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THEME

A dissipative system absorbs ‘supply’ (e.g., energy).

How do we formalize this?
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THEME

A dissipative system absorbs ‘supply’ (e.g., energy).

How do we formalize this?

Involves the storage function.

How is it constructed? Is it unique?

~ KYP, LMI’s, ARE’s, QDF’s, polynomial matrix factorization.

Where is this notion applied in systems and control?
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OUTLINE

Lyapunov theory
Dissipative dynamical systems

The construction of storage functions

LQ theory; the KYP lemma
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LYAPUNOV THEORY '
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/Consider the classical ‘dynamical system’, the flow \

DI —a:—f(a:)

with x € X = R", the state space, f : X — X,
Denote the set of solutions  : R — X by %5, the ‘behavior’.
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/Consider the classical ‘dynamical system’, the flow

DI —m_f(a:)

with x € X = R", the state space, f : X — X,

The function

V: X—=R

is said to be a Lyapunov function for X if along = € ‘B

7 V() <o

Cquivalent to 1;2 =VV.f<90

Denote the set of solutions  : R — X by 8, the ‘behavior’.
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Typical Lyapunov ‘theorem’:

N
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Typical Lyapunov ‘theorem’:

V(x) >0and1}2(w) <0for0#x€X

p—

V x € B, there holds x(t) — 0 fort — oo ‘global stability’

- /

Lecture 8 Lyapunov functions




4 N

Refinements: LaSalle’s invariance principle.

Converse: Kurzweil’s thm.

LQtheory ~»A'X 4+ XA =Y ‘Lyapunov (matrix) equation’.

A linear system is stable iff it has a quadratic pos. def. Lyapunov function.

Basis for most stability results in diff. eq’ns, physics, (adaptive) control,

even numerical analysis, system identification.

Plays a remarkably central role in the field.
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SEAMKH I PYCCKME MATEMATHK
N -

ASTIIVHOB

Aleksandr Mikhailovich Lyapunov (1857-1918)

Studied mechanics, differential equations.

Introduced Lyapunov’s ‘second method’ in his Ph.D. thesis (1899).

-
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‘ DISSIPATIVE DYNAMICAL SYSTEMS .
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/A much more appropriate starting point for the study of dynamics \

are ‘open’ systems. ~-»
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/A much more appropriate starting point for the study of dynamics \

are ‘open’ systems. ~-»

input ____ | SYSTEM output
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INPUT/STATE/OUTPUT SYSTEMS

Consider the ‘dynamical system’

3 —az_f(ac u), vy = h(x,u).

u€elU=R",y € Y=RP,z € X=R": the input, output, state.

Behavior 8 =

N

all sol’ns (u,y,xz) : R — U X Y x X.
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INPUT/STATE/OUTPUT SYSTEMS

Consider the ‘dynamical system’

3 —az_f(ac u), vy = h(x,u).

u€elU=R",y € Y=RP,z € X=R": the input, output, state.
Behavior 5 = allsol’ns (u,y,z) : R — U X Y x X.

Let

s:UxXxY—R

be a function, called the supply rate.

N /
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/ DISSIPATIVITY
3. is said to be dissipative w.r.t. the supply rate s if

V:X—>R,

called the storage function, such that

along input/output/state trajectories (V (u(:),y(:),x(:)) € B).

This inequality is called the dissipation inequality.

N
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/ DISSIPATIVITY
3. is said to be dissipative w.r.t. the supply rate s if

V:X—>R,

called the storage function, such that

This inequality is called the dissipation inequality.

for all (u,x) € U x X.

N

along input/output/state trajectories (V (u(:),y(:),x(:)) € B).

Equivalent to ‘;z(m,u) = VV(x): f(x,u) < s(u, h(x,u))
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/ DISSIPATIVITY
3. is said to be dissipative w.r.t. the supply rate s if

V:X—>R,

called the storage function, such that

This inequality is called the dissipation inequality.

for all (u,x) € U x X.

\If equality holds: ‘conservative’ system.

along input/output/state trajectories (V (u(:),y(:),x(:)) € B).

Equivalent to ‘;z(m,u) = VV(x): f(x,u) < s(u, h(x,u))
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s(u, y) models something like the power delivered to the system

~

when the input value is v and output value is y.

