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Exercise 1 (Discrete-time systems)

The aim of this exercise is

◮ to generalize some of the results for differential equations to difference equations

◮ to introduce Laurent polynomials

◮ to illustrate the small difference regarding unimodularity that occurs.

In the land of difference equations some citizens like to useforward differences, others use backward differences, and
some comrades even think that usingz- transforms mysteriously clarifies matters. The most liberal democratic attitude
(when working on the time-axisZ) is to use both forward and backward lags. Of course, when working with Z+ forward
differences are the only possibility.

A (real)Laurent polynomialis a ‘polynomial’ that contains both positive and negative powers of the indeterminateξ ,
i.e., an expression of the type

p(ξ ,ξ−1) = ∑
k∈Z

pkξ k

with the pk’s ∈ R, and all but a finite number of them zero. The set of real Laurent polynomials is denoted byR[ξ ,ξ−1].
Under the obvious definitions of addition and multiplication,R[ξ ,ξ−1] becomes a commutative ring.

Note this instance of the strange habit of mathematicians toassociate the names of their heros with trivialities. It stands
to reason that if Pierre Alphonse Laurent (1813 – 1854) wouldhave wanted to be remembered by posterity, it would have
been for more that the fact that he introduced polynomials with negative powers.

Laurent polynomials are sometimes calleddipolynomials.

1. An elementu of a ring R with an identity 1 is said to beunimodular(or a unit) if there existsv ∈ R such that
uv= vu= 1. Which elements ofR[ξ ,ξ−1] are unimodular? Which elements ofRn×n[ξ ,ξ−1] are unimodular? Contrast
this with the unimodular elements ofR [ξ ] ,Rn×n[ξ ].

Assume that (in the obvious notation)

(uℓξ ℓ +uℓ+1ξ ℓ+1+ · · ·+uLξ L)(vℓ′ξ ℓ′ +vℓ′+1ξ ℓ′+1 + · · ·+vL′ξ L′) = 1,

with uℓ, uL, vℓ′ , vL 6= 0. Then (equate degrees)ℓ+ ℓ′ = 0 and L+L′ = 0. Whence, sinceℓ ≤ L, ℓ′ ≤ L′, ℓ = L
and ℓ′ = L′. Therefore,u∈ R[ξ ,ξ−1] is unimodular iff it is of the form u(ξ ,ξ−1) = αξ k with 0 6= α ∈ R and k∈ Z.

For U,V ∈Rn×n[ξ ,ξ−1], observe thatUV = I ⇒ det(U)det(V) = 1. ThereforeU ∈Rn×n[ξ ,ξ−1]unimodular
impliesdet(U)∈R[ξ ,ξ−1] unimodular. Conversely, ifdet(U)∈R[ξ ,ξ−1] is unimodular, thenV =

(

det(U)
)−1cof(U)

(cof(U) denotes the matrix of co-factors, defined as in the case of real matrices) is its inverse.

Conclusion: U ∈ R
n×n[ξ ,ξ−1] is unimodular iff det(U(ξ )) = αξ k with 0 6= α ∈ R and k ∈ Z. In contrast,

U ∈ Rn×n[ξ ] is unimodular iff det(U(ξ )) = α with 0 6= α ∈ R. The ring Rn×n[ξ ,ξ−1] has many more unimodular
elements thanRn×n[ξ ].

2. Letσ denote, as usual, theshift: σ( f )(t) := f (t +1). Let R∈ R•×w[ξ ,ξ−1] and consider the system of difference
equations

R(σ ,σ−1)w = 0.

This defines a dynamical systemΣ = (Z,Rw,B). DefineB formally.

B := {w : Z → R
w | R(σ ,σ−1)w = 0}.

Note that B = ker(R(σ ,σ−1)) with R(σ ,σ−1) is viewed as a map from(Rw)Z to (Rrowdim(R))Z.

3. Show that every linear time-invariant complete system(Z,Rw,B) admits a (minimal) representation of the form
(only forward differences (or lags))

R(σ)w = 0
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for someR∈ R•×w [ξ ] and one of the form (only backward differences)

R(σ−1)w = 0

for someR∈ R•×w [ξ ]?

Let R(σ ,σ−1) = Rℓξ ℓ +Rℓ+1ξ ℓ+1+ · · ·+RLξ L. DefineR+ and R− by

R+(σ ,σ−1) := ξ−ℓR(σ ,σ−1), R−(σ ,σ−1) := ξ−LR(σ ,σ−1).

Obviously then R(σ ,σ−1)w = 0, R+(σ ,σ−1)w = 0, and R−(σ ,σ−1)w = 0 define the same system butR+(σ ,σ−1)
contains only forward differences (in a senseR+ ∈ R•×w(ξ )) and R− ∈ R•×w(σ ,σ−1) contains only backward
differences (in a senseR− ∈ R[ξ−1]).
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Exercise 2 (Moving average)

The aim of this exercise is to illustrate that the notion of controllability can shed some light on some common algo-
rithms.

