MATHEMATICAL MODELS of SYSTEMS

Jan C. Willems
ESAT-SCD (SISTA), University of Leuven, Belgium

Lecture 9

DISTRIBUTED SYSTEMS

THEME

Most physical systems are 'distributed', with independent variables time and space.

This explains the central role in physics of PDE's.

THEME

Most physical systems are 'distributed', with independent variables time and space.

This explains the central role in physics of PDE's.

How do we incorporate this structure in our framework?
What does, for example, controllability mean?
When are such systems dissipative? What is the storage function?

OUTLINE

- Examples
- Behavioral n-D systems
- Systems described by linear PDE's
- Controllability \& Observability
- 3 central theorems
- Dissipative distributed systems
- Factorization of polynomial matrices

EXAMPLES

1. Heat diffusion

2. Heat diffusion

The PDE

$$
\frac{\partial}{\partial t} T=\frac{\partial^{2}}{\partial x^{2}} T+q
$$

describes the evolution of the temperature $T(x, t)$ ($x \in \mathbb{R}$ position, $t \in \mathbb{R}$ time) in a medium and the heat $q(x, T)$ supplied to / radiated away from it.

1. Heat diffusion

The PDE

$$
\frac{\partial}{\partial t} T=\frac{\partial^{2}}{\partial x^{2}} T+q
$$

describes the evolution of the temperature $T(x, t)$ ($x \in \mathbb{R}$ position, $t \in \mathbb{R}$ time) in a medium and the heat $q(x, T)$ supplied to / radiated away from it.

We wish to develop a theory that treats x and t on the same footing.

2. Coaxial cable

!! Model the relation between the voltage $V(x, t)$ and the current $I(x, t)$ in a coaxial cable.

\sim The PDE's

$$
\begin{equation*}
\frac{\partial}{\partial x} V=-L_{0} \frac{\partial}{\partial t} I \tag{VI}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial}{\partial x} I=-C_{0} \frac{\partial}{\partial t} V \tag{IV}
\end{equation*}
$$

with L_{0} the inductance, and C_{0} the capacitance per unit length.

These imply the 'consequences'

$$
\begin{equation*}
\frac{\partial^{2}}{\partial x^{2}} V=L_{0} C_{0} \frac{\partial^{2}}{\partial t^{2}} V \tag{V}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial^{2}}{\partial x^{2}} I=L_{0} C_{0} \frac{\partial^{2}}{\partial t^{2}} I \tag{I}
\end{equation*}
$$

Wave eqn's.

Leads to the questions

- Are $(V),(I)$ really consequences of $(V I)+(I V)$?
- $(V)+(I) \Leftrightarrow(V I)+(I V)$?
- $(V)+(I)+(V I) \Leftrightarrow(V I)+(I V)$?
- Does (V) express all the constraints on V implied by $(V I)+(I V)$?
- Develop a calculus to obtain all consequences, to compute this elimination, to decide equivalence.

With boundary conditions (cable of length L):

!! Model the relation between the voltages V_{0}, V_{1} and the currents I_{0}, I_{1} at the ends of a uniform cable of length L.

With boundary conditions (cable of length L):
!! Model the relation between the voltages V_{0}, V_{1} and the currents I_{0}, I_{1} at the ends of a uniform cable of length L.

Introduce the voltage $V(x, t)$ and the current flow $I(x, t) 0 \leq x \leq L$ in the cable.

\sim The equations:

$$
\begin{aligned}
\frac{\partial}{\partial x} V & =-L_{0} \frac{\partial}{\partial t} I, \\
\frac{\partial}{\partial x} I & =-C_{0} \frac{\partial}{\partial t} V, \\
V_{0}(t) & =V(0, t), \\
V_{1}(t) & =V(L, t), \\
I_{0}(t) & =I(0, t), \\
I_{1}(t) & =-I(L, t) .
\end{aligned}
$$

Viewed as a black box

Relation between V_{0}, V_{1} :

$$
\frac{\partial^{2}}{\partial x^{2}} V=L_{0} C_{0} \frac{\partial^{2}}{\partial t^{2}} V, \quad V_{0}(\cdot)=V(0, \cdot), V_{1}(\cdot)=V(L, \cdot),
$$

and between I_{0}, I_{1} :

$$
\frac{\partial^{2}}{\partial x^{2}} I=L_{0} C_{0} \frac{\partial^{2}}{\partial t^{2}} I, \quad I_{0}(\cdot)=I(0, \cdot), I_{1}(\cdot)=I(L, \cdot)
$$

Relation between V_{0}, V_{1} :

$$
\frac{\partial^{2}}{\partial x^{2}} V=L_{0} C_{0} \frac{\partial^{2}}{\partial t^{2}} V, \quad V_{0}(\cdot)=V(0, \cdot), V_{1}(\cdot)=V(L, \cdot)
$$

and between I_{0}, I_{1} :

$$
\frac{\partial^{2}}{\partial x^{2}} I=L_{0} C_{0} \frac{\partial^{2}}{\partial t^{2}} I, \quad I_{0}(\cdot)=I(0, \cdot), I_{1}(\cdot)=I(L, \cdot)
$$

- Two terminal variables are 'free', the other two are 'bound', (free $=$ one voltage, one current, bound $=$ one voltage, one current), but there is no reasonable choice of inputs and outputs!
for 'off-the-shelf' modeling.
- What is the role of $V(x, t)$ and $I(x, t), \quad 0 \leq x \leq L$, in modeling the relation between $V_{0}, I_{0}, V_{1}, I_{1}$?

If terminated by an impedance \sim undesirable reflections. characteristic impedance $\quad R=\sqrt{\frac{L_{0}}{C_{0}}} \Rightarrow$ no reflections!

If terminated by an impedance \sim undesirable reflections. characteristic impedance $\quad R=\sqrt{\frac{L_{0}}{C_{0}}} \Rightarrow$ no reflections!

We view this termination as a behavioral controller. In this ex., the classical sensor-to-actuator feedback interpretation is an illusion.
\exists very many such examples of controllers.
3. Maxwell's eqn's

$$
\begin{aligned}
\nabla \cdot \vec{E} & =\frac{1}{\varepsilon_{0}} \rho \\
\nabla \times \vec{E} & =-\frac{\partial}{\partial t} \vec{B} \\
\nabla \cdot \vec{B} & =0 \\
c^{2} \nabla \times \vec{B} & =\frac{1}{\varepsilon_{0}} \vec{j}+\frac{\partial}{\partial t} \vec{E}
\end{aligned}
$$

Set of independent variables $=\mathbb{R} \times \mathbb{R}^{3}$ (time and space),
dependent variables $=(\vec{E}, \vec{B}, \vec{j}, \rho)$
(electric field, magnetic field, current density, charge density),
$\in \mathbb{R}^{\mathbf{3}} \times \mathbb{R}^{\mathbf{3}} \times \mathbb{R}^{\mathbf{3}} \times \mathbb{R}$,
the behavior $=$ set of solutions to these PDE's.

Note: 10 variables, 8 equations! $\Rightarrow \exists$ free variables.

Note: 10 variables, 8 equations! $\Rightarrow \exists$ free variables.

We wish to see this as an 4-D system, independent variables: time and space.

Note: 10 variables, 8 equations! $\Rightarrow \exists$ free variables.

We wish to see this as an 4-D system, independent variables: time and space.

Which PDE's describe (ρ, \vec{E}, \vec{j}) in Maxwell's equations?

Note: 10 variables, 8 equations! $\Rightarrow \exists$ free variables.

We wish to see this as an 4-D system, independent variables: time and space.

Which PDE's describe (ρ, \vec{E}, \vec{j}) in Maxwell's equations?
Eliminate \vec{B} from Maxwell's equations \leadsto

$$
\begin{aligned}
\nabla \cdot \vec{E} & =\frac{1}{\varepsilon_{0}} \rho, \\
\varepsilon_{0} \frac{\partial}{\partial t} \nabla \cdot \vec{E}+\nabla \cdot \vec{j} & =0, \\
\varepsilon_{0} \frac{\partial^{2}}{\partial t^{2}} \vec{E}+\varepsilon_{0} c^{2} \nabla \times \nabla \times \vec{E}+\frac{\partial}{\partial t} \vec{j} & =0 .
\end{aligned}
$$

Potential functions

The following equations in the

$$
\text { scalar potential } \phi: \mathbb{R} \times \mathbb{R}^{3} \rightarrow \mathbb{R}
$$

and the

$$
\text { vector potential } \vec{A}: \mathbb{R} \times \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}
$$

generate exactly the solutions to Maxwell's equations:

$$
\begin{aligned}
\vec{E} & =-\frac{\partial}{\partial t} \vec{A}-\nabla \phi \\
\vec{B} & =\nabla \times \vec{A} \\
\vec{j} & =\varepsilon_{0} \frac{\partial^{2}}{\partial t^{2}} \vec{A}-\varepsilon_{0} c^{2} \nabla^{2} \vec{A}+\varepsilon_{0} c^{2} \nabla(\nabla \cdot \vec{A})+\varepsilon_{0} \frac{\partial}{\partial t} \nabla \phi \\
\rho & =-\varepsilon_{0} \frac{\partial}{\partial t} \nabla \cdot \vec{A}-\varepsilon_{0} \nabla^{2} \phi
\end{aligned}
$$

Leads to the following questions:

Leads to the following questions:

- Is there a fundamental reason why the behavior of (ρ, \vec{E}, \vec{j}) is also described by a PDE? 'Elimination' issue.

Leads to the following questions:

- Is there a fundamental reason why the behavior of (ρ, \vec{E}, \vec{j})
is also described by a PDE? 'Elimination' issue.
- When and why is a representation in terms of a potential possible?
'Image representation' issue.