SUPPLY
input WA
— | SYSTEM
supply output | ‘K'ﬁ‘
STORAGE\

¢vv"
DISSIPATION

V () then models the internally stored energy.

Dissipativity :&

rate of increase of internal energy < supply rate.

- /
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Special case: ‘closed system’: | s = 0

then

Dissipativity is a natural generalization of LF to open systems.

N

dissipativeness <> V' is a Lyapunov function.

Stability for closed systems ~ Dissipativity for open systems.

/
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PHYSICAL EXAMPLES
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System Supply Storage
Electrical VI energy in
circuit V : voltage capacitors and
I : current inductors
Mechanical Flvo+(20)'T potential +
system F : force, v : velocity Kinetic energy
0: angle, T : torque
Thermodynamic | Q + W internal
system Q : heat, W : work energy
Thermodynamic | —Q /T entropy
system Q : heat, T :temp.
etc. etc. etc.
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lectrical circuit:

(potential, current)

Dissipative w.r.t. E§=1 VeI, (electrical power).

o J
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Mechanical device:

N

Dissipative w.r.t.

(position, force, angle, torque)

)1 ((2qe) "Fe+ (£6:) " Ty)

(mech. power).

J
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Thermodynamic system:

(heatflow, temperature)

Conservative w.r.t.

Dissipative w.r.t.

N

3y_1Qe + zﬁ’zlwe; First law.

Qe

— ¥ Z. Second law.
=1y’
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THE CONSTRUCTION OF STORAGE FUNCTIONS '
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/Central question: \

Given (a representation of ) X, the dynamics, and

given s, the supply rate,

is the system dissipative w.r.t. s, i.e.,

does there exist a storage function V' such that the

dissipation inequality holds?
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Lecture 8 The construction of storage functions




/Central question: \

Given (a representation of ) X, the dynamics, and

given s, the supply rate,

is the system dissipative w.r.t. s, i.e.,

does there exist a storage function V' such that the

dissipation inequality holds?

input

—

supply

SYSTEM

output

\ Assume s ‘power’, known dynamics, what is the internal energy?j
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Assume that a number of (reasonable) conditions hold:
f(0,0) =0,h(0,0) = 0,s(0,0) = 0;
Maps and functions (including V') smooth;
State space X of X ‘connected’:
every state reachable from every other state;

Observability.

- /
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Assume that a number of (reasonable) conditions hold:
f(0,0) =0,h(0,0) = 0,s(0,0) = 0;
Maps and functions (including V') smooth;
State space X of X ‘connected’:
every state reachable from every other state;

Observability.

‘Thm’: Let X and s be given.

Then X is dissipative w.r.t. s iff

74 s(u(-),y(-)) dt >0

for all periodic (u(-),y(:),x(:)) € B.
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Two universal storage functions:

1. The available storage

Vavailable (CB()) =

N

4
SUP (w(),y(+),2(-)) €B,z(0)=zq,z(co0)=0 {_f() = S(U(-),y(')) dt}
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Two universal storage functions:

1. The available storage

Vavailable (CB()) =

4
SUP (w(),y(+),2(-)) €B,z(0)=zq,z(co0)=0 {_f() = s(u(-),y(-)) dt}

2. The required supply

V;equired (mO) =

N

. 0
inf (u(.),y(),2())€B,2(~00)=0,2(0)=20 {J_o0 S(u(-),y(-)) dit}

/
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Two universal storage functions:

1. The available storage

Vavailable(mO) =
4
SUP (w(),y(+),2(-)) €B,z(0)=zq,z(co0)=0 {_ f() = S(“’(')? y(')) dt}
2. The required supply

V}equired(mO) =
. 0
inf (u(.),y(),2())€B,2(~00)=0,2(0)=20 {J_o0 S(u(-),y(-)) dit}
V is in general far from unique. Storage {’ns form convex set, every storage

function satisfies

Vavailable S |4 S ‘/;'equired-

For conservative systems, V' is unique.

N /
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The construction of storage f’ns is very well understood, particularly for linear

input/state/output systems and quadratic supply rates.

Leads to the KYP-lemma, LMI’s, ARIneq, ARE, semi-definite programming,
spectral factorization, Lyapunov functions, robust control, electrical circuit

synthesis, stochastic realization theory.

- /
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Dissipative systems play a remarkably central role in the field.

