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BEHAVIORAL STATE SYSTEMS

Let

� � �� � � � � �

be a continuous time state system.

This means:

� � time-axis, � space of manifest variables,� � state space, � behavior ,

� � � � �
.

External behavior :

	
 � � � �� � ��� such that
�� �� � � �

� � 	
 � � � �� � � 	
 � ���

In the (limited) classical input/output setting,

��� � � � � � .

Assume that

�

is time-invariant, i.e. � � � for all

� � �

,
where � � denotes the

�
-shift,

� � ��� � � �  � � � � � �  "! � ���
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BEHAVIORAL STATE SYSTEMS

The state property is expressed by the requirement:

��$# �� # � � ��$% �� % � � � �'& � � � and � # � �'& � � � % � �'& �

�� # �� # �)( �+* �� % �� % � � �

( � * denotes concatenation at

�'& , defined as

�# ( �,* �% � � � � � �# � � �
for

�- �.&�% � � �

for

� �'&
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BEHAVIORAL STATE SYSTEMS

In pictures:

1

2

1

2
X

W(w ,x )
time

(w ,x )

�� # �� # � � �� % �� % � � �� �� � �

X

W

time

(w,x)

(w,x)
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BEHAVIORAL STATE SYSTEMS

This state definition is the implementation of the idea:

The state at time

�

, � � � �

, contains all the information
(about

�� �� �

!) that is relevant for the future behavior.

The state = the memory.

The past and the future are ‘independent’,
conditioned on (given) the present state.

Example:

� � /10 � � � 0 � 2 � � 3 � 4 � 0 � 2 � � 5 � � 2 � 3 ���
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GENERAL DISSIPATIVE SYSTEMS

Let 6 � �

be a function, called the supply rate, and assume that

� � 	
 � 6 �� � � 7 8:9;

�

is said to be dissipative w.r.t. 6 if

�

< � � � �

called the storage function, such that

< �� � �% � � < �� � �# � � ! �+=��> 6 �� � � � �? �

@ �� �� � � � and

�% �# �
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GENERAL DISSIPATIVE SYSTEMS

The basic theory is easily generalized to this setting. Assume:

1. State space

�

of

�

connected:
every state reachable from every other state;

2. Observability: given � � � ��

at most one� such that

�� �� � � �

Let 0 A � �

be an element of

�
, a ‘normalization’ point for the

storage functions, since these are only defined by an additive
constant.

The def’ns of

<CBD B E 8 B F 8 	 and

<HG 	IJ E G 	 K remain unchanged

(with, of course, 6 ��� � � � replaced by 6 �� �

).
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GENERAL DISSIPATIVE SYSTEMS

Basic theorem (general version): Let

�

and 6 be given. The
following are equivalent:

1.

�

is dissipative w.r.t. 6 (i.e.

�

a storage f’n
<

)

2.

6 �� � ? � L

for all periodic

�� �� � �
.

3.

<CBD B E 8 B F 8 	 - M
4.

<NG 	I J E G 	 K OQP M
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GENERAL DISSIPATIVE SYSTEMS

Moreover, assuming that any of these conditions are satisfied, then

<CBD B E 8 B F 8 	 and

<HG 	I J E G 	 K
are both storage functions, the set of storage f’ns is convex, and

<NBD B E 8 B F 8 	 <P < � 0 A � <RG 	I J E G 	 K

Proof:

No changes required from the differential equation case. Verify!
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SYSTEM INTERCONNECTION

Interconnected system

Formalize & prove: interconnection of dissipative systems is dissipative!

Recall the definition of a behavioral system: ,

with the time-axis, the space of manifest variables,
and the behavior , .

Let

be a dynamical system.
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SYSTEM INTERCONNECTION

Think of interconnection in terms of physical terminals.

Before interconnection:

Terminal 1

Terminal 2

after interconnection:

Te
rm

in
al

 1

Term
inal 2

Recall the definition of a behavioral system: ,

with the time-axis, the space of manifest variables,
and the behavior , .

Let

be a dynamical system.
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SYSTEM INTERCONNECTION

Think of interconnection in terms of physical terminals.
Variables on such terminals:

Type of terminal Variables Signal space

electrical (voltage, current)
S=

mechanical (1-D) (force, position)

S=
mechanical (2-D) ((position, attitude),

(force, torque))

T S=VU W >XU T S= U Y Z W >X

mechanical (3-D) ((position, attitude),

T S=[U W =X

(force, torque))

U T S= U Y Z W =X

thermal (temp., heat flow)

S=

fluidic (pressure, flow)

S=

thermal - fluidic (pressure, temp.,

mass flow, heat flow)

S \

Recall the definition of a behavioral system: ,

with the time-axis, the space of manifest variables,
and the behavior , .

Let

be a dynamical system.
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SYSTEM INTERCONNECTION

Think of interconnection in terms of physical terminals.
Imposes laws on the variables that ‘live’ on the terminals.

Pair of

terminals

Terminal] Terminal^ Law

electrical

T_ >�` a>X T_ = ` a=X _ > b _ = ` a> c a= b d

1-D mech.

Te > ` f>X Te = ` f=X e > c e = b d` f> b f=

2-D mech.

thermal

Tg >h` Y>X Tg = ` Y=X g > c g = b d` Y> b Y=

fluidic

T[i > ` j>X T[i = ` j= X i > b i = ` j> c j= b d

info

processing

m-input k m-output l k b l

etc. etc. etc. etc.

Recall the definition of a behavioral system: ,

with the time-axis, the space of manifest variables,
and the behavior , .

Let

be a dynamical system.
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SYSTEM INTERCONNECTION

Formalization of interconnection. (Also) this is (by far) easiest in
the behavioral setting.

We proceed as if we want to interconnect two terminals of one and
the same system. It is easy to see that this covers the general
situation, even when interconnecting many terminals of many
different systems.

Recall the definition of a behavioral system: ,

with the time-axis, the space of manifest variables,
and the behavior , .

Let

be a dynamical system.
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SYSTEM INTERCONNECTION

v1

v2

v1
w1

w2

v1w

1

v2

v2

v

1

w2

v2

w w

SYSTEM

SYSTEM

SYSTEM

SYSTEM

SYSTEM

SYSTEM

1

2

1

2

Recall the definition of a behavioral system: ,

with the time-axis, the space of manifest variables,
and the behavior , .

Let

be a dynamical system.
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SYSTEM INTERCONNECTION

Recall the definition of a behavioral system:

� � �� � � �
,

with

� � the time-axis, � the space of manifest variables,
and � the behavior ,

� � �

.

Let � � �� � � m# � m% � �

be a dynamical system.

The variables n# and n% are the variables that ‘live’ on the terminals
which will be interconnected. As the idea of what interconnection
does, we take: it imposes a static relation among the variables on
the interconnected terminals. Interconnections should be
‘trivialities’ that obey all conceivable conservation laws.
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SYSTEM INTERCONNECTION

Let � � �� � � m# � m% � �
be a dynamical system.

� the interconnection constrainto � n# � n% � � L�
and the interconnected system

�qp � �� � � p �

with

r a st uwv xy zw{]"| {^ }
such thatzv| {]"| {^ })~ r

and

� zw{] z� }| {^ z� } } t � � � ���
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SYSTEM INTERCONNECTION

Extends in a straightforward way to state systems

The state space of the interconnected system is the direct product
of the state spaces of the components. Verify!

