MATHEMATICAL MODELS of SYSTEMS

Jan C. Willems
ESAT-SCD (SISTA), University of Leuven, Belgium

Lecture 4

INPUTS and OUTPUTS

THE TRANSFER FUNCTION

THEME

When is a system variable an input? An output?

THEME

When is a system variable an input? An output?

Inputs $=$ free, outputs $=$ follow from inputs + intitial conditions.

THEME

When is a system variable an input? An output?

Inputs $=$ free, outputs $=$ follow from inputs + intitial conditions.

OUTLINE

- Free and bound variables, inputs and outputs: formal def'ns.
- Every linear time-invariant differential system admits a I/O partition
- The transfer function
- Left and right co-prime factorizations, relations with controllability
- Time-domain characterization

FORMAL DEFINITIONS

Intuition

Our choice: the input is a free variable which, together with the 'initial conditions' determines the output.

Intuition

Our choice: the input is a free variable which, together with the 'initial conditions' determines the output.

These concepts (input, output) are strongly domain dependent.
We will discuss them following the usual systems \& control setting.

Central is, of course, that the input must in some way causes the output.

- In physical systems and in real-time signal processing and control, non-anticipation must be an important feature.
- In non-real-time signal processing problems, or when the independent variable is not time, non-anticipation need not be an issue.
- In many problems (e.g. computing, signal processing) inputs may have to be structured, in order for machines or algorithms to be able to accept them.
- In control, it is customary to assume that inputs are free, and that outputs are bound (determined by the inputs and the initial conditions). We will follow this tradition.

We start with a couple of def'ns:

We start with a couple of def'ns:

$\Sigma=(\mathbb{T}, \mathbb{W}, \mathfrak{B})$ is said to be memoryless if

$$
\left[w_{1}, w_{2} \in \mathfrak{B}\right] \wedge[t \in \mathbb{T}] \Rightarrow\left[w_{1} \wedge_{t} w_{2} \in \mathfrak{B}\right]
$$

where $\underset{t}{\wedge}$ denotes concatenation at time t, defined by

$$
\left(w_{1} \wedge w_{2}\right)\left(t^{\prime}\right):= \begin{cases}w_{1}\left(t^{\prime}\right) & t^{\prime}<t \\ w_{2}\left(t^{\prime}\right) & t^{\prime} \geq t\end{cases}
$$

Memoryless:= the past and the future are unrelated (except by the system laws).
$\Sigma=(\mathbb{T}, \mathbb{W}, \mathfrak{B})$ is said to be trim if

$$
\forall \mathrm{w} \in \mathbb{W} \text { and } \forall t \in \mathbb{T} \exists \boldsymbol{w} \in \mathfrak{B}: w(t)=\mathrm{w} .
$$

Trim:= the signal space has no irrelevant elements, there is no instantaneous (local) structure.
$\Sigma=(\mathbