
Solution to the exercises for lectures 12 and 14

Exercise 1

1.1 From the fact thatX(ξ)U(ξ)−1 = (ξI−A)−1B it follows that ξX(ξ) =
AX(ξ) +BU(ξ). Consequently

(ζ + η)X(ζ)TKX(η) = X(ζ)TATKX(η) + U(ζ)TBTKX(η)+

X(ζ)TKAX(η) +X(ζ)TKBU(η),

which can be rewritten as(
X(ζ)T U(ζ)T

)( ATK +KA KB
BTK 0

)(
X(η)
U(η)

)
.

1.2 Using the result proven in the previous point, and the definition of
Φ(ζ, η) given in the text in order to arrive at

(ζ + η)X(ζ)TKX(η) = Φ(ζ, η)

−
(
X(ζ)T U(ζ)T

)( Q−ATK −KA −KB + ST

−BTK + S R

)(
X(η)
U(η)

)
.

We now prove the lemma suggested in the hint. This will lead us
immediately to the conclusion.
Let (x0, u0) ∈ Rn × Rm. Let ũ ∈ C∞(R,Rm) be such that ũ(0) = u0.
Consider the differential equation ẋ = Ax + Bũ, x(0) = x0, and let

x̃ ∈ C∞(R,Rn) be its solution. Evidently, col(x̃, ũ) ∈ im
(
X( ddt )
U( ddt )

)
,

so there exists ` ∈ C∞(R,Rm) such that(
x̃
ũ

)
=
(
X( ddt )
U( ddt )

)
`.

Consequently,(
x0

u0

)
=
(
x̃(0)
ũ(0)

)
=
(

(X( ddt )`)(0)
(U( ddt )`)(0)

)
.

The surjectivity of the map ` 7→ col((X( ddt )`)(0), (U( ddt )`)(0)) shows
that the QDF induced by(
X(ζ)T U(ζ)T

)( Q−ATK −KA −KB + ST

−BTK + S R

)(
X(η)
U(η)

)
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is nonnegative (and consequently, it is a bona fide dissipation func-
tion) if and only if(

Q−ATK −KA −KB + ST

−BTK + S R

)
is nonnegative.

1.3 H is semi-Hurwitz, meaning its determinant is a semi-Hurwitz polyno-
mial, thus nonzero. Now if H ∈ Rm×m[ξ] is a nonsingular polynomial
matrix, then its rows are linearly independent over the field of ratio-
nal functions, and a fortiori over R. It follows from this that also the
rows of H̃ are linearly independent. Consequently, H̃>H̃ has rank m.
By the result suggested in the hint for Question 1.1, the mapping

` 7→ col((X(
d

dt
)`)(0), (U(

d

dt
)`)(0))

is surjective. It follows that the coefficient matrix of col(X(ξ), U(ξ))
has full row rank. Consequently, the matrix(

Q−ATK −KA −KB + ST

−BTK + S R

)
has rank m.

1.4 The answer follows immediately from the hint given.

Exercise 2

2.1 We prove only the “only if” part, since the other implication follows
easily from the hint.
That V is a linear space follows easily from the fact that B is a linear
subspace of the set of sequences (x,w). Now if V is a linear space,
then it admits a representation as the kernel of a matrix. In order to
conclude the proof, partition the matrix according to the partition
of the vectors of V as [

E F G
]
.

2.2 2.2.a The easiest way is to write the matrix R(ξ) as

R(ξ) = diag(ξδi)i=1,...,pRhc +R′(ξ)

where R′(ξ) is a matrix whose row-degrees are strictly lower than
those of R(ξ). Since Rhc is full row rank, it has a nonsingular sub-
matrix P . It is readily seen that the submatrix of R(ξ) consisting
of the columns corresponding to those of P has determinant

det(P )ξ
Pp

i=1 δi + terms of lower order
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Observe also that any other selection of a square submatrix of
R(ξ) (and consequently of a minor of R(ξ)) corresponds to a
selection of a square submatrix of Rhc. If this latter submatrix
is nonsingular, it follows from the argument used before that
the determinant of the corresponding square submatrix of R(ξ)
has degree

∑p
i=1 δi; otherwise, this determinant will have lower

degree.