Note the controllability, observability, etc. may be destroyed by
interconnection. Also the input/output structure may be hard to
follow through the interconnection. The behavioral approach avoids
‘well-posedness’ questions.
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INTERCONNECTION and DISSIPATIVITY

We will assume that the supply rate is additive among the
terminals, i.e., if there are � terminals, with terminal variables

5# � 5% � � � � � 5w� �
leading to the space of manifest variables

� # � % ��� � � � �

then

6 � � 5# � 5% � � � � � 5 � � � � 6# � 5# � ! 6% � 5% � ! � � � ! 6 � � 5 � ���

Consider two terminals with variables and supply rates
The interconnection constraint

is said to be (supply) neutral
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INTERCONNECTION and DISSIPATIVITY

Consider two terminals with variables n# � n% and supply rates6# � n# � � 6% � n% ��� The interconnection constrainto � n# � n% � � L�
is said to be (supply) neutral �

o ���# � � � � �% � � � � � L @ � � �
6# ���# � � � � ! 6% ���% � � � � @ � � �
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INTERCONNECTION and DISSIPATIVITY

Consider two terminals with variables n# � n% and supply rates6# � n# � � 6% � n% ��� The interconnection constrainto � n# � n% � � L�
is said to be (supply) neutral �

o ���# � � � � �% � � � � � L @ � � �
6# ���# � � � � ! 6% ���% � � � � @ � � �

Examples: Electrical terminals: Terminal var’s: voltage, current.

6# � <# � o# � � <# � o# � 6% � <% � o% � � <% � o% �o � <# � o# � <% � o% � � <# � <% � o# ! o% � L�
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INTERCONNECTION and DISSIPATIVITY

Consider two terminals with variables n# � n% and supply rates6# � n# � � 6% � n% ��� The interconnection constrainto � n# � n% � � L�
is said to be (supply) neutral �

o ���# � � � � �% � � � � � L @ � � �
6# ���# � � � � ! 6% ���% � � � � @ � � �

Examples: Mechanical terminals:
Terminal variables: force (

�

), position ( �), velocity (� ).� � �� � � will be among the behavioral eq’ns.6# � �# � �# � �# � � �# � �# � 6% � �% � �% � �% � � �% � �% �o � �# � �# � �# � �% � �% � �% � � �# � �% � �# ! �% � L�
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INTERCONNECTION and DISSIPATIVITY

Consider two terminals with variables n# � n% and supply rates6# � n# � � 6% � n% ��� The interconnection constrainto � n# � n% � � L�
is said to be (supply) neutral �

o ���# � � � � �% � � � � � L @ � � �
6# ���# � � � � ! 6% ���% � � � � @ � � �

Examples: Heat flow terminals
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INTERCONNECTION and DISSIPATIVITY

Consider two terminals with variables n# � n% and supply rates6# � n# � � 6% � n% ��� The interconnection constrainto � n# � n% � � L�
is said to be (supply) neutral �

o ���# � � � � �% � � � � � L @ � � �
6# ���# � � � � ! 6% ���% � � � � @ � � �

Examples: input/output connection:
Terminal variables: terminal 1: �# , terminal 2: �%

6# � �# � �P � � �# � �% � 6% ���% � � � � �% � �% � o � �# � �% � � �% � �# �

So with these supply rates, SIMULINK c

�

’s connections are neutral. – p.6/15



INTERCONNECTION and DISSIPATIVITY

Theorem: Assume that� � �� � � m# � m% � � � �
is dissipative w.r.t.

6 � � 5 � n# � n% � � � 6  � 5 � ! 6# � n# � ! 6% � n% �

with storage function

<

. Assume furthermore that the
interconnection constraint

o � n# � n% � � L
is neutral w.r.t. 6# ! 6% .

Then the interconnected system

�qp � �� � � � � p �

is dissipative w.r.t. 6  with storage function

<

.

Proof: trivial
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INTERCONNECTION and DISSIPATIVITY

This theorem has a number of interesting applications.

1. Feedback and passivity. Consider the feedback system

2

y

y u

+ −

1u u 1

2

y

CLOSED LOOP SYSTEM

SYSTEM

SYSTEM 2

1

– p.6/15



INTERCONNECTION and DISSIPATIVITY

Decompose this as (the notation reflects the interconnection
constraints):

yu
1

u

1

+

3

y

−

2y 2u

1y

2u2y

u
1

SYSTEM

SYSTEM

SYSTEM

1

2

– p.6/15



INTERCONNECTION and DISSIPATIVITY

Now verify:

System 3 is dissipative w.r.t. 2 � 3P 2 �# 3# P 2 �% 3% .

