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Rings

A ring is a setR equipped with two binary operations

+ : R×R→ R and ∗ : R×R→ R

called additionand multiplication. Multiplication is usually
just written as juxtaposition of the multiplied elements,
rather than with a ∗.

These operations satisfy:

◮ (R,+) is an abelian group with identity element0,

◮ multiplication is associative, with identity element1,

◮ multiplication distributes over addition.

So, for all a,b,c ∈ R, there holds:

(ab)c = a(bc) denoted asabc, a1 = 1a = a,
a(b+ c) = ab+ac,(a+b)c = ac+bc.
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Commutative rings

Multipication need not be commutative.
If it is, we call the ring commutative.

Examples:Z (commutative),R [ξ ] (commutative),Rn×n,

R [ξ ]n×n ,R[ξ1,ξ2, . . . ,ξn] (commutative).
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Commutative rings

Multipication need not be commutative.
If it is, we call the ring commutative.

Examples:Z (commutative),R [ξ ] (commutative),Rn×n,

R [ξ ]n×n ,R[ξ1,ξ2, . . . ,ξn] (commutative).

Every elementr ∈ R has an additive inverse−r.

But it need not have a muliplicative inverse. For example,
in Z only 1 and −1 have a multiplicative inverse.
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Units

An elementa ∈ R is called aunit if it is invertible with respect
to multiplication: if ∃ b ∈ R such that ab = ba = 1;
b is then uniquely determined bya and is writtes asa−1.
The set of all units in R forms a group under multiplication.

The term unimodular for (polynomial) matrices is used as a
synonym for ‘unit’.
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Units

An elementa ∈ R is called aunit if it is invertible with respect
to multiplication: if ∃ b ∈ R such that ab = ba = 1;
b is then uniquely determined bya and is writtes asa−1.
The set of all units in R forms a group under multiplication.

The term unimodular for (polynomial) matrices is used as a
synonym for ‘unit’.

M ∈ R [ξ ]n×n is unimodular iff det(M) is a non-zero
polynomial of zero degree. That is, iffdet(M) is a unit in R [ξ ].
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Modules

Let R be acommutativering.

A moduleM overR (also called anR-module) is abelian group
(,M ,+) with an operation, calledscalar multiplication,
mapping R×M →M . Multiplication is usually written by
juxtaposition, i.e. asrx for r ∈ R and x ∈M .

These operations satisfy, for allr,s ∈ R, and x,y ∈M ,

◮ r(x+ y) = rx+ ry,

◮ (r + s)x = rx+ sx,

◮ (rs)x = r(sx) (therefore written as rsx),

◮ 1x = x.
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Modules

Let R be acommutativering.

A moduleM overR (also called anR-module) is abelian group
(,M ,+) with an operation, calledscalar multiplication,
mapping R×M →M . Multiplication is usually written by
juxtaposition, i.e. asrx for r ∈ R and x ∈M .

These operations satisfy, for allr,s ∈ R, and x,y ∈M ,

◮ r(x+ y) = rx+ ry,

◮ (r + s)x = rx+ sx,

◮ (rs)x = r(sx) (therefore written as rsx),

◮ 1x = x.

The following example is especially important for us:

R [ξ ]n is a module overR [ξ ]. So is, of course,R [ξ ]1×n.
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Modules

There is an enormous variety of rings and modules:

principal ideal domain, finitely generated, cyclic, free,
projective, injective, simple, semisimple, indecomposable,
Euclidean, Noetherian, Artinian, Bézoutian, Hermitian, etc.

Like visiting the zoo.
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Free modules

An R-moduleM is said to befinitely generatedif there exist a
set{g1,g2, · · · ,gr} of elements ofM (calledgeneratorsof M )
such that each elementm of M is of the form

m = c1g1 + c2g2 + · · ·+ crgr with c1,c2, . . . ,cr ∈ R.