2.2.b Use the representation

R(ξ) = diag(ξδi)i=1,...,pRhc +R′(ξ)

and apply the shift-and-cut operation to R(ξ). After k iterations
of the shift-and-cut operation, the only nonzero rows of σk+(R)
are those corresponding to row degrees higher than or equal to k.
Also, because of the fact that Rhc has full row rank, the nonzero
rows of σk+(R) are linearly independent. This yields the claim,
since there are exactly δi nonzero shift-and-cuts of the i-th row
of R.

2.2.c The claim follows straightforwardly from the result proved in
2.2.b.

Exercise 3

3.1 From the dissipation equality we know that Φ(−ξ, ξ) = ∆(−ξ, ξ), with
∆ the two-variable 1× 1 polynomial matrix inducing the dissipation
rate. The supply rate QΦ(w,F ) = F d

dtw is represented by the two-
variable polynomial matrix

Φ(ζ, η) =
[

0 1
2ζ

1
2η 0

]
.

Working with an image representation of the system allows us to
avoid studying the QDFs along the behavior of the system, and to
consider them acting on the whole C∞ instead. An observable image
representation of the system is induced by

M(ξ) =
[

1
mξ2 + cξ + k

]
The QDF QΦ′ acting on the latent variable `, such that QΦ′(`) =
QΦ(w) for all w and ` related by w = M

(
d
dt

)
` is induced by the

two-variable polynomial

Φ′(ζ, η) = M(ζ)>Φ(ζ, η)M(η)

= η
k

2
+ cηζ + ζ

k

2
+

1
2
mη2ζ +

1
2
mζ2η
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In order to find the dissipation function, we first compute

Φ′(−ξ, ξ) = −cξ2

Notice that Φ′(−iω, iω) ≥ 0 for all ω ∈ R, and consequently that a
spectral factorization of this polynomial exists. It is straightforward
to compute it as

Φ′(−ξ, ξ) =
(
−
√
cξ
) (√

cξ
)

Note that this is the only possible factorization of the polynomial as
p(−ξ)p(ξ); conclude then that the (only) dissipation function is

√
cζ
√
cη = cζη

In order to see what the physical interpretation of this dissipation
function is, notice that the latent variable ` in the image representa-
tion equals the displacement w of the mass- consequently this dissi-
pation function corresponds to

c

(
d

dt
w

)2

.

Now the dissipation equality states that

Φ′(ζ, η)−∆(ζ, η) = (ζ + η)Ψ(ζ, η)

with QΨ being the storage function corresponding to Q∆. In the case
at hand(
η
k

2
+ cηζ + ζ

k

2
+

1
2
mη2ζ +

1
2
mζ2η

)
−(cζη) = (ζ+η)

(
k

2
+

1
2
mηζ

)
3.2 3.2.a,3.2.b The two-variable polynomials corresponding to the ki-

netic, respectively potential energy are:

Ekin(ζ, η) =
1
2
mηζ

Epot(ζ, η) =
k

2

These two-variable polynomials act on the external variable w of
the system described by

m
d2

dt2
w + c

d

dt
w + cw = 0

The total energy is induced by E(ζ, η) = Ekin(ζ, η)+Epot(ζ, η) =
1
2mηζ + k

2 . The dissipated energy is c
(
d
dtw
)2

, corresponding to
the two-variable polynomial cζη.
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3.2.c The derivative of the total energy is

d

dt

(
1
2
m

(
d

dt
w

)2

+
k

2
w2

)
= m

d

dt
w
d2

dt2
w + kw

d

dt
w

=
(
m
d2

dt2
w + kw

)
d

dt
w

=
(
m
d2

dt2
w + kw + c

d

dt
w

)
d

dt
w

− c

(
d

dt
w

)2

Note that since the equation governing the behavior of the system
is m d2

dt2w+ kw+ c ddtw = 0, it follows that along the trajectories
of the system the derivative of the total energy is indeed equal
to −c

(
d
dtw
)2

.
3.2.d In polynomial terms: the derivative of the total energy is in-

duced by

(ζ + η)
(

1
2
mηζ +

k

2

)
=
(

1
2
mηζ2 +

k

2
η

)
+
(

1
2
mη2ζ +

k

2
ζ

)
=

1
2

(
mζ2 +

k

2

)
η + ζ

1
2

(
mη2 +

k

2

)
=

1
2

(
mζ2 +

k

2
+ cζ

)
η + ζ

1
2

(
mη2 +

k

2
+ cη

)
− cζη

and in the first two terms of the last expression we recognize the
“tail” corresponding to the kernel representation of the system

mξ2 + cξ + k.