1. Throughout this exercise, the time-axis isZ. Let R∈ R•×w[ξ ,ξ−1] and consider the system of difference equations

R(σ ,σ−1)w = 0.

This defines the dynamical systemΣ = (Z,Rw,B). It is easy to prove that this system is controllable iff

the rank of the complex matrixR(λ ,λ−1) is the same for all 06= λ ∈ C.

Prove by an example that you cannot dispense of ‘puncturing’0 fromC in this test.

The Smith form for matrices over R[ξ ,ξ−1] reads: Let M ∈ R•×•[ξ ,ξ−1]. There exist unimodular U,V ∈
R•×•[ξ ,ξ−1], such thatUMV is of the form

UMV =

[

D 0
0 0

]

,

with D = diag(d1,d2, . . . ,dr), dk ∈ R[ξ ,ξ−1], and dk+1 is a factor of dk, for k = 1, . . . ,r−1. In fact, we can
take dk ∈ R[ξ ] with dk(0) = 1.

Now, proceed exactly as in the continuous-time case:R(σ ,σ−1)w = 0 defines a controllable system iff
D(σ ,σ−1)w = 0 does. The latter is the case iff each of the systemsdk(σ ,σ−1)wk = 0 defines a control-
lable system. This is the case iff each of thedk’s is unimodular. Expressed in terms ofR, this yields the rank
condition.

Note finally that the puncturing is indeed necessary. Consider the system described byσw = 0. i.e.,B = 0.
It is obviously controllable. The associatedR(ξ ) is ξ . R(λ ) drops rank atλ = 0, but this does not contradict
controllability. If you do not like this example, use σw1 = σw2 instead.

2. Consider the system defined by

w2(t) =
1
T

T

∑
t′=1

w1(t − t ′). (MA)

This algorithm is called amoving average (MA)smoothing. T ∈ N is called theaveraging window. It is very
frequently used in order to filter out noise, detecting trends, etc. WhenT is large, it is tempting to replace this
algorithm by

w2(t) = w2(t −1)+
1
T

(w1(t −1)−w1(t −T −1)). (MA’)

(a) Do (MA) and (MA’) define the same system (of course, in the behavioral sense, the one and only way ...)?

No, (MA) is controllable and (MA’) is not (see part (c)). For example,w1(t) = c1, w2(t) = c2 is a solution
of (MA’), but not of (MA) if c1 6= c2.

Do (MA) and (MA’) have the same transfer function?

The transfer function w1 7→ w2 of (MA) is

G(ξ ) =
1
T

(ξ−1 + ξ−2+ · · ·+ ξ−T) =
1
T

ξ−1− ξ−(T+1)

1− ξ−1 ,

and the transfer function of (MA’) is

G(ξ ) =
1
T

ξ−1− ξ−(T+1)

1− ξ−1 .

(MA) and (MA’) have the same transfer function.
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(b) Compare, by counting the number of additions and multiplications required per time-step, (MA) and (MA’)
from the computational complexity point of view.

Per “time step” (MA) takes T −1 additions and 1 multiplication, while (MA’) takes only 2 additions
and 1 multiplication. From this point of view, (MA’) seems simpler.

(c) Is (MA) controllable? Is (MA’) controllable?

Apply the common factor test: (MA) is controllable since

R(ξ ) = [−
1
T

(ξ−1+ ξ−2+ · · ·+ ξ−T),1], rank(R(λ )) = 1, ∀ 0 6= λ ∈ C.

For (MA’), we get

R(ξ ) = [−
1
T

(1− ξ−(T+1)),1− ξ−1], rank(R(1)) = 0,

so it is not controllable.

(d) Would you call (MA) stable ( meaning[[w1(t) = 0,(w1,w2) ∈ B]] ⇒ [[w2(t)→ 0 for t → ∞]] )? Would you call
(MA’) stable?

(MA) is stable: if w1 = 0 for t ≥ 0, then w2(t)
t→∞
−−→ 0. (MA’) is not stable: if w1 = 0 for t ≥ 0, then w2(t)

does not necessarily go to zero (it may be a non-zero constant). (MA’) should be used cautiously: if an
error occurs in the calculations ofw2(t ′), this error will appear in the results forever after, for all t > t ′.

3. A close relative of (MA) isexponential weighting:

w2(t) =
1−ρ

ρ ∑
t′∈N

ρ t′w1(t − t ′) (EW)

with ρ ∈ (0,1) theexponential weighting parameter. Convolutions as (EW) or their continuous time analogs are
of course very much related to our linear difference or differential systems, but officially (EW) is not a difference
equation because of the infinite number of terms that appear on the right hand side.

For the case at hand the related difference equation is

w2(t) = ρw2(t −1)+ (1−ρ) w1(t −1) (EW’)

(a) (EW) has the drawback that it is hard to give a very concrete characterization of the behavior, since it un-
clear for whichw1 : Z → R the infinite sum converges. Prove that the infinite sum converges whenw1 is
bounded. Prove that (EW) combined withw1 bounded, and (EW’) combined withw1,w2 bounded have the
same behavior.