An R-moduleM is said to befree if there exist a set of
generators{e1,e2, · · · ,er} of M (called abasisof M )
such that theek’s are independent, that is,

c1e1 + c2e2 + · · ·+ crer = 0 implies c1 = c2 = · · ·= cr = 0

The cardinality of the basis is uniquely defined, and is called
the rank, order, or dimensionof M .
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Submodules ofR [ξ ]n

Clearly R [ξ ]n is anR [ξ ]-module. We are especially interested
in this module and its submodules. TheR [ξ ]-submodules of
R [ξ ]n are tame animals of our zoo: they arefree ,
have a basis, and behave very much like vector spaces.
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Submodules ofR [ξ ]n

Clearly R [ξ ]n is anR [ξ ]-module. We are especially interested
in this module and its submodules. TheR [ξ ]-submodules of
R [ξ ]n are tame animals of our zoo: they arefree ,
have a basis, and behave very much like vector spaces.

Let M be anR [ξ ]-submodule ofR [ξ ]n. It has a basis, say,
{e1,e2, · · · ,er}. Any other basis{e′1,e

′
2, · · · ,e

′
r
} of M is

generated by the matrix multiplication










e′1
e′2
· · ·

e′
r











= U











e1

e2

· · ·

er











with U ∈ R [ξ ]r×r unimodular.
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The Smith form

Elements ofR [ξ ]n1×n2 can be brought into
a simple canonical form by pre- and
postmultiplication by a unimodular matrix.
This canonical form is called theSmith form.

Henry Smith
1826 – 1883

Smith comes in exceedingly handy in proofs
for the polynomial description of LTIDSs.
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The Smith form

Elements ofR [ξ ]n1×n2 can be brought into
a simple canonical form by pre- and
postmultiplication by a unimodular matrix.
This canonical form is called theSmith form.

Henry Smith
1826 – 1883

Smith comes in exceedingly handy in proofs
for the polynomial description of LTIDSs.

Theorem The Smith form Let M ∈ R [ξ ]n1×n2. There exist
unimodular U ∈ R [ξ ]n1×n1 and V ∈ R [ξ ]n2×n2 such that

UMV =

[

diag(d1,d2, . . . ,dr) 0r×(n2−r)

0(n1−r)×r 0(n1−r)×(n2−r)

]

with d1,d2, . . . ,dr ∈ R [ξ ], monic, anddk a factor of dk+1 for
k = 1,2, · · · ,r−1. They are called the invariant factors of M.
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Canonical forms and invariants

Another bit of nice-to-know mathematics
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Relations

A relation on an indexed family of sets,Sα ,α ∈ A, is a subset
of S = Πα∈ASα .

Think of the elements ofsα ,α ∈ A, as being ‘related’ if
Πα∈Asα ∈Πα∈ASα .

‘Relation’ captures the notion of ‘model’ much better
than‘map’.

Note that we view a dynamical system basically as a relation
among the valuesw(t) for t ∈ $. The behavior of a dynamical
system is a relation onΠt∈TWt , with all the Wt ’s equal toW.
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of S = Πα∈ASα .

Think of the elements ofsα ,α ∈ A, as being ‘related’ if
Πα∈Asα ∈Πα∈ASα .

‘Relation’ captures the notion of ‘model’ much better
than‘map’.

Note that we view a dynamical system basically as a relation
among the valuesw(t) for t ∈ $. The behavior of a dynamical
system is a relation onΠt∈TWt , with all the Wt ’s equal toW.
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Relations

A binary relation involves only two sets, the cardinality ofA
equals 2. An n-ary relation, n sets, the cardinality ofA = n.
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Relations

A binary relation involves only two sets, the cardinality ofA
equals 2. An n-ary relation, n sets, the cardinality ofA = n.

A common example of a binary relation is obtained from a
map f : X → Y , the relation being thegraphof f :

graph( f ) = {(x,y) ∈ X×Y |y = f (x)}
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Binary relations

If in a n-ary relation all the Aα ’s are equal,
A1 = A2 = · · ·= An = A, we call the relation ann-ary relation
on A (the term endorelationis also used).

A binary relation on A is thus a subset ofA2.

The notation a1Ra2, a1
R
∼ a2, is often used if(a1,a2) belongs to

the binary relation R⊆ A2.
a1∼a2 is also used when it is clear whatR is.

