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Lecture 9

DISTRIBUTED SYSTEMS



THEME

Most physical systems are ‘distributed’, with independent variables

time and space.

This explains the central role in physics of PDE’s.
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THEME

Most physical systems are ‘distributed’, with independent variables

time and space.

This explains the central role in physics of PDE’s.

How do we incorporate this structure in our framework?

What does, for example, controllability mean?

When are such systems dissipative? What is the storage function?
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OUTLINE

� Examples

� Behavioral � -D systems

� Systems described by linear PDE’s

� Controllability & Observability

� 3 central theorems

� Dissipative distributed systems

� Factorization of polynomial matrices
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EXAMPLES
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1. Heat diffusion

x

q(x,t)

T(x,t)
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1. Heat diffusion

x

q(x,t)

T(x,t)
The PDE

�
�� � � ���
�� � � 	 


describes the evolution of the temperature � �� �� 

(� � � position,� � � time) in a medium

and the heat 
 �� � � 
 supplied to / radiated away from it.
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1. Heat diffusion

x

q(x,t)

T(x,t)
The PDE

�
�� � � ���
�� � � 	 


describes the evolution of the temperature � �� �� 

(� � � position,� � � time) in a medium

and the heat 
 �� � � 
 supplied to / radiated away from it.

We wish to develop a theory that treats� and� on the same footing.
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2. Coaxial cable

!! Model the relation between the voltage � �� �� 
 and

the current � �� �� 
 in a coaxial cable.

V(x,t)
x

I(x,t)

+

−

� The PDE’s
�

�� � ��� � � �
�� � � ( � � )

�
�� � ��� � � �
�� �� ( � � )

with � � the inductance, and � � the capacitance per unit length.

Lecture 9 Examples



These imply the ‘consequences’

��
�� � � � � � � � ���
�� � � � ( � )

and
��

�� � � � � � � � ���
�� � �� ( � )

Wave eqn’s.
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Leads to the questions

� Are ( � ), ( � ) really consequences of ( � � ) + ( � � )?

� ( � ) + ( � ) � ( � � ) + ( � � )?

� ( � ) + ( � ) + ( � � ) � ( � � ) + ( � � )?

� Does ( � ) express all the constraints on � implied by ( � � ) + ( � � )?

� Develop a calculus to obtain all consequences, to compute this elimination,

to decide equivalence.
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With boundary conditions (cable of length � ):

!! Model the relation between the voltages � � � � � and

the currents � � � � � at the ends of a uniform cable of length ��

0I

V0

V1−

1

−

+

I

+

L
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With boundary conditions (cable of length � ):

!! Model the relation between the voltages � � � � � and

the currents � � � � � at the ends of a uniform cable of length ��

0I

V0

V1−

1

−

+

I

+

L

Introduce the voltage � �� �� 
 and the current flow � �� �� 
 � � � � � in the

cable.

0
0 1

1
IV(x,t)V

x+

−

+

−
V

I

I(x,t)
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� The equations:

�
�� � � � � � �
�� � �

�
�� � � � � � �
�� � �

� � �� 
 � � �� �� 
 �

� � �� 
 � � � � �� 
 �

� � �� 
 � � �� �� 
 �

� � �� 
 � � � � � �� 
�
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Viewed as a black box

� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �

� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �

10

0

0

0

1

1

1

V

V

I

I IV(x,t)
x +

−
V

I(x,t)

+

−

+

−
V

+

−

I
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Relation between � � � � � :

���
�� � � � � � � � ���
�� � � � � � �! 
 � � �� �  
 � � � � 
 � � � � �  
 �

and between � � � � � :
�"�

�� � � � � � � � ��
�� � � � � � �! 
 � � �� �  
 � � � �! 
 � � � � �  
�
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Relation between � � � � � :

���
�� � � � � � � � ���
�� � � � � � �! 
 � � �� �  
 � � � � 
 � � � � �  
 �

and between � � � � � :
�"�

�� � � � � � � � ��
�� � � � � � �! 
 � � �� �  
 � � � �! 
 � � � � �  
�

� Two terminal variables are ‘free’, the other two are ‘bound’,

(free = one voltage, one current, bound = one voltage, one current), but

there is no reasonable choice of inputs and outputs!

for ‘off-the-shelf’ modeling.

� What is the role of � �� �� 
 and � �� �� 
 � � � � � � �

in modeling the relation between � � � � � � � � � � � ?
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If terminated by an impedance � undesirable reflections.

characteristic impedance # � $ %& % ' no reflections!

0
0

1

PLANT

0 1( ( (( ( (( ( (( ( (( ( (( ( (( ( (
) ) )) ) )) ) )) ) )) ) )) ) )) ) )

R

* * * * * * * * ** * * * * * * * ** * * * * * * * ** * * * * * * * ** * * * * * * * ** * * * * * * * ** * * * * * * * ** * * * * * * * *

+ + + + + + + + ++ + + + + + + + ++ + + + + + + + ++ + + + + + + + ++ + + + + + + + ++ + + + + + + + ++ + + + + + + + ++ + + + + + + + + CONTROLLER

1
I

V

V

V(x,t)
x +

−
V

I(x,t)

+

−

+

−

I

+

−
V
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If terminated by an impedance � undesirable reflections.

characteristic impedance # � $ %& % ' no reflections!

0
0

1

PLANT

0 1, , ,, , ,, , ,, , ,, , ,, , ,, , ,
- - -- - -- - -- - -- - -- - -- - -

R

. . . . . . . . .. . . . . . . . .. . . . . . . . .. . . . . . . . .. . . . . . . . .. . . . . . . . .. . . . . . . . .. . . . . . . . .

/ / / / / / / / // / / / / / / / // / / / / / / / // / / / / / / / // / / / / / / / // / / / / / / / // / / / / / / / // / / / / / / / / CONTROLLER

1
I

V

V

V(x,t)
x +

−
V

I(x,t)

+

−

+

−

I

+

−
V

We view this termination as a behavioral controller. In this ex., the classical

sensor-to-actuator feedback interpretation is an illusion.