Assume thatw1 is bounded and that(w1,w2) satisfies (EW). Then

|w2(t)| ≤
1−ρ

ρ

∣

∣

∣

∣

∣

∑
t′∈N

ρ t′w1(t − t ′)

∣

∣

∣

∣

∣

≤
1−ρ

ρ ∑
t′∈N

ρ t′‖w1‖∞

≤ ‖w1‖∞

Hencew1 ∈ ℓ∞(Z,R) ⇒ w2 ∈ ℓ∞(Z,R), and w2 is well-defined by (EW). In fact, ‖w2‖∞ ≤ ‖w1‖∞. Now
substitute (EW) in (EW’) and verify that (w1,w2) satisfy (EW’).
To show the converse, assume thatw1,w2 ∈ ℓ∞(Z,R) satisfy (EW’). We need to show that it satis-
fies (EW). Definew′

2 by (EW’) (with this w1). Then, as we have just proven,w′
2 ∈ ℓ∞(Z,R) and

satisfies (EW’). Hencew2−w′
2 ∈ ℓ∞(Z,R) and, since (EW’) defines a linear system,(0,w2−w′

2) satis-
fies (EW’). Let ∆ := w2−w′

2. Then ∆ satisfies∆(t) = ρ∆(t −1), i.e.,∆(t) = ρ t∆(0). Since∆ is bounded
(on Z!), this implies ∆ = 0. Hence,w2 = w′

2, and hence(w1,w2) satisfies (EW).
What we have used here is that while (EW’) has many solutions for eachw1, it has only one bounded
solution if w1 is bounded. It is this solution that is given by (EW).
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(b) Compare the computational complexity of (MA), (EW), and(EW’).

Per time step, (MA) requiresT−1 additions and one multiplication, (EW) requires in princip le an infi-
nite number of multiplications, and (EW’) requires one addition and two multiplications. Exponential
weighting implemented by (EW’) is hence for several reasonsto be preferred above (MA) systems.

(c) Is (EW’) controllable? (You may use the result of part 1).

Then R corresponding to (EW’) is
[

−
1−ρ

ρ
ξ−1 1−ρξ−1

]

.

There is no common factor, so that the system is controllable.

Obviously, these are plenty of good reasons to prefer exponential weighting implemented by (EW’) over Moving
Average for data smoothing.
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Exercise 3 (Time-reversibility)

The aim of this exercise is

◮ to let you think of the nature of differential systems

◮ use the powerful theorem on the structure of minimal kernel representations in a simple but meaningful application

The time-invariant dynamical systemΣ = (R,W,B) is said to betime-reversibleif w∈B impliesreverse(w)∈B,
wherereverse(w) is defined byreverse(w)(t) := w(−t).

1. Do Kepler’s laws define a time-reversible system?

Kepler’s laws define the system(R,R3,B) with w∈ B iff w is periodic and satisfies:

K.1 the set{v∈ R3 | ∃ t ∈ R : v = w(t)} is an ellipse with the sun (at a fixed point, say0∈ R3), in one of the foci,

K.2 the vector w(t) ∈ R3 from the sun to the planet sweeps out equal areas in equal times,

K.3 (period)2

(major axis of the ellipse)3
is a universal constant (i.e., the same for all the planets).

Comment: It is hard not to become filled with awe every time one writes this down: Kepler deduced these laws -
highly accurate and exact under very reasonable idealizations - from the mere observation of about half a dozen
cases!

Considerreverse(w). Obviously w(−t) also sweeps out the same ellipse, but in opposite direction,with equal
areas in equal times, and with the same period. Whence,reverse(w) satisfies K.1, K.2, and K.3. Therefore
Kepler’s laws define a time-reversible system.

Let f : Rw(n+1) → Rm and consider the behavioral differential equation

f ◦ (w,
d
dt

w, . . . ,
dn

dtn
w) = 0.

Precisely,

B = {w∈ C
∞ (R,Rw) | f (w(t),

d
dt

w(t), . . . ,
dn

dtn
w(t)) = 0 ∀ t ∈ R}.

2. Prove that this defines a time-reversible system if “f contains only even derivatives”. Make precise what “contains
only even derivatives” means. Use mathematical language, not colorful prose.

The question occurs:Is this condition, only even order derivatives, also necessary for time-reversibility?But this is
asking the impossible, even for LIDSs, in view of the highly non-uniqueness of behavioral equations. A better question is
therefore:

Can a time-reversible system always be represented by
a system of differential equations which contains only evenorder derivatives?

It turns out that this a very good question, and that the answer is in the affirmative for controllable LTIDSs. In this
exercise, we tip the curtain for systems described byonly onelinear differential equation.
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What does it mean that the differential equations defined by

f : (a0,a1, . . . ,an) ∈ R
w(n+1) → R

w

contains only even derivatives? The easiest way to answer is: there must exist

g : (a0,a1, . . . ,aint(n/2)) ∈ R
w(ent(n/2)+1) → R

w

(ent(x):= the largest integer less than or equal tox), such that

f (a0,a1, . . . ,an) = g(a0,a1, . . . ,aent(n/2))

for all (a0,a1, . . . ,an) ∈ Rw.

Let B be governed by

g◦
(

w,
d2

dt2
w, . . . ,

d2n′

dt2n′
w
)

= 0.

Assume thatw∈ B. Observe that d
dt reverse(w) = −reverse( d

dt w),

whence d2k

dt2k
reverse(w) = reverse( d2k

dt2k
w). Therefore

w∈ B : ⇔ g◦
(

w, d2

dt2
w, . . . , d2n′

dt2n′
w
)

= 0

⇔ g
(

w(t), d2

dt2
w(t), . . . , d2n′

dt2n′
w(t)

)

= 0 ∀t ∈ R

⇔ g
(

w(−t), d2

dt2
w(−t), . . . , d2n′

dt2n′
w(−t)

)

= 0 ∀t ∈ R

⇔ g◦
(

reverse(w),reverse( d2

dt2
w), . . . ,reverse( d2n′

dt2n′
w)
)

= 0

⇔: reverse(w) ∈ B.

Whence,w∈ B iff reverse(w) ∈ B. Hence the system defined byB is time-reversible.

3. Let p∈ R [ξ ]. Prove that the system (inL 1) described by

p(
d
dt

)w = 0 (DE)

is time-reversible if and only ifp is either an even or an odd polynomial. A polynomialp ∈ R [ξ ] is calledevenif it
contains only even powers ofξ , i.e. if p(ξ ) = p(−ξ ), andoddif it contains only odd powers ofξ , i.e. if p(ξ ) =−p(−ξ ),

Hint: in the time-reversible case,p(− d
dt )w = 0 is also a kernel representation of the behavior defined by the kernel

representation (DE), and two minimal kernel representations are related by pre-multiplication by anR [ξ ]-unimodular
element.

Let B be described byp( d
dt )w = 0 with p 6= 0 (treat the trivial case p = 0 separately). Then (see the proof of

2) rev(B) is described by p(− d
dt )w = 0. By the structure theorem for kernel representations,B = rev(B) iff

there exists a unimodularU ∈ R[ξ ], such that p(−ξ ) = U(ξ )p(ξ ). But U ∈ R[ξ ] is unimodular iff U is a nonzero
constant, sayα. HenceB = rev(B) iff there exists α 6= 0 such that

p(−ξ ) = α p(ξ ).

But this can only be the case ifα = +1 (if p has even degree), orα =−1 (if p has odd degree). Ifα = 1, p is hence
even, and ifα = 1, p is hence odd.

4. Let p,q∈ Rw[ξ ]. Prove that the system (inL 2) described by

p(
d
dt

)w1 = q(
d
dt

)w2 (∗)

is time-reversible if and only ifp andq are either (i) both even or (ii) both odd polynomials.

8



Repeat,mutatis mutandis,the proof of 3.

5. Assume in addition thatp andq are co-prime (we have seen in lecture 2 that this means that (∗) defines a controllable
system). Prove that time-reversibility then implies thatp andq are both even.

This is true in general, indeed

A controllable LTIDS is time-reversible iff it can described by
a differential equation that contains only even order derivatives

If p and q are co-prime, then they can not be both odd (sinceξ is then a common factor ofp and q). Therefore, a
controllable linear system

p(
d
dt

)w1 = q(
d
dt

)w2

is time-reversible iff p and q are both even. Therefore iff this differential equation contains only even derivatives.

Comment: For the general multivariable case, this result becomes:B ∈ L w is time-reversible iff it admits a
(minimal) kernel representation of the form

R+(
d
dt

)w = 0, R−(
d
dt

)w = 0,

with R+ even andR− odd. B ∈ L w controllable is time-reversible iff it allows a (minimal) kernel representation
of the form

R(
d
dt

)w = 0,

with R even.

9



Exercise 4 (Controllability and interconnections)

The aim of this exercise is

◮ to illustrate the behavioral concept of controllability

◮ to show its fragility under system operations

1. LetB,B′ ∈ L • be described by

R1(
d
dt

)w1 = R2(
d
dt )w2

R3(
d
dt

)w3 = R4(
d
dt )w4

Define theirseries interconnection(also called acascade interconnection) by these behavioral equations, combined
with

w2 = w3.

Of course, we assume that the dimensions are such that this makes sense. In the resulting behavior, consider(w1,w4)
as the manifest variables and(w2,w3) as latent variables.

w1 w2 w3 w4

Consider the system with transfer function
1
s
, i.e. the integrator,

d
dt

y1 = u1

and the system with transfer functions, i.e. the differentiator,

y2 =
d
dt

u2.

Are these systems controllable? Compute behavioral equations for the manifest behavior of the series connection
defined byu2 = y1. Is this system controllable? What is its transfer function? Now consider the series connection in
opposite order, i.e. the interconnection defined byu1 = y2. Compute behavioral equations for the manifest behavior
of this series connection. Is this system controllable? What is its transfer function?

