

MATHEMATICAL MODELS of SYSTEMS

Jan C. Willems

ESAT-SCD (SISTA), University of Leuven, Belgium

IUAP Graduate Course

Fall 2002

THEME

A dissipative system absorbs 'supply' (e.g., energy).

How do we formalize this?

THEME

A dissipative system absorbs 'supply' (e.g., energy).

How do we formalize this?

Involves the storage function.

How is it constructed? Is it unique?

~ KYP, LMI's, ARE's, QDF's, polynomial matrix factorization.

Lecture 8

THEME

A dissipative system absorbs 'supply' (e.g., energy).

How do we formalize this?

Involves the storage function.

How is it constructed? Is it unique?

→ KYP, LMI's, ARE's, QDF's, polynomial matrix factorization.

Where is this notion applied in systems and control?

- 1. Lyapunov theory
- 2. Dissipative dynamical systems
- **3.** The construction of storage functions
- 4. LQ theory; the KYP lemma

LYAPUNOV THEORY

Consider the classical 'dynamical system', the *flow*

$$\Sigma: \quad \frac{d}{dt}x = f(x)$$

with $x \in \mathbb{X} = \mathbb{R}^n$, the state space, $f : \mathbb{X} \to \mathbb{X}$.

Denote the set of solutions $x : \mathbb{R} \to \mathbb{X}$ by \mathfrak{B} , the 'behavior'.

Lecture 8

Consider the classical 'dynamical system', the *flow*

$$\Sigma: \quad \frac{d}{dt}x = f(x)$$

with $x \in \mathbb{X} = \mathbb{R}^n$, the state space, $f : \mathbb{X} \to \mathbb{X}$.

Denote the set of solutions $x : \mathbb{R} \to \mathbb{X}$ by \mathfrak{B} , the 'behavior'.

The function

$$V:\mathbb{X}
ightarrow\mathbb{R}$$

is said to be a Lyapunov function for Σ if along $x \in \mathfrak{B}$

$$rac{d}{dt} V(x(\cdot)) \leq 0$$

Equivalent to

 $V^{\Sigma} :=
abla V \cdot f \leq 0$

Lecture 8

Lyapunov functions

Typical Lyapunov 'theorem':

Lecture 8

Lyapunov functions

<u>Refinements</u>: LaSalle's invariance principle.

<u>Converse</u>: Kurzweil's thm.

LQ theory $\rightsquigarrow A^{\top}X + XA = Y$ 'Lyapunov (matrix) equation'.

A linear system is stable iff it has a quadratic pos. def. Lyapunov function.

Basis for most stability results in diff. eq'ns, physics, (adaptive) control, even numerical analysis, system identification.

Plays a remarkably central role in the field.

Aleksandr Mikhailovich Lyapunov (1857-1918)

Studied mechanics, differential equations.

Introduced Lyapunov's 'second method' in his Ph.D. thesis (1899).

DISSIPATIVE DYNAMICAL SYSTEMS

Lecture 8

A much more appropriate starting point for the study of dynamics

are 'open' systems. \rightarrow

A much more appropriate starting point for the study of dynamics are 'open' systems. \rightarrow SYSTEM output input Lecture 8 Dissipative systems

INPUT/STATE/OUTPUT SYSTEMS

Consider the 'dynamical system'

$$\Sigma: \quad \frac{d}{dt} x = f(x, u), \quad y = h(x, u).$$

 $u \in \mathbb{U} = \mathbb{R}^{m}, y \in \mathbb{Y} = \mathbb{R}^{p}, x \in \mathbb{X} = \mathbb{R}^{n}$: the input, output, state. <u>Behavior</u> $\mathfrak{B} =$ all sol'ns $(u, y, x) : \mathbb{R} \to \mathbb{U} \times \mathbb{Y} \times \mathbb{X}$.