0 very many such examples of controllers.
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3. Maxwell’s eqn’s

1  2 3 � 4
5 �6 �

17 2 3 � � �
��

2 8 �

1  2 8 � � �

9� 1 7 2 8 � 4
5 �

2 : 	 �
��

2 3�

Set of independent variables � �7 �<; (time and space),

dependent variables � �2 3 �2 8 �2 : �6 

(electric field, magnetic field, current density, charge density),

� �; 7 �; 7 �; 7 � ,

the behavior = set of solutions to these PDE’s.
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Note: 10 variables, 8 equations! ' 0 free variables.
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Note: 10 variables, 8 equations! ' 0 free variables.

We wish to see this as an= -D system,

independent variables: time and space.
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Note: 10 variables, 8 equations! ' 0 free variables.

We wish to see this as an= -D system,

independent variables: time and space.

Which PDE’s describe (6 �2 3 �2 : ) in Maxwell’s equations ?
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Note: 10 variables, 8 equations! ' 0 free variables.

We wish to see this as an= -D system,

independent variables: time and space.

Which PDE’s describe (6 �2 3 �2 : ) in Maxwell’s equations ?

Eliminate

2 8 from Maxwell’s equations �
1  2 3 � 4

5 � 6 �

5 � �
�� 1  2 3 	 1  2 : � � �

5 � ���
�� �

2 3 	 5 � 9� 1 7 1 7 2 3 	 �
��

2 : � � �
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Potential functions

The following equations in the

scalar potential >@? �7 �; A �

and the

vector potential

2 B ? �7 �; A �; ,

generate exactly the solutions to Maxwell’s equations:

2 3 � � �
��

2 B� 1 > �2 8 � 1 7 2 B �2 : � 5 � ���
�� �

2 B� 5 � 9� 1 � 2 B 	 5 � 9� 1 � 1  2 B 
 	 5 � �
�� 1 > �

6 � � 5 � �
�� 1  2 B� 5 � 1 � >�
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Leads to the following questions:

Lecture 9 Examples



Leads to the following questions:
C Is there a fundamental reason why the behavior of (6 �2 3 �2 : )

is also described by a PDE? ‘Elimination’ issue.
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Leads to the following questions:
C Is there a fundamental reason why the behavior of (6 �2 3 �2 : )

is also described by a PDE? ‘Elimination’ issue.

C When and why is a representation in terms of a potential possible?

‘Image representation’ issue.
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Leads to the following questions:
C Is there a fundamental reason why the behavior of (6 �2 3 �2 : )

is also described by a PDE? ‘Elimination’ issue.

C When and why is a representation in terms of a potential possible?

‘Image representation’ issue.

C Derive algorithms for elimination, image representation.

Lecture 9 Examples



BEHAVIORAL � -D SYSTEMS

Lecture 9 Behavioral D -D systems



A system = E � �GF �IH �KJ 


F , the set of independent variables,

H , the set of dependent variables,

J L H�M : the behavior (= the admissible trajectories).
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E � �F � H � J 


For a trajectory N ? F A H � we thus have:

N � J : the model allows the trajectory N �

N O� J : the model forbids the trajectory N�
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E � �F � H � J 


For a trajectory N ? F A H � we thus have:

N � J : the model allows the trajectory N �

N O� J : the model forbids the trajectory N�

F � � (in continuous-time systems),

F � � D (in � -D systems),

H L �<P (in lumped systems),

or a finite set (in DES).
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E � �F � H � J 


For a trajectory N ? F A H � we thus have:

N � J : the model allows the trajectory N �

N O� J : the model forbids the trajectory N�

F � � (in continuous-time systems),

F � � D (in � -D systems),

H L �<P (in lumped systems),

or a finite set (in DES).

Emphasis today: F � � D � H � �<P �

J � solutions of system of linear constant coefficient PDE’s.
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First principles models invariably contain auxiliary variables,

in addition to the variables the model aims at.

� Manifest and latent variables.

Manifest = the variables the model aims at,

Latent = auxiliary variables.

We want to capture this in a mathematical definition.
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A system with latent variables = E $ � �GF � H �RQ � J S TU U 


F , the set of independent variables.

H , the set of manifest dependent variables

(= the variables that the model aims at).

Q , the set of latent dependent variables

(= the auxiliary modeling variables).

J S TU U L �H 7 Q 
M : the full behavior

(= the pairs � N �V 
? F A H 7 Q that the model declares

possible).

Lecture 9 Behavioral D -D systems



The manifest behavior

The latent variable system E $ � �GF �IH �RQ � J S TU U 
 induces

the manifest system E � �F � H � J 
 � with manifest behavior

J � W N ? F A H X 0 V ? F A Q such that � N �V 
 � J S TU U Y
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The manifest behavior

The latent variable system E $ � �GF �IH �RQ � J S TU U 
 induces

the manifest system E � �F � H � J 
 � with manifest behavior

J � W N ? F A H X 0 V ? F A Q such that � N �V 
 � J S TU U Y

In convenient equations forJ , the latent variables are ‘eliminated’.
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Examples

1. Heat diffusion

x

q(x,t)

T(x,t)
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Examples

1. Heat diffusion

x

q(x,t)

T(x,t)

F � � � (time and space);

H � � Z7 � (temperature and heat);

J = sol’ns to the PDE, the diffusion eq’n.
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2. Coaxial cable

V(x,t)
x

I(x,t)

+

−

Consider the voltage as the variable the model aims at.
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2. Coaxial cable

V(x,t)
x

I(x,t)

+

−

Consider the voltage as the variable the model aims at.

F � � � (time and space);

H � � (voltage);

Q � � (current);

J S TU U = sol’ns to the PDE’s;

J = sol’ns to []\[^ \ � � � � � � [ \[_ \ �`
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3. Coaxial cable of length � .

0I

V0

V1−

1

−

+

I

+

L

0
0 1

1
IV(x,t)V

x+

−

+

−
V

I

I(x,t)

Consider the terminal variables as the variables the model aims at.
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3. Coaxial cable of length � .

0I

V0

V1−

1

−

+

I

+

L

0
0 1

1
IV(x,t)V

x+

−

+

−
V

I

I(x,t)

Consider the terminal variables as the variables the model aims at.

F � � (time);

H � �ba (2 voltages, 2 currents),

latent variables = � �� �  
 � � �� �  
c � � � � �
(voltage and current in the coax)

J S TU U = sol’ns to the PDE’s + boundary conditions.

J = sol’ns to ... ?
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4. Maxwell’s eqn’ns
F � �a �H � � � � �J � solutions to ME.