Are the two resulting series connections equivalent? If not, give a signal that belongs to the manifest behavior of
one, but not the other. Does series connection of single-input/single-output connections ‘commute’?
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(1)⇔ R( d
dt )

[

u1

y1

]

= 0 with R(ξ ) = [−1 ξ ]; rank(R(λ )) = 1 for all λ ∈ C ⇒ controllable.

(2)⇔ R( d
dt )

[

u2

y2

]

= 0 with R(ξ ) = [−ξ 1]; rank(R(λ )) = 1 for all λ ∈ C ⇒ controllable.

series connection: 1
s s 1≡

d
dt

y1 = u1, y2 =
d
dt

u2, u2 = y1

Eliminating y1 and u2, yields the systemu1 = y2, which is obviously controllable. The transfer function is1.

Consider now the series connection in the opposite order:

1
ss s

s≡

d
dt

y1 = u1, y2 =
d
dt

u2, u1 = y2

Eliminating y2 and u1, yields the system

d
dt

y1 =
d
dt

u2 i.e. R(
d
dt

)

[

u2

y1

]

= 0, with R(ξ ) = [−ξ ξ ]

rank(R(λ )) = 1 for 0 6= λ ∈ C, and rank(R(λ )) = 0 for λ = 0, so the system is not controllable. The transfer
function is ξ−1ξ = 1.

The two series connections are not equivalent, even though they have the same transfer function. Any
non-zero constant input-output belongs to the second series connection, but not to the first. Hence series
connection does not commute. It does commute, though, for the transfer functions, i.e., for the controllable
part.

Comment: When we write s
s for a transfer function, or, generally, a transfer function with a common factor

in the numerator and denominator, we mean exactly the same as11, with the common factor cancelled.
Indeed, in rational functions one can,by definition of a rational function, cancel (or add) common factors
ad libitum. So, when you read or hear: assume that there are no common factors in the numerator and
denominator of this or that transfer function, smile, and muse‘innocence is bliss’. What this assumption
usually means is that people actually have a kernel representation, in which lack of common factors means
controllability. But since they have been brought up without the notion of kernel representation, but with
the thought that a system IS a transfer function, they have toresort to convoluted meaningless statements
involving common factors.

2. Define, in the above spirit of series connection,parallel connection.

w1 w2

w3 w4

w′
1 w′

2
+

+

Parallel connection:
w′

1 = w1 = w3, w′
2 = w2 +w4,

with w′
1 and w′

2 the manifest variables andw1, w2, w3, and w4, the latent variables.
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3. Decide, by means of a proof or a counterexample, which of the above operations preserve controllability. Of course,
we assume that we deal with systems inL

•, and that the dimensions are appropriate:

(a) series connection

Series connection does not preserve controllability, see part 1.

(b) parallel connection

Parallel connection connection does not preserve controllability.
Example:

1
s+1

s
s+1

s+1
s+1uu yy ≡

(

d
dt

+1

)

y1 = u1,

(

d
dt

+1

)

y2 =
d
dt

u2, u = u1 = u2, y = y1 +y2

After elimination: ( d
dt + 1)y = ( d

dt + 1)u, soR( d
dt )

[

u
y

]

= 0, with R(ξ ) = [−ξ −1 ξ + 1], which drops

rank for λ = −1.

(c) addition, i.e., doesB1,B2 controllable implyB1 +B2 controllable?

DefineB1 +B2 by,

B1 : R1(
d
dt

)w1 = 0, B2 : R2(
d
dt

)w2 = 0, B1 +B2 : w = w1 +w2,

with w1, w2 latent variables, andw the manifest one.B1 and B2 are controllable iff the full behavior
is controllable, which implies that B1 + B2 is controllable (elimination preserves controllability, see
part (e)).

(d) intersection

Let

B1 : R1(
d
dt

)w1 = 0, B2 : R2(
d
dt

)w2 = 0.

The intersection ofB1 and B2 does not preserve controllability.

Take, for example,R1 = [p1 q1], R2 = [p2 q2],
[

R1

R2

]

=

[

p1 q1

p2 q2

]

drops rank at the roots of p1q2−q1p2.

(e) elimination

Elimination preserves controllability. Go back to the basic definition of controllability for a straight-
forward proof, that is also valid for nonlinear systems. Or consider the representationR( d

dt )w =

M
(

d
dt

)

ℓ, use a unimodular pre-multiplication, if necessary, to write this as R′( d
dt )w = 0,R”( d

dt )w =

M”( d
dt )ℓ, with M” of full row rank. Note that R′( d

dt )w = 0 is a kernel representation of the manifest be-
havior. Finally, observe that rank constancy of[R(λ ) M(λ )] implies rank constancy ofR′(λ ). Hence
controllability of the full behavior implies controllabil ity of the manifest behavior.
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Exercise 5 (Elimination)

The aim of this exercise is

◮ to make you appreciate sensitivity issues related to the elimination theorem

◮ to show that in order to obtain equations for the (manifest) behavior with nice structure, latent variables are
indispensable and need not, and should not, be eliminated

1. LetS⊆ Rn1 ×Rn2 and define
S1 := {x1 ∈ R

n1 | ∃ x2 ∈ R
n2 : (x1,x2) ∈ S},

i.e.,S1 is the projection ofSon the firstn1 components. Which of the following implications hold?