The interconnections are neutral.

Conclude that if

1. System 1 is diss. (passive) w.r.t. 2 �# 3# with st. f’n

<# � 0# �

2. System 2 is diss. (passive) w.r.t. 2 �% 3% with st. f’n

<% � 0% �

feedback system dissipative (passive) w.r.t. 2 � 3,
storage function

<# � 0# � ! <% � 0% �

.

Taking � � L
, yields

<# � 0# � ! <% � 0% �

as a Lyapunov f’n.
This is at the basis of many stability criteria.
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INTERCONNECTION and DISSIPATIVITY

Physical interpretation:

1y

2u

+

1

2y

+

+
−

−

3

y

u

−

u

SYSTEM

SYSTEM

CLOSED LOOP SYSTEM

SYSTEM

circuit
voltage driven

1
current driven

circuit

2
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INTERCONNECTION and DISSIPATIVITY

Other siutations:

1. The Popov criterion

System 1: SISO LTI diff., diss. w.r.t. 2 �# � 3# ! � / 3# �
with st.

f’n

< � 0 � (i.e.,

� �� � ��� ! �� �

p.r.)

System 2: a memoryless nonlinearity 2% � 3% � � � 2% �

,
with �� � � � L @ � � �

. This system is diss. w.r.t.3 �% � 2% ! � / 2% �

with st. f’n � � � 2% � � � � � � � � �& ��� �? � �

feedback system dissipative w.r.t. 2 � � 3! � / 3 � �

with storage function

< � 0 � ! � � � 3 � .
Taking � � L

, yields

< � 0 � ! � � � 3 � as a Lyapunov f’n.

2. The circle criterion exercise
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INTERCONNECTION and DISSIPATIVITY

2. Feedback and contractivity. Consider the feedback system

22

yy

y u

1u 1

SYSTEM

SYSTEM

CLOSED LOOP SYSTEM

2

1
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INTERCONNECTION and DISSIPATIVITY

Decompose this as (the notation reflects the interconnection
constraints):

yu
1 1

y

2y 2u

2u

1y
3

SYSTEM

SYSTEM

SYSTEM

2

1
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INTERCONNECTION and DISSIPATIVITY

Now verify:

System 3 is dissipative w.r.t.

� � 3# � �% P � � 2% � �% �
The interconnections are neutral.

Conclude that if

1. System 1 is dissipative w.r.t.

� � 2# � �% P � � 3# � �%
with storage f’n<# � 0# �

and

2. System 2 is dissipative w.r.t.
� � 2% � �% P � � 3% � �%

with storage f’n<% � 0% �

,

feedback system diss. w.r.t. 6 � L

, storage f’n

<# � 0# � ! <% � 0% �

.

This yields

<# � 0# � ! <% � 0% �

as a Lyapunov f’n.
This is at the basis of many stability criteria.
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INTERCONNECTION and DISSIPATIVITY

Refinement:

Let

��� � �

. System 3 is dissipative w.r.t.

� � 3# � �% P � � �% � � 2% � �% P ��� P � � �% � � � 3 � �% �

Conclude that if

1. System 1 diss. w.r.t.

� � 2# � �% P � � 3# � �%
st. f’n

<# � 0# �

2. System 2 diss. w.r.t.

��� �% � � 2% � �% P � � 3% � �%

st. f’n

<% � 0% �

,

feedback system dissipative w.r.t.P ��� P � � �% � � � 3 � �%

with storage f’n

<# � 0# � ! <% � 0% �

.

� <# � 0# � ! <% � 0% �
as a Lyapunov f’n, with strictness on

/ < �

.
This is at the basis of many asymptotic stability criteria.
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RECAP

The basic th’m on dissipative systems holds for general state
systems.

System interconnection is readily formalized in the setting of
behavioral systems.

Under reasonable assumptions:
interconnection of dissipative systems is dissipative.

Essential for preservation of dissipativity by interconnection:
interconnection constraints that are ‘supply neutral’.