Lecture 9 Behavioral D -D systems



4. Maxwell’s eqn’ns
F � �a �H � � � � �J � solutions to ME.

If we view the electrical variables as manifest, and

2 8 as latent

F � �a �H � �ed �Q � �; �

J S TU U � solutions to ME,J � solutions to eliminated eq’ns?
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4. Maxwell’s eqn’ns
F � �a �H � � � � �J � solutions to ME.

If we view the electrical variables as manifest, and

2 8 as latent

F � �a �H � �ed �Q � �; �

J S TU U � solutions to ME,J � solutions to eliminated eq’ns?

If we consider the representation in terms of the potentials > �2 B

F � �a �H � � � � �Q � �a �

J S TU U � solutions to potential eqn’s,J � solutions to ME?
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LINEAR DIFFERENTIAL SYSTEMS

Lecture 9 Systems described by linear PDE’s



We now discuss the fundamentals of the theory of � -D systems

E � � � D � �fP �J 


that are
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We now discuss the fundamentals of the theory of � -D systems

E � � � D � �fP �J 


that are

C linear, meaning g � N � � N � � J 
ih �kj �l � � 
 m ' gj N � 	 l N � � J m ;
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We now discuss the fundamentals of the theory of � -D systems

E � � � D � �fP �J 


that are

C linear, meaning g � N � � N � � J 
ih �kj �l � � 
 m ' gj N � 	 l N � � J m ;

C shift-invariant, meaning g � N � J 
ih �� � � D 
 m ' gon ^ N � J m ,
where n ^ denotes the� � shift: for� � �� � �� � �� � � �� D 
 � � D �

� n ^ p 
 ���q � ��q � �� � � ��q D 
? � p ��q � 	 � � ��q � 	 � � �� � � ���q D 	 � D 
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We now discuss the fundamentals of the theory of � -D systems

E � � � D � �fP �J 


that are

C linear, meaning g � N � � N � � J 
ih �kj �l � � 
 m ' gj N � 	 l N � � J m ;

C shift-invariant, meaning g � N � J 
ih �� � � D 
 m ' gon ^ N � J m ,
where n ^ denotes the� � shift: for� � �� � �� � �� � � �� D 
 � � D �

� n ^ p 
 ���q � ��q � �� � � ��q D 
? � p ��q � 	 � � ��q � 	 � � �� � � ���q D 	 � D 


C differential, meaning J consists of the solutions of a system of PDE’s.
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� -D systems described by PDE’s

F � � D � � independent variables,

H � �eP �sr dependent variables,

J � the solutions of a linear constant coefficient system of PDE’s.
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� -D systems described by PDE’s

F � � D � � independent variables,

H � �eP �sr dependent variables,

J � the solutions of a linear constant coefficient system of PDE’s.

Let # � �et uP gv � �    � v D m � and consider
# � [[ ^ w �    � [[ ^ x 
 N � � �zy 


Define its behavior

J � W N �{ | � � D � �P 
 X �zy 
 holds Y =} ~� � # � [[^ w �    � [[^ x 
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� -D systems described by PDE’s

F � � D � � independent variables,

H � �eP �sr dependent variables,

J � the solutions of a linear constant coefficient system of PDE’s.

Let # � �et uP gv � �    � v D m � and consider
# � [[ ^ w �    � [[ ^ x 
 N � � �zy 


Define its behavior

J � W N �{ | � � D � �P 
 X �zy 
 holds Y =} ~� � # � [[^ w �    � [[^ x 
 


{ | � � D � �eP 
 mainly for convenience, but important for some results.

Identical theory for �q � � D � �P 
 .
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Polynomial matrix notation for PDE’s:

PDE:

N � �� � �� � 
 	 ���
�� �� N � �� � �� � 
 	 �
�� � N � �� � �� � 
 � �

N � �� � �� � 
 	 �;
�� ; � N � �� � �� � 
 	 �a
�� a � N � �� � �� � 
 � �

�

Notation:
v ��� �

�� � v � � �
�� �

N ���
�

N �
N �� �

� # � v � � v � 
 ���
�

4 	 v �� v �

v ; � 4 	 v a �
�

�
�

# � �
�� � � �
�� � 
 N � �
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Examples:

Diffusion eq’n, Wave eq’n, Co-axial cable

Maxwell’s equations
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NOMENCLATURE

� P D? the set of such systems with � in-,r dependent variables

� t ? with any - finite - number of (in)dependent variables

Elements of � t ? linear differential systems

# � [[^ w �    � [[^ x 
 N � � : a kernel representation of the

corresponding E � � t orJ � � t
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First principles models � latent variables. In the case of systems described

by linear constant coefficient PDE’s: �

# � �
�� � �    � �
�� D 
 N � � � �
�� � �    � �
�� D 
V

with # � � � �et ut gv m .
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CONTROLLABILITY and OBSERVABILITY

Lecture 9 Controllability and observability



Controllability ? �

system trajectories must be ‘patch-able’, ‘concatenable’.

Case � � 4 � F � � , any N � � N � � J concatenable:

w

1

w

w

w

w

2

1

0

2

T0

time

W

time

W W
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General � � F � � D .

Consider any two elements N � � N � of the behavior and any two open sets with

non-overlapping closure � � � � � � � D?

1 2

2
1

O O

ww
� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �

� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �
� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �
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Controllability = patchability:
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Controllability ofJ :=

for any � � � � � � � D � open, non-overlapping closure,

any N � � N � � J ,

there is a sol’n N � J that ‘patches’ N � on � � with N � on � � .
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Consider the system E � �GF �IH �7 H � �J 
�

Each element of the behaviorJ hence consists of

a pair of trajectories � N � � N � 
 .

Lecture 9 Controllability and observability



Consider the system E � �GF �IH �7 H � �J 
�

Each element of the behaviorJ hence consists of

a pair of trajectories � N � � N � 
 .

to−be−deduced

2SYSTEM1 ww

variables
observed

variables

£ ¤�¥ observed; £ ¦ ¥ to-be-deduced.
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N � is said to be

§¨ ©ªobservable from N �

if � � N � � Nq � 
 � J , and � N � � Nq q � 
 � J 
 ' � Nq � � Nq q � 
 �

i.e., if onJ , there exists a map N �« A N � .
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N � is said to be

§¨ ©ªobservable from N �

if � � N � � Nq � 
 � J , and � N � � Nq q � 
 � J 
 ' � Nq � � Nq q � 
 �

i.e., if onJ , there exists a map N �« A N � .