Leads to the following questions:

- Is there a fundamental reason why the behavior of (ρ, \vec{E}, \vec{j})
is also described by a PDE? 'Elimination' issue.
- When and why is a representation in terms of a potential possible?
'Image representation' issue.
- Derive algorithms for elimination, image representation.

BEHAVIORAL n-D SYSTEMS

$$
\underline{\text { A system }}=\Sigma=(\mathbb{T}, \mathbb{W}, \mathfrak{B})
$$

\mathbb{T}, the set of independent variables,
\mathbb{W}, the set of dependent variables,
$\mathfrak{B} \subseteq \mathbb{W}^{\mathbb{T}}:$ the behavior (= the admissible trajectories).

$$
\Sigma=(\mathbb{T}, \mathbb{W}, \mathfrak{B})
$$

For a trajectory $w: \mathbb{T} \rightarrow \mathbb{W}$, we thus have: $w \in \mathfrak{B}:$ the model allows the trajectory w, $w \notin \mathfrak{B}:$ the model forbids the trajectory w.

$$
\Sigma=(\mathbb{T}, \mathbb{W}, \mathfrak{B})
$$

For a trajectory $w: \mathbb{T} \rightarrow \mathbb{W}$, we thus have:
$w \in \mathfrak{B}:$ the model allows the trajectory w, $w \notin \mathfrak{B}:$ the model forbids the trajectory w.
$\mathbb{T}=\mathbb{R}$ (in continuous-time systems),
$\mathbb{T}=\mathbb{R}^{\mathrm{n}}$ (in n-D systems),
$\mathbb{W} \subseteq \mathbb{R}^{\mathrm{W}}$ (in lumped systems), or a finite set (in DES).

$$
\Sigma=(\mathbb{T}, \mathbb{W}, \mathfrak{B})
$$

For a trajectory $w: \mathbb{T} \rightarrow \mathbb{W}$, we thus have:
$w \in \mathfrak{B}:$ the model allows the trajectory w, $w \notin \mathfrak{B}:$ the model forbids the trajectory w.
$\mathbb{T}=\mathbb{R}$ (in continuous-time systems),
$\mathbb{T}=\mathbb{R}^{\mathrm{n}}$ (in n-D systems),
$\mathbb{W} \subseteq \mathbb{R}^{\mathrm{W}}$ (in lumped systems), or a finite set (in DES).

Emphasis today: $\quad \mathbb{T}=\mathbb{R}^{\mathrm{n}}, \quad \mathbb{W}=\mathbb{R}^{\mathrm{W}}$,
$\mathfrak{B}=$ solutions of system of linear constant coefficient PDE's.

First principles models invariably contain auxiliary variables, in addition to the variables the model aims at.
\sim Manifest and latent variables.

Manifest = the variables the model aims at,
Latent = auxiliary variables.

We want to capture this in a mathematical definition.

A system with latent variables $=\Sigma_{L}=\left(\mathbb{T}, \mathbb{W}, \mathbb{L}, \mathfrak{B}_{\text {full }}\right)$
\mathbb{T}, the set of independent variables.
\mathbb{W}, the set of manifest dependent variables
(= the variables that the model aims at).
\mathbb{L}, the set of latent dependent variables
(= the auxiliary modeling variables).
$\mathfrak{B}_{\text {full }} \subseteq(\mathbb{W} \times \mathbb{L})^{\mathbb{T}}:$ the full behavior
(= the pairs $(w, \ell): \mathbb{T} \rightarrow \mathbb{W} \times \mathbb{L}$ that the model declares possible).

The manifest behavior

The latent variable system $\Sigma_{L}=\left(\mathbb{T}, \mathbb{W}, \mathbb{L}, \mathfrak{B}_{\text {full }}\right)$ induces the manifest system $\Sigma=(\mathbb{T}, \mathbb{W}, \mathfrak{B})$, with manifest behavior

$$
\mathfrak{B}=\left\{w: \mathbb{T} \rightarrow \mathbb{W} \mid \exists \ell: \mathbb{T} \rightarrow \mathbb{L} \text { such that }(w, \ell) \in \mathfrak{B}_{\text {full }}\right\}
$$

The manifest behavior

The latent variable system $\Sigma_{L}=\left(\mathbb{T}, \mathbb{W}, \mathbb{L}, \mathfrak{B}_{\text {full }}\right)$ induces the manifest system $\Sigma=(\mathbb{T}, \mathbb{W}, \mathfrak{B})$, with manifest behavior

$$
\mathfrak{B}=\left\{w: \mathbb{T} \rightarrow \mathbb{W} \mid \exists \ell: \mathbb{T} \rightarrow \mathbb{L} \text { such that }(w, \ell) \in \mathfrak{B}_{\text {full }}\right\}
$$

In convenient equations for \mathfrak{B}, the latent variables are 'eliminated'.

Examples

1. Heat diffusion

Examples

1. Heat diffusion

$\mathbb{T}=\mathbb{R}^{2}$ (time and space);
$\mathbb{W}=\mathbb{R}_{+} \times \mathbb{R}$ (temperature and heat);
$\mathfrak{B}=$ sol'ns to the PDE, the diffusion eq'n.

2. Coaxial cable

Consider the voltage as the variable the model aims at.

2. Coaxial cable

Consider the voltage as the variable the model aims at.
$\mathbb{T}=\mathbb{R}^{2}$ (time and space);
$\mathbb{W}=\mathbb{R}$ (voltage);
$\mathbb{L}=\mathbb{R}$ (current);
$\mathfrak{B}_{\text {full }}=$ sol'ns to the PDE's;
$\mathfrak{B}=$ sol'ns to $\quad \frac{\partial^{2}}{\partial x^{2}} V=L_{0} C_{0} \frac{\partial^{2}}{\partial t^{2}} V ?$
3. Coaxial cable of length L.

Consider the terminal variables as the variables the model aims at.
3. Coaxial cable of length L.

Consider the terminal variables as the variables the model aims at.
$\mathbb{T}=\mathbb{R}$ (time);
$\mathbb{W}=\mathbb{R}^{4}$ (2 voltages, 2 currents),
latent variables $=V(x, \cdot), I(x, \cdot) ; 0 \leq x \leq L$
(voltage and current in the coax)
$\mathfrak{B}_{\text {full }}=$ sol'ns to the PDE's + boundary conditions.
$\mathfrak{B}=$ sol'ns to ... ?
4. Maxwell's eqn'ns
$\mathbb{T}=\mathbb{R}^{4}, \mathbb{W}=\mathbb{R}^{\mathbf{1 0}}, \mathfrak{B}=$ solutions to ME.
4. Maxwell's eqn'ns
$\mathbb{T}=\mathbb{R}^{4}, \mathbb{W}=\mathbb{R}^{10}, \mathfrak{B}=$ solutions to ME.

If we view the electrical variables as manifest, and \vec{B} as latent
$\mathbb{T}=\mathbb{R}^{4}, \mathbb{W}=\mathbb{R}^{7}, \mathbb{L}=\mathbb{R}^{3}$,
$\mathfrak{B}_{\text {full }}=$ solutions to $\mathrm{ME}, \mathfrak{B}=$ solutions to eliminated eq'ns?

4. Maxwell's eqn'ns

$\mathbb{T}=\mathbb{R}^{4}, \mathbb{W}=\mathbb{R}^{\mathbf{1 0}}, \mathfrak{B}=$ solutions to ME.

If we view the electrical variables as manifest, and \vec{B} as latent
$\mathbb{T}=\mathbb{R}^{4}, \mathbb{W}=\mathbb{R}^{7}, \mathbb{L}=\mathbb{R}^{3}$,
$\mathfrak{B}_{\text {full }}=$ solutions to $\mathrm{ME}, \mathfrak{B}=$ solutions to eliminated eq'ns?

If we consider the representation in terms of the potentials ϕ, \vec{A}
$\mathbb{T}=\mathbb{R}^{4}, \mathbb{W}=\mathbb{R}^{10}, \mathbb{L}=\mathbb{R}^{4}$,
$\mathfrak{B}_{\text {full }}=$ solutions to potential eqn's, $\mathfrak{B}=$ solutions to ME?

LINEAR DIFFERENTIAL SYSTEMS

We now discuss the fundamentals of the theory of n-D systems

$$
\Sigma=\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}^{\mathrm{w}}, \mathfrak{B}\right)
$$

that are

We now discuss the fundamentals of the theory of n-D systems

$$
\Sigma=\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}^{\mathrm{w}}, \mathfrak{B}\right)
$$

that are

- linear, meaning $\left[\left(w_{1}, w_{2} \in \mathfrak{B}\right) \wedge(\alpha, \beta \in \mathbb{R})\right] \Rightarrow\left[\alpha w_{1}+\beta w_{2} \in \mathfrak{B}\right]$;

We now discuss the fundamentals of the theory of n-D systems

$$
\Sigma=\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}^{\mathrm{w}}, \mathfrak{B}\right)
$$

that are

- linear, meaning $\left[\left(w_{1}, w_{2} \in \mathfrak{B}\right) \wedge(\alpha, \beta \in \mathbb{R})\right] \Rightarrow\left[\alpha w_{1}+\beta w_{2} \in \mathfrak{B}\right]$;
- shift-invariant, meaning $\left[(w \in \mathfrak{B}) \wedge\left(x \in \mathbb{R}^{\mathrm{n}}\right)\right] \Rightarrow\left[\sigma^{x} w \in \mathfrak{B}\right]$, where σ^{x} denotes the x-shift: for $x=\left(x_{1}, x_{2}, \ldots, x_{\mathrm{n}}\right) \in \mathbb{R}^{\mathrm{n}}$, $\left(\sigma^{x} f\right)\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{\mathrm{n}}^{\prime}\right):=f\left(x_{1}^{\prime}+x_{1}, x_{2}^{\prime}+x_{2}, \ldots, x_{\mathrm{n}}^{\prime}+x_{\mathrm{n}}\right)$