Edited by
Tamer Basar
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LINEAR SYSTEMS with QUADRATIC SUPPLY RATES I

/
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Assume X linear, time-invariant, finite-dimensional:

Em—Am—l—Bu, y = Czx,

and s quadratic: for example,

s: (u,y) = [|ul|® — [ly]|*.

E.g., for circuits u = %, Yy = Vz_ I etc.

Assume (A, B) controllable, (A, C) observable.
G(s) := C(Is — A)~1B, the transfer function of X.

- /
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ﬁ heorem: The following are equivalent: \

» X is dissipative w.r.t. ||u||? — ||y]||?

(i.e., there exists a storage function V'),
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/T heorem: The following are equivalent: \

» X is dissipative w.r.t. ||u||? — ||y]||?

(i.e., there exists a storage function V'),

>V (u,y,x) € BN Loy,

el zgmm 2 Y12y mey
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/T heorem: The following are equivalent:

» X is dissipative w.r.t. ||u||? — ||y]||?

(i.e., there exists a storage function V'),

>V (u,y,x) € BN Loy,

> ||G(w)|| <1

N

el zgmm 2 Y12y mey

for all w € R,

/
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/T heorem: The following are equivalent:

» X is dissipative w.r.t. ||u||? — ||y]||?

(i.e., there exists a storage function V'),

>V (u,y,x) € BN Loy,

> ||G(w)|| <1

( 3 a quadratic storage f’'n, V(z) =z' Kz, K = K,

el zgmm 2 Y12y mey

for all w € R,
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/b there exists a solution K = K ' to the Linear Matrix Inequality (LMI) \

ATK+ KA+ C™C KB
BTK —1I

N /
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/b there exists a solution K = K ' to the Linear Matrix Inequality (LMI) \

ATK+ KA+ C™C KB
BTK —1I

<o,

» there exists a solution K = K ' to the Algebraic Riccati Inequality (ARIneq)

ATK+ KA+ KBB'K+C'C <o,
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/b there exists a solution K = K ' to the Linear Matrix Inequality (LMI) \

ATK+ KA+ C™C KB
BTK —1I

<o,

» there exists a solution K = K ' to the Algebraic Riccati Inequality (ARIneq)

ATK+ KA+ KBB'K+C'C <o,

» there exists a solution K = K ' to the Algebraic Riccati Equation (ARE)

ATK+ KA+ KBB'K+C'C =o.

N /
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Solution set (of LMI, ARineq) is convex, compact, and attains

its infimum and its supremum:

K-<K<K-T.

These extreme sol’ns K — and K+ themselves satisfy the ARE,

associated with the available storage and the required supply.

N /
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Solution set (of LMI, ARineq) is convex, compact, and attains

its infimum and its supremum:

K-<K<K-T.

These extreme sol’ns K — and K+ themselves satisfy the ARE,

associated with the available storage and the required supply.

Extensive theory, relation with other system representations,
many applications, well-understood (also algorithmically).

Connection with optimal LQ control, semi-definite programming.

N /
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/Important refinement:

Existence of a V' > 0 (i.e., bounded from below) (energy?)

N
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/Important refinement:

Existence of a V' > 0 (i.e., bounded from below) (energy?)

~ /_ s(u(),y() dt > 0.

N

/
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/Important refinement:

Existence of a V' > 0 (i.e., bounded from below) (energy?)

~ [ s(),u0) dt>o.

In LQ case &
0 0
o [ZoolluMIFdt> [Zlly()lI? dt,
® SUP.ccire(s)>0 |G| =2 ||G|lno, < 1,

Note def. of H .-norm !

e IsoI’'n K = K" > 0to LMI, ARineq, ARE.

N

/
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/Important refinement:

Existence of a V' > 0 (i.e., bounded from below) (energy?)

~ [ s(),u0) dt>o.

In LQ case &
0 0
o [ZoolluMIFdt> [Zlly()lI? dt,
® SUP.ccire(s)>0 |G| =2 ||G|lno, < 1,

Note def. of H .-norm !

e IsoI’'n K = K" > 0to LMI, ARineq, ARE.

Q KYP-lemma.
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Another situation

d

dt

t = Ax + Bu, y=Cx+ Du, m=p,

s: (u,y) — u'y.