We are especially interested in the case

observed = manifest

to-be-deduced = latent
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N � is said to be

§¨ ©ªobservable from N �

if � � N � � Nq � 
 � J , and � N � � Nq q � 
 � J 
 ' � Nq � � Nq q � 
 �

i.e., if onJ , there exists a map N �« A N � .

We are especially interested in the case

observed = manifest

to-be-deduced = latent

Def’s for ODE’s, PDE’s, difference eq’ns, exactly the same!
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3 THEOREMS
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Theorem 1 Algebraization:

� P D �¬ �­ A sub-modules of �eP gv � �    � v D m
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Theorem 1 Algebraization:

� P D �¬ �­ A sub-modules of �eP gv � �    � v D m

Theorem 2 Elimination:
�J S TU U � � t D 
 ' �J � � t D )
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Theorem 1 Algebraization:

� P D �¬ �­ A sub-modules of �eP gv � �    � v D m

Theorem 2 Elimination:
�J S TU U � � t D 
 ' �J � � t D )

Theorem 3 Image representation:

Controllabilility � ( 0 Image representation)
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Algebraization of � t

Note that

# � �
�� � �    � �
�� D 
 N � �

and

® � �
�� � �    � �
�� D 
 # � �
�� � �    � �
�� D 
 N � �

have the same behavior if the polynomial matrix ® is uni-modular (i.e., when

¯ ~° � ® 
 is a non-zero constant).
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Algebraization of � t

Note that

# � �
�� � �    � �
�� D 
 N � �

and

® � �
�� � �    � �
�� D 
 # � �
�� � �    � �
�� D 
 N � �

have the same behavior if the polynomial matrix ® is uni-modular (i.e., when

¯ ~° � ® 
 is a non-zero constant).

' # definesJ � } ~� � # � [[ ^ w �    � [[^ x 
 
 , but not vice-versa!
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¿¿ 0 ‘intrinsic’ characterization ofJ � � P D ` `
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¿¿ 0 ‘intrinsic’ characterization ofJ � � P D ` `

Define the annihilators ofJ � � P D by
± ² ? � Wo³ � �´P gv � �    � v D m X ³¶µ � �

�� � �    � �
�� D 
J � � Y�

± ² is clearly an � gv � �    � v D m sub-module of � P gv � �    � v D m�
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¿¿ 0 ‘intrinsic’ characterization ofJ � � P D ` `

Define the annihilators ofJ � � P D by
± ² ? � Wo³ � �´P gv � �    � v D m X ³¶µ � �

�� � �    � �
�� D 
J � � Y�

± ² is clearly an � gv � �    � v D m sub-module of � P gv � �    � v D m�

Let · # ¸ denote the sub-module of �fP gv � �    � v D m spanned by the transposes

of the rows of # . Obviously · # ¸ L ± ² . But, indeed:
± ² � · # ¸¹
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¿¿ 0 ‘intrinsic’ characterization ofJ � � P D ` `

Define the annihilators ofJ � � P D by
± ² ? � Wo³ � �´P gv � �    � v D m X ³¶µ � �

�� � �    � �
�� D 
J � � Y�

± ² is clearly an � gv � �    � v D m sub-module of � P gv � �    � v D m�

Let · # ¸ denote the sub-module of �fP gv � �    � v D m spanned by the transposes

of the rows of # . Obviously · # ¸ L ± ² . But, indeed:
± ² � · # ¸¹

Note: Depends on{ | ; �@º 
 false for compact support soln’s:

for any » ¼� � � » � [[^ w �    � [[^ x 
 N � � has N � �
as its only compact support sol’n.
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Theorem 1 (Algebraic structure of � P D ):
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Theorem 1 (Algebraic structure of � P D ):
C ± ² � · # ¸¹

In particular p � [[^ w �    � [[ ^ x 
 N � � is a consequence of

# � [[^ w �    � [[^ x 
 N � � if and only if p � · # ¸ .
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Theorem 1 (Algebraic structure of � P D ):
C ± ² � · # ¸¹

In particular p � [[^ w �    � [[ ^ x 
 N � � is a consequence of

# � [[^ w �    � [[^ x 
 N � � if and only if p � · # ¸ .

C � P D � ¬ �­ A sub-modules of �fP gv � �    � v D m
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Theorem 1 (Algebraic structure of � P D ):
C ± ² � · # ¸¹

In particular p � [[^ w �    � [[ ^ x 
 N � � is a consequence of

# � [[^ w �    � [[^ x 
 N � � if and only if p � · # ¸ .

C � P D � ¬ �­ A sub-modules of �fP gv � �    � v D m

C

# � � �
�� � �    � �
�� D 
 N � � and # � � �
�� � �    � �
�� D 
 N � �

define the same system iff

· # � ¸ � · # � ¸ �
Lecture 9 3 theorems



Elimination

The full behavior of # � [[ ^ w �    � [[ ^ x 
 N � � � [[ ^ w �    � [[ ^ x 
V �

J S TU U � W � N �V 
 �{ | � � D � �P Z½ 
 X

# � [[^ w �    � [[^ x 
 N � � � [[^ w �    � [[^ x 
V Y

belongs to � P Z½D , by definition.
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Elimination

The full behavior of # � [[ ^ w �    � [[ ^ x 
 N � � � [[ ^ w �    � [[ ^ x 
V �

J S TU U � W � N �V 
 �{ | � � D � �P Z½ 
 X

# � [[^ w �    � [[^ x 
 N � � � [[^ w �    � [[^ x 
V Y

belongs to � P Z½D , by definition.

Its manifest behavior equals

J � W N �{ | � � D � �P 
 X

0 V such that # � [[ ^ w �    � [[ ^ x 
 N � � � [[ ^ w �    � [[ ^ x 
V Y�
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DoesJ belong to � P D ?

Theorem 2 (Elimination): It does!
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DoesJ belong to � P D ?

Theorem 2 (Elimination): It does!

Proof: The theorem is a straightforward consequence of the ‘fundamental

principle’: the equation

B � �
�� � �    � �
�� D 
 p � ¾

B � � D w u D\ gv � �    � v D m � ¾ �{ | � � D � � D w 
 given, p �{ | � � D � � D\ 


unknown, is solvable if and only if for³ � � D w gv � �    � v D m

�³ µ B � � 
 ' �³ µ � �
�� � �    � �
�� D 
 ¾ � � 
�
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Remarks:
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Remarks:
C Number of equations for � � 4 (constant coeff. lin. ODE’s)

� number of variables.