In general, the computations involved are not easy to carry out
with pen and paper. However, Gröbner bases techniques can
be used on software packages for symbolic computation for this
purpose.

3.2e Integrating:∫ T

0

−
(
D

(
d

dt

)
w

)>(
D

(
d

dt

)
w

)
dt = QΨ(w)(T )−QΨ(w)(0)

Since QΨ(w) ≥ 0 for all w ∈ B, it follows from this equality that∫ T

0

−
(
D

(
d

dt

)
w

)>(
D

(
d

dt

)
w

)
dt ≥ −QΨ(w)(0)

Since this inequality hols for all T ∈ R+, it follows that∫ ∞
0

(
D

(
d

dt

)
w

)>(
D

(
d

dt

)
w

)
dt
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is finite. Now an argument by contradiction will lead us to prove
the claim. Indeed, assume that veλt is (the value at t of) a trajec-
tory in B, with v ∈ Cw, v 6= 0. Observe that then R(λ)veλt = 0
for all t, equivalently R(λ)v = 0.
Now D

(
d
dt

)
veλt = D(λ)veλt, and the integral∫ ∞

0

(
D

(
d

dt

)
w

)>(
D

(
d

dt

)
w

)
dt

can only be finite if λ ∈ R−, or if D(λ)v = 0. In the latter case
though, it would hold [

R(λ)
D(λ)

]
v = 0

a contradiction.

Exercise 4

Consider the behavior described in kernel form by the equation

p

(
d

dt

)
y = q

(
d

dt

)
u

where

p(ξ) = p0 + p1ξ + . . .+ pnξ
n

q(ξ) = q0 + q1ξ + . . .+ qnξ
n

4.1 4.1.a

X(ξ) =

p1 + . . .+ pnξ
n−1 −q1 − . . .− qnξn−1

...
...

pn −qn


4.1.b The matrix induces a minimal state map since its rows are lin-

early independent (and of course generate the space ΞR (mod R)).
4.1.c You can check that the equations

ξX(ξ) = AX(ξ) +B
[
0 1

]
+ F (ξ)R(ξ)[

1 0
]

= CX(ξ) +D
[
0 1

]
+G(ξ)R(ξ)

hold, with

F (ξ) =


1
0
...
0

 and G(ξ) =


0
0
...
0
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4.1.d The easiest way to obtain the answer is to proceed as follows.
If we perform a nonsingular transformation x Tx of the state
variable, and if the state equations are

d

dt
x = Ax+Bu

y = Cx+Du

then the equations in the new state space basis are

d

dt
Tx = TAT−1Tx+ TBu

y = CT−1Tx+Du

and consequently the new matrices are A′ = TAT−1, B′ = TB,
C ′ = CT−1, D′ = D. Apply this now with T = Π.

4.2 4.2.a The rows of X(ξ) are evidently linearly independent. If we
prove that they span the space ΞR ( mod R), we will have
shown that the matrix X(ξ) is a minimal state map. In order to
do this, compare the coefficients of equal powers of ξ in

q(ξ) = (h0 + h1ξ
−1 + . . .)p(ξ)

to conclude that

qk =
n−k∑
i=0

hipk+i

k = 0, . . . , n. From these equalities it follows that if we call X ′(ξ)
the state map discussed in 4.1.a, then the following relation exists
between it and X(ξ):

X ′(ξ) =


p1 . . . . . . . . . pn−1 pn
...

...
...

... . . .
...

pn−1 pn 0 0 . . . 0
pn 0 0 0 . . . 0

X(ξ)

Observe that this matrix is nonsingular since pn 6= 0. Now use
the fact that the rows of the matrix X(ξ) span ΞR ( mod R)
in order to conclude that also the rows of X ′(ξ) have the same
property.

4.2.b Proceeding as described in 4.1.d, we conclude that the new
matrices are A′ = TAT−1, B′ = TB, C ′ = CT−1, D′ = D,
where

T =


p1 . . . . . . . . . pn−1 pn
...

...
...

... . . .
...

pn−1 pn 0 0 . . . 0
pn 0 0 0 . . . 0
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