MATHEMATICAL MODELS of SYSTEMS

Jan C. Willems
ESAT-SCD (SISTA), University of Leuven, Belgium

MATHEMATICAL BACKGROUND

NOTATION

Symbol	Meaning	IETEX
\exists	there exist(s)	\backslash exists
$\exists(!)$	there exist(s a) unique	
\nexists	there does not exist(s)	\backslash nexists
\forall	for all	\backslash forall
$:$	such that	
\wedge	and	\backslash wedge
\vee	or	\backslash vee

Symbol	Meaning	IATEX
$=$	left is equal to right	
$:=$	left is by definition (or defined to be) equal to right	
$=:$	right is by definition equal to left	
\Leftrightarrow	left is equivalent to right	\backslash Leftrightarrow
$: \Leftrightarrow$	left is by definition equivalent to right	
$\Leftrightarrow:$	right is by definition equivalent to to left	
\Rightarrow	left implies right	\backslash Rightarrow
\Leftarrow	right implies left	\backslash Leftarrow
\leftrightarrow	left and right are one-to-one related	\backslash leftrightarrow
\mapsto	maps to	\backslash mapsto

Symbol	Meaning	IATEX
\in	belongs to	\backslash in
\notin	does not belong to	\backslash notin
\subset	is a subset of	\backslash subset
\supset	is a superset of: $[A \supset B]: \Leftrightarrow[B \subset A]$	\backslash supset
\cap	intersection	\backslash cap
\cup	union	\backslash cup
$/$	set difference $A / B:=\{a \in A \mid a \notin B\}$	

Symbol	Meaning	LATEX $^{\text {E }}$
2^{A}	the set of all subsets of A	
A^{B}	the set of maps from A to B $S / B:=\{a \in S \mid a \notin B\}$	
\emptyset	the empty set	\backslash emptyset
∞	infinity	\backslash infty
iff	if and only if	

Notation	Meaning	$\operatorname{IAT}_{\mathbf{E} X}$
\mathbb{N}	the natural numbers $\mathbb{N}:=\{1,2, \ldots, \mathrm{n}, \ldots\}$	$\backslash \operatorname{mathbb}\{\mathbf{N}\}$
\mathbb{Z}	the integers $\mathbb{Z}:=\{\ldots,-2,-1,0,1,2, \ldots, \mathrm{n}, \ldots\}$	\backslash mathbb $\{\mathbf{Z}\}$
\mathbb{Z}_{+}	the nonnegative integers $\mathbb{Z}_{+}:=\{0,1,2, \ldots, \mathrm{n}, \ldots\}$	
\mathbb{R}	the real numbers	\backslash mathbb $\{\mathbf{R}\}$
\mathbb{R}_{+}	$:=[0, \infty)$, the nonnegative real numbers	
\mathbb{R}_{-}	$:=(-\infty, 0]$, the nonpositive real numbers	
\mathbb{C}	the complex numbers	\backslash mathbb $\{\mathbf{C}\}$

Symbol	Meaning	IATEX
\times	Cartesian product	\backslash times
S^{n}	n-fold Cartesian product of S	\backslash times