INPUT/STATE/OUTPUT SYSTEMS

Consider the 'dynamical system'

$$\Sigma: \quad \frac{d}{dt} x = f(x, u), \quad y = h(x, u).$$

 $u \in \mathbb{U} = \mathbb{R}^{m}, y \in \mathbb{Y} = \mathbb{R}^{p}, x \in \mathbb{X} = \mathbb{R}^{n}$: the input, output, state. <u>Behavior</u> $\mathfrak{B} =$ all sol'ns $(u, y, x) : \mathbb{R} \to \mathbb{U} \times \mathbb{Y} \times \mathbb{X}$.

Let

$$s:\mathbb{U} imes\mathbb{Y} o\mathbb{R}$$

be a function, called the supply rate.

DISSIPATIVITY

 Σ is said to be *dissipative* w.r.t. the supply rate s if \exists

$$V:\mathbb{X}
ightarrow\mathbb{R},$$

called the *storage function*, such that

$$rac{d}{dt} V(x(\cdot)) \leq s(u(\cdot),y(\cdot))$$

along input/output/state trajectories $(\forall \ (u(\cdot), y(\cdot), x(\cdot)) \in \mathfrak{B}).$

This inequality is called the *dissipation inequality*.

DISSIPATIVITY

 Σ is said to be *dissipative* w.r.t. the supply rate s if \exists

$$V:\mathbb{X}
ightarrow\mathbb{R},$$

called the *storage function*, such that

$$rac{d}{dt} V(x(\cdot)) \leq s(u(\cdot),y(\cdot))$$

along input/output/state trajectories $(\forall \ (u(\cdot), y(\cdot), x(\cdot)) \in \mathfrak{B}).$

This inequality is called the *dissipation inequality*.

Equivalent to $\stackrel{\bullet}{V}^{\Sigma}(x,u) := \nabla V(x) \cdot f(x,u) \leq s(u,h(x,u))$ for all $(u,x) \in \mathbb{U} \times \mathbb{X}$.

Lecture 8

DISSIPATIVITY

 Σ is said to be *dissipative* w.r.t. the supply rate s if \exists

$$V:\mathbb{X}
ightarrow\mathbb{R},$$

called the *storage function*, such that

$$rac{d}{dt} V(x(\cdot)) \leq s(u(\cdot),y(\cdot))$$

along input/output/state trajectories $(\forall \ (u(\cdot), y(\cdot), x(\cdot)) \in \mathfrak{B}).$

This inequality is called the *dissipation inequality*.

Equivalent to $\stackrel{\bullet}{V}^{\Sigma}(x,u) := \nabla V(x) \cdot f(x,u) \leq s(u,h(x,u))$ for all $(u,x) \in \mathbb{U} \times \mathbb{X}.$

If equality holds: 'conservative' system.

Lecture 8

s(u, y) models something like the power delivered to the system when the input value is u and output value is y.

Special case: 'closed system': s = 0

then dissipativeness $\leftrightarrow V$ is a Lyapunov function.

Dissipativity is a natural generalization of LF to open systems.

Stability for closed systems \simeq Dissipativity for open systems.

PHYSICAL EXAMPLES

System	Supply	Storage
Electrical	$V^{ op}I$	energy in
circuit	V : voltage	capacitors and
	I : current	inductors
Mechanical	$F^ op v + (rac{d}{dt} heta)^ op T$	potential +
system	F : force, v : velocity	kinetic energy
	θ : angle, T : torque	
Thermodynamic	Q+W	internal
system	Q : heat, W : work	energy
Thermodynamic	-Q/T	entropy
system	Q : heat, T : temp.	
etc.	etc.	etc.

Lecture 8

Dissipative systems

Lecture 8

Dissipative systems

Thermodynamic system:

Lecture 8

THE CONSTRUCTION OF STORAGE FUNCTIONS

Central question:

Given (a representation of) Σ, the dynamics, and given s, the supply rate, is the system dissipative w.r.t. s, i.e., does there exist a storage function V such that the dissipation inequality holds?

Central question:

Given (a representation of) Σ, the dynamics, and given s, the supply rate, is the system dissipative w.r.t. s, i.e., does there exist a storage function V such that the dissipation inequality holds?

