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Exercise 1 (Discrete-time systems)

The aim of this exercise is

» to generalize some of the results for differential equatitindifference equations
» to introduce Laurent polynomials

» to illustrate the small difference regarding unimodulgiihat occurs.

In the land of difference equations some citizens like tofose@ard differences, others use backward differences, and
some comrades even think that usimgransforms mysteriously clarifies matters. The most Bbdemocratic attitude
(when working on the time-axig) is to use both forward and backward lags. Of course, whekingmwith Z, forward
differences are the only possibility.

A (real) Laurent polynomialis a ‘polynomial’ that contains both positive and negatiegvprs of the indeterminatg
i.e., an expression of the type
PE.E =3 mé"

kEZ

with the p,’'s € R, and all but a finite number of them zero. The set of real Laupelynomials is denoted o[£, € ~1].
Under the obvious definitions of addition and multiplicati& €, & ~1] becomes a commutative ring.

Note this instance of the strange habit of mathematiciaasgociate the names of their heros with trivialities. Ihdta
to reason that if Pierre Alphonse Laurent (1813 — 1854) whalge wanted to be remembered by posterity, it would have
been for more that the fact that he introduced polynomiatk négative powers.

Laurent polynomials are sometimes caltBdolynomials

1. An elementu of a ring R with an identity 1 is said to banimodular(or a unit) if there existsv € R such that
uv=vu= 1. Which elements oR[&,& 1] are unimodular? Which elements&#**[&,& 1] are unimodular? Contrast
this with the unimodular elements Bf{ ], R***[£].

Assume that (in the obvious notation)
(U U E (i E v 8w EY) = 1,

with ug, uL, vpr, vi # 0. Then (equate degreesj+ ¢ =0 and L+L'=0. Whence, since/ <L, ¢/ <L', /=L
and ¢’ = L'. Therefore,u € R[&, & 1] is unimodular iff it is of the form u(&,& 1) = a&kwith 0#£ a e R andk € Z.

ForU,V e R™x2[& 1), observe thatUV =1 =  detU)detV) = 1. ThereforeU € R***[&, & ~YJunimodular
impliesdetU) e R[&, & —1] unimodular. Conversely, ifdetU) € R[¢,& —1] is unimodular, thenV = (det(U)) 7lcof(L
(cof(U) denotes the matrix of co-factors, defined as in the case of rematrices) is its inverse.

Conclusion U € R™"[&, &Y is unimodular iff detU(&)) = a&X with 0# a € R and k € Z. In contrast,
U € R™N[¢] is unimodular iff defU (&)) = a with 0# a € R. The ring R™"[&, & ~1] has many more unimodular
elements thanR™"[£].

~—

2. Leto denote, as usual, trehift o(f)(t) := f(t+1). LetRec R**¥[€,& 1] and consider the system of difference
equations

R(o,0 Hw=0.

This defines a dynamical systéin= (Z,R¥, %). DefineZ formally.

B:={w:Z—R"|R(0o,0 yw=0}.

Note that Z = ker(R(g, 0~ 1)) with R(g, 0 1) is viewed as a map from(R¥)Z to (R™OWdim(R))Z,

3. Show that every linear time-invariant complete systéiR¥, %) admits a (minimal) representation of the form
(only forward differences (or lags))

R(o)w=0



for someR € R**¥ [¢] and one of the form (only backward differences)
R(ohw=0

for someR € R**¥ [£]?

LetR(0,07 1) = RE&" + Ry 1E 14+ R.EL. DefineR, andR_ by
R+(07 0—71) = EiER(O—7 0—71)7 R*(O—7 0—71) = EiLR(O—v 0—71)'
Obviously thenR(g, 0 H)w=0, R (0,0 Y)w=0, and R (0,0~ 1)w = 0 define the same system buR, (g,071)

contains only forward differences (in a senseR, € R**¥(£)) and R_ € R**¥(g,01) contains only backward
differences (in a sens® . € R[E1]).




Exercise 2 (Moving average)

The aim of this exercise is to illustrate that the notion afitcollability can shed some light on some common algo-
rithms.

1. Throughout this exercise, the time-axiZisLetR € R**¥[¢, & '] and consider the system of difference equations
R(o,0 Hw=0.
This defines the dynamical systeéin= (Z,R¥,%). It is easy to prove that this system is controllable iff
the rank of the complex matriR(A,A 1) is the same for all & A € C.