Important application: the construction of Lyapunov functions
for feedback systems with passivity or contractivity conditions
on the open loop systems.
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RLCT CIRCUITS
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THE REALIZATION PROBLEM

Given a set of building blocks,
and a way to interconnect these building blocks,

what behaviors can be obtained?

Example 1: State representation algorithms. Building blocks:
adders, amplifiers, forks, integrators
(as in analog computers)

� LTIDS

/0 � � 0 ! � 2 � 3 � � 0 ! 2�

Example 2: Electrical circuit synthesis. Building blocks:
resistors, capacitors, inductors, connectors,
transformers, gyrators.
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BUILDING BLOCKS

Module Types:

Resistors, Capacitors, Inductors, Transformers, Connectors.

All terminals are of the same type: electrical ,
and there are 2 variables associated with each terminal,

� < � o �

<

the potential,o

the current (counted
O L

when it flows into the module).

� signal space of each terminal:

�% �

– p.10/15



BUILDING BLOCKS

-

��¡ 
¢¡£� £

¢ 

+

Resistor: 2-terminal module.
Parameter:

¤ O L
(resistance in ohms, say).

Device laws:<# P <% � ¤ o# ¥ o# ! o% � L�
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BUILDING BLOCKS

¦

§©¨ª ¨
§©«

+

ª «-

Capacitor: 2-terminal module.
Parameter:

� O L
(capacitance in farads, say).

Device laws:

� ?? � � <# P <% � � o# ¥ o# ! o% � L�
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BUILDING BLOCKS

¬®
¯®°

¯ -

¬° ±+

Inductor: 2-terminal module.
Parameter:

² O L
(inductance in henrys, say).

Device laws:

² ?? � o# � <# P <% ¥ o# ! o% � L�

– p.10/15



BUILDING BLOCKS

-
³µ´

³µ¶· ¶
· ´·µ¸

·¡¹
³¸

³¹
º

» ¼
½

+

-

+

Transformer: 4-terminal module; terminals (1,2): primary;
terminals (3,4): secondary.

Parameter:
� �
(the turns ratio,

� � L � M � ).
Device laws:<¿¾ P <¿À � � <# P <% � ¥ o# �P o ¾ ¥o# ! o% � L ¥ o ¾ ! o À � L�
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BUILDING BLOCKS

(potential, current)

Connector: many-terminal module.
Parameter: � (number of terminals, an integer).
Device laws:<# � <% �� � � � <� ¥ o# ! o% ! � � � ! o � � L�
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BUILDING BLOCKS

In more advanced applications, we also meet the

1 3

31

4

2

2

1

R

I I

V
I

V

I

VV

Gyrator: 4-terminal module; (1,2): primary; (3,4): secondary.
Parameter:

¤ � �
( gyrator resistance, in Ohms, say).

Device laws:<# P <% � ¤o ¾ ¥ <¿¾ P <¿À �P ¤o# ¥o# ! o% � L ¥ o ¾ ! o À � L�

– p.10/15



INTERCONNECTION

Assume that terminal 1, with terminal variables

<# � o# ,
is connected to terminal 2, with terminal variables

<% � o% .� Interconnection constraint:o � <# � o# � <% � o% � � <# � <% � o# ! o% � L�
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INTERCONNECTION

Assume that terminal 1, with terminal variables

<# � o# ,
is connected to terminal 2, with terminal variables

<% � o% .� Interconnection constraint:o � <# � o# � <% � o% � � <# � <% � o# ! o% � L�

Now interconnect terminals of a (finite) number of building blocks.
The result is called a(n electrical) circuit.
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INTERCONNECTION

Assume that terminal 1, with terminal variables

<# � o# ,
is connected to terminal 2, with terminal variables

<% � o% .� Interconnection constraint:o � <# � o# � <% � o% � � <# � <% � o# ! o% � L�

Call the ‘unconnected’ terminals, the external terminals.
Number them:

