

MATHEMATICAL MODELS of SYSTEMS

Jan C. Willems

ESAT-SCD (SISTA), University of Leuven, Belgium

IUAP Graduate Course

Fall 2002

MATHEMATICAL BACKGROUND

NOTATION

Symbol	Meaning	LAT _E X
Э	there exist(s)	\exists
∃(!)	there exist(s a) unique	
∄	there does not exist(s)	\ nexists
\forall	for all	\forall
:	such that	
\land	and	\wedge
\vee	or	\vee

1		
Symbol	Meaning	I≰T _E X
=	left is equal to right	
:=	left is by definition	
	(or defined to be) equal to right	
=:	right is by definition equal to left	
\Leftrightarrow	left is equivalent to right	\Leftrightarrow
:⇔	left is by definition equivalent to right	
⇔:	right is by definition equivalent to to left	
\Rightarrow	left implies right	\Rightarrow
⇐	right implies left	\Leftarrow
\leftrightarrow	left and right are one-to-one related	\leftrightarrow
\mapsto	maps to	\mapsto

Symbol	Meaning	ĿŦĘX
E	belongs to	∖in
¢	does not belong to	\ notin
С	is a subset of	\subset
\supset	is a superset of:	\supset
	$[A \supset B] :\Leftrightarrow [B \subset A]$	
\cap	intersection	\ cap
U	union	\ cup
/	set difference	
	$A/B := \{a \in A \mid a \notin B\}$	

Symbol	Meaning	LAT _E X
2^A	the set of all subsets of A	
A^B	the set of maps from A to B	
	$S/B := \{a \in S \mid a \notin B\}$	
Ø	the empty set	\emptyset
∞	infinity	\infty
iff	if and only if	

Notation	Meaning	LATEX
\mathbb{N}	the natural numbers	\mathbf{N}
	$\mathbb{N} := \{1, 2, \dots, n, \dots\}$	
\mathbb{Z}	the integers	\mathbf{D}
	$\mathbb{Z} := \{\dots, -2, -1, 0, 1, 2, \dots, n, \dots\}$	
\mathbb{Z}_+	the nonnegative integers	
	$\mathbb{Z}_+ := \{0, 1, 2, \dots, n, \dots\}$	
\mathbb{R}	the real numbers	\mathbb{R}
\mathbb{R}_+	$:= [0,\infty)$, the nonnegative real numbers	
\mathbb{R}_{-}	$:=(-\infty,0]$, the nonpositive real numbers	
\mathbb{C}	the complex numbers	\mathbb{C}

Symbol	Meaning	LAT _E X
×	Cartesian product	\ times
S^{n}	n-fold Cartesian product of S	\ times

• $\{a \mid a \text{ has property } A\}$

denotes the set of all elements that have property \boldsymbol{A}

• $\{a \in S \mid a \text{ has property } A\}$

denotes the subset of S consisting of

the elements of S that have property A

- Occasionally, we use 'collection' and 'family' as synonyms of 'set'.
- The set of all subsets of the set S is denoted by 2^S. It is called the *power set* of S.
- $\{s_1, s_2, \dots, s_n\}$

denotes the set with elements s_1, s_2, \ldots, s_n ; if some of the s_k 's are equal, then they count 'only once', i.e., we do not consider sets with multiplicity, whence, for example, $\{0, 0, 1, 1, 1, \} = \{0, 1\}$.

- (s_1, s_2, \ldots, s_n) denotes an ordered n-tuple
- $S_1 \times S_2 \times \cdots \times S_n := \{(s_1, s_2, \dots, s_n) \mid s_k \in S_k, k = 1, 2, \dots, n\}$ (called the *Cartesian product* of S_1, S_2, \cdots, S_n)

•
$$S^{n} := \underbrace{S \times S \times \cdots \times S}_{n-\text{times}}$$

- A relation on S_1, S_2, \cdots, S_n (or between the variables of $S_1, S_2, \cdots S_n$) is a subset of $S_1 \times S_2 \times \cdots \times S_n$.
- A relation R ⊂ S₁ × S₂ is said to be *one-to-one* if for all s₁ ∈ S₁ there is exactly one s₂ ∈ S₂ such that (s₁, s₂) ∈ R and, vice-versa, for all s₂ ∈ S₂ there is exactly one s₁ ∈ S₁ such that (s₁, s₂) ∈ R, i.e., there is a bijection f : S₁ → S₂ whose graph is R. A one to-one-relation is denoted by S₁ ∉ S₂ or, when (s₁, s₂) ∈ R, s₁ ∈ S₁ ∉ S₂ ∈ S₂ (S₁ and S₂ are often deleted when they are obvious from the context).