Elimination ' fewer, higher order equations.
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Remarks:
C Number of equations for � � 4 (constant coeff. lin. ODE’s)

� number of variables.

Elimination ' fewer, higher order equations.

C 0 effective computer algebra/Gröbner bases algorithms for elimination
� # � � 
« A #q

Lecture 9 3 theorems



Remarks:
C Number of equations for � � 4 (constant coeff. lin. ODE’s)

� number of variables.

Elimination ' fewer, higher order equations.

C 0 effective computer algebra/Gröbner bases algorithms for elimination
� # � � 
« A #q

C Not generalizable to smooth nonlinear systems.

Why are differential equations models so prevalent?
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Examples

1.

��
�� � � � � � � � ���
�� � � �

describes indeed the behavior of � in the coax.
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2. Which PDE’s describe (6 �2 3 �2 : ) in Maxwell’s equations ?

Eliminate
2 8 from Maxwell’s equations �

1  2 3 � 4
5 � 6 �

5 � �
�� 1  2 3 	 1  2 : � � �

5 � �"�
�� �

2 3 	 5 � 9� 1 7 17 2 3 	 �
��

2 : � � �

Elimination theorem '

this exercise is exact & successful (+ gives algorithm).
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It follows from all this that � t D has very nice properties. It is closed under:
� Intersection: �J � �J � � � P D 
 ' �J ��¿ J � � � P D 
 .

� Addition: �J � �J � � � P D 
 ' �J � 	 J � � � P D 
 .

� Projection: �J � � P w ZP \D 
 ' �GÀ Á wJ � � P wD 
 .

� Action of a linear differential operator:

�J � � P wD �RÂ � �P \ uP w gv � �    � v D m 


' �Â � [[ ^ w �    � [[ ^ x 
J � � P \ D 
�

� Inverse image of a linear differential operator:

�J � � P \ D �RÂ � �P \ uP w gv � �    � v D m 


' �Â � [[ ^ w �    � [[ ^ x 
 
Ã �J � � P wD 
�
Lecture 9 3 theorems



Image representations

Representations of � P D :

# � [[^ w �    � [[^ x 
 N � �

called a ‘kernel’ representation ofJ � } ~� � # �ÅÄÄ _ 
 
 ;
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Image representations

Representations of � P D :

# � [[^ w �    � [[^ x 
 N � �

called a ‘kernel’ representation ofJ � } ~� � # �ÅÄÄ _ 
 
 ;

# � [[^ w �    � [[^ x 
 N � � � [[^ w �    � [[^ x 
V

called a ‘latent variable’ representation of the manifest behavior

J � � # � [[^ w �    � [[ ^ x 
 
Ã � � � [[^ w �    � [[^ x 
{ | � � D � � ½ 
 .
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Missing link: N � � � [[ ^ w �    � [[ ^ x 
V

called an ‘image’ representation ofJ � ÆÇ � � � [[ ^ w �    � [[ ^ x 
 
�
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Missing link: N � � � [[ ^ w �    � [[ ^ x 
V

called an ‘image’ representation ofJ � ÆÇ � � � [[ ^ w �    � [[ ^ x 
 
�

Elimination theorem ' every image is also a kernel.
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Missing link: N � � � [[ ^ w �    � [[ ^ x 
V

called an ‘image’ representation ofJ � ÆÇ � � � [[ ^ w �    � [[ ^ x 
 
�

Elimination theorem ' every image is also a kernel.

¿¿ Which kernels are also images ??
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Theorem 3 (Controllability and image representation):

The following are equivalent forJ � � P D?

1. J is controllable,

2. J admits an image representation,

3. for any È � �<P gv � �    � v D m �

Èµ g [[^ w �    � [[^ x mJ equals� or all of{ | � � D � � 
 ,
4. �P gv � �    � v D m O ± ² is torsion free,

etc.
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Are Maxwell’s equations controllable ?

The following equations in the scalar potential > ? �7 � ; A � and the vector

potential

2 B ? �7 �; A �; , generate exactly the solutions to Maxwell’s

equations:

2 3 � � �
��

2 B� 1 > �2 8 � 17 2 B �2 : � 5 � ���
�� �

2 B� 5 � 9� 1 � 2 B 	 5 � 9� 1 � 1  2 B 
 	 5 � �
�� 1 > �

6 � � 5 � �
�� 1  2 B� 5 � 1 � >�

Proves controllability. Illustrates the interesting connection

controllability � 0 potential!
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Remarks:
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Remarks:
C Algorithm: # + syzygies + Gröbner basis

' numerical test for on coefficients of # .
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Remarks:
C Algorithm: # + syzygies + Gröbner basis

' numerical test for on coefficients of # .

C In the 1-D case there exists always an observable image representationÉ� flatness.

Not so for general � -D systems: potentials are then hidden variables.
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Remarks:
C Algorithm: # + syzygies + Gröbner basis

' numerical test for on coefficients of # .

C In the 1-D case there exists always an observable image representationÉ� flatness.

Not so for general � -D systems: potentials are then hidden variables.

C 0 partial results for nonlinear systems.
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Remarks:
C Algorithm: # + syzygies + Gröbner basis

' numerical test for on coefficients of # .

C In the 1-D case there exists always an observable image representationÉ� flatness.

Not so for general � -D systems: potentials are then hidden variables.

C 0 partial results for nonlinear systems.

C Kalman controllability is a straightforward special case.
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Not all controllable systems admit an observable image representation.

For � � 4 , they do. For � ¸ 4 , exceptionally so.
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Not all controllable systems admit an observable image representation.

For � � 4 , they do. For � ¸ 4 , exceptionally so.

Observability means: � � [[^ w �    � [[^ x 
 is injective:
V can be deduced from N in

# � �
�� � �    � �
�� D 
 N � � � �
�� � �    � �
�� D 
V �

0 equivalent #q � [[ ^ w �    � [[ ^ x 
 N � � �ÊV � �q � [[ ^ w �    � [[ ^ x 
 N�
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Not all controllable systems admit an observable image representation.

For � � 4 , they do. For � ¸ 4 , exceptionally so.