Prove by an example that you cannot dispense of ‘punctudifiggm C in this test.

The Smith form for matrices over R[&,& 1] reads: Let M € R***[&,&~Y]. There exist unimodular U,V €
R***[&, &Y, such thatUMV is of the form
D O

UMV = {O 0} ,
with D = diag(d,dp, ...,d;), dy € R[&,&71], and dy, 1 is a factor of dy, for k =1,...,r — 1. In fact, we can
take dy € R[&] with d(0) = 1.
Now, proceed exactly as in the continuous-time caseR(cg, o 1)w = 0 defines a controllable system iff
D(o,071)w = 0 does. The latter is the case iff each of the systenti (g, 0 1)w, = 0 defines a control-
lable system. This is the case iff each of thé,’s is unimodular. Expressed in terms ofR, this yields the rank
condition.
Note finally that the puncturing is indeed necessary. Consigr the system described byow = 0. i.e.,%Z = 0.

It is obviously controllable. The associatedR(¢) is £. R(A) drops rank atA = O, but this does not contradict
controllability. If you do not like this example, use ow; = ows instead.

2. Consider the system defined by
1 T
Wa(t) = = tlel(t —t). (MA)
This algorithm is called anoving average (MA3moothing. T € N is called theaveraging window It is very

frequently used in order to filter out noise, detecting tseretc. When is large, it is tempting to replace this
algorithm by

Wz(t) =W2(t—1)+%(W1(t—l)—Wl(t—T—l)). (MA)

(a) Do (MA) and (MA)) define the same system (of course, in thbdvioral sense, the one and only way ...)?

No, (MA) is controllable and (MA') is not (see part (c)). For example,wy (t) = c1, w(t) = ¢, is a solution
of (MA), but not of (MA) if ¢; # Co.

Do (MA) and (MA) have the same transfer function?

The transfer function wy — w, of (MA) is

1l o Ty 11— (M
GO =7+ 8 =g 7
and the transfer function of (MA') is
1 Efl_Ef(TJrl)

(MA) and (MA") have the same transfer function.




(b) Compare, by counting the number of additions and midgpibns required per time-step, (MA) and (MA)
from the computational complexity point of view.

Per “time step” (MA) takes T — 1 additions and 1 multiplication, while (MA") takes only 2 additions
and 1 multiplication. From this point of view, (MA’) seems simpler.

(c) Is (MA) controllable? Is (MA') controllable?

Apply the common factor test: (MA) is controllable since

R(&) = [—%(E*1+E*2+---+E*T),1], rankR(A)) =1, VO0#A eC.

For (MA"), we get
RE) =[-(1-& M) 1-£Y,  rankR(D) =0,

so it is not controllable.

(d) Would you call (MA) stable ( meaningvi(t) = 0, (w1, w;) € B] = [wa(t) — 0 fort — o] )? Would you call
(MA) stable?

t—o0

(MA) is stable: if wy =0for t > 0, thenwy(t) —— 0. (MA) is not stable: if w; =0for t > 0, thenw,(t)
does not necessarily go to zero (it may be a non-zero constantMA") should be used cautiously: if an
error occurs in the calculations ofws(t), this error will appear in the results forever after, forall t >t’.

3. Aclose relative of (MA) issxponential weighting:

_1-p

Wo (t) Py

Y plw(t—t) (EW)
t'eN

with p € (0,1) the exponential weighting paramete€onvolutions as (EW) or their continuous time analogs are
of course very much related to our linear difference or déffgial systems, but officially (EW) is not a difference
equation because of the infinite number of terms that appetreoright hand side.

For the case at hand the related difference equation is
Wo(t) = pwa(t — 1) + (1—p) wa(t — 1) (EW’)

(a) (EW) has the drawback that it is hard to give a very coeccbiaracterization of the behavior, since it un-
clear for whichw; : Z — R the infinite sum converges. Prove that the infinite sum cajeewhenw; is
bounded. Prove that (EW) combined with bounded, and (EW’) combined with;,w, bounded have the
same behavior.