��� � Á � � � � � �Â � �

.
Take as manifest variables of the circuit, the external terminal
voltages and currents � ÃÅÄÆ ÇÈ Ç � <Ä � o Ä ���

Denote

Ã ÄÆ ÇÈ Ç � <Ä � o Ä �
as

� < � o � � �% ÇÈ Ç

.
By carrying out the interconnections, we end up with a system�� � �% ÇÈ Ç � �

,

with external behavior:

��% ÇÈ Ç � ��
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INTERCONNECTION

RLCT’s
InterconnectedV

I

I

1
1

|E|

V
|E|
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CIRCUIT SYNTHESIS

The electrical circuit synthesis problem can be stated as follows:

Realizability: Which external behaviors can be obtained by

interconnecting a finite number of R’s, C’s, L’s, and T’s?

(or without T’s, or with also G’s?)

Synthesis: If a behavior is realizable, give a wiring diagram

(an architecture) that leads to the desired external behavior.

We list seven necessary conditions!

1.

2. KVL
3. KCL

4. The input cardinality,

5. Hybridicity

6. Passivity.

7. Reciprocity.
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CIRCUIT SYNTHESIS

The electrical circuit synthesis problem can be stated as follows:

Realizability: Which external behaviors can be obtained by

interconnecting a finite number of R’s, C’s, L’s, and T’s?

(or without T’s, or with also G’s?)

Synthesis: If a behavior is realizable, give a wiring diagram

(an architecture) that leads to the desired external behavior.

This problem is of great importance (historical and otherwise)
in electrical engineering. Important names:

Otto Brune R.M. Foster W. Cauer

E.A. Guillemin Sidney Darlington A.D. Fialkow

B.D.H. Tellegen Dante Youla Vitold Belevitch

etc., etc.

We list seven necessary conditions!

1.

2. KVL

3. KCL

4. The input cardinality,

5. Hybridicity

6. Passivity.

7. Reciprocity.
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CIRCUIT SYNTHESIS

We list seven necessary conditions!

We now discuss these conditions, aiming at demonstrating

the relevance of passivity and positive realness

the ease of analysis provided by the behavioral approach

1.

2. KVL

3. KCL

4. The input cardinality,

5. Hybridicity

6. Passivity.

7. Reciprocity.
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CIRCUIT SYNTHESIS

We list seven necessary conditions!

1.

� É% Ç È Ç

i.e.,

� � �� � �% ÇÈ Ç � �

is a LTIDS. There are M ways of stating
what this means.

For example, there exists a polynomial matrix

¤ / Ê% ÇÈ Ç � � Ë� Ì

such that consists of the solutions of

¤ � ?? � �
<o � L�

Proof: Elimination th’m.

2. KVL

3. KCL

4. The input cardinality,

5. Hybridicity

6. Passivity.

7. Reciprocity.
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CIRCUIT SYNTHESIS

We list seven necessary conditions!

1.

� É% Ç È Ç

2. KVL

� < � o � �

and � � Í Î �� � � � � <! �Ï � o � �

with

Ï �
##

...#

Proof: Verify for each of the modules, and for the int. constraint.

3. KCL

4. The input cardinality,

5. Hybridicity

6. Passivity.

7. Reciprocity.
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CIRCUIT SYNTHESIS

We list seven necessary conditions!

1.

� É% Ç È Ç

2. KVL
3. KCL

� < � o � � Ï �o � L

with
Ï �

##
...#

Proof: Verify for each of the modules, and for the int. constraint.

4. The input cardinality,

5. Hybridicity

6. Passivity.

7. Reciprocity.
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CIRCUIT SYNTHESIS

We list seven necessary conditions!

1.

� É% Ç È Ç

2. KVL
3. KCL

4. The input cardinality, Ð � � � � Â �
In other words, there exist a partition of

� < � o �

in�Â �

inputs and
�Â �

outputs,
with, if you insist, a proper transfer function.

Consider this together with the next property.

5. Hybridicity

6. Passivity.

7. Reciprocity.
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CIRCUIT SYNTHESIS

We list seven necessary conditions!