We now discuss the fundamentals of the theory of n-D systems

$$
\boldsymbol{\Sigma}=\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}^{\mathrm{w}}, \mathfrak{B}\right)
$$

that are

- linear, meaning $\left[\left(w_{1}, w_{2} \in \mathfrak{B}\right) \wedge(\alpha, \beta \in \mathbb{R})\right] \Rightarrow\left[\alpha w_{1}+\beta w_{2} \in \mathfrak{B}\right]$;
- shift-invariant, meaning $\left[(w \in \mathfrak{B}) \wedge\left(x \in \mathbb{R}^{\mathrm{n}}\right)\right] \Rightarrow\left[\sigma^{x} w \in \mathfrak{B}\right]$, where σ^{x} denotes the x-shift: for $x=\left(x_{1}, x_{2}, \ldots, x_{\mathrm{n}}\right) \in \mathbb{R}^{\mathrm{n}}$, $\left(\sigma^{x} f\right)\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots, x_{\mathrm{n}}^{\prime}\right):=f\left(x_{1}^{\prime}+x_{1}, x_{2}^{\prime}+x_{2}, \ldots, x_{\mathrm{n}}^{\prime}+x_{\mathrm{n}}\right)$
- differential, meaning \mathfrak{B} consists of the solutions of a system of PDE's.

n-D systems described by PDE's

$\mathbb{T}=\mathbb{R}^{\mathrm{n}}, \mathrm{n}$ independent variables,
$\mathbb{W}=\mathbb{R}^{\mathrm{W}}, \mathrm{w}$ dependent variables,
$\mathfrak{B}=$ the solutions of a linear constant coefficient system of PDE's.

n-D systems described by PDE's

$\mathbb{T}=\mathbb{R}^{\mathrm{n}}, \mathrm{n}$ independent variables,
$\mathbb{W}=\mathbb{R}^{\mathrm{w}}, \mathrm{w}$ dependent variables,
$\mathfrak{B}=$ the solutions of a linear constant coefficient system of PDE's.

Let $R \in \mathbb{R}^{\bullet \times{ }_{w}}\left[\xi_{1}, \cdots, \xi_{\mathrm{n}}\right]$, and consider

$$
R\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{n}}\right) w=0 \quad(*)
$$

Define its behavior

$$
\mathfrak{B}=\left\{w \in \mathfrak{C}^{\infty}\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}^{\mathrm{w}}\right) \mid(*) \text { holds }\right\}=\operatorname{ker}\left(\boldsymbol{R}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right)\right)
$$

n-D systems described by PDE's

$\mathbb{T}=\mathbb{R}^{\mathrm{n}}, \mathrm{n}$ independent variables,
$\mathbb{W}=\mathbb{R}^{\mathrm{w}}, \mathrm{w}$ dependent variables,
$\mathfrak{B}=$ the solutions of a linear constant coefficient system of PDE's.

Let $R \in \mathbb{R}^{\bullet \times{ }_{w}}\left[\xi_{1}, \cdots, \xi_{n}\right]$, and consider

$$
R\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=0 \quad(*)
$$

Define its behavior

$$
\mathfrak{B}=\left\{w \in \mathfrak{C}^{\infty}\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}^{\mathrm{w}}\right) \mid(*) \text { holds }\right\}=\operatorname{ker}\left(\boldsymbol{R}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right)\right)
$$

$\mathfrak{C}^{\infty}\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}^{\mathrm{w}}\right)$ mainly for convenience, but important for some results.
Identical theory for $\mathfrak{D}^{\prime}\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}^{\mathrm{w}}\right)$.

Polynomial matrix notation for PDE's:

PDE:

$$
\begin{gathered}
w_{1}\left(x_{1}, x_{2}\right)+\frac{\partial^{2}}{\partial x_{2}^{2}} w_{1}\left(x_{1}, x_{2}\right)+\frac{\partial}{\partial x_{1}} w_{2}\left(x_{1}, x_{2}\right)=0 \\
w_{2}\left(x_{1}, x_{2}\right)+\frac{\partial^{3}}{\partial x_{2}^{3}} w_{1}\left(x_{1}, x_{2}\right)+\frac{\partial^{4}}{\partial x_{1}^{4}} w_{2}\left(x_{1}, x_{2}\right)=0 \\
\downarrow
\end{gathered}
$$

Notation:

$$
\begin{gathered}
\xi_{1} \leftrightarrow \frac{\partial}{\partial x_{1}} \quad \xi_{2} \leftrightarrow \frac{\partial}{\partial x_{2}} \\
w=\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right], \quad R\left(\xi_{1}, \xi_{2}\right)=\left[\begin{array}{cc}
1+\xi_{2}^{2} & \xi_{1} \\
\xi_{2}^{3} & 1+\xi_{1}^{4}
\end{array}\right] . \\
R\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}\right) w=0
\end{gathered}
$$

Examples:

Diffusion eq'n, Wave eq'n, Co-axial cable

Maxwell's equations

NOMENCLATURE

$\mathfrak{L}_{\mathrm{n}}^{\mathrm{W}}$: the set of such systems with n in-, w dependent variables
\mathfrak{L}^{\bullet} : with any - finite - number of (in)dependent variables
Elements of \mathfrak{L}^{\bullet} : linear differential systems
$R\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=0:$ a kernel representation of the corresponding $\quad \Sigma \in \mathfrak{L}^{\bullet}$ or $\mathfrak{B} \in \mathfrak{L}^{\bullet}$

First principles models \leadsto latent variables. In the case of systems described by linear constant coefficient PDE's:

$$
R\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \ell
$$

with $R, M \in \mathbb{R}^{\bullet \times \bullet}[\xi]$.

CONTROLLABILITY and OBSERVABILITY

Controllability : \Leftrightarrow
system trajectories must be 'patch-able', 'concatenable'.
Case $\mathrm{n}=1, \mathbb{T}=\mathbb{R}$, any $w_{1}, w_{2} \in \mathfrak{B}$ concatenable:

General $\mathrm{n}, \mathbb{T}=\mathbb{R}^{\mathrm{n}}$.
Consider any two elements w_{1}, w_{2} of the behavior and any two open sets with non-overlapping closure $O_{1}, O_{2} \subset \mathbb{R}^{\mathrm{n}}$:

Controllability $=$ patchability:

Controllability of $\mathfrak{B}:=$ for any $O_{1}, O_{2} \subset \mathbb{R}^{\mathrm{n}}$, open, non-overlapping closure, any $\boldsymbol{w}_{1}, \boldsymbol{w}_{\mathbf{2}} \in \mathfrak{B}$, there is a sol'n $w \in \mathfrak{B}$ that 'patches' w_{1} on O_{1} with w_{2} on O_{2}.

Consider the system $\Sigma=\left(\mathbb{T}, \mathbb{W}_{1} \times \mathbb{W}_{2}, \mathfrak{B}\right)$.
Each element of the behavior \mathfrak{B} hence consists of a pair of trajectories $\left(w_{1}, w_{2}\right)$.

Consider the system $\Sigma=\left(\mathbb{T}, \mathbb{W}_{1} \times \mathbb{W}_{2}, \mathfrak{B}\right)$.
Each element of the behavior \mathfrak{B} hence consists of a pair of trajectories $\left(w_{1}, w_{2}\right)$.

w_{1} : observed; $w_{2}:$ to-be-deduced.
w_{2} is said to be observable from w_{1}
if $\left(\left(w_{1}, w_{2}^{\prime}\right) \in \mathfrak{B}\right.$, and $\left.\left(w_{1}, w_{2}^{\prime \prime}\right) \in \mathfrak{B}\right) \Rightarrow\left(w_{2}^{\prime}=w_{2}^{\prime \prime}\right)$,
i.e., if on \mathfrak{B}, there exists a map $w_{1} \mapsto w_{2}$.
w_{2} is said to be observable from w_{1}
if $\left(\left(w_{1}, w_{2}^{\prime}\right) \in \mathfrak{B}\right.$, and $\left.\left(w_{1}, w_{2}^{\prime \prime}\right) \in \mathfrak{B}\right) \Rightarrow\left(w_{2}^{\prime}=w_{2}^{\prime \prime}\right)$,
i.e., if on \mathfrak{B}, there exists a map $w_{1} \mapsto w_{2}$.

We are especially interested in the case
observed $=$ manifest
to-be-deduced = latent
w_{2} is said to be observable from w_{1}
if $\left(\left(w_{1}, w_{2}^{\prime}\right) \in \mathfrak{B}\right.$, and $\left.\left(w_{1}, w_{2}^{\prime \prime}\right) \in \mathfrak{B}\right) \Rightarrow\left(w_{2}^{\prime}=w_{2}^{\prime \prime}\right)$,
i.e., if on \mathfrak{B}, there exists a map $w_{1} \mapsto w_{2}$.

We are especially interested in the case
observed $=$ manifest
to-be-deduced = latent

Def's for ODE's, PDE's, difference eq'ns, exactly the same!