Many important binary relations are obtained from
additional structure on the subset that defines the relation.
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Equivalence relations

An equivalence relation onA is a binary relation that is
reflexive, symmetric, and transitive.
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Equivalence relations

An equivalence relation onA is a binary relation that is
reflexive, symmetric, and transitive. In other words, the
following must hold for all a,b,c ∈ A:

◮ a∼ a (reflexivity)

◮ [[a∼ b]]⇒ [[b∼ a]] (symmetry)

◮ [[a∼ b and b∼ c]]⇒ [[a∼ c]] (transitivity)
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Equivalence relations

An equivalence relation onA is a binary relation that is
reflexive, symmetric, and transitive. In other words, the
following must hold for all a,b,c ∈ A:

◮ a∼ a (reflexivity)

◮ [[a∼ b]]⇒ [[b∼ a]] (symmetry)

◮ [[a∼ b and b∼ c]]⇒ [[a∼ c]] (transitivity)

∼ partitions A into disjoint subsets, called equivalence classes.
All elements in a given equivalence class are equivalent
among themselves, and no element is equivalent with any
element from a different class. Think therefore of an
equivalence relation onA as a partition of A into disjoint
subsets and declaring elements of the same subset equivalent.
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Equivalence relations

An equivalence relation onA is a binary relation that is
reflexive, symmetric, and transitive. In other words, the
following must hold for all a,b,c ∈ A:

◮ a∼ a (reflexivity)

◮ [[a∼ b]]⇒ [[b∼ a]] (symmetry)

◮ [[a∼ b and b∼ c]]⇒ [[a∼ c]] (transitivity)

∼ partitions A into disjoint subsets, called equivalence classes.
All elements in a given equivalence class are equivalent
among themselves, and no element is equivalent with any
element from a different class. Think therefore of an
equivalence relation onA as a partition of A into disjoint
subsets and declaring elements of the same subset equivalent.

The equivalence class of elements equivalent witha is denoted
as [a], [a]∼, or [a]R. a1 = a2(modulo ∼) and a1

∼
= a2 mean that

a1 and a2 belong to the same equivalence class.
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Canonical form

Let ∼ be an equivalence relation onA.

A canonical form (also callednormal form, standard form )
for ∼ is a subsetC of A such that

C ∩ [a]∼ 6= /0 for all a ∈ A.

– p. 118/127



Canonical form

Let ∼ be an equivalence relation onA.

A canonical form (also callednormal form, standard form )
for ∼ is a subsetC of A such that

C ∩ [a]∼ 6= /0 for all a ∈ A.

An invariant for ∼ is a mapI from A to a setB such that

[[a1∼ a2]]⇒ [[I (a1) = I (a2)]].

It is said to be a complete invariant if

[[a1∼ a2]]⇔ [[I (a1) = I (a2)]].
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Canonical form & invariant

setA with partition

invariant I

canonical form

B
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Transformation group

A transformation group on A is a set of maps that form a
subgroup of the bijections onA. In other words, there is a
group G and a mapT from G to the bijections onA, such that
for all g,g1,g2 ∈ G, there holds:

◮ T1 = idA (idA denotes the identity map onA)

◮ T
g−1 = T−1

g

◮ Tg1g2 = Tg2 ◦Tg1 (◦ denotes composition of maps)
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Transformation group

A transformation group on A is a set of maps that form a
subgroup of the bijections onA. In other words, there is a
group G and a mapT from G to the bijections onA, such that
for all g,g1,g2 ∈ G, there holds:

◮ T1 = idA (idA denotes the identity map onA)

◮ T
g−1 = T−1

g

◮ Tg1g2 = Tg2 ◦Tg1 (◦ denotes composition of maps)

The set

Oa := {a′ ∈ A | ∃ g ∈ G such that a′ = Tg(a)}

is called theorbit of a under the transformation group TG.
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Transformation group

A transformation group on A induces an equivalence relation
on A by declaring

[[a1∼ a2]] :⇔ [[a2 ∈ Oa1]]

In other words, the partition consists of the orbits.
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Transformation group

a

setA with orbits

Tg

canonical form

orbit of a
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Example: the Jordan form

Denote byG ℓ(n) the invertible elements ofRn×n.
G ℓ(n) defines a transformation group onR

n×n by

M
S∈G ℓ(n)
−−−−→ SMS−1.

This transformation corresponds to choosing a new basis on
R
n, and looking how the linear transformation M : R

n

acts in this new basis onRn.
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Example: the Jordan form

Denote byG ℓ(n) the invertible elements ofRn×n.
G ℓ(n) defines a transformation group onR

n×n by

M
S∈G ℓ(n)
−−−−→ SMS−1.