Assume thatw; is bounded and that(ws,w,) satisfies (EW). Then

Hencew; € (w(Z,R) = Wz € {(Z,R), and w; is well-defined by (EW). In fact, Wzl < ||Wi|lo. Now
substitute (EW) in (EW’) and verify that (w1,w») satisfy (EW’).

To show the converse, assume thaty,w, € ¢.(Z,R) satisfy (EW’). We need to show that it satis
fies (EW). Definew, by (EW’) (with this w;). Then, as we have just provenw, € /«(Z,R) and
satisfies (EW’). Hencew; — W, € /»(Z,R) and, since (EW’) defines a linear system(0, w, — W) satis-
fies (EW’). Let A:=w, —w,. ThenA satisfiesA(t) = pA(t — 1), i.e.,A(t) = p'A(0). SinceA is bounded
(on ZY), this implies A = 0. Hence,w, = w,, and hence(wy,w,) satisfies (EW).

What we have used here is that while (EW’) has many solutionsof eachws, it has only one bounded
solution if wy is bounded. It is this solution that is given by (EW).




(b) Compare the computational complexity of (MA), (EW), dBW’).

Per time step, (MA) requiresT — 1 additions and one multiplication, (EW) requires in princip le an infi-
nite number of multiplications, and (EW’) requires one addition and two multiplications. Exponential
weighting implemented by (EW’) is hence for several reasont® be preferred above (MA) systems.

(c) Is (EW’) controllable? (You may use the result of part 1).

Then R corresponding to (EW’) is

1-p . -1
-—¢ 1-p&.
) P

There is no common factor, so that the system is controllable

Obviously, these are plenty of good reasons to prefer exgi@ieveighting implemented by (EW’) over Moving
Average for data smoothing.



Exercise 3 (Time-reversibility)

The aim of this exercise is

» to let you think of the nature of differential systems

» use the powerful theorem on the structure of minimal kerelasentations in a simple but meaningful application

The time-invariant dynamical systein= (R, W, %) is said to baime-reversibléf w e 2 impliesr ever se(w) € 4,
wherer ever se(w) is defined by ever se(w)(t) :=w(-t).

1. Do Kepler's laws define a time-reversible system?

Kepler's laws define the systen{R,R3, %) with w € 4 iff w is periodic and satisfies:

K.1 the set{ve R®|Jtc R:v=w(t)} is an ellipse with the sun (at a fixed point, saP € R3), in one of the foci,
K.2 the vectorw(t) € R from the sun to the planet sweeps out equal areas in equal tinsg

3 (period)®
"~ (major axis of the ellipsey

is a universal constant (i.e., the same for all the planets).

Comment It is hard not to become filled with awe every time one writes his down: Kepler deduced these laws
highly accurate and exact under very reasonable idealizadins - from the mere observation of about half a dozep
cases!

Considerr ever se(w). Obviously w(—t) also sweeps out the same ellipse, but in opposite directiowjth equal
areas in equal times, and with the same period. Whence,ever se(w) satisfies K.1, K.2, and K.3. Therefore
Kepler's laws define a time-reversible system.

Let f : R¥®+D) —, R® and consider the behavioral differential equation

Precisely,
B={we e (R,RY)| f(w(t), %w(t),...,%w(t)) =0 VteR}.

2. Prove that this defines a time-reversible systeni ifdntains only even derivatives”. Make precise whadritains
only even derivativésneans. Use mathematical language, not colorful prose.

The question occurds this condition, only even order derivatives, also neagsfor time-reversibility?But this is
asking the impossible, even for LIDSs, in view of the highbnhruniqueness of behavioral equations. A better question i
therefore:

Can a time-reversible system always be represented by
a system of differential equations which contains only exder derivatives?

It turns out that this a very good question, and that the angnia the affirmative for controllable LTIDSs. In this
exercise, we tip the curtain for systems describedtily onelinear differential equation.



What does it mean that the differential equations defined by
f:(ap,ay,...,a,) € R L R¥
contains only even derivatives? The easiest way to answer there must exist
9: (80,31, ., Bnt(a/2)) € R¥(Ent@/2)+1) _, pw
(ent(x):= the largest integer less than or equal to), such that

f(aO ai,..., ) g(ao ai,... aaent(n/Z))

forall (ap,ay,...,a,) € R".