(a) [[Sopen]] ⇒ [[S1 open]]?

[[S open ]]] ⇒ [[S1 open]]. Let x1 ∈ S1. We want to show that there is anε > 0 such that ‖x′1− x1‖ < ε
implies x′1 ∈ S1. There is x2 ∈ Rn2 such that (x1,x2) ∈ S. SinceS is open, there isε > 0, such that
‖x′1− x1‖+ ‖x′2− x2‖ < ε implies (x′1,x

′
2) ∈ S. Hence if ‖x′1− x1‖ < ε, there is x′2 such that ‖x′1− x1‖+

‖x′2−x2‖ < ε which implies (x′1,x
′
2) ∈ S. This proves thatx′1 ∈ S1, henceS1 is open.

(b) [[Sclosed]] ⇒ [[S1 closed]]?

[[Sclosed]] 6⇒ [[S1 closed]]. Take S= {(x1,x2) ∈ R
2 | x1x2 = 1}. Then S1 = {x1 ∈ R | x1 6= 0}. S is closed,

but S1 is not.

(c) [[S linear]] ⇒ [[S1 linear]]?

[[Slinear ]]⇒ [[S1 linear ]]. Let x′1,x
′′
1 ∈S1 andα,β ∈R. Then there arex′2 andx′′2, such that(x′1,x

′
2),(x

′′
1,x

′′
2)∈

S. SinceS is linear, (αx′1 + βx′′1,αx′2 + βx′′2) ∈ S. This implies (αx′1 + βx′′1) ∈ S1.

(d) [[Sa polytope]] ⇒ [[S1 a polytope]]?

A polytopein Rn is a set specified by a finite set of linear inequalities, i.e. aset specified bya1,a2, . . . ,am ∈ Rn

andb1,b2, . . . ,bm ∈ R as follows

{x∈ R
n | a⊤k x≥ bk for k = 1,2, . . . ,m}.

At last, something that requires some thinking:[[Sa polytope]] ⇒ [[S1 a polytope]].
We first prove the casen2 = 1. Write the inequalities that defineSas

aT
k,1x1 +ak,2x2 ≥ bk, for k = 1,2, . . . ,m.

Note that we may as well assume thatak,2 = 0, 1, or−1. Hence these inequalities become

aT
k,1x1 ≥ bk, for k = 1,2, . . . ,m0,

x2 ≥−aT
k,1x1 +bk, for k = m0 +1,m0+2, . . . ,m0 +m1,

x2 ≤−aT
k,1x1−bk, for k = m0 +m1+2,m0+m1+2, . . . ,m.

Hence for a givenx1, there existsx2 such that these inequalities are satisfied iff

aT
k,1x1 ≥ bk, for k = 1,2, . . . ,m0,

−aT
k′,2x1 +bk′ ≤ aT

k′′,2x1−bk′, for k′ = m0 +1,m0+2, . . . ,m0 +m1,

k′′ = m0 +m1+1,m0+m1+2, . . . ,m.

These inequalities clearly define a polytope for the variablesx1.
When n2 > 1, use induction onn2, i.e., eliminate the variables
x2,1,x2,2, . . . ,x2,n2, one at a time.
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(e) [[San algebraic variety]] ⇒]]S1 an algebraic variety]]?

An algebraic varietyin Rn is the zero set of a polynomial, i.e. a set specified by ap∈Rn[ξ1, · · · ,ξn] as follows

{(x1,x2, . . . ,xn) ∈ R
n | p(x1,x2, . . . ,xn) = 0}.

[S an algebraic variety] 6⇒ [S1 an algebraic variety]. Take S= {(x1,x2) ∈ R2 | x2
1 + x2

2 = 1}. Then
S1 = [−1,1]. This is not an algebraic variety since a subset ofR is an algebraic variety iff it is a finite
set, or all of R. Note that another counterexample has been given in our answer to (b).

There holds (we refer to the literature for definitions of the terms used, and for proofs): [[S a semi-
algebraic variety ]] ⇒ [[S1 an semialgebraic variety]]. So with polynomial equalities, inequalities, and
inequations, variable elimination is possible. This is thecontent of theTarski-Seidenbergtheorem.

2. Let f : Rn → Rn,h : Rn → Rp, both ‘nice’, even ‘very nice’. Consider the system

d
dt

x = f (x),y = h(x).

Is

B := {y : R → R
m | ∃x : R → R

n :
d
dt

x(t) = f (x(t)),y(t) = h(x(t)) ∀t ∈ R}

the solution set of a system of differential equations?

Discuss only the systemn = 2,m = 1, f (x1,x2) = (x2,0),h(x1,x2) = x2
1.