3 THEOREMS

Theorem 1 Algebraization:

$$
\mathfrak{L}_{\mathrm{n}}^{\mathrm{W}} \stackrel{1: 1}{\longleftrightarrow} \text { sub-modules of } \mathbb{R}^{\mathrm{W}}\left[\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{\mathrm{n}}\right]
$$

Theorem 1 Algebraization:

Theorem 2 Elimination:

$$
\left(\mathfrak{B}_{\text {full }} \in \mathfrak{L}_{\mathrm{n}}^{\bullet}\right) \Rightarrow\left(\mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{\bullet}\right)
$$

Theorem 1 Algebraization:

$$
\begin{array}{||l|l|}
\hline \mathfrak{L}_{\mathrm{n}}^{\mathrm{W}} \stackrel{1: 1}{\longleftrightarrow} \text { sub-modules of } \mathbb{R}^{\mathrm{W}}\left[\xi_{1}, \cdots, \xi_{\mathrm{n}}\right] \\
\hline
\end{array}
$$

Theorem 2 Elimination:

$$
\left(\mathfrak{B}_{\text {full }} \in \mathfrak{L}_{\mathrm{n}}^{\bullet}\right) \Rightarrow\left(\mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{\bullet}\right)
$$

Theorem 3 Image representation:

$$
\text { Controllabilility } \Leftrightarrow \text { (} \exists \text { Image representation) }
$$

Algebraization of \mathfrak{L}^{\bullet}

Note that

$$
R\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=0
$$

and

$$
U\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) R\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=0
$$

have the same behavior if the polynomial matrix U is uni-modular (i.e., when $\operatorname{det}(U)$ is a non-zero constant).

Algebraization of \mathfrak{L}^{\bullet}

Note that

$$
R\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=0
$$

and

$$
U\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) R\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=0
$$

have the same behavior if the polynomial matrix U is uni-modular (i.e., when $\operatorname{det}(U)$ is a non-zero constant).
$\Rightarrow \boldsymbol{R}$ defines $\mathfrak{B}=\operatorname{ker}\left(\boldsymbol{R}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right)\right)$, but not vice-versa!

$$
i \dot{i} \exists \text { 'intrinsic' characterization of } \mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{w}} ? ?
$$

```
ii \exists 'intrinsic' characterization of }\mathfrak{B}\in\mp@subsup{\mathfrak{L}}{n}{W
```

Define the annihilators of $\mathfrak{B} \in \mathfrak{L}_{n}^{W}$ by

$$
\mathfrak{N}_{\mathfrak{B}}:=\left\{n \in \mathbb{R}^{\mathrm{w}}\left[\xi_{1}, \cdots, \xi_{\mathrm{n}}\right] \left\lvert\, n^{\top}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \mathfrak{B}=0\right.\right\}
$$

$\mathfrak{N}_{\mathfrak{B}}$ is clearly an $\mathbb{R}\left[\xi_{1}, \cdots, \xi_{n}\right]$ sub-module of $\mathbb{R}^{\mathrm{w}}\left[\xi_{1}, \cdots, \xi_{n}\right]$.

```
ii \exists 'intrinsic' characterization of }\mathfrak{B}\in\mp@subsup{\mathfrak{L}}{\textrm{n}}{\textrm{W}}\mathrm{ ??
```

Define the annihilators of $\mathfrak{B} \in \mathfrak{L}_{n}^{W}$ by

$$
\mathfrak{N}_{\mathfrak{B}}:=\left\{n \in \mathbb{R}^{\mathrm{w}}\left[\xi_{1}, \cdots, \xi_{\mathrm{n}}\right] \left\lvert\, n^{\top}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \mathfrak{B}=0\right.\right\}
$$

$\mathfrak{N}_{\mathfrak{B}}$ is clearly an $\mathbb{R}\left[\xi_{1}, \cdots, \xi_{\mathrm{n}}\right]$ sub-module of $\mathbb{R}^{\mathrm{w}}\left[\xi_{1}, \cdots, \xi_{\mathrm{n}}\right]$.
Let $<R>$ denote the sub-module of $\mathbb{R}^{\mathrm{w}}\left[\xi_{1}, \cdots, \xi_{\mathrm{n}}\right]$ spanned by the transposes of the rows of \boldsymbol{R}. Obviously $<\boldsymbol{R}>\subseteq \mathfrak{N}_{\mathfrak{B}}$. But, indeed:

$$
\mathfrak{N}_{\mathfrak{B}}=<\boldsymbol{R}>!
$$

ii \exists 'intrinsic' characterization of $\mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{W}}$??

Define the annihilators of $\mathfrak{B} \in \mathfrak{L}_{n}^{W}$ by

$$
\mathfrak{N}_{\mathfrak{B}}:=\left\{n \in \mathbb{R}^{\mathrm{W}}\left[\xi_{1}, \cdots, \xi_{\mathrm{n}}\right] \left\lvert\, n^{\top}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \mathfrak{B}=0\right.\right\}
$$

$\mathfrak{N}_{\mathfrak{B}}$ is clearly an $\mathbb{R}\left[\xi_{1}, \cdots, \xi_{n}\right]$ sub-module of $\mathbb{R}^{w}\left[\xi_{1}, \cdots, \xi_{n}\right]$.
Let $<R>$ denote the sub-module of $\mathbb{R}^{\mathrm{w}}\left[\xi_{1}, \cdots, \xi_{\mathrm{n}}\right]$ spanned by the transposes of the rows of \boldsymbol{R}. Obviously $<\boldsymbol{R}>\subseteq \mathfrak{N}_{\mathfrak{B}}$. But, indeed:

$$
\mathfrak{N}_{\mathfrak{B}}=<\boldsymbol{R}>!
$$

Note: Depends on $\mathfrak{C}^{\infty} ;(\Leftarrow)$ false for compact support soln's:
for any $p \neq 0, \quad p\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=0$ has $w=0$
as its only compact support sol'n.

Theorem 1 (Algebraic structure of \mathfrak{L}_{n}^{W}):

Theorem 1 (Algebraic structure of \mathfrak{L}_{n}^{W}):

- $\mathfrak{N}_{\mathfrak{B}}=<R>$!

In particular $f\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=0$ is a consequence of $R\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=0$ if and only if $f \in<R>$.

Theorem 1 (Algebraic structure of \mathfrak{L}_{n}^{W}):

- $\mathfrak{N}_{\mathfrak{B}}=<R>$!

In particular $f\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=0$ is a consequence of $R\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=0$ if and only if $f \in\langle R\rangle$.
$-\mathfrak{L}_{\mathrm{n}}^{\mathrm{w}} \stackrel{1: 1}{\longleftrightarrow}$ sub-modules of $\mathbb{R}^{\mathrm{w}}\left[\xi_{1}, \cdots, \xi_{\mathrm{n}}\right]$

Theorem 1 (Algebraic structure of $\mathfrak{L}_{\mathrm{n}}^{\mathrm{w}}$):

- $\mathfrak{N}_{\mathfrak{B}}=<\boldsymbol{R}>$!

In particular $f\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \boldsymbol{w}=0$ is a consequence of $R\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=0$ if and only if $f \in<R>$.
$-\mathfrak{L}_{\mathrm{n}}^{\mathrm{W}} \stackrel{1: 1}{\longleftrightarrow}$ sub-modules of $\mathbb{R}^{\mathrm{W}}\left[\xi_{1}, \cdots, \xi_{\mathrm{n}}\right]$

$$
R_{1}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=0 \text { and } R_{2}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=0
$$

define the same system iff

$$
<\boldsymbol{R}_{1}>=<\boldsymbol{R}_{2}>
$$

Elimination

The full behavior of $R\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \ell$, $\mathfrak{B}_{\text {full }}=\left\{(w, \ell) \in \mathfrak{C}^{\infty}\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}^{\mathrm{w}+\ell}\right) \mid\right.$

$$
\left.R\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \ell\right\}
$$

belongs to $\mathfrak{L}_{\mathrm{n}}^{w+\ell}$, by definition.

Elimination

The full behavior of $R\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \ell$, $\mathfrak{B}_{\text {full }}=\left\{(w, \ell) \in \mathfrak{C}^{\infty}\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}^{w+\ell}\right) \mid\right.$

$$
\left.R\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \ell\right\}
$$

belongs to $\mathfrak{L}_{n}^{w+\ell}$, by definition.

Its manifest behavior equals $\mathfrak{B}=\left\{w \in \mathfrak{C}^{\infty}\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}^{w}\right) \mid\right.$
$\exists \ell$ such that $\left.R\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \ell\right\}$.

$$
\text { Does } \mathfrak{B} \text { belong to } \mathfrak{L}_{n}^{\mathrm{W}} \text { ? }
$$

Theorem 2 (Elimination): It does!

Does \mathfrak{B} belong to \mathfrak{L}_{n}^{W} ?

Theorem 2 (Elimination): It does!

Proof: The theorem is a straightforward consequence of the 'fundamental principle': the equation

$$
A\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) f=y
$$

$A \in \mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}\left[\xi_{1}, \cdots, \xi_{\mathrm{n}}\right], \boldsymbol{y} \in \mathbb{C}^{\infty}\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}^{\mathrm{n}_{1}}\right)$ given, $f \in \mathbb{C}^{\infty}\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}^{\mathrm{n}_{2}}\right)$ unknown, is solvable if and only if for $n \in \mathbb{R}^{\mathrm{n}_{1}}\left[\xi_{1}, \cdots, \xi_{n}\right]$

$$
\left(n^{\top} A=0\right) \Rightarrow\left(n^{\top}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) y=0\right)
$$

Remarks:

Remarks:

- Number of equations for $\mathrm{n}=1$ (constant coeff. lin. ODE's)
\leq number of variables.
Elimination \Rightarrow fewer, higher order equations.

Remarks:

- Number of equations for $\mathrm{n}=1$ (constant coeff. lin. ODE's)
\leq number of variables.
Elimination \Rightarrow fewer, higher order equations.
- \exists effective computer algebra/Gröbner bases algorithms for elimination

$$
(R, M) \mapsto R^{\prime}
$$

Remarks:

- Number of equations for $\mathrm{n}=1$ (constant coeff. lin. ODE's)
\leq number of variables.
Elimination \Rightarrow fewer, higher order equations.
- \exists effective computer algebra/Gröbner bases algorithms for elimination

$$
(R, M) \mapsto R^{\prime}
$$

- Not generalizable to smooth nonlinear systems.

Why are differential equations models so prevalent?

Examples

1.

$$
\frac{\partial^{2}}{\partial x^{2}} V=L_{0} C_{0} \frac{\partial^{2}}{\partial t^{2}} V
$$

describes indeed the behavior of V in the coax.
2. Which PDE's describe (ρ, \vec{E}, \vec{j}) in Maxwell's equations?

Eliminate \vec{B} from Maxwell's equations \leadsto

$$
\begin{aligned}
\nabla \cdot \vec{E} & =\frac{1}{\varepsilon_{0}} \rho, \\
\varepsilon_{0} \frac{\partial}{\partial t} \nabla \cdot \vec{E}+\nabla \cdot \vec{j} & =0, \\
\varepsilon_{0} \frac{\partial^{2}}{\partial t^{2}} \vec{E}+\varepsilon_{0} c^{2} \nabla \times \nabla \times \vec{E}+\frac{\partial}{\partial t} \vec{j} & =0 .
\end{aligned}
$$

Elimination theorem \Rightarrow
this exercise is exact \& successful (+ gives algorithm).

It follows from all this that $\mathfrak{L}_{\mathrm{n}}^{\bullet}$ has very nice properties. It is closed under:

- Intersection: $\left(\mathfrak{B}_{1}, \mathfrak{B}_{2} \in \mathfrak{L}_{\mathrm{n}}^{W}\right) \Rightarrow\left(\mathfrak{B}_{1} \cap \mathfrak{B}_{2} \in \mathfrak{L}_{\mathrm{n}}^{W}\right)$.
- $\underline{\text { Addition: }} \quad\left(\mathfrak{B}_{1}, \mathfrak{B}_{2} \in \mathfrak{L}_{\mathrm{n}}^{W}\right) \Rightarrow\left(\mathfrak{B}_{1}+\mathfrak{B}_{2} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{w}}\right)$.
- Projection: $\quad\left(\mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{w}_{1}+w_{2}}\right) \Rightarrow\left(\Pi_{w_{1}} \mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{w}_{1}}\right)$.
- Action of a linear differential operator:
$\left(\mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{w}_{1}}, \boldsymbol{P} \in \mathbb{R}^{\mathrm{w}_{2} \times{ }^{\mathrm{w}_{1}}}\left[\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{\mathrm{n}}\right]\right)$

$$
\Rightarrow\left(P\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \boldsymbol{B} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{W}_{2}}\right) .
$$

- Inverse image of a linear differential operator: $\left(\mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{W}_{2}}, \boldsymbol{P} \in \mathbb{R}^{\mathrm{w}_{2} \times \mathrm{w}_{1}}\left[\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{\mathrm{n}}\right]\right)$

$$
\left.\Rightarrow\left(P\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right)\right)^{-1} \mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{W}_{1}}\right) .
$$

Image representations

Representations of \mathfrak{L}_{n}^{W} :

$$
R\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=0
$$

called a 'kernel' representation of $\mathfrak{B}=\operatorname{ker}\left(\boldsymbol{R}\left(\frac{d}{d t}\right)\right)$;

Image representations

Representations of $\mathfrak{L}_{\mathrm{n}}^{\mathrm{w}}$:

$$
R\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=0
$$

called a 'kernel' representation of $\mathfrak{B}=\operatorname{ker}\left(\boldsymbol{R}\left(\frac{d}{d t}\right)\right)$;

$$
R\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \ell
$$

called a 'latent variable' representation of the manifest behavior

$$
\mathfrak{B}=\left(R\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right)\right)^{-1} M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \mathfrak{C}^{\infty}\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}^{\ell}\right)
$$

Missing link:

$$
w=M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \ell
$$

called an 'image' representation of $\mathfrak{B}=\operatorname{im}\left(M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right)\right)$.

Missing link:

$$
w=M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \ell
$$

called an 'image' representation of $\mathfrak{B}=\operatorname{im}\left(M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right)\right)$.

Elimination theorem $\quad \Rightarrow \quad$ every image is also a kernel.

Missing link:

$$
w=M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \ell
$$

called an 'image' representation of $\mathfrak{B}=\operatorname{im}\left(M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right)\right)$.

Elimination theorem $\quad \Rightarrow \quad$ every image is also a kernel.
¿¿ Which kernels are also images ??

Theorem 3 (Controllability and image representation):

The following are equivalent for $\mathfrak{B} \in \mathfrak{L}_{n}^{\mathbb{w}}$:

1. \mathfrak{B} is controllable,
2. \mathfrak{B} admits an image representation,
3. for any $a \in \mathbb{R}^{\mathrm{w}}\left[\xi_{1}, \cdots, \xi_{\mathrm{n}}\right]$,

$$
a^{\top}\left[\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{n}}\right] \mathfrak{B} \text { equals } 0 \text { or all of } \mathfrak{C}^{\infty}\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}\right)
$$

4. $\mathbb{R}^{\mathrm{w}}\left[\xi_{1}, \cdots, \xi_{\mathrm{n}}\right] / \mathfrak{N}_{\mathfrak{B}}$ is torsion free,
etc.

Are Maxwell's equations controllable?

The following equations in the scalar potential $\phi: \mathbb{R} \times \mathbb{R}^{3} \rightarrow \mathbb{R}$ and the vector potential $\vec{A}: \mathbb{R} \times \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$, generate exactly the solutions to Maxwell's equations:

$$
\begin{aligned}
\vec{E} & =-\frac{\partial}{\partial t} \vec{A}-\nabla \phi \\
\vec{B} & =\nabla \times \vec{A}, \\
\vec{j} & =\varepsilon_{0} \frac{\partial^{2}}{\partial t^{2}} \vec{A}-\varepsilon_{0} c^{2} \nabla^{2} \vec{A}+\varepsilon_{0} c^{2} \nabla(\nabla \cdot \vec{A})+\varepsilon_{0} \frac{\partial}{\partial t} \nabla \phi \\
\rho & =-\varepsilon_{0} \frac{\partial}{\partial t} \nabla \cdot \vec{A}-\varepsilon_{0} \nabla^{2} \phi
\end{aligned}
$$

Proves controllability. Illustrates the interesting connection

$$
\text { controllability } \Leftrightarrow \exists \text { potential! }
$$

Remarks:

Remarks:

- Algorithm: $\quad R+$ syzygies + Gröbner basis $\Rightarrow \quad$ numerical test for on coefficients of \boldsymbol{R}.

Remarks:

- Algorithm: $\quad \boldsymbol{R}+$ syzygies + Gröbner basis $\Rightarrow \quad$ numerical test for on coefficients of \boldsymbol{R}.
- In the 1-D case there exists always an observable image representation
\cong flatness.
Not so for general n-D systems: potentials are then hidden variables.

Remarks:

- Algorithm: $\quad R+$ syzygies + Gröbner basis $\Rightarrow \quad$ numerical test for on coefficients of \boldsymbol{R}.
- In the 1-D case there exists always an observable image representation
\cong flatness.
Not so for general n-D systems: potentials are then hidden variables.
$-\exists$ partial results for nonlinear systems.

Remarks:

- Algorithm: \quad + syzygies + Gröbner basis $\Rightarrow \quad$ numerical test for on coefficients of \boldsymbol{R}.
- In the 1-D case there exists always an observable image representation

$$
\cong \text { flatness. }
$$

Not so for general n-D systems: potentials are then hidden variables.
$-\exists$ partial results for nonlinear systems.

- Kalman controllability is a straightforward special case.

Not all controllable systems admit an observable image representation.
For $\mathrm{n}=1$, they do. For $\mathrm{n}>1$, exceptionally so.

Not all controllable systems admit an observable image representation.
For $\mathrm{n}=1$, they do. For $\mathrm{n}>1$, exceptionally so.
Observability means: $M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right)$ is injective:
ℓ can be deduced from w in

$$
R\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \ell .
$$

\exists equivalent $R^{\prime}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=0, \ell=M^{\prime}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w$.

Not all controllable systems admit an observable image representation.
For $\mathrm{n}=1$, they do. For $\mathrm{n}>1$, exceptionally so.
Observability means: $M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right)$ is injective:
ℓ can be deduced from w in

$$
R\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \ell
$$

\exists equivalent $R^{\prime}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=0, \ell=M^{\prime}\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w$.
The latent variable in an image representation ℓ may be 'hidden'.
Example: Maxwell's equations do not allow a potential
representation that is observable.

DISSIPATIVE DISTRIBUTED SYSTEMS

A dissipative system absorbs supply, 'globally' over time and space.
ii Can this be expressed 'locally', as

$$
\text { rate of change in storage }+ \text { spatial flux } \leq \text { supply rate }
$$

A dissipative system absorbs supply, 'globally' over time and space.
ii Can this be expressed 'locally', as

$$
\text { rate of change in storage + spatial flux } \leq \text { supply rate }
$$

rate of change in storage + spatial flux
= supply rate + (non-negative) dissipation rate ??