Let & be governed by
@ d>’

go( g g
Assume thatw € %. Observe that$ r ever se(w) = —r ever se($w),

2k
thR reverse(w) =rever se({x w). Therefore

w) =0.

whence

2n’
wWeA: @go(,é’tzw ,gtzll,w) 0

<:>g( ()7dt2W( )a 7dt2n//W( )):O VteR
& g(W(-), Gu(—t),.... Sow(-1)) =0 vteR

w(—
d2
@go(reverse(w),reverse( w),.. reverse(d&,w)) 0
&ireverse(w) € A.

dt2

Whence,w € Ziff r ever se(w) € #. Hence the system defined by is time-reversible.

3. Letp € R[€]. Prove that the system (i&’!) described by

p(%)Wz 0 (DE)

is time-reversible if and only ip is either an even or an odd polynomial. A polynomed R [£] is calledevenif it
contains only even powers éf i.e. if p(¢) = p(—¢&), andoddif it contains only odd powers df, i.e. if p(§) = —p(—¢§),

Hint: in the time-reversible casqa,(—%)w= 0 is also a kernel representation of the behavior defined &kéhnel
representation (DE), and two minimal kernel represemtatire related by pre-multiplication by &[&]-unimodular
element.

—h

Let &4 be described byp(%)w = 0 with p # O (treat the trivial case p = 0 separately). Then (see the proof g

2) rev(#) is described by p(—%)w = 0. By the structure theorem for kernel representations, # = rev(4%) iff
there exists a unimodularU € R[], such thatp(—&) =U(&)p(&). But U € R[] is unimodular iff U is a nonzerog
constant, saya. HenceZ = rev(%) iff there exists o # 0 such that

p(=¢&) =ap(¢).

But this can only be the case itr = +1 (if p has even degree), oo = —1 (if p has odd degree). Ifa =1, pis hence
even, and ifa = 1, pis hence odd.

4. Letp,q € R¥[€]. Prove that the system (i&’?) described by

d d

p(a)Wl = Q(a)Wz ()

is time-reversible if and only ip andq are either (i) both even or (ii) both odd polynomials.



‘ Repeat,mutatis mutandisthe proof of 3.

5. Assume in addition that andq are co-prime (we have seenin lecture 2 that this meansitha¢fines a controllable
system). Prove that time-reversibility then implies thandq are both even.

This is true in general, indeed

A controllable LTIDS is time-reversible iff it can describley
a differential equation that contains only even order datfives

If pand qare co-prime, then they can not be both odd (sincé is then a common factor ofp and q). Therefore, a

controllable linear system
(E)W = (E)W
p at 1=0 ar/\2

is time-reversible iff p and g are both even. Therefore iff this differential equation cortains only even derivatives

Comment For the general multivariable case, this result becomes:Z € #" is time-reversible iff it admits a
(minimal) kernel representation of the form

d d
Ri(gw=0,  R(5)w=0,

with R. even andR_ odd. #Z € .Z" controllable is time-reversible iff it allows a (minimal) kernel representation

of the form q
R(—)w=0,
(dt)W 0,

with R even.




Exercise 4 (Controllability and interconnections)

The aim of this exercise is

» to illustrate the behavioral concept of controllability

» to show its fragility under system operations

1. Let#B, % € £* be described by
d

Rl(a)Wl = Ro(§)w>
d
Re(a)Ws = R4(%)W4

Define theirseries interconnectiofalso called a&ascade interconnectipby these behavioral equations, combined
with
Wp = W3.

Of course, we assume that the dimensions are such that tkésrsense. In the resulting behavior, cons{dgrw;)
as the manifest variables afd,,ws) as latent variables.

W1 Wy W3 Wgy

. . 1. .
Consider the system with transfer funcngm.e. the integrator,

dv- u
and the system with transfer functigni.e. the differentiator,

d
Y2 = ;U2

~dt
Are these systems controllable? Compute behavioral emsator the manifest behavior of the series connection
defined byu, = y;. Is this system controllable? What is its transfer func?fidéow consider the series connectionin
opposite order, i.e. the interconnection definediby: y,. Compute behavioral equations for the manifest behavior
of this series connection. Is this system controllable? Méhiss transfer function?

Are the two resulting series connections equivalent? If give a signal that belongs to the manifest behavior of
one, but not the other. Does series connection of singletisipgle-output connections ‘commute’?