Assume that a number of (reasonable) conditions hold: f(0,0) = 0, h(0,0) = 0, s(0,0) = 0;Maps and functions (including V) smooth; State space X of Σ 'connected': every state reachable from every other state; Observability. Assume that a number of (reasonable) conditions hold: f(0,0) = 0, h(0,0) = 0, s(0,0) = 0;Maps and functions (including V) smooth; State space X of Σ 'connected': every state reachable from every other state; Observability.

<u>'Thm'</u>: Let Σ and s be given.

Then Σ is dissipative w.r.t. s iff

$$\oint s(u(\cdot),y(\cdot)) \; dt \geq 0$$

for all periodic $(u(\cdot), y(\cdot), x(\cdot)) \in \mathfrak{B}$.

Two universal storage functions:

1. The available storage

 $V_{\text{available}}(x_0) :=$

 $\sup_{(u(\cdot),y(\cdot),x(\cdot))\in\mathfrak{B},x(0)=x_0,x(\infty)=0} \ \{-\int_0^{+\infty}s(u(\cdot),y(\cdot))\ dt\}$

Two universal storage functions:

1. The available storage

 $V_{\text{available}}(x_0) :=$

 $\sup_{(u(\cdot),y(\cdot),x(\cdot))\in\mathfrak{B},x(0)=x_0,x(\infty)=0} \ \{-\int_0^{+\infty}s(u(\cdot),y(\cdot))\ dt\}$

2. The required supply

 $V_{\text{required}}(x_0) :=$

 $\inf_{(u(\cdot),y(\cdot),x(\cdot))\in\mathfrak{B},x(-\infty)=0,x(0)=x_0} \{\int_{-\infty}^0 s(u(\cdot),y(\cdot)) dt\}$

Two universal storage functions:

1. The available storage

 $V_{\text{available}}(x_0) := \sup_{\substack{u(\cdot), y(\cdot), x(\cdot) \in \mathfrak{B}, x(0) = x_0, x(\infty) = 0 \\ \text{sup}(u(\cdot), y(\cdot), x(\cdot)) \in \mathfrak{B}, x(0) = x_0 \\ \text{vrequired}(x_0) := \inf_{\substack{u(\cdot), y(\cdot), x(\cdot) \in \mathfrak{B}, x(-\infty) = 0, x(0) = x_0 \\ \text{inf}(u(\cdot), y(\cdot), x(\cdot)) \in \mathfrak{B}, x(-\infty) = 0, x(0) = x_0 \\ \text{for a set of } \{\int_{-\infty}^{0} s(u(\cdot), y(\cdot)) dt\}$ V is in general far from unique. Storage f'ns form convex set, every storage function satisfies

$$V_{\text{available}} \leq V \leq V_{\text{required}}.$$

For conservative systems, V is unique.
The construction of storage f'ns is very well understood, particularly for linear input/state/output systems and quadratic supply rates.

Leads to the KYP-lemma, LMI's, ARIneq, ARE, semi-definite programming, spectral factorization, Lyapunov functions, robust control, electrical circuit synthesis, stochastic realization theory.

Dissipative systems play a remarkably central role in the field.

LINEAR SYSTEMS with QUADRATIC SUPPLY RATES

Assume Σ linear, time-invariant, finite-dimensional:

$$\frac{d}{dt}x = Ax + Bu, \quad y = Cx,$$

and s quadratic: for example,

$$s:(u,y)\mapsto ||u||^2 - ||y||^2.$$

E.g., for circuits $u = \frac{V+I}{2}, y = \frac{V-I}{2}$, etc.

Assume (A, B) controllable, (A, C) observable. $G(s) := C(Is - A)^{-1}B$, the transfer function of Σ .

▶ Σ is dissipative w.r.t. $||u||^2 - ||y||^2$

(i.e., there exists a storage function V),

▶ Σ is dissipative w.r.t. $||u||^2 - ||y||^2$

(i.e., there exists a storage function V),

$$\blacktriangleright \forall \ (u,y,x) \in \mathfrak{B} \cap \mathcal{L}_2,$$

$$||u||_{\mathcal{L}_{2}(\mathbb{R},\mathbb{R}^{\mathrm{m}})}\geq ||y||_{\mathcal{L}_{2}(\mathbb{R},\mathbb{R}^{\mathrm{p}})},$$

$$\begin{bmatrix} A^\top K + KA + C^\top C & KB \\ B^\top K & -I \end{bmatrix} \leq 0,$$