Multi-index notation:

$x=\left(x_{1}, \ldots, x_{\mathrm{n}}\right)$,
$k=\left(k_{1}, \ldots, k_{\mathrm{n}}\right), \ell=\left(\ell_{1}, \ldots, \ell_{\mathrm{n}}\right)$,
$\boldsymbol{\xi}=\left(\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{\mathrm{n}}\right), \zeta=\left(\zeta_{1}, \ldots, \zeta_{\mathrm{n}}\right), \boldsymbol{\eta}=\left(\boldsymbol{\eta}_{1}, \ldots, \boldsymbol{\eta}_{\mathrm{n}}\right)$,
$\frac{d}{d x}=\left(\frac{\partial}{\partial x_{1}}, \ldots, \frac{\partial}{\partial x_{\mathrm{n}}}\right), \frac{d^{k}}{d x^{k}}=\left(\frac{\partial^{k_{1}}}{\partial x_{1}^{k_{1}}}, \ldots, \frac{\partial^{k_{n}}}{\partial x_{\mathrm{n}}^{k_{\mathrm{n}}}}\right)$,
$d x=d x_{1} d x_{2} \ldots d x_{n}$,
$R\left(\frac{d}{d x}\right) w=0 \quad$ for $\quad R\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) w=0$,
$w=M\left(\frac{d}{d x}\right) \ell \quad$ for $\quad w=M\left(\frac{\partial}{\partial x_{1}}, \cdots, \frac{\partial}{\partial x_{\mathrm{n}}}\right) \ell$,
etc.

QDF's

The quadratic map in w and its derivatives, defined by

$$
w \mapsto \sum_{k, \ell}\left(\frac{d^{k}}{d x^{k}} w\right)^{\top} \Phi_{k, \ell}\left(\frac{d^{\ell}}{d x^{\ell}} w\right)
$$

is called quadratic differential form (QDF) on $\mathfrak{C}^{\infty}\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}^{\mathrm{w}}\right)$.
$\mathbf{\Phi}_{k, \ell} \in \mathbb{R}^{w \times{ }_{w}} ; \mathbf{W L O G}: \Phi_{k, \ell}=\Phi_{\ell, k}^{\top}$.
Introduce the 2 n -variable polynomial matrix Φ

$$
\Phi(\zeta, \eta)=\sum_{k, \ell} \Phi_{k, \ell} \zeta^{k} \eta^{\ell}
$$

Denote the QDF as Q_{Φ}.

We consider only controllable linear differential systems and supply rates that are QDF's.

Definition: $\mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{W}}$, controllable, is said to be dissipative with respect to the supply rate Q_{Φ} (a QDF) if $\int_{\mathbb{R}^{n}} Q_{\Phi}(w) d x \geq 0$
for all $\boldsymbol{w} \in \mathfrak{B}$ of compact support, i.e., for all $\boldsymbol{w} \in \mathfrak{B} \cap \mathfrak{D}$.

We consider only controllable linear differential systems and supply rates that are QDF's.

Definition: $\mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{W}}$, controllable, is said to be dissipative with respect to the supply rate Q_{Φ} (a QDF) if $\int_{\mathbb{R}^{n}} Q_{\Phi}(w) d x \geq 0$
for all $\boldsymbol{w} \in \mathfrak{B}$ of compact support, i.e., for all $\boldsymbol{w} \in \mathfrak{B} \cap \mathfrak{D}$.

If equality 'conservative'.

Assume $\mathrm{n}=4: \quad$ independent variables $x, y, z ; t: \quad$ space and time.
Idea: $Q_{\Phi}(w)(x, y, z ; t) d x d y d z d t:$ rate of 'energy' delivered to the system.

Dissipativity : \Leftrightarrow

$$
\int_{\mathbb{R}}\left(\int_{\mathbb{R}^{3}} Q_{\Phi}(w) d x d y d z\right) d t \geq 0 \quad \text { for all } w \in \mathfrak{B} \cap \mathfrak{D}
$$

A dissipative system absorbs net energy.

Example: Maxwell's eq'ns:

dissipative (in fact, conservative) w.r.t. the QDF $-\vec{E} \cdot \vec{j}$.

In other words, if $\vec{E}, \vec{j} \quad$ is of compact support and satisfies

$$
\begin{aligned}
\varepsilon_{0} \frac{\partial}{\partial t} \nabla \cdot \vec{E}+\nabla \cdot \vec{j} & =0 \\
\varepsilon_{0} \frac{\partial^{2}}{\partial t^{2}} \vec{E}+\varepsilon_{0} c^{2} \nabla \times \nabla \times \vec{E}+\frac{\partial}{\partial t} \vec{j} & =0
\end{aligned}
$$

then

$$
\int_{\mathbb{R}}\left(\int_{\mathbb{R}^{3}}(-\vec{E} \cdot \vec{j}) d x d y d z\right) d t=0
$$

Example: Maxwell's eq'ns:

dissipative (in fact, conservative) w.r.t. the QDF $-\vec{E} \cdot \vec{j}$.

In other words, if $\vec{E}, \vec{j} \quad$ is of compact support and satisfies

$$
\begin{aligned}
\varepsilon_{0} \frac{\partial}{\partial t} \nabla \cdot \vec{E}+\nabla \cdot \vec{j} & =0 \\
\varepsilon_{0} \frac{\partial^{2}}{\partial t^{2}} \vec{E}+\varepsilon_{0} c^{2} \nabla \times \nabla \times \vec{E}+\frac{\partial}{\partial t} \vec{j} & =0
\end{aligned}
$$

then

$$
\int_{\mathbb{R}}\left(\int_{\mathbb{R}^{3}}(-\vec{E} \cdot \vec{j}) d x d y d z\right) d t=0 .
$$

Can this be reinterpreted as: As the system evolves, energy is locally stored, and redistributed over time and space?

First principles motivating example: Heat diffusion

The PDE

$$
\frac{\partial}{\partial t} T=\frac{\partial^{2}}{\partial x^{2}} T+q
$$

describes the evolution of the temperature $T(x, t)$
($x \in \mathbb{R}$ position, $t \in \mathbb{R}$ time) in a medium and the heat $q(x, T)$ supplied to / radiated away from it.

For all sol'ns T, q with $T(x, t)=$ constant >0 (and therefore $q=0$) outside a compact set, there holds:

First law:

$$
\int_{\mathbb{R}^{2}} q(x, t) d x d t=0
$$

Second law:

$$
\int_{\mathbb{R}^{2}} \frac{q(x, t)}{T(x, t)} d x d t \leq 0
$$

For all sol'ns T, q with $T(x, t)=$ constant >0 (and therefore $q=0$) outside a compact set, there holds:

First law:

$$
\int_{\mathbb{R}^{2}} q(x, t) d x d t=0
$$

Second law:

$$
\int_{\mathbb{R}^{2}} \frac{q(x, t)}{T(x, t)} d x d t \leq 0
$$

\Rightarrow

$$
\max _{x, t}\{T(x, t) \mid q(x, t) \geq 0\} \geq \min _{x, t}\{T(x, t) \mid q(x, t) \leq 0\}
$$

It is impossible to transport heat from a 'cold source' to a 'hot sink'.

Can these 'global' versions be expressed as 'local' laws?

$$
\text { rate of change in storage }+ \text { spatial flux } \leq \text { supply rate }
$$

Can these 'global' versions be expressed as 'local' laws?


```
rate of change in storage + spatial flux }\leq\mathrm{ supply rate
```

To be invented:
an 'extensive' quantity for the first law: internal energy an 'extensive' quantity for the second law: entropy

Define the following variables:

$$
\begin{array}{rlrl}
E & =T & : \text { the stored energy density, } \\
S & =\ln (T) & : \text { the entropy density, } \\
F_{E} & =-\frac{\partial}{\partial x} T & : \text { the energy flux, } \\
F_{S} & =-\frac{1}{T} \frac{\partial}{\partial x} T & : \text { the entropy flux, } \\
D_{S} & =\left(\frac{1}{T} \frac{\partial}{\partial x} T\right)^{2}: \text { the rate of entropy production. }
\end{array}
$$

Local versions of the first and second law:

$$
\text { rate of change in storage }+ \text { spatial flux } \leq \text { supply rate }
$$

Conservation of energy:

$$
\frac{\partial}{\partial t} E+\frac{\partial}{\partial x} F_{E}=q
$$

Entropy production:

$$
\begin{gathered}
\frac{\partial}{\partial t} S+\frac{\partial}{\partial x} F_{S}=\frac{q}{T}+D_{S} . \quad \text { Since } \quad\left(D_{S} \geq 0\right) \quad \Rightarrow \\
\frac{\partial}{\partial t} S+\frac{\partial}{\partial x} F_{S} \geq \frac{q}{T} .
\end{gathered}
$$

Our problem:
theory behind these ad hoc constructions of E, F_{E} and S, F_{S}.

Assume that a system is 'globally' dissipative.

¿¿ Can this dissipativity be expressed through a 'local' law??

Such that in every spatial domain there holds:

$$
\frac{d}{d t} \text { Storage + Spatial flux } \leq \text { Supply. }
$$

Supply $=$ Stored + radiated + dissipated.

Main Theorem:

$\mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{\mathrm{W}}$, controllable, is dissipative w.r.t. the supply rate $\boldsymbol{Q}_{\boldsymbol{\Phi}}$ iff
$\exists \quad$ an image representation $\quad w=M\left(\frac{d}{d x}\right) \ell \quad$ of \mathfrak{B}, an n -vector of QDF's $Q_{\Psi}=\left(Q_{\Psi_{1}}, \ldots, Q_{\Psi_{\mathrm{n}}}\right)$ on $\mathfrak{C}^{\infty}\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}^{\operatorname{dim}(\ell)}\right)$, called the flux, such that the local dissipation law

$$
\nabla \cdot Q_{\Psi}(\ell) \leq Q_{\Phi}(w)
$$

holds for all (w, ℓ) that satisfy $w=M\left(\frac{d}{d x}\right) \ell$.

As usual $\nabla \cdot Q_{\Psi}:=\frac{\partial}{\partial x_{1}} Q_{\Psi_{1}}+\cdots+\frac{\partial}{\partial x_{\mathrm{n}}} Q_{\Psi_{\mathrm{n}}}$.

$$
\leftrightarrow \text { the QDF induced by }(\zeta+\eta)^{\top} \Psi(\zeta, \eta)
$$

Assume $\mathrm{n}=4$: independent variables $x, y, z ; t: \quad$ space and time. Let $\mathfrak{B} \in \mathfrak{L}_{4}^{\mathbb{W}}$ be controllable. Then

$$
\int_{\mathbb{R}}\left(\int_{\mathbb{R}^{3}} Q_{\Phi}(w) d x d y d z\right) d t \geq 0 \quad \text { for all } w \in \mathfrak{B} \cap \mathfrak{D}
$$

if and only if

Assume $\mathrm{n}=4$: independent variables $x, y, z ; t: \quad$ space and time. Let $\mathfrak{B} \in \mathfrak{L}_{4}^{w}$ be controllable. Then

$$
\int_{\mathbb{R}}\left(\int_{\mathbb{R}^{3}} Q_{\Phi}(w) d x d y d z\right) d t \geq 0 \quad \text { for all } w \in \mathfrak{B} \cap \mathfrak{D}
$$

> if and only if
\exists an image representation $w=M\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}, \frac{\partial}{\partial t}\right) \ell \quad$ of \mathfrak{B}, and QDF's $\quad S$, the storage, and

$$
F_{x}, F_{y}, F_{z}, \text { the spatial flux, }
$$

such that the local dissipation law

$$
\frac{\partial}{\partial t} S(\ell)+\frac{\partial}{\partial x} F_{x}(\ell)+\frac{\partial}{\partial y} F_{y}(\ell)+\frac{\partial}{\partial z} F_{z}(\ell) \leq Q_{\Phi}(w)
$$

holds for all (w, ℓ) that satisfy $w=M\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}, \frac{\partial}{\partial t}\right) \ell$.

Note: the local law involves

(possibly unobservable, - i.e., hidden!)

latent variables (the ℓ 's).

EXAMPLE: ENERGY STORED IN EM FIELDS

Maxwell's equations are dissipative (in fact, conservative) with respect to
$-\vec{E} \cdot \vec{j}, \quad$ the rate of energy supplied.
Introduce the stored energy density, S, and
the energy flux density (the Poynting vector), \vec{F},

$$
\begin{aligned}
S(\vec{E}, \vec{B}) & :=\frac{\varepsilon_{0}}{2} \vec{E} \cdot \vec{E}+\frac{\varepsilon_{0} c^{2}}{2} \vec{B} \cdot \vec{B} \\
\vec{F}(\vec{E}, \vec{B}) & :=\varepsilon_{0} c^{2} \vec{E} \times \vec{B}
\end{aligned}
$$

The following is a local conservation law for Maxwell's equations:

$$
\frac{\partial}{\partial t} S(\vec{E}, \vec{B})+\nabla \cdot \vec{F}(\vec{E}, \vec{B})=-\vec{E} \cdot \vec{j}
$$

Local version involves \vec{B}, unobservable from $\overrightarrow{\boldsymbol{E}}$ and \vec{j},
the variables in the rate of energy supplied.

Schematic of the proof

Using controllability and image representations, we may assume WLOG:

$$
\mathfrak{B}=\mathfrak{C}^{\infty}\left(\mathbb{R}^{\mathrm{n}}, \mathbb{R}^{\mathrm{w}}\right)
$$

$$
\begin{gathered}
\text { Global dissipativity }: \Leftrightarrow \int_{\mathbb{R}^{\mathrm{n}}} Q_{\Phi}(w) \geq 0 \text { for all } w \in \mathfrak{D} \\
\text { } \mathbb{~ (P a r s e v a l) ~} \\
\Phi(-i \omega, i \omega) \geq 0 \text { for all } \omega \in \mathbb{R}^{\mathrm{n}}
\end{gathered}
$$

\[

\]

$$
\begin{gathered}
\exists D: \quad \Phi(-\xi, \xi)=D^{\top}(-\xi) D(\xi) \\
\hat{\mathbb{I}}(\text { easy }) \\
\exists \Psi: \quad(\zeta+\eta)^{\top} \Psi(\zeta, \eta)=\Phi(\zeta, \eta)-D^{\top}(\zeta) D(\eta)
\end{gathered}
$$

$$
\begin{aligned}
& \exists \Psi: \quad(\zeta+\eta)^{\top} \Psi(\zeta, \eta)=\Phi(\zeta, \eta)-D^{\top}(\zeta) D(\eta) \\
& \text { I (clearly) } \\
& \text { Local diss. }: \Leftrightarrow \exists \Psi: \quad \nabla \cdot Q_{\Psi}(w) \leq Q_{\Phi}(w) \text { for all } w \in \mathfrak{C}^{\infty}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Global dissipativity }: \Leftrightarrow \int_{\mathbb{R}^{n}} Q_{\Phi}(w) \geq 0 \text { for all } w \in \mathfrak{D} \\
& \text { I) (Parseval) } \\
& \Phi(-i \omega, i \omega) \geq 0 \text { for all } \omega \in \mathbb{R}^{\mathrm{n}} \\
& \text { I) (Factorization equation) } \\
& \exists D: \quad \Phi(-\xi, \xi)=D^{\top}(-\xi) D(\xi) \\
& \text { If (easy) } \\
& \exists \Psi:(\zeta+\eta)^{\top} \Psi(\zeta, \eta)=\Phi(\zeta, \eta)-D^{\top}(\zeta) D(\eta) \\
& \text { If (clearly) } \\
& \text { Local diss. }: \Leftrightarrow \exists \Psi: \nabla \cdot Q_{\Psi}(w) \leq Q_{\Phi}(w) \text { for all } w \in \mathfrak{C}^{\infty}
\end{aligned}
$$

THE FACTORIZATION EQUATION

Consider

$$
X^{\top}(-\xi) X(\xi)=Y(\xi)
$$

with $Y \in \mathbb{R}^{\bullet \times}[\xi]$ given, and X the unknown. Solvable??

Consider

$$
X^{\top}(-\xi) X(\xi)=Y(\xi)
$$

with $Y \in \mathbb{R}^{\bullet} \times \bullet[\xi]$ given, and X the unknown. Solvable??
\cong

$$
X^{\top}(\xi) X(\xi)=Y(\xi)
$$

with $Y \in \mathbb{R}^{\bullet \times \bullet}[\xi]$ given, and X the unknown.

Under what conditions on Y does there exist a solution X ?
\cong

$$
X^{\top}(\xi) X(\xi)=Y(\xi)
$$

with $Y \in \mathbb{R}^{\bullet \times \bullet}[\xi]$ given, and X the unknown.

$$
\text { Under what conditions on } Y \text { does there exist a solution } X \text { ? }
$$

Scalar case: !! write the real polynomial Y as a sum of squares

$$
Y=x_{1}^{2}+x_{2}^{2}+\cdots+x_{\mathrm{k}}^{2} .
$$

Consider

$$
X^{\top}(-\xi) X(\xi)=Y(\xi)
$$

with $Y \in \mathbb{R}^{\bullet} \times \bullet[\xi]$ given, and X the unknown. Solvable??
\cong

$$
X^{\top}(\xi) X(\xi)=Y(\xi)
$$

with $Y \in \mathbb{R}^{\bullet \times \bullet}[\xi]$ given, and X the unknown.

$$
\text { Under what conditions on } Y \text { does there exist a solution } X \text { ? }
$$

Scalar case: !! write the real polynomial Y as a sum of squares

$$
Y=x_{1}^{2}+x_{2}^{2}+\cdots+x_{\mathrm{k}}^{2} .
$$

$$
\boldsymbol{X}^{\top}(\xi) \boldsymbol{X}(\xi)=\boldsymbol{Y}(\xi)
$$

$$
X^{\top}(\xi) X(\xi)=Y(\xi)
$$

For $\mathrm{n}=1$ and $Y \in \mathbb{R}[\xi]$, solvable (for $X \in \mathbb{R}^{2}[\xi]$!) iff

$$
Y(\alpha) \geq 0 \quad \text { for all } \alpha \in \mathbb{R}
$$

$$
\boldsymbol{X}^{\top}(\xi) \boldsymbol{X}(\xi)=\boldsymbol{Y}(\xi)
$$

For $\mathrm{n}=1$, and $Y \in \mathbb{R}^{\bullet \times}[\xi]$, it is well-known (but non-trivial) that this factorization equation is solvable (with $X \in \mathbb{R}^{\bullet \times}[\xi]$!) iff

$$
Y(\alpha)=Y^{\top}(\alpha) \geq 0 \quad \text { for all } \alpha \in \mathbb{R}
$$

$$
X^{\top}(\xi) X(\xi)=Y(\xi)
$$

For $\mathrm{n}>1$, and under the obvious positivity req., this eq'n can nevertheless in general not be solved over the polynomial matrices, for $X \in \mathbb{R}^{\bullet} \times \bullet[\xi]$,

$$
X^{\top}(\xi) X(\xi)=Y(\xi)
$$

For $\mathrm{n}>1$, and under the obvious positivity req., this eq'n can nevertheless in general not be solved over the polynomial matrices, for $X \in \mathbb{R}^{\bullet} \times \bullet[\xi]$, but it can over the matrices of rational f'ns, i.e., for $X \in \mathbb{R}^{\bullet} \times \bullet(\xi)$.

$$
X^{\top}(\xi) X(\xi)=Y(\xi)
$$

For $\mathrm{n}=1$ and $Y \in \mathbb{R}[\xi]$, solvable (for $X \in \mathbb{R}^{2}[\xi]$!) iff

$$
Y(\alpha) \geq 0 \quad \text { for all } \alpha \in \mathbb{R}
$$

For $\mathrm{n}=1$, and $Y \in \mathbb{R}^{\bullet \times}[\xi]$, it is well-known (but non-trivial) that this factorization equation is solvable (with $X \in \mathbb{R}^{\bullet \times}[\xi]$!) iff

$$
Y(\alpha)=Y^{\top}(\alpha) \geq 0 \quad \text { for all } \alpha \in \mathbb{R}
$$

For $n>1$, and under the obvious positivity req., this eq'n can nevertheless in general not be solved over the polynomial matrices, for $X \in \mathbb{R}^{\bullet} \times \bullet[\xi]$, but it can over the matrices of rational f^{\prime} ns, i.e., for $X \in \mathbb{R}^{\bullet} \times \bullet(\xi)$.