10



1)< R(%) Bﬂ =0with R(§) =[-1 &]; rankR(A)) = 1forall A € C = controllable.
2)e R(%) Bﬂ =0with R(§) =[—-& 1]; rankKR(A)) = 1forall A € C = controllable.
series connection: —{ % }—{ S % =

E =u fgu Uy =
thl— 1, )lz—dt 2, 2 =Y1

Eliminating y; and up, yields the systenu; = y,, which is obviously controllable. The transfer function is1.

Consider now the series connection in the opposite order:
1 — s
G- -

d . B
thl— 1, Yo =

—u up =
at 2, 1=Y2

Eliminating y, and uy, yields the system

uz

dt dt dt’ [ya

d d . d .

—y1=—uy i.e. R(=) [ ] =0, with R(&) =[-¢& £]
rankR(A)) =1for 0# A € C, andrankR(A)) = 0for A =0, so the system is not controllable. The transfe
function is £ 1€ = 1.
The two series connections are not equivalent, even thoughey have the same transfer function. Any
non-zero constant input-output belongs to the second seseconnection, but not to the first. Hence serie
connection does not commute. It does commute, though, for éhtransfer functions, i.e., for the controllable

part.

Comment When we write £ for a transfer function, or, generally, a transfer function with a common factor
in the numerator and denominator, we mean exactly the same af'?‘, with the common factor cancelled
Indeed, in rational functions one can,by definition of a rational function cancel (or add) common factors
ad libitum. So, when you read or hear:assume that there are no common factors in the numerator §
denominator of this or that transfer function smile, and muse‘innocence is bliss’ What this assumption
usually means is that people actually have a kernel represeation, in which lack of common factors means
controllability. But since they have been brought up withou the notion of kernel representation, but with
the thought that a system IS a transfer function, they have taesort to convoluted meaningless statemen

p

and

[S

involving common factors.

. Define, in the above spirit of series connectigaxallel connection

Wi W2
+
wy Wy
+
W3 Wy
Parallel connection:
W) =Wy = Ws, W) = W2 + Wi,

with w; and w, the manifest variables andwy, wy, ws, and wy, the latent variables.

11



3. Decide, by means of a proof or a counterexample, whicheoAtiove operations preserve controllability. Of course,
we assume that we deal with systems#Atl, and that the dimensions are appropriate:

(a) series connection

‘ Series connection does not preserve controllability, seeapt 1.

(b) parallel connection

Parallel connection connection does not preserve contralbility.
Example:

&

)

E+1 =u g+1 *Eu Uu=ur=u =y1+
dt y1=Uy, at )lz—dt 2, = Uy = Uy, y=Yi+Yy2

After elimination: (& +1)y= (& +1)u, sOR($) M =0, with R(§) = [-& —1 & + 1], which drops
rank for A = —1.

(c) addition, i.e., doess;, %, controllable imply%, + %, controllable?

Define #1 + %, by,

d
%1 : Rl(&)wl = 0, %2 : Rz(

Wy =0, B+ By W=W1+ Wy,
with wq, wy latent variables, andw the manifest one.%; and %, are controllable iff the full behavior
is controllable, which implies that %1 + % is controllable (elimination preserves controllability, seg

part (e)).

(d) intersection

Let q q
% Rl(&)leo, ¥ Rz(a)szo-

The intersection of %1 and %, does not preserve controllability.

Take, for example,R; = [p1 q1], R = [p2 O], {Eﬂ = {Ei gj drops rank at the roots of p1gz — q1p2.

(e) elimination

Elimination preserves controllability. Go back to the bast definition of controllability for a straight-
forward proof, that is also valid for nonlinear systems. Or ansider the representationR(%)w =
M (%) ¢, use a unimodular pre-multiplication, if necessary, to wrie this as R’(%)W =0, R”(%)W =
M”(%)é, with M” of full row rank. Note that R’(%)W: Ois a kernel representation of the manifest be
havior. Finally, observe that rank constancy of[R(A) M(A)] implies rank constancy ofR'(A). Hence
controllability of the full behavior implies controllabil ity of the manifest behavior.