Sets

- $\{a \mid a$ has property $A\}$ denotes the set of all elements that have property A
- $\{a \in S \mid a$ has property $A\}$ denotes the subset of S consisting of the elements of S that have property A
- Occasionally, we use 'collection' and 'family' as synonyms of 'set'.
- The set of all subsets of the set S is denoted by 2^{S}. It is called the power set of S.
- $\left\{s_{1}, s_{2}, \ldots, s_{\mathrm{n}}\right\}$
denotes the set with elements $s_{1}, s_{2}, \ldots, s_{\mathrm{n}}$;
if some of the s_{k} 's are equal, then they count 'only once',
i.e., we do not consider sets with multiplicity,
whence, for example, $\{0,0,1,1,1\}=,\{0,1\}$.
- $\left(s_{1}, s_{2}, \ldots, s_{\mathrm{n}}\right)$ denotes an ordered n-tuple
- $S_{1} \times S_{2} \times \cdots \times S_{\mathrm{n}}:=\left\{\left(s_{1}, s_{2}, \ldots, s_{\mathrm{n}}\right) \mid s_{\mathrm{k}} \in S_{\mathrm{k}}, \mathrm{k}=1,2, \ldots, \mathrm{n}\right\}$ (called the Cartesian product of $S_{1}, S_{2}, \cdots, S_{\mathrm{n}}$)
- $S^{\mathrm{n}}:=\underbrace{S \times S \times \cdots \times S}_{\mathrm{n} \text {-times }}$
- A relation on $S_{1}, S_{2}, \cdots, S_{\mathrm{n}}$ (or between the variables of $S_{1}, S_{2}, \cdots S_{\mathrm{n}}$) is a subset of $S_{1} \times S_{2} \times \cdots \times S_{\mathrm{n}}$.
- A relation $R \subset S_{1} \times S_{2}$ is said to be one-to-one if for all $s_{1} \in S_{1}$ there is exactly one $s_{2} \in S_{2}$ such that $\left(s_{1}, s_{2}\right) \in R$ and, vice-versa, for all $s_{2} \in S_{2}$ there is exactly one $s_{1} \in S_{1}$ such that $\left(s_{1}, s_{2}\right) \in R$, i.e., there is a bijection $f: S_{1} \rightarrow S_{2}$ whose graph is R. A one to-one-relation is denoted by $S_{1} \stackrel{R}{\longleftrightarrow} S_{2}$ or, when $\left(s_{1}, s_{2}\right) \in \mathbb{R}, s_{1} \in S_{1} \stackrel{R}{\longleftrightarrow} s_{2} \in S_{2}\left(S_{1}\right.$ and S_{2} are often deleted when they are obvious from the context).
- A relation on $S^{2}\left(S^{3}, S^{\mathrm{n}}\right)$ is called a binary (ternary, n-ary) relation on S.
- A binary relation R on S is called an equivalence relation on S if

1. $(s, s) \in \boldsymbol{R}$
2. $\left[\left(s_{1}, s_{2}\right) \in R\right] \Rightarrow\left[\left(s_{2}, s_{1}\right) \in R\right]$
3. $\left[\left(s_{1}, s_{2}\right),\left(s_{2}, s_{3}\right) \in R\right] \Rightarrow\left[\left(s_{1}, s_{3}\right) \in R\right]$

- the set $\left\{s^{\prime} \in \S \mid\left(s^{\prime}, s\right) \in R\right\}$ is called the equivalence class associated by $s \in S$. Note that two equivalence classes either coincide, or are disjoint.
- Let S be a set. A family $S_{\alpha}, \alpha \in S$ of subsets of S (S might be an infinite set) is called a partition of S if

1. the sets S_{α} are non-empty,
2. disjoint, i.e., $\left[\alpha_{1} \neq \alpha_{2}\right] \Rightarrow\left[S_{\alpha_{1}} \neq S_{\alpha_{2}}\right]$,
3. and their union covers S, i.e., $\cup_{\alpha \in S} S_{\alpha}=S$.

- There is an obvious one-to-one relation between the equivalence relations on S and the partitions of S. If the equivalence relation is given, define the partition as the family of disjoint equivalence classes. If the partition is given, define the equivalence relation \boldsymbol{R} by $\left[\left(s_{1}, s_{2}\right) \in R\right] \Leftrightarrow\left[s_{1}\right.$ and s_{2} belong the same element of the partition].
- Let R be an equivalence relation on S. A subset C of S is said to be a canonical form (w.r.t. R) if C intersects each equivalence class at least once, and a trim canonical form if it intersects each equivalence class exactly once.