This factorizability is a simple consequence of Hilbert's 17 -th pbm!

This factorizability is a simple consequence of Hilbert's 17-th pbm!

$$
\text { Solve } \quad p=p_{1}^{2}+p_{2}^{2}+\cdots+p_{\mathrm{k}}^{2}, p \text { given }
$$ $\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{R}^{n}$ can in general not be expressed as a sum of squares of polynomials, with the p_{i} 's $\in \mathbb{R}\left[\xi_{1}, \cdots, \xi_{\mathrm{n}}\right]$.

This factorizability is a simple consequence of Hilbert's 17-th pbm!

$$
\text { Solve } \quad p=p_{1}^{2}+p_{2}^{2}+\cdots+p_{\mathrm{k}}^{2}, p \text { given }
$$ $\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{R}^{n}$ can in general not be expressed as a sum of squares of polynomials, with the $p_{i}{ }^{\prime}$ s $\in \mathbb{R}\left[\xi_{1}, \cdots, \xi_{\mathrm{n}}\right]$.

But a rational function (and hence a polynomial)
$p \in \mathbb{R}\left(\xi_{1}, \cdots, \xi_{\mathrm{n}}\right)$, with $p\left(\alpha_{1}, \ldots, \alpha_{\mathrm{n}}\right) \geq 0, \quad$ for all $\left(\alpha_{1}, \ldots, \alpha_{\mathrm{n}}\right) \in \mathbb{R}^{\mathrm{n}}$, can be expressed as a sum of squares of $\left(\mathrm{k}=2^{\mathrm{n}}\right.$) rational functions, with the p_{i} 's $\in \mathbb{R}\left(\xi_{1}, \cdots, \xi_{\mathrm{n}}\right)$.
\Rightarrow solvability of the factorization eq'n

$$
\begin{gathered}
\Phi(-i \omega, i \omega) \geq 0 \text { for all } \omega \in \mathbb{R}^{\mathrm{n}} \\
\mathbb{\|} \quad(\text { Factorization equation) } \\
\exists D: \quad \Phi(-\xi, \xi)=D^{\top}(-\xi) D(\xi)
\end{gathered}
$$

over the rational functions,
i.e., with D a matrix with elements in $\mathbb{R}\left(\xi_{1}, \cdots, \xi_{n}\right)$.
\Rightarrow solvability of the factorization eq'n

$$
\Phi(-i \omega, i \omega) \geq 0 \text { for all } \omega \in \mathbb{R}^{\mathrm{n}}
$$

\square

$$
\exists D: \quad \Phi(-\xi, \xi)=D^{\top}(-\xi) D(\xi)
$$

over the rational functions,
i.e., with \boldsymbol{D} a matrix with elements in $\mathbb{R}\left(\xi_{1}, \cdots, \xi_{\mathrm{n}}\right)$.

The need to introduce
rational functions in this factorization
an image representation of \mathfrak{B} to reduce the pbm to \mathfrak{C}^{∞}
are the causes of the unavoidable presence of (possibly unobservable, i.e., 'hidden') latent variables in the local dissipation law.

Non-uniqueness of the storage function stems from 3 sources

Non-uniqueness of the storage function stems from 3 sources

- The non-uniqueness of the latent variable ℓ in various (non-observable) image representations.

Non-uniqueness of the storage function stems from 3 sources

- The non-uniqueness of the latent variable ℓ in various (non-observable) image representations.
- The non-uniqueness of D in the factorization equation

$$
\Phi(-\xi, \xi)=D^{\top}(-\xi) D(\xi)
$$

Non-uniqueness of the storage function stems from 3 sources

- The non-uniqueness of the latent variable ℓ in various (non-observable) image representations.
- The non-uniqueness of D in the factorization equation

$$
\Phi(-\xi, \xi)=D^{\top}(-\xi) D(\xi)
$$

- The non-uniqueness (in the case $n>1$) of the solution Ψ of

$$
(\zeta+\eta)^{\top} \Psi(\zeta, \eta)=\Phi(\zeta, \eta)-D^{\top}(\zeta) D(\eta)
$$

Non-uniqueness of the storage function stems from 3 sources

- The non-uniqueness of the latent variable ℓ in various (non-observable) image representations.
- The non-uniqueness of D in the factorization equation

$$
\Phi(-\xi, \xi)=D^{\top}(-\xi) D(\xi)
$$

- The non-uniqueness (in the case $n>1$) of the solution Ψ of

$$
(\zeta+\eta)^{\top} \Psi(\zeta, \eta)=\Phi(\zeta, \eta)-D^{\top}(\zeta) D(\eta)
$$

For conservative systems, $\Phi(-\xi, \xi)=0$, whence $D=0$, but, when $\mathrm{n}>1$, the third source of non-uniqueness remains, even when working with a specific image representation.

It seems to be a very real non-uniqueness, even for EM fields. Cfr.

The ambiguity of the field energy
... There are, in fact, an infinite number of different possibilities for u [the internal energy] and S [the flux] ... It is sometimes claimed that this problem can be resolved using the theory of gravitation ... as yet nobody has done such a delicate experiment ... So we will follow the rest of the world - besides, we believe that it [our choice] is probably perfectly right.

> The Feynman Lectures on Physics, Volume II, page 27-6.

RECAP

- Distributed systems described by PDE's are of great importance in physical applications

RECAP

- Distributed systems described by PDE's are of great importance in physical applications
- Formalized as systems with a richer set of 'independent' variables, e.g., \mathbb{R}^{n}.

RECAP

- Distributed systems described by PDE's are of great importance in physical applications
- Formalized as systems with a richer set of ‘independent' variables, e.g., \mathbb{R}^{n}.
- Linear constant coefficient PDE's \leftrightarrow polynomials in many variables

RECAP

- Distributed systems described by PDE's are of great importance in physical applications
- Formalized as systems with a richer set of 'independent' variables, e.g., \mathbb{R}^{n}.
- Linear constant coefficient PDE's \leftrightarrow polynomials in many variables
- Controllability : \Leftrightarrow patchability

RECAP

- Distributed systems described by PDE's are of great importance in physical applications
- Formalized as systems with a richer set of 'independent' variables, e.g., \mathbb{R}^{n}.
- Linear constant coefficient PDE’s \leftrightarrow polynomials in many variables
- Controllability : \Leftrightarrow patchability
- 3 central theorems:

RECAP

- Distributed systems described by PDE's are of great importance in physical applications
- Formalized as systems with a richer set of 'independent' variables, e.g., \mathbb{R}^{n}.
- Linear constant coefficient PDE’s \leftrightarrow polynomials in many variables
- Controllability : \Leftrightarrow patchability
- 3 central theorems:
$\rightarrow \mathfrak{L}_{\mathrm{n}}^{\mathrm{W}} \stackrel{1: 1}{\leftrightarrow}$ submodules of $\mathbb{R}\left[\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{\mathrm{n}}\right]$.

RECAP

- Distributed systems described by PDE's are of great importance in physical applications
- Formalized as systems with a richer set of 'independent' variables, e.g., \mathbb{R}^{n}.
- Linear constant coefficient PDE’s \leftrightarrow polynomials in many variables
- Controllability : \Leftrightarrow patchability
- 3 central theorems:
$\rightarrow \mathfrak{L}_{\mathrm{n}}^{\mathrm{W}} \stackrel{1: 1}{\leftrightarrow}$ submodules of $\mathbb{R}\left[\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{\mathrm{n}}\right]$.
\rightarrow Elimination thm.

RECAP

- Distributed systems described by PDE's are of great importance in physical applications
- Formalized as systems with a richer set of 'independent' variables, e.g., \mathbb{R}^{n}.
- Linear constant coefficient PDE’s \leftrightarrow polynomials in many variables
- Controllability : \Leftrightarrow patchability
- 3 central theorems:
$\rightarrow \mathfrak{L}_{\mathrm{n}}^{\mathrm{W}} \stackrel{1: 1}{\leftrightarrow}$ submodules of $\mathbb{R}\left[\boldsymbol{\xi}_{1}, \cdots, \boldsymbol{\xi}_{\mathrm{n}}\right]$.
\rightarrow Elimination thm.
- Controllability $\Leftrightarrow \quad \exists$ image representation
\rightarrow Dissipative distributed system : \Leftrightarrow dissipates supply integrated over time and space
- Dissipative distributed system $: \Leftrightarrow$ dissipates supply integrated over time and space
- For \mathfrak{L}_{n}^{w}, QDF's: global dissipation $\Leftrightarrow \quad \exists$ a local storage function
- Dissipative distributed system $: \Leftrightarrow$ dissipates supply integrated over time and space
- For $\mathfrak{L}_{\mathrm{n}}^{\mathrm{w}}$, QDF's: global dissipation $\Leftrightarrow \exists$ a local storage function

Local storage function involves hidden latent variables

- Dissipative distributed system $: \Leftrightarrow$ dissipates supply integrated over time and space
- For $\mathfrak{L}_{\mathrm{n}}^{\mathrm{w}}$, QDF's: global dissipation $\Leftrightarrow \exists$ a local storage function
- Local storage function involves hidden latent variables
- Proof \cong Hilbert's 17-th problem

End of Lecture 9