12



Exercise 5 (Elimination)

The aim of this exercise is

to make you appreciate sensitivity issues related to tmeirdition theorem

to show that in order to obtain equations for the (manifesthdvior with nice structure, latent variables are
indispensable and need not, and should not, be eliminated

. LetSC R x R*2 and define

Spi={x1 € R™M|Ixp € R™: (x1,X2) € S},

i.e., S is the projection oS on the firstn; components. Which of the following implications hold?

(a) [Sopen] = [S; open]?

(b)

()

(d)

[Sopen]] = [S; oper]. Let x; € S;. We want to show that there is ane > 0 such that ||[X] — x| < €
implies X; € S;. There is x; € R such that (x;,x2) € S. SinceSis open, there ise > 0, such that
[1X) —x1|| + ||IX; — X2|| < € implies (x},%,) € S. Hence if ||X; — x1|| < &, there isx, such that ||x; — xq|| +
1%, — x2|| < € which implies (x},%,) € S. This proves thatx; € S;, henceS; is open.

[Sclosed] = [S; closed]?

[Sclosed] # [S: closed]. Take S= {(x1,%2) € R? | ;%2 = 1}. ThenS; = {x; € R | x; # 0}. Sis closed
but S is not.

[Slinear] = [S; linear]?

[Slinear | =[S, linear . Letx;,x{ € S and a, B € R. Then there arex, and xj, such that(x},X,), (X{,X3)
S. SinceSis linear, (ax; + BX], ax, + Bx;) € S. This implies (ax; + BX]) € Si.

m

[Sa polytope] = [S; a polytope]?

A polytopein R is a set specified by a finite set of linear inequalities, i getsspecified bgy, ay,...,a, € R*
andbq,b,, ... b, € R as follows

{xeR®|a/x>bfork=1,2...,m}.

At last, something that requires some thinking:[Sa polytope] = [S; a polytope].
We first prove the casen, = 1. Write the inequalities that define Sas

31,1X1+ak,2xz >b,, fork=212....m

Note that we may as well assume thad, » = 0, 1, or —1. Hence these inequalities become

ap 1% > b, fork=1,2,....mo,
XZZ—aI,lxl—kbb fork=mp+1,mg+2,...,mg+my,
X2§—a;1X1—bk, fork=mp+m;+2mp+m;+2,...,m

Hence for a givenxy, there existsx, such that these inequalities are satisfied iff

ay x4 > by, for k=1,2,...,mp,
—al,,zx1+ by < al//,le — by, for X' =mo+1Lmo+2,...,mo+ma,
k' =mp+my+1mo+my+2,...,m

These inequalities clearly define a polytope for the varialdsx;.

Whenny > 1, use induction onny, i.e., eliminate the variables
X21,%2.2,...,X2n,, ONE at a time.

13



(e) [San algebraic variety=]S; an algebraic variet}?

An algebraic varietyin R is the zero set of a polynomial, i.e. a set specified byeaR*[&1, - - - , &,] as follows

{(X17X27"'7Xn) € Rn | p(X17X27"'7Xn) = 0}

[S an algebraic variety] # [S; an algebraic variety]. Take S= {(x1,%) € R? | X +x3 = 1}. Then
S; = [—1,1]. This is not an algebraic variety since a subset dR is an algebraic variety iff it is a finite
set, or all of R. Note that another counterexample has been given in our an®wto (b).

There holds (we refer to the literature for definitions of the terms used, and for proofs): [S a semi-
algebraic variety | = [S; an semialgebraic variety]. So with polynomial equalities, inequalities, anq
inequations, variable elimination is possible. This is theontent of the Tarski-Seidenbergheorem.

2. Letf:R* —» R* h:R®* — RP, both ‘nice’, even ‘very nice’. Consider the system

%x: f(x),y = h(x).

B={y:R—>R"|IX:R—>R": %x(t) = f(x(1)),y(t) = h(x(t)) Vt e R}

the solution set of a system of differential equations?

Discuss only the system= 2,m = 1, f (X1,%2) = (X2,0),h(X1, %) = X2.

Warning As many research questions, this one is a bit ambiguousrdimdshed. What sort of differential equation
for y are we looking for? A polynomial expression ynand its derivatives? One with smooth functions? Or
anything?