Warning: As many research questions, this one is a bit ambiguous and unfinished. What sort of differential equation
for y are we looking for? A polynomial expression iny and its derivatives? One with smooth functions? Or
anything?

14



The question is: do there existk,q∈N and a mapF : R(k+1)p →Rq such thatB consists of the set of solutions
of

F ◦

(

y,
d
dt

y, . . . ,
dk

dtk
y

)

= 0? (A)

The answer very much depends on the required smoothness (of solutions of the differential equations but,
more to the point, of F).

We discuss this elimination problem through the example

d
dt

x1 = x2,
d
dt

x2 = 0, y = x2
1. (B)

For the case at hand,
B = {y : R → R | ∃x1,x2 : R → R satisfying (B)}.

B hence consists of the polynomials of degree less than or equal to 2 that are squares of polynomials of
degree less than or equal to one. Henced

3

dt3
y= 0, and so it suffices to look at differential equations of second

order in order to find one that defines the manifest behavior.

Consider the differential equation
(

d
dt

y

)2

−2y
d2

dt2
y = 0. (C)

DefineB′ = {y : R → R | y satisfies (C)}.

It is easy to see thatB = B′ ∪ (−B′), with −B′ = {y : R → R | − y∈ B′}. It follows that the behavior of
(C) combined with

y≥ 0 (D)

is exactlyB. Note that we can make (C) combined with (D) appear as if it were a differential equation by
introducing a function P : R→R (P is “flat”) such that P(y) > 0 for y< 0 and P(y) = 0 for y≥ 0 and consider
the differential equation

P(y)+

(

(

d
dt

y

)2

−2y
d2

dt2
y

)2

= 0. (E)

Obviously the solution set of (E) is exactlyB.

Note that there exist suchP’s that are C∞ but there are no suchP’s that are polynomials.

Further, it can be shown that among the behaviors that contain B and come from anF that is polynomial
in its arguments, (C) yields the smallest possible behavior.

Conclusion: For the example at hand, if elimination is done in the class of differential equations that are
polynomial in their arguments, then exact elimination is not possible. If elimination is done in the class of
differential equations that areC∞ in their arguments, then exact elimination is possible. However, in general
we suspect that there are examples of systems withf ,h polynomial that allow no representation of the from
(A) with F ∈ C ∞.

Obviously, except for linear differential systems, elimination is awkward and inconvenient. This has rather
important implications in practice. Indeed, assume that one wants to describe a phenomenon that involves
certain variables, sayy. Then to start the analysis by making the seemingly innocentassumption that these
variables are described by a system of differential equations is much less generic than one could intuitively
expect, based on the typical models that are studied in courses. If the system is an interconnection of
systems (and which system is not?) that individually are described by smooth differential equations, there
is no guarantee that this will hold also fory.
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Exercise 6 (The image and the kernel of a differential operator)

The aim of this exercise is

◮ to lead you through a derivation of the expression of the set of solutions of a scalar linear constant coefficient
differential equation

◮ to illustrate what are nice ‘proofs’

What is a ‘nice’ proof? In the words of the mathematician PaulHalmos, a proof is nice when it is structured so that it
reduces the question at hand to ‘thinking’, not grinding away.

To count or to think, that is the question.

Counting is dirty work, thinking is chic. There was a time that great value was put on thinking out nice proofs. Nowadays,
a proof should merely ‘work’. Fashions change.

In this exercise, we lead you through nice proofs of things that you undoubtedly know: to compute the image and
kernel of a scalar differential operator.

Let 0 6= p∈ C[ξ ],
p(ξ ) = p0 + p1ξ + p2ξ 2 + · · ·+ pnξ n,

with pn 6= 0, whencedegree(p) = n. In factored form:

p(ξ ) = pnΠk=1,2,...,m(ξ −λk)
nk ,

with theλk’s the distinct roots ofp and thenk’s their multiplicities. Of course, by the fundamental theorem of algebra,
∑m
k=1nk = degree.

Considerp( d
dt ) as an operator fromC ∞(R,C) to C ∞(R,C). A central question in the theory of differential equations

and in systems theory (stability analysis, elimination) is:

What is its image, what is its kernel?

Prove first the preliminarylemma 1: Let λ ∈ C. Denote by expλ the exponential map with parameterλ ∈ C, defined
as the mapt ∈ R 7→ eλ t ∈ C. Then d

dt (expλ f ) = expλ (( d
dt + λ ) f ), whencep( d

dt )(expλ f ) = expλ (p( d
dt + λ ) f ).

The proof of the preliminary lemma is obvious for dn
dtn by induction on n. By expandingp( d

dt ) as a sum of powers
of d

dt , the lemma follows for generalp’s.

1. We start with the image.

Prove thatp( d
dt ) is surjective.

Proceed as follows.

(a) First prove thatddt is surjective.

Let y∈C∞(R,C). Definex by x(t) =
∫ t

0 y(t ′)dt′. Then d
dt x = y, showing that d

dt : C∞(R,C) →C∞(R,C) is
indeed surjective.

(b) Use this and lemma 1 to show thatd
dt + λ is surjective.