Observability means: � � [[^ w �    � [[^ x 
 is injective:
V can be deduced from N in

# � �
�� � �    � �
�� D 
 N � � � �
�� � �    � �
�� D 
V �

0 equivalent #q � [[ ^ w �    � [[ ^ x 
 N � � �ÊV � �q � [[ ^ w �    � [[ ^ x 
 N�

The latent variable in an image representationV may be ‘hidden’.

Example: Maxwell’s equations do not allow a potential

representation that is observable.

Lecture 9 3 theorems



DISSIPATIVE DISTRIBUTED SYSTEMS

Lecture 9 Dissipative distributed systems



A dissipative system absorbs supply, ‘globally’ over time and space.

¿¿ Can this be expressed ‘locally’, as

rate of change in storage + spatial flux � supply rate
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A dissipative system absorbs supply, ‘globally’ over time and space.

¿¿ Can this be expressed ‘locally’, as

rate of change in storage + spatial flux � supply rate

STORAGE

FLUX

SUPPLY

DISSIPATION

rate of change in storage + spatial flux

= supply rate + (non-negative) dissipation rate ??
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Multi-index notation:

� � �� � �� � � �� D 
 �

Ë � � Ë � �� � � � Ë D 
 �ÊV � �V � �� � � �V D 
 �

v � � v � �    � v D 
 � Ì � � Ì � �� � � � Ì D 
 � Í � � Í � �� � � � Í D 
 �ÄÄ ^ � � [[ ^ w �� � � � [[ ^ x 
 � ÄÏÎÄ ^Î � � [Î w[^Î ww �� � � � [Î x[ ^Î xx 
 �

Ð� � Ð� � Ð� � � � � Ð� D �

# � ÄÄ ^ 
 N � � for # � [[^ w �    � [[^ x 
 N � � �

N � � � ÄÄ ^ 
V for N � � � [[^ w �    � [[^ x 
V �
etc.
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QDF’s

The quadratic map in N and its derivatives, defined by

N « A Ñ Ò½ � Ð Ñ
Ð� Ñ N 
µ Ó Ñ Ò½ � Ð½
Ð� ½ N 


is called quadratic differential form (QDF) on{ | � � D � �P 
 .

Ó Ñ Ò½ � �P uP c WLOG: Ó Ñ Ò½ � Óµ ½ Ò Ñ .

Introduce the Ô � -variable polynomial matrix Ó

Ó � Ì � Í 
 � Ñ Ò½ Ó Ñ Ò½ Ì Ñ Í½ �
Denote the QDF as ÕÖ .
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We consider only controllable linear differential systems and supply rates that

are QDF’s.

Definition:J � � P D , controllable, is said to be dissipative

with respect to the supply rate Õ Ö (a QDF) if
× Ø x ÕÖ � N 
 Ð� Ù �

for all N � J of compact support, i.e., for all N � J ¿ � .
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We consider only controllable linear differential systems and supply rates that

are QDF’s.

Definition:J � � P D , controllable, is said to be dissipative

with respect to the supply rate Õ Ö (a QDF) if
× Ø x ÕÖ � N 
 Ð� Ù �

for all N � J of compact support, i.e., for all N � J ¿ � .

If equality ‘conservative’.
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Assume � �= : independent variables� � ¾ �sÚ c � ? space and time.

Idea: ÕÖ � N 
 �� � ¾ �sÚ c � 
 Ð� Ð ¾ Ð Ú Ð� ?

rate of ‘energy’ delivered to the system.

Dissipativity? �
Ø � ØRÛ ÕÖ � N 
 Ð� Ð ¾ Ð Ú 
 Ð� Ù � for all N � J ¿ � �

A dissipative system absorbs net energy.
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Example: Maxwell’s eq’ns:

dissipative (in fact, conservative) w.r.t. the QDF� 2 3  2 : .

In other words, if
2 3 �2 : is of compact support and satisfies

5 � �
�� 1  2 3 	 1  2 : � � �

5 � �"�
�� �

2 3 	 5 � 9� 1 7 17 2 3 	 �
��

2 : � � �

then

Ø � ØÜÛ �� 2 3  2 : 
 Ð� Ð ¾ Ð Ú 
 Ð� � � �
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Example: Maxwell’s eq’ns:

dissipative (in fact, conservative) w.r.t. the QDF� 2 3  2 : .

In other words, if
2 3 �2 : is of compact support and satisfies

5 � �
�� 1  2 3 	 1  2 : � � �

5 � �"�
�� �

2 3 	 5 � 9� 1 7 17 2 3 	 �
��

2 : � � �

then

Ø � ØÜÛ �� 2 3  2 : 
 Ð� Ð ¾ Ð Ú 
 Ð� � � �

Can this be reinterpreted as: As the system evolves,

energy is locally stored, and redistributed over time and space?
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First principles motivating example: Heat diffusion

x

q(x,t)

T(x,t)

The PDE
�

�� � � ���
�� � � 	 


describes the evolution of the temperature � �� �� 

(� � � position,� � � time) in a medium and the heat 
 �� � � 
 supplied

to / radiated away from it.
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For all sol’ns � � 
 with � �� �� 
 � constant ¸ � (and therefore 
 � � ) outside a

compact set, there holds:

First law:

× Ø\ 
 �� �� 
 Ð� Ð� � � �

Second law:

× Ø\ 
 �� �� 
� �� �� 
 Ð� Ð� � � �
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For all sol’ns � � 
 with � �� �� 
 � constant ¸ � (and therefore 
 � � ) outside a

compact set, there holds:

First law:

× Ø\ 
 �� �� 
 Ð� Ð� � � �

Second law:

× Ø\ 
 �� �� 
� �� �� 
 Ð� Ð� � � �

'

max^ Ò_ W � �� �� 
 X 
 �� �� 
 Ù � Y Ù min^ Ò_ W � �� �� 
 X 
 �� �� 
 � � Y�

It is impossible to transport heat from a ‘cold source’ to a ‘hot sink’.
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Can these ‘global’ versions be expressed as ‘local’ laws?

FLUX

SUPPLY

STORAGE

FLUX

rate of change in storage + spatial flux � supply rate
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Can these ‘global’ versions be expressed as ‘local’ laws?