1.

� É% Ç È Ç

2. KVL
3. KCL

4. The input cardinality, Ð � � � � Â �
5. Hybridicity

There exists an I/O repr. for which the input and output var.���# � �% � � � � � � ÇÈ Ç � � � �# � �% �� � � � � ÇÈ Ç �

pair as follows:  � Ä � �Ä � �  <Ä � o Ä �

In other words, each terminal is either
current controlled or voltage controlled.

6. Passivity.

7. Reciprocity.
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CIRCUIT SYNTHESIS

We list seven necessary conditions!

1.

� É% Ç È Ç

2. KVL
3. KCL

4. The input cardinality, Ð � � � � Â �
5. Hybridicity

OUTPUTS

1IV1

Interconnected
RLCT’s

I V2 2

INPUTS

6. Passivity.

7. Reciprocity.
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CIRCUIT SYNTHESIS

We list seven necessary conditions!

1.

� É% Ç È Ç

2. KVL
3. KCL

4. The input cardinality, Ð � � � � Â �
5. Hybridicity

6. Passivity. From hybridicity, admits a representation as/Ñ0 � � 0 ! � 2 � 3 � � 0 ! 2

This system is dissipative w.r.t. the supply rate � � � � < �o

,
and with a quadratic positive definite storage f’n< � 0 � � 0 � 0 � � � O L�

This states that the net electrical energy goes into the circuit.

7. Reciprocity.
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CIRCUIT SYNTHESIS

We list seven necessary conditions!

1.

� É% Ç È Ç

2. KVL
3. KCL

4. The input cardinality, Ð � � � � Â �
5. Hybridicity

6. Passivity. It is easiest to prove properties 4, 5, and 6 together.

6: a circuit is an interconnection of passive elements, with neutral
interconnection laws.

4 and 5: holds for passive circuits, prove it by considering one
interconnection at the time.

7. Reciprocity.
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CIRCUIT SYNTHESIS

We list seven necessary conditions!

1.

� É% Ç È Ç

2. KVL
3. KCL

4. The input cardinality, Ð � � � � Â �
5. Hybridicity

6. Passivity.

7. Reciprocity. The transfer f’n

�
is signature symmetric, i.e.� � � � � � ��

is the signature matrix

� � Ò ÓÕÔÖ � 6# � 6% � � � � � 6 ÇÈ Ç � �

with 6Ä � ! �
if terminal

×
is voltage controlled,

and 6Ä �P �
if terminal

×

is current controlled.
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CIRCUIT SYNTHESIS

We list seven necessary conditions!

1.

� É% Ç È Ç

2. KVL
3. KCL

4. The input cardinality, Ð � � � � Â �
5. Hybridicity

6. Passivity.

7. Reciprocity.

This curious properties may be translated as:

The influence of terminal

×  

on terminal

×   

is equal to
the influence of terminal

×   

on terminal

×  

.
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CIRCUIT SYNTHESIS

We list seven necessary conditions!

1.

� É% Ç È Ç

2. KVL
3. KCL

4. The input cardinality, Ð � � � � Â �
5. Hybridicity

6. Passivity.

7. Reciprocity.

Proof: Show that each of the modules satisfy property (7).
Show that this property remain valid after interconnection,
i.e. proceed again one interconnection at the time.
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CIRCUIT SYNTHESIS

We list seven necessary conditions!

1.

� É% Ç È Ç

2. KVL
3. KCL

4. The input cardinality, Ð � � � � Â �
5. Hybridicity

6. Passivity.

7. Reciprocity.

If is controllable then these conditions are also sufficient for
realizability. However, in order to obtain a ’clean’ statement, it is
convenient to eliminate aÙØÚ Ø bÛ a> Û a= Û Ü Ü ÜÛ aØ Ú Ø+Ý > , and look at the
behavior of T_ > Û _ ØÚ Ø` _ = Û _ Ø Ú Ø`Þ Þ Þ ` _ ØÚ Ø Ý > Û _ Ø Ú Ø` a> ` a= `Þ Þ Þ ` aØ Ú Ø+Ý >X .
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CIRCUIT SYNTHESIS

We list seven necessary conditions!