14



The question is: do there exisk, q € N and a mapF : Rk+1P _, Rd such that % consists of the set of solutions

of 5
d d
el —v) =07
Fo (y, dty,---,dtky) 07 (A)
The answer very much depends on the required smoothness (ajlstions of the differential equations but,
more to the point, of F).
We discuss this elimination problem through the example

d d
=" ax2:0, y =X (B)

For the case at hand,
#={y:R—R|3Ixg,x : R — R satisfying (B)}.

% hence consists of the polynomials of degree less than or edua 2 that are squares of polynomials o

degree less than or equal to one. Henc ¥ y =0, and so it suffices to look at differential equations of secah
order in order to find one that defines the manifest behavior.

Consider the differential equation
d \* _ o
(ay) Y py=0 (©
Define#’ = {y: R — R | y satisfies (C}.

It is easy to see that# = #' U(—A'), with —#' ={y: R - R | —ye #'}. It follows that the behavior of
(C) combined with
y>0 (D)

is exactly . Note that we can make (C) combined with (D) appear as if it wez a differential equation by
introducing a function P: R — R (Pis “flat”) such that P(y) > 0for y < 0and P(y) = 0for y > 0and consider

the differential equation
2 2
d d?
P(y) + ((ay) - 2y—dt2y> =0. (E)

Obviously the solution set of (E) is exactlyA.

Note that there exist suchP’s that are C* but there are no suchP’s that are polynomials.

Further, it can be shown that among the behaviors that contai % and come from anF that is polynomial
in its arguments, (C) yields the smallest possible behavior

Conclusion For the example at hand, if elimination is done in the class fdifferential equations that are
polynomial in their arguments, then exact elimination is nd possible. If elimination is done in the class o
differential equations that are C* in their arguments, then exact elimination is possible. Howver, in general
we suspect that there are examples of systems withh polynomial that allow no representation of the from
(A) with F € €.

Obviously, except for linear differential systems, elimiration is awkward and inconvenient. This has rather
important implications in practice. Indeed, assume that o wants to describe a phenomenon that involve
certain variables, sayy. Then to start the analysis by making the seemingly innocerdassumption that these
variables are described by a system of differential equatios is much less generic than one could intuitivel
expect, based on the typical models that are studied in cougs. If the system is an interconnection d
systems (and which system is not?) that individually are desibed by smooth differential equations, there

is no guarantee that this will hold also fory.

15

—+



Exercise 6 (The image and the kernel of a differential operatr)

The aim of this exercise is

» to lead you through a derivation of the expression of the $eiptutions of a scalar linear constant coefficient
differential equation

» to illustrate what are nice ‘proofs’

What is a ‘nice’ proof? In the words of the mathematician Réalimos, a proof is nice when it is structured so that it
reduces the question at hand to ‘thinking’, not grinding awa

To count or to think, that is the question.

Counting is dirty work, thinking is chic. There was a timettgeeat value was put on thinking out nice proofs. Nowadays,
a proof should merely ‘work’. Fashions change.

In this exercise, we lead you through nice proofs of thinga ffou undoubtedly know: to compute the image and
kernel of a scalar differential operator.

Let0# p e C[¢],
P(&) = po+ P& + P2E2+-- -+ pa&™,

with p, # 0, whencedegree(p) = n. In factored form:

P(&) = PalMi=12,..n(& — Ax)™,

with the A,’s the distinct roots op and theny’s their multiplicities. Of course, by the fundamental them of algebra,
Sk_1nk = degree.

Considerp(%) as an operator frorg” (R, C) to (R, C). A central question in the theory of differential equations
and in systems theory (stability analysis, elimination) is

‘ What is its image, what is its kernql?

Prove first the preliminarlemma 1 Let A € C. Denote by exp the exponential map with parametére C, defined
as the map € R — e € C. Then d (exp, f) = exp, (& +A)f), whencep(&)(exp, f) = exp, (p(& +A) ).

The proof of the preliminary lemma is obvious for % by induction on n. By expanding p(%) as a sum of powers$

of %, the lemma follows for generalp’s.

1. We start with the image.

Prove thatp( &) is surjective.
Proceed as follows.

(a) First prove tha& is surjective.

Lety € C*(R,C). Definex by x(t) = [y(t')dt’. Then $x =y, showing that & : C*(R,C) — C*(R,C) is
indeed surjective.

(b) Use this and lemma 1 to show th%tJr/\ is surjective.