FLUX

SUPPLY

STORAGE

FLUX

rate of change in storage + spatial flux � supply rate

To be invented:

an ‘extensive’ quantity for the first law: internal energy

an ‘extensive’ quantity for the second law: entropy
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Define the following variables:

3 � � ? the stored energy density,
Ý � Þß � � 
 ? the entropy density,

à á �� �
�� � ? the energy flux �

à â �� 4
�

�
�� � ? the entropy flux,

ã â � � 4
�

�
�� � 
� ? the rate of entropy production�
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Local versions of the first and second law:

rate of change in storage + spatial flux � supply rate

Conservation of energy:

�
�� 3 	 �
�� à á � 
 �

Entropy production:

�
�� Ý 	 �
�� à â � 
� 	 ã â� Since � ã â Ù � 
 '

�
�� Ý 	 �
�� à â Ù 
� �

Our problem:

theory behind these ad hoc constructions of 3 � à á and Ý � à â .
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Assume that a system is ‘globally’ dissipative.

¿¿ Can this dissipativity be expressed through a ‘local’ law??

Such that in every spatial domain there holds:

ÄÄ _ Storage + Spatial flux � Supply.

STORAGE

FLUX

SUPPLY

DISSIPATION

Supply = Stored + radiated + dissipated.
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Main Theorem:
J � � P D , controllable, is dissipative w.r.t. the supply rate Õ Ö iff

0 an image representation N � � � ÄÄ ^ 
V ofJ ,

an �� vector of QDF’s Õä � � Õä w �� � � � Õä x 


on{ | � � D � �<åæç è½ é 
 , called the flux,

such that the local dissipation law
1  Õä �V 
 � ÕÖ � N 


holds for all � N �V 
 that satisfy N � � � ÄÄ ^ 
V �

As usual 1  Õä ? � [[ ^ w Õä w 	    	 [[ ^ x Õä x�

� the QDF induced by � Ì 	 Í 
µ ê � Ì � Í 
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Assume � �= : independent variables� � ¾ �sÚ c � ? space and time.

LetJ � � Pa be controllable. Then

Ø � ØÜÛ ÕÖ � N 
 Ð� Ð ¾ Ð Ú 
 Ð� Ù � for all N � J ¿ � �

if and only if
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Assume � �= : independent variables� � ¾ �sÚ c � ? space and time.

LetJ � � Pa be controllable. Then

Ø � ØÜÛ ÕÖ � N 
 Ð� Ð ¾ Ð Ú 
 Ð� Ù � for all N � J ¿ � �

if and only if

0 an image representation N � � � [[ ^ � [[ ë � [[ì � [[_ 
V ofJ ,

and QDF’s Ý , the storage, and

à ^ � à ë � à ì � the spatial flux,

such that the local dissipation law

[[_ Ý �V 
 	 [[^ à ^ �V 
 	 [[ ë à ë �V 
 	 [[ì à ì �V 
 � ÕÖ � N 


holds for all � N �V 
 that satisfy N � � � [[ ^ � [[ ë � [[ì � [[_ 
V �
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Note: the local law involves

(possibly unobservable, - i.e., hidden!)

latent variables (the í ’s).
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EXAMPLE: ENERGY STORED IN EM FIELDS

Maxwell’s equations are dissipative (in fact, conservative) with respect to

� 2 3  2 : � the rate of energy supplied.

Introduce the stored energy density, Ý , and

the energy flux density (the Poynting vector),

2 à ,
Ý �2 3 �2 8 
? � 5 �Ô

2 3  2 3 	 5 � 9�
Ô

2 8  2 8 �

2 à �2 3 �2 8 
? � 5 � 9� 2 37 2 8 �
The following is a local conservation law for Maxwell’s equations:

[[_ Ý �2 3 �2 8 
 	 1  2 à �2 3 �2 8 
 ��� 2 3  2 :�

Local version involves

2 8 � unobservable from
2 3 and

2 : ,

the variables in the rate of energy supplied.
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Schematic of the proof

Using controllability and image representations, we may assume WLOG:
J � { | � � D � �P 


Lecture 9 Dissipative distributed systems



Global dissipativity? � Ø x ÕÖ � N 
 Ù � for all N � �

î (Parseval)

Ó �� ïð � ïð 
 Ù � for allð � � D
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Ó �� ïð � ïð 
 Ù � for allð � � D

î (Factorization equation)
0 ã ? Ó �� v � v 
 � ãµ �� v 
 ã � v 
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0 ã ? Ó �� v � v 
 � ãµ �� v 
 ã � v 


î (easy)

0 ê ? � Ì 	 Í 
µ ê � Ì � Í 
 � Ó � Ì � Í 
� ãµ � Ì 
 ã � Í 
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0 ê ? � Ì 	 Í 
µ ê � Ì � Í 
 � Ó � Ì � Í 
� ãµ � Ì 
 ã � Í 


î (clearly)

Local diss.? � 0 ê ? 1  Õä � N 
 � ÕÖ � N 
 for all N �{ |
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Global dissipativity? � Ø x ÕÖ � N 
 Ù � for all N � �

î (Parseval)

Ó �� ïð � ïð 
 Ù � for allð � � D

î (Factorization equation)
0 ã ? Ó �� v � v 
 � ãµ �� v 
 ã � v 


î (easy)

0 ê ? � Ì 	 Í 
µ ê � Ì � Í 
 � Ó � Ì � Í 
� ãµ � Ì 
 ã � Í 


î (clearly)

Local diss.? � 0 ê ? 1  Õä � N 
 � ÕÖ � N 
 for all N �{ |
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THE FACTORIZATION EQUATION
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Consider

ñµ �� v 
 ñ � v 
 � ò � v 


with ò � �bt ut gv m given, and ñ the unknown. Solvable??
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Consider

ñµ �� v 
 ñ � v 
 � ò � v 


with ò � �bt ut gv m given, and ñ the unknown. Solvable??

É�

ñµ � v 
 ñ � v 
 � ò � v 


with ò � �ót ut gv m given, and ñ the unknown.

Under what conditions on ò does there exist a solution ñ ?
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É�

ñµ � v 
 ñ � v 
 � ò � v 


with ò � �ót ut gv m given, and ñ the unknown.

Under what conditions on ò does there exist a solution ñ ?

Scalar case: !! write the real polynomial ò as a sum of squares

ò � � � � 	 � �� 	    	 � � ô .