This transformation corresponds to choosing a new basis on
R
n, and looking how the linear transformation M : R

n

acts in this new basis onRn.

Canonical form: Jordan form (work over C or consider the
real Jordan form).
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Example: the Jordan form

Denote byG ℓ(n) the invertible elements ofRn×n.
G ℓ(n) defines a transformation group onR

n×n by

M
S∈G ℓ(n)
−−−−→ SMS−1.

This transformation corresponds to choosing a new basis on
R
n, and looking how the linear transformation M : R

n

acts in this new basis onRn.

Canonical form: Jordan form (work over C or consider the
real Jordan form).
Invariant: I : R

n×n→ R [ξ ] , I(M) := det(Iξ −M)
Other invariants

I : M ∈ Rn×n 7→ the set of eigenvalues ofM.
I : M ∈ Cn×n 7→ the minimal polynomial of M
the rank, the trace, the determinant, etc.
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Example: the rank as a complete invariant

ConsiderR
n1×n2. Define the transformation group

M
S1∈G ℓ(n1), S2∈G ℓ(n2)
−−−−−−−−−→ S1MS2.

This corresponds to looking how the linear transformation
M : R

n2→ R
n1 acts like in new basis onRn1 and R

n2.
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Example: the rank as a complete invariant

ConsiderR
n1×n2. Define the transformation group

M
S1∈G ℓ(n1), S2∈G ℓ(n2)
−−−−−−−−−→ S1MS2.

This corresponds to looking how the linear transformation
M : R

n2→ R
n1 acts like in new basis onRn1 and R

n2.

Complete invariant: the rank

Canonical form: the set of matrices of the form
[

Ir×r 0r×(n2−r)

0(n1−r)×r 0(n1−r)×(n2−r)

]
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Example: the SVD

Consider nowR
n1 and R

n2 asEuclidean spaces, that is, with
distances fixed by the usual Euclidean norm. Hence basis
choices must respect distances. An elementM ∈ R

n×n is said
to beorthogonal if M⊤M = In×n.
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Example: the SVD

Consider nowR
n1 and R

n2 asEuclidean spaces, that is, with
distances fixed by the usual Euclidean norm. Hence basis
choices must respect distances. An elementM ∈ R

n×n is said
to beorthogonal if M⊤M = In×n.

Now consider the previous example in this Euclidean set-up.
This corresponds toS1 and S2 being orthogonal matrices
ConsiderRn1×n2. Define the transformation group

M
S1∈Oℓ(n1), S2∈Oℓ(n2)
−−−−−−−−−→ S1MS2.
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Example: the SVD

Consider nowR
n1 and R

n2 asEuclidean spaces, that is, with
distances fixed by the usual Euclidean norm. Hence basis
choices must respect distances. An elementM ∈ R

n×n is said
to beorthogonal if M⊤M = In×n.

Now consider the previous example in this Euclidean set-up.
This corresponds toS1 and S2 being orthogonal matrices
ConsiderRn1×n2. Define the transformation group

M
S1∈Oℓ(n1), S2∈Oℓ(n2)
−−−−−−−−−→ S1MS2.

This corresponds to looking how the linear transformation
M : Rn2→ Rn1 acts like in new basis inRn1 and in Rn2, that
both respect distances.

– p. 125/127



Example: the SVD

Complete invariant:

M ∈R
n1×n2 7→ the singular valuesσ1≥ σ2≥ ·· · ≥ σr > 0 of M.

Invariants: the rank, the induced norm, the Frobenius norm,
the Schatten and Ky-Fan norms, etc.
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Example: the SVD

Complete invariant:

M ∈R
n1×n2 7→ the singular valuesσ1≥ σ2≥ ·· · ≥ σr > 0 of M.

Invariants: the rank, the induced norm, the Frobenius norm,
the Schatten and Ky-Fan norms, etc.

Canonical form: the set of matrices of the form
[

Σ 0r×(n2−r)

0(n1−r)×r 0(n1−r)×(n2−r)

]

,

with Σ diagonal, with positive elements on the diagonal in
non-increasing order.

See lecture 3 for more details.
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Example: the Smith form
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