- A relation on $S^2(S^3, S^n)$ is called a *binary (ternary, n-ary) relation* on S.
- A binary relation R on S is called an *equivalence relation* on S if
 - **1.** $(s, s) \in R$
 - 2. $[(s_1, s_2) \in R] \Rightarrow [(s_2, s_1) \in R]$
 - 3. $[(s_1, s_2), (s_2, s_3) \in R] \Rightarrow [(s_1, s_3) \in R]$
- the set $\{s' \in \S \mid (s', s) \in R\}$ is called the *equivalence class* associated by $s \in S$. Note that two equivalence classes either coincide, or are disjoint.
- Let S be a set. A family S_α, α ∈ S of subsets of S (S might be an infinite set) is called a *partition* of S if
 - 1. the sets S_{α} are non-empty,
 - 2. disjoint, i.e., $[\alpha_1 \neq \alpha_2] \Rightarrow [S_{\alpha_1} \neq S_{\alpha_2}],$
 - 3. and their union covers S, i.e., $\bigcup_{\alpha \in S} S_{\alpha} = S$.

- There is an obvious one-to-one relation between the equivalence relations on S and the partitions of S. If the equivalence relation is given, define the partition as the family of disjoint equivalence classes. If the partition is given, define the equivalence relation R by [(s₁, s₂) ∈ R] ⇔ [s₁ and s₂ belong the same element of the partition].
- Let *R* be an equivalence relation on *S*. A subset *C* of *S* is said to be a *canonical form* (w.r.t. *R*) if *C* intersects each equivalence class at least once, and a *trim canonical form* if it intersects each equivalence class exactly once.

- A *map* f from the set A to the set B associates with every element of A an element of B.
- A is called the *domain* and B the *co-domain* of f.
- We use the notation $f : A \to B$, or $A \xrightarrow{f} B$.
- The set of all maps from A to B is denoted by B^A .
- If f takes $a \in A$ to $b \in B$, then we write b = f(a), or $f : a \mapsto b$, or $a \stackrel{f}{\mapsto} b$.
- Sometimes the latter notation is used to define f by means of a recipe, for example the map sqrt : $\mathbb{R}_+ \to \mathbb{R}_+$ can be defined by sqrt : $x \in \mathbb{R}_+ \mapsto \sqrt{x} \in \mathbb{R}_+$, or $x \in \mathbb{R}_+ \stackrel{\text{sqrt}}{\mapsto} \sqrt{x} \in \mathbb{R}_+$.
- We use the term 'function', 'operator', and 'transformation' as synonyms for 'map'. Sometimes the term function (and certainly 'functional') is

reserved for maps with co-doamin \mathbb{R} or \mathbb{C} . We use instead real (complex) *functional* for maps with co-domain \mathbb{R} (\mathbb{C}).

- {b ∈ B | ∃a ∈ A : f(a) = b} is called the *image* of f, denoted im(f).
 Sometimes the term *range* of f is used.
- If $f : A \to A$, then f is called a map on A.
- The *identity map*on A (denoted id_A) is defined by $a \in A \stackrel{id_A}{\mapsto} a \in A$.
- Let $f: A \to B$, and $g: B \to C$. The map $h: a \in A \mapsto g(f(a))$ is called the *composition* of g with f. Notation: $h = g \circ f$, or h = gf.
- If f is a map on A, then $f^n := \underbrace{f \circ f \circ \cdots \circ f}_{n-\text{times}}$.
- f: A → B is said to be *injective* if [a₁ ≠ a₂] ⇒ [f(a₁) ≠ f(a₂)].
 This property is sometimes called 'one-to-one'.

- f: A → B is said to be *surjective* if ∀ b ∈ B ∃ a ∈ A : f(a) = b, i.e., if im(f) = B. This property is sometimes called 'onto'.
- $f: A \rightarrow B$ is said to be *bijective* if it is injective and surjective.
- The map $g: B \to A$ is said to be a *left inverse* of $f: A \to B$ if $gf = id_A$. It is easy to see that a left inverse exists iff f is injective.
- The map $g: B \to A$ is said to be a *right inverse* of $f: A \to B$ if $fg = id_B$. It is easy to see that a right inverse exists iff f is surjective.
- The map $g: B \to A$ is said to be the *inverse* of $f: A \to B$ if $gf = id_A$ and $fg = id_B$. It is easy to see that the inverse exists iff f is surjective. Moreover, the inverse is uniquely defined and denoted as f^{-1} . Whence $f^{-1}: B \to A$.
- Let $f: A \to B$ and $A' \subset A$. Then $f|_{A'}: A' \to B$ is defined by $f|'_A: a \in A' \mapsto f(a) \in B$. $f|'_A$ is called the *restriction* of f to A'.

- Let $f : A \to B$ and $A' \subset A$. Then $f(A') := \{b \in B \mid \exists a \in A' : b = f(a)\}$. Whence $f(A') = \operatorname{im}(f|_{A'})$.
- Let $f : A \to B$ and $B' \subset B$. Then $f^{-1}(B') := \{a \in A \mid f(a) \in B'\}$. $f^{-1}(B')$ is called the *pre-image* of B' under f.

ALGEBRAIC STRUCTURES

► Let *A* be a set. A map from $A(A^2, A^3, A^n)$ to *A* is called a *unary* (*binary*, *ternary*, n*-ary*) operation on *A*. Such operations are very important elements for defining algebraic structures.

GROUPS

A group

RINGS

A ring

FIELDS

A field

MODULES and VECTOR SPACES

A module

LINEAR ALGEBRA

FUNCTION SPACES

End of Mathematical Background