E.g., for circuits u = V,y = I, etc.

Assume (A, B) controllable, (A, C) observable.
G(s) := C(Is — A) !B, the transfer function of X.

N

/
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ﬁ heorem: The following are equivalent: \

» ¥ is dissipative w.r.t. u "y

(i.e., there exists a storage function V'),
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ﬁ heorem: The following are equivalent:

» ¥ is dissipative w.r.t. u "y

(i.e., there exists a storage function V'),

>V (u,y,x) € BN Lo,

SUY >rpmum 2

>

0,

N

/
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/T heorem: The following are equivalent:

» ¥ is dissipative w.r.t. u "y

(i.e., there exists a storage function V'),

>V (u,y,xz) € BN Ly,

S U Y >, zmm

N

» | G(iw) + G (—iw) > 0| forallw € R,

/
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ﬁ heorem: The following are equivalent:

» ¥ is dissipative w.r.t. u "y

(i.e., there exists a storage function V'),

>V (u,y,xz) € BN Ly,

<UY >, am> 0,

» | G(iw) + G (—iw) > 0| forallw € R,

( 3 a quadratic storage f’'n, V(z) =z' Kz, K = K,

/
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/b there exists a solution K = K ' to the Linear Matrix Inequality (LMI) \

N

ATK+ KA

B'K-CT

KB-CT

—-D-D"

/
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/b there exists a solution K = K ' to the Linear Matrix Inequality (LMI)

ATK+ KA KB-CT

BTK—-CT —D-DT7 =0

» if D + D" > 0, there exists a solution K = K ' to the
Algebraic Riccati Inequality (ARIneq)

ATK4+ KA+ (KB-Cc")'(D+D")Y"Y(KB-C") <o,

N

~

/

Lecture 8 LQ theory



/b there exists a solution K = K ' to the Linear Matrix Inequality (LMI)

ATK+ KA KB-CT

BTK—-CT —D-DT7 =0

» if D + D" > 0, there exists a solution K = K ' to the
Algebraic Riccati Inequality (ARIneq)

ATK4+ KA+ (KB-Cc")'(D+D")Y"Y(KB-C") <o,

» there exists a solution K = K ' to the Algebraic Riccati Equation (ARE)

A'K 4+ KA+ (KB —Ctop)"(D+D")"Y(KB—-CT") =0.

N

~

/
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Solution set (of LMI, ARineq) is convex, compact, and attains

its infimum and its supremum:

K-<K<KT.

These extreme sol’ns K — and K themselves satisfy the ARE,

associated with the available storage and the required supply.

N /
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Applications:

1. Robust stability, construction of Lyapunov functions, Popov and circle

criteria, small loop gain thm., passive operator thm.
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Lecture 8 LQ theory




4 N

Applications:

1. Robust stability, construction of Lyapunov functions, Popov and circle

criteria, small loop gain thm., passive operator thm.

2. Robust stabilization, ~>» H . -theory.

N /
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Applications:

1. Robust stability, construction of Lyapunov functions, Popov and circle

criteria, small loop gain thm., passive operator thm.

2. Robust stabilization, ~>» H . -theory.

3. Electrical circuit synthesis.
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» Dissipative system: involves supply rate, storage f’n.
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» Dissipative system: involves supply rate, storage f’n.

» Dissipative system: net flow of supply into the system
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» Dissipative system: involves supply rate, storage f’n.
» Dissipative system: net flow of supply into the system

» Natural generalization of Lyapunov {’n to open systems
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» Dissipative system: involves supply rate, storage f’n.
» Dissipative system: net flow of supply into the system
» Natural generalization of Lyapunov {’n to open systems

» Central question: construction of storage functions
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» Dissipative system: net flow of supply into the system

» Natural generalization of Lyapunov {’n to open systems
» Central question: construction of storage functions

» LQ theory ~» LMI, ARIneq, ARE, KYP
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/ ‘ RECAP .

» Dissipative system: involves supply rate, storage f’n.

» Dissipative system: net flow of supply into the system

» Natural generalization of Lyapunov {’n to open systems
» Central question: construction of storage functions

» LQ theory ~» LMI, ARIneq, ARE, KYP

» Applications: robust stability, stabilization, circuit synthesis

K » For differential systems ~> QDF’s — next lecture
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