Lecture 9 Factorization of polynomial matrices



Consider

ñµ �� v 
 ñ � v 
 � ò � v 


with ò � �bt ut gv m given, and ñ the unknown. Solvable??

É�

ñµ � v 
 ñ � v 
 � ò � v 


with ò � �ót ut gv m given, and ñ the unknown.

Under what conditions on ò does there exist a solution ñ ?

Scalar case: !! write the real polynomial ò as a sum of squares

ò � � � � 	 � �� 	    	 � � ô .

Lecture 9 Factorization of polynomial matrices



ñµ � v 
 ñ � v 
 � ò � v 
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ñµ � v 
 ñ � v 
 � ò � v 


For � � 4 and ò � � gv m , solvable (for ñ � � � gv m !) iff

ò � j 
 Ù � for allj � ��
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ñµ � v 
 ñ � v 
 � ò � v 


For � � 4 , and ò � �et ut gv m , it is well-known (but non-trivial) that this

factorization equation is solvable (with ñ � � t ut gv m !) iff

ò � j 
 � òµ �kj 
 Ù � for allj � ��
Lecture 9 Factorization of polynomial matrices



ñµ � v 
 ñ � v 
 � ò � v 


For � ¸ 4 , and under the obvious positivity req., this eq’n can nevertheless in

general not be solved over the polynomial matrices, for ñ � � t ut gv m ,
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ñµ � v 
 ñ � v 
 � ò � v 


For � ¸ 4 , and under the obvious positivity req., this eq’n can nevertheless in

general not be solved over the polynomial matrices, for ñ � � t ut gv m ,
but it can over the matrices of rational f’ns, i.e., for ñ � � t ut � v 
 .
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ñµ � v 
 ñ � v 
 � ò � v 


For � � 4 and ò � � gv m , solvable (for ñ � � � gv m !) iff

ò � j 
 Ù � for allj � ��

For � � 4 , and ò � �et ut gv m , it is well-known (but non-trivial) that this

factorization equation is solvable (with ñ � � t ut gv m !) iff

ò � j 
 � òµ �kj 
 Ù � for allj � ��

For � ¸ 4 , and under the obvious positivity req., this eq’n can nevertheless in

general not be solved over the polynomial matrices, for ñ � � t ut gv m ,
but it can over the matrices of rational f’ns, i.e., for ñ � � t ut � v 
 .
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This factorizability is a simple consequence of Hilbert’s 17-th pbm!

Solve » � »� � 	 »�� 	    	 »� ô � » given
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This factorizability is a simple consequence of Hilbert’s 17-th pbm!

Solve » � »� � 	 »�� 	    	 »� ô � » given

A polynomial » � � gv � �    � v D m � with » �kj � �� � � � j D 
 Ù � for all

�kj � �� � � � j D 
 � � D can in general not be expressed as a sum of squares of

polynomials, with the »õ ’s � � gv � �    � v D m .
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This factorizability is a simple consequence of Hilbert’s 17-th pbm!

Solve » � »� � 	 »�� 	    	 »� ô � » given

A polynomial » � � gv � �    � v D m � with » �kj � �� � � � j D 
 Ù � for all

�kj � �� � � � j D 
 � � D can in general not be expressed as a sum of squares of

polynomials, with the »õ ’s � � gv � �    � v D m .

But a rational function (and hence a polynomial)

» � � � v � �    � v D 
 � with » � j � �� � � � j D 
 Ù � � for all

�kj � �� � � � j D 
 � � D , can be expressed as a sum of squares of ( ö � Ô D ) rational

functions, with the »õ ’s � � � v � �    � v D 
 .
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' solvability of the factorization eq’n

Ó �� ïð � ïð 
 Ù � for allð � � D

î (Factorization equation)

0 ã ? Ó �� v � v 
 � ãµ �� v 
 ã � v 


over the rational functions,

i.e., with ã a matrix with elements in � � v � �    � v D 
�
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' solvability of the factorization eq’n

Ó �� ïð � ïð 
 Ù � for allð � � D

î (Factorization equation)

0 ã ? Ó �� v � v 
 � ãµ �� v 
 ã � v 


over the rational functions,

i.e., with ã a matrix with elements in � � v � �    � v D 
�

The need to introduce

rational functions in this factorization

an image representation ofJ to reduce the pbm to{ |

are the causes of the unavoidable presence of (possibly unobservable, i.e.,

‘hidden’) latent variables in the local dissipation law.
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Non-uniqueness of the storage function stems from 3 sources
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Non-uniqueness of the storage function stems from 3 sources
C The non-uniqueness of the latent variableV in various (non-observable) image

representations.

C The non-uniqueness of ã in the factorization equation

Ó �� v � v 
 � ãµ �� v 
 ã � v 


C The non-uniqueness (in the case � ¸ 4 ) of the solution ê of

� Ì 	 Í 
µ ê � Ì � Í 
 � Ó � Ì � Í 
� ãµ � Ì 
 ã � Í 


For conservative systems, Ó �� v � v 
 � � , whence ã � � ,

but, when � ¸ 4 , the third source of non-uniqueness remains, even when

working with a specific image representation.
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It seems to be a very real non-uniqueness, even for EM fields. Cfr.

The ambiguity of the field energy

... There are, in fact, an infinite number of different possibilities for ÷ [the internal

energy] and Ý [the flux] ... It is sometimes claimed that this problem can be

resolved using the theory of gravitation ... as yet nobody has done such a delicate

experiment ... So we will follow the rest of the world - besides, we believe that it

[our choice] is probably perfectly right.

The Feynman Lectures on Physics,

Volume II, page 27-6.
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RECAP
C Distributed systems described by PDE’s are of great importance in physical

applications
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RECAP
C Distributed systems described by PDE’s are of great importance in physical

applications

C Formalized as systems with a richer set of ‘independent’ variables, e.g., � D .

C Linear constant coefficient PDE’s� polynomials in many variables

C Controllability? � patchability

C 3 central theorems:

C C � P D � ¬ �� submodules of � g v � �    � v D m .

C C Elimination thm.

C C Controllability � 0 image representation
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C Dissipative distributed system? � dissipates supply integrated over time and

space
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C Dissipative distributed system? � dissipates supply integrated over time and

space

C For � P D � QDF’s: global dissipation � 0 a local storage function

C Local storage function involves hidden latent variables

C Proof É� Hilbert’s 17-th problem

Lecture 9 Recap



End of Lecture 9