Maps

- A map f from the set A to the set B associates with every element of A an element of B.
- A is called the domain and B the co-domain of f.
- We use the notation $f: A \rightarrow B$, or $A \xrightarrow{f} B$.
- The set of all maps from A to B is denoted by B^{A}.
- If f takes $a \in A$ to $b \in B$, then we write $b=f(a)$, or $f: a \mapsto b$, or $a \stackrel{f}{\mapsto} b$.
- Sometimes the latter notation is used to define f by means of a recipe, for example the map sqrt : $\mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$can be defined by sqrt : $x \in \mathbb{R}_{+} \mapsto \sqrt{x} \in \mathbb{R}_{+}$, or $x \in \mathbb{R}_{+} \stackrel{\text { sqrt }}{\mapsto} \sqrt{x} \in \mathbb{R}_{+}$.
- We use the term 'function', 'operator', and 'transformation' as synonyms for 'map'. Sometimes the term function (and certainly 'functional') is
reserved for maps with co-doamin \mathbb{R} or \mathbb{C}. We use instead real (complex) functional for maps with co-domain $\mathbb{R}(\mathbb{C})$.
- $\{b \in B \mid \exists a \in A: f(a)=b\}$ is called the image of f, denoted $\operatorname{im}(f)$. Sometimes the term range of f is used.
- If $f: A \rightarrow A$, then f is called a map on A.
- The identity mapon $A\left(\operatorname{denoted}^{\mathbf{i d}_{A}}\right)$ is defined by $a \in A \stackrel{\mathbf{i d}_{A}}{\longmapsto} a \in A$.
- Let $f: A \rightarrow B$, and $g: B \rightarrow C$. The map $h: a \in A \mapsto g(f(a))$ is called the composition of g with f. Notation: $h=g \circ f$, or $h=g f$.
- If f is a map on A, then $f^{\mathrm{n}}:=\underbrace{f \circ f \circ \cdots \circ f}_{\mathrm{n} \text {-times }}$.
- $f: A \rightarrow B$ is said to be injective if $\left[a_{1} \neq a_{2}\right] \Rightarrow\left[f\left(a_{1}\right) \neq f\left(a_{2}\right)\right]$. This property is sometimes called 'one-to-one'.
- $f: A \rightarrow B$ is said to be surjective if $\forall b \in B \exists a \in A: f(a)=b$, i.e., if $\operatorname{im}(f)=B$. This property is sometimes called 'onto'.
- $f: A \rightarrow B$ is said to be bijective if it is injective and surjective.
- The map $g: B \rightarrow A$ is said to be a left inverse of $f: A \rightarrow B$ if $g f=\mathrm{id}_{\mathrm{A}}$. It is easy to see that a left inverse exists iff f is injective.
- The map $g: B \rightarrow A$ is said to be a right inverse of $f: A \rightarrow B$ if $f g=\mathrm{id}_{\mathrm{B}}$. It is easy to see that a right inverse exists iff f is surjective.
- The map $g: B \rightarrow A$ is said to be the inverse of $f: A \rightarrow B$ if $g f=\mathrm{id}_{\mathrm{A}}$ and $f g=\mathrm{id}_{\mathrm{B}}$. It is easy to see that the inverse exists iff f is surjective. Moreover, the inverse is uniquely defined and denoted as f^{-1}. Whence $f^{-1}: B \rightarrow A$.
- Let $f: A \rightarrow B$ and $A^{\prime} \subset A$. Then $\left.f\right|_{A^{\prime}}: A^{\prime} \rightarrow B$ is defined by $\left.f\right|_{A} ^{\prime}: a \in A^{\prime} \mapsto f(a) \in B .\left.f\right|_{A} ^{\prime}$ is called the restriction of f to A^{\prime}.
- Let $f: A \rightarrow B$ and $A^{\prime} \subset A$. Then $f\left(A^{\prime}\right):=\left\{b \in B \mid \exists a \in A^{\prime}: b=f(a)\right\}$. Whence $f\left(A^{\prime}\right)=\operatorname{im}\left(\left.\mathrm{f}\right|_{A^{\prime}}\right)$.
- Let $f: A \rightarrow B$ and $B^{\prime} \subset B$. Then $f^{-1}\left(B^{\prime}\right):=\left\{a \in A \mid f(a) \in B^{\prime}\right\}$. $f^{-1}\left(B^{\prime}\right)$ is called the pre-image of B^{\prime} under f.

ALGEBRAIC STRUCTURES

- Let A be a set. A map from $A\left(A^{2}, A^{3}, A^{\mathrm{n}}\right)$ to A is called a unary (binary, ternary, n -ary) operation on A. Such operations are very important elements for defining algebraic structures.

GROUPS

A group

RINGS

A ring

FIELDS

A field

Mathematical Background

MODULES and VECTOR SPACES

A module

LINEAR ALGEBRA

FUNCTION SPACES

End of Mathematical Background