Obviously f — exp, f is a bijective map onC*(R,C). Whence, f — (& +2A)f = exp_, $(exp, f) is
also surjective.

(c) Observe that the composition of surjective operatossiigective.

| Obvious.
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(d) Use the factored form gf to conclude thap is surjective.

| Obvious from (b) and (c). \

You may wish to contrast this proof with the following, perhaps more common, one. We need to prove théat
for each ‘input’ u e ¥*(RR,C) there exists an ‘output’ y € ¥*(RR,C) such that p(%)y = u. Introduce the
linear system:

0 1 0 0
0
AN
Ex: : : : 0 |x+|:|uy=[10 0] ,
dt 0O 0 0 1 0
P PP Pa1
Pn Pn Pn Pn Pa

and use the well-known formula involving €M to obtain more that we bargained for: an n-dimensional
family of solutions.

The alternative proof constructs ann-dimensional family of solutionsy to
p(%)y = u as (in the obvious notation)

y(t) = Ce'x(0) + /Otce“(t’t/)Bu(t’)dt’.

2. We proceed with the kernel and will prove that

kernel(p( d

&)):{W:R—>(C|

Jpk € C(&) with degreépy) < ny suchthaiv=Z,_1> . PxEXP), }

First provelemma 2 LetV be a vector space and, L, : V — V linear maps. Prove that difkernel(LiL,)) <
dim(kernel(L;)) + dim(kernel(Ly)). Conclude from this that it; and L, commute, if both have a finite-
dimensional kernel, and ¥ernel(L;) Nkernel(L,) = 0O, then

kernel(LjLy) = kernel(L;)+ kernel(Ly).

The result is trivial if dim(kernel(L;)) or dim(kernel(L,)) are infinite. Assume that they are finite. Note
that kernel(LiLp) = L, kernel(Ly). The result follows from

dim(L~1¢) < dim(£) + dim(kernel1(L))

for £ alinear space andL a linear map.

Obviously if Ly and L, commutekernel(Ls) +kernel(Ly) C kernel(LiLy). Combined with kernel(L1) N
kernel(Ly) = {0}, this yieldsdim(kernel(L;)) + dim(kernel(Ly)) < dim(kernel(L1Ly)). Together with
dim(kernel(LiLy)) < dim(kernel(L;))+ dim(kernel(Ly)), we obtain

dim(kernel(Ly)) + dim(kernel(L,)) = dim(kernel(LiL>)).

Hencekernel(L;ly) = kernel(L;) + kernel(Ly).

Now prove the expression for the kernel as follows:

(a) What is the kernel oft?

4 =0iff fisaconstant.
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(b) Prove by induction Whaternel(%) is.

kernel(%) consists of the polynomials of degree less tham The proof is by induction onn. Itis
obviously true for n = 0. Assume that it holds for less tham. Then

da» d»t d

& %f is any polynomial, sayp of degree less tham — 1

o f(t) = f(0)+/0t p(t')dt’.

This shows thatf is any polynomial of degree less tan.

(c) Use this and the lemma 1 to Obt&iétrnel((% —A)M).

d ne d» B
(&—/\)f_o & exp)\ﬁexp,}\f_o

n

d
& @exp,Af:O

exp_, f is any polynomial of degree less thamn
f = exp, p with any pol. p of degree less tham.

t e

(d) Prove that the maps
t—tlexp, (t),k=1,...,m,j=0,...,nc—1

are linearly independent.

Assume to the contrary that the mapt — t*e!it depends on the maps that precede it in this list. Now

prove, using (c) that
d ny d nj_1 d k
(5" () (o)

annihilates the predecessors but nat— t*eit. This contradiction shows linear independence.

(e) Use lemma 2 to obtain the expression}isrnel(p(%)).

Note that the operators(% —A;)™ and (% —A;)™ commute, and, by (d), they have non-empty intert
section ifi # j.

Repeatedly using the lemma of this section and the linear irependence from part (d), show that

kernel(p(%)) _ kikemel ((% - /\k) ) .

Now use(c) to obtain the expression fokernel(p(%)).

3. The expression (h‘ernel(p(%)) suggests that dimernel(p(%))) = degreép). Prove this.

The independence proven in (d) shows that indeed
dim(kernel(p(&))) = ¥, ny = degreép).

With thx to lvan Markovsky for his
help in working out these solutions.
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