▶ there exists a solution $K = K^{\top}$ to the Linear Matrix Inequality (LMI) $\begin{vmatrix} A^{\top}K + KA + C^{\top}C & KB \\ B^{\top}K & -I \end{vmatrix}$ $\leq 0,$ ▶ there exists a solution $K = K^{\top}$ to the Algebraic Riccati Inequality (ARIneq) $A^{\top}K + KA + KBB^{\top}K + C^{\top}C < 0,$

▶ there exists a solution $K = K^{\top}$ to the Linear Matrix Inequality (LMI) $egin{array}{ccc} A^{ op}K+KA+C^{ op}C & KB \ B^{ op}K & -I \end{array} &\leq 0, \end{array}$ ▶ there exists a solution $K = K^{\top}$ to the Algebraic Riccati Inequality (ARIneq) $A^{\top}K + KA + KBB^{\top}K + C^{\top}C < 0,$ ▶ there exists a solution $K = K^{\top}$ to the Algebraic Riccati Equation (ARE) $A^{\top}K + KA + KBB^{\top}K + C^{\top}C = 0.$ Lecture 8 LQ theory

Solution set (of LMI, ARineq) is convex, compact, and attains its infimum and its supremum:

$$K^- \leq K \leq K^+.$$

These extreme sol'ns K^- and K^+ themselves satisfy the ARE, associated with the available storage and the required supply.

Solution set (of LMI, ARineq) is convex, compact, and attains its infimum and its supremum:

$$K^- \leq K \leq K^+.$$

These extreme sol'ns K^- and K^+ themselves satisfy the ARE, associated with the available storage and the required supply.

Extensive theory, relation with other system representations, many applications, well-understood (also algorithmically). Connection with optimal LQ control, semi-definite programming.

Existence of a $V \ge 0$ (i.e., bounded from below) (energy?)

Existence of a $V \ge 0$ (i.e., bounded from below) (energy?)

$$\sim \int_{-\infty}^{0} s(u(\cdot),y(\cdot)) \;\; dt \geq 0.$$

Existence of a $V \ge 0$ (i.e., bounded from below) (energy?)

$$\rightsquigarrow \int_{-\infty}^0 s(u(\cdot),y(\cdot)) \;\; dt \geq 0.$$

In LQ case \Leftrightarrow

- $\int_{-\infty}^{0} ||u(\cdot)||^2 dt \ge \int_{-\infty}^{0} ||y(\cdot)||^2 dt$,
- $\sup_{\{s \in \mathbb{C} | \operatorname{Re}(s) > 0\}} ||G(s)|| =: ||G||_{\mathcal{H}_{\infty}} \leq 1$, Note def. of \mathcal{H}_{∞} -norm !
- \exists sol'n $K = K^{\top} \ge 0$ to LMI, ARineq, ARE.

Existence of a $V \ge 0$ (i.e., bounded from below) (energy?)

$$\rightsquigarrow \int_{-\infty}^0 s(u(\cdot),y(\cdot)) \;\; dt \geq 0.$$

In LQ case \Leftrightarrow

- $\int_{-\infty}^{0} ||u(\cdot)||^2 dt \ge \int_{-\infty}^{0} ||y(\cdot)||^2 dt$,
- $\sup_{\{s \in \mathbb{C} | \operatorname{Re}(s) > 0\}} ||G(s)|| =: ||G||_{\mathcal{H}_{\infty}} \leq 1$, Note def. of \mathcal{H}_{∞} -norm !
- \exists sol'n $K = K^{\top} \ge 0$ to LMI, ARineq, ARE.

→ KYP-lemma.

Lecture 8

LQ theory

Another situation

$$\frac{d}{dt}x = Ax + Bu, \quad y = Cx + Du, \quad m = p,$$

$$s:(u,y)\mapsto u^ op y.$$

E.g., for circuits u = V, y = I, etc.

Assume (A, B) controllable, (A, C) observable. $G(s) := C(Is - A)^{-1}B$, the transfer function of Σ .