1.

� É% Ç È Ç

2. KVL
3. KCL

4. The input cardinality, Ð � � � � Â �
5. Hybridicity

6. Passivity.

7. Reciprocity.

The transfer function
� � � ß ÇÈ Çáà# â Ê ß ÇÈ Ç à# â

is realizable

using RLCT’s if and only if it is

signature symmetric and positive real.
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CIRCUIT SYNTHESIS

We list seven necessary conditions!

1.

� É% Ç È Ç

2. KVL
3. KCL

4. The input cardinality, Ð � � � � Â �
5. Hybridicity

6. Passivity.

7. Reciprocity.

The transfer function
� � � ß ÇÈ Çáà# â Ê ß ÇÈ Ç à# â

is realizable

using RLCTG’s if and only if it is

positive real.
– p.12/15



SYNTHESIS of DRIVING POINT IMPEDANCES

Consider a 2-terminal circuit

RLCT’s

2

V1
1I

I 2

Interconnected

V

KCL

o# ! o% � L� Set

o � � o# �P o% .

KVL the beh. eq’ns involve only

<# P <% . Set

< � � <# P <% .

The behavior of
� < � o �

is called the port description.
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SYNTHESIS of DRIVING POINT IMPEDANCES

Port description:

−

Interconnected
RLCT’s

V

I

I+

ã

, the transfer f’n

o � <
is called the driving point impedance .

Note that

ã

need not be proper.

Which driving point impedances are realizable?
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SYNTHESIS of DRIVING POINT IMPEDANCES

Which driving point impedances are realizable?

ã � � �� �

is the driving point impedance

of an electrical circuit that consists of an interconnection

of a finite number of

positive

¤

’s, positive

²

’s, positive
�

’s, and transformers

if and only if
ã

is positive real.

– p.13/15



SYNTHESIS of DRIVING POINT IMPEDANCES

Which driving point impedances are realizable?

ã � � �� �

is the driving point impedance

of an electrical circuit that consists of an interconnection

of a finite number of

positive

¤

’s, positive

²

’s, positive
�

’s, and transformers

if and only if
ã

is positive real.

This result led to the introduction of positive real functions.
First proven by Otto Brune in his M.I.T. Ph.D. dissertation (see O.
Brune, Synthesis of a finite two-terminal network whose driving
point impedance is a prescribed function of frequency, Journal of
Mathematics and Physics, volume 10, pages 191-236, 1931).
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SYNTHESIS of DRIVING POINT IMPEDANCES

Which driving point impedances are realizable?

ã � � �� �

is the driving point impedance

of an electrical circuit that consists of an interconnection

of a finite number of

positive

¤

’s, positive

²

’s, positive
�

’s, and transformers

if and only if
ã

is positive real.

Are transformers needed?

In 1949, Bott and Duffin proved ‘no’ in a one-page (!) paper
(see R. Bott and R.J. Duffin, Impedance synthesis without
transformers, Journal of Applied Physics, vol. 20, page 816, 1949).
However, their synthesis has common factors, non-controllability!
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REMARK

TERMINALS versus PORTS

Note that we have used throughout the terminal description of
circuits. It is simply more appropriate and more general (even when
using only ‘port’ devices).
Example:

äääåå
æ æ ææ æ ææ æ ææ æ æç çç çç ç è èè èè èé éé éé é

êë
3

1

2

However, port descriptions are more parsimonious in the choice of
variables (it halves their number).
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RECAP

Realizability theory: an important engineering oriented
problem area.

The analysis and synthesis of RLCT circuits is an important
application of passive systems.

7 necessary conditions for realizability by passive R,L,C,T’s:
differential system, KVL, KCL, input cardinality,
hybridicity, passivity, and reciprocity.

In the controllable case these conditions are also sufficient.

It is the circuit synthesis problem that led to positive realness.

– p.15/15
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