Obviously f 7→ expλ f is a bijective map onC∞(R,C). Whence, f 7→ ( d
dt + λ ) f = exp−λ

d
dt (expλ f ) is

also surjective.

(c) Observe that the composition of surjective operators issurjective.

Obvious.
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(d) Use the factored form ofp to conclude thatp is surjective.

Obvious from (b) and (c).

You may wish to contrast this proof with the following, perhaps more common, one. We need to prove that
for each ‘input’ u ∈ C ∞(R,C) there exists an ‘output’ y ∈ C ∞(R,C) such that p( d

dt )y = u. Introduce the
linear system:

d
dt

x =

















0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . . 0
0 0 0 · · · 1

−
p0

pn
−

p1

pn
−

p2

pn
· · · −

pn−1

pn

















x+















0
0
...
0
pn















u, y =
[

1 0 · · · 0
]

x,

and use the well-known formula involving eAt to obtain more that we bargained for: an n-dimensional
family of solutions.

The alternative proof constructs ann-dimensional family of solutionsy to
p( d

dt )y = u as (in the obvious notation)

y(t) = CeAtx(0)+

∫ t

0
CeA(t−t′)Bu(t ′)dt′.

2. We proceed with the kernel and will prove that

kernel(p(
d
dt

)) = {w : R → C |

∃pk ∈ C(ξ ) with degree(pk) < nk such thatw = Σk=1,2,...,mpkexpλk}

First provelemma 2. Let V be a vector space andL1,L2 : V → V linear maps. Prove that dim(kernel(L1L2)) ≤
dim(kernel(L1)) + dim(kernel(L2)). Conclude from this that ifL1 and L2 commute, if both have a finite-
dimensional kernel, and ifkernel(L1)∩kernel(L2) = 0, then

kernel(L1L2) = kernel(L1)+kernel(L2).

The result is trivial if dim(kernel(L1)) or dim(kernel(L2)) are infinite. Assume that they are finite. Note
that kernel(L1L2) = L−1

2 kernel(L1). The result follows from

dim(L−1
L) ≤ dim(L)+dim(kernel(L))

for L a linear space andL a linear map.

Obviously if L1 and L2 commutekernel(L1)+kernel(L2) ⊂ kernel(L1L2). Combined with kernel(L1)∩
kernel(L2) = {0}, this yieldsdim(kernel(L1))+dim(kernel(L2)) ≤ dim(kernel(L1L2)). Together with
dim(kernel(L1L2)) ≤ dim(kernel(L1))+dim(kernel(L2)), we obtain
dim(kernel(L1))+dim(kernel(L2)) = dim(kernel(L1L2)).
Hencekernel(L1L2) = kernel(L1)+kernel(L2).

Now prove the expression for the kernel as follows:

(a) What is the kernel ofddt ?

d
dt f = 0 iff f is a constant.
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(b) Prove by induction whatkernel( dk

dtk ) is.

kernel( dn
dtn ) consists of the polynomials of degree less thann. The proof is by induction on n. It is

obviously true for n = 0. Assume that it holds for less thann. Then

dn

dtn
f = 0⇔

dn−1

dtn−1

d
dt

f = 0

⇔
d
dt

f is any polynomial, sayp of degree less thann−1

⇔ f (t) = f (0)+
∫ t

0
p(t ′)dt′.

This shows that f is any polynomial of degree less tann.

(c) Use this and the lemma 1 to obtainkernel(( d
dt −λ )n).

(
d
dt

−λ )n f = 0 ⇔ expλ
dn

dtn
exp−λ f = 0

⇔
dn

dtn
exp−λ f = 0

⇔ exp−λ f is any polynomial of degree less thann

⇔ f = expλ p with any pol. p of degree less thann.

(d) Prove that the maps
t 7→ tjexpλk(t),k = 1, . . . ,m,j = 0, . . . ,nk−1

are linearly independent.

Assume to the contrary that the mapt 7→ tkeλjt depends on the maps that precede it in this list. Now
prove, using (c) that

(

d
dt

−λ1

)n1

, . . . ,

(

d
dt

−λj−1

)nj−1
(

d
dt

−λj

)k

annihilates the predecessors but nott 7→ tkeλjt . This contradiction shows linear independence.

(e) Use lemma 2 to obtain the expression forkernel(p( d
dt )).

Note that the operators( d
dt −λi)

ni and ( d
dt −λj)

nj commute, and, by (d), they have non-empty inter-
section ifi 6= j.
Repeatedly using the lemma of this section and the linear independence from part (d), show that

kernel(p(
d
dt

)) =
m

∑
k=1

kernel

((

d
dt

−λk

)nk
)

.

Now use(c) to obtain the expression forkernel(p( d
dt )).

3. The expression ofkernel(p( d
dt )) suggests that dim(kernel(p( d

dt ))) = degree(p). Prove this.

The independence proven in (d) shows that indeed
dim(kernel(p( d

dt ))) = ∑m
k=1nk = degree(p).

With thx to Ivan Markovsky for his
help in working out these solutions.
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