- $\triangleright \Sigma$ is dissipative w.r.t. $u^{\top}y$
 - (i.e., there exists a storage function V),

 $\triangleright \Sigma$ is dissipative w.r.t. $u^{\top}y$

(i.e., there exists a storage function V),

$$\blacktriangleright \forall \ (u,y,x) \in \mathfrak{B} \cap \mathcal{L}_2,$$

$$< u, y>_{\mathcal{L}_{2}(\mathbb{R},\mathbb{R}^{\mathrm{m}})} \geq 0,$$

 $\blacktriangleright \Sigma$ is dissipative w.r.t. $u^{\top}y$

(i.e., there exists a storage function V),

$$\blacktriangleright \forall \ (u,y,x) \in \mathfrak{B} \cap \mathcal{L}_2,$$

$$< u, y>_{{\mathcal L}_{2}({\mathbb R},{\mathbb R}^{{\mathbb m}})}\geq 0,$$

$$\bullet \ \left| \begin{array}{c} G(i\omega) + G^\top(-i\omega) \geq 0 \end{array} \right| \quad \text{for all } \omega \in \mathbb{R},$$

 $\triangleright \Sigma$ is dissipative w.r.t. $u^{\top}y$

(i.e., there exists a storage function V),

$$\blacktriangleright \forall \ (u,y,x) \in \mathfrak{B} \cap \mathcal{L}_2,$$

$$< u, y>_{{\mathcal L}_{2}({\mathbb R},{\mathbb R}^{{\mathbb m}})}\geq 0,$$

$$\bullet \ \left| \begin{array}{c} G(i\omega) + G^{\top}(-i\omega) \geq 0 \end{array} \right| \quad \text{for all } \omega \in \mathbb{R},$$

► \exists a quadratic storage f'n, $V(x) = x^{\top}Kx, K = K^{\top}$,

$$egin{bmatrix} A^ op K + KA & KB - C^ op \ B^ op K - C^ op & -D - D^ op \end{bmatrix} \leq 0,$$

$$egin{bmatrix} A^ op K + KA & KB - C^ op \ B^ op K - C^ op & -D - D^ op \end{bmatrix} \leq 0,$$

▶ if $D + D^{\top} > 0$, there exists a solution $K = K^{\top}$ to the Algebraic Riccati Inequality (ARIneq)

 $A^{\top}K + KA + (KB - C^{\top})^{\top}(D + D^{\top})^{-1}(KB - C^{\top}) \le 0,$

$$egin{bmatrix} A^ op K + KA & KB - C^ op \ B^ op K - C^ op & -D - D^ op \end{bmatrix} \leq 0,$$

▶ if $D + D^{\top} > 0$, there exists a solution $K = K^{\top}$ to the Algebraic Riccati Inequality (ARIneq)

$$A^{ op}K + KA + (KB - C^{ op})^{ op}(D + D^{ op})^{-1}(KB - C^{ op}) \leq 0,$$

▶ there exists a solution $K = K^{\top}$ to the Algebraic Riccati Equation (ARE)

$$A^{\top}K + KA + (KB - C^{t}op)^{\top}(D + D^{\top})^{-1}(KB - C^{\top}) = 0.$$

Solution set (of LMI, ARineq) is convex, compact, and attains its infimum and its supremum:

 $K^- \leq K \leq K^+$.

These extreme sol'ns K^- and K^+ themselves satisfy the ARE, associated with the available storage and the required supply.

Applications:

1. Robust stability, construction of Lyapunov functions, Popov and circle criteria, small loop gain thm., passive operator thm.

Applications:

1. Robust stability, construction of Lyapunov functions, Popov and circle criteria, small loop gain thm., passive operator thm.

2. Robust stabilization, $\rightsquigarrow \mathcal{H}_{\infty}$ -theory.

Applications:

1. Robust stability, construction of Lyapunov functions, Popov and circle criteria, small loop gain thm., passive operator thm.

2. Robust stabilization, $\rightsquigarrow \mathcal{H}_{\infty}$ -theory.

3. Electrical circuit synthesis.

End of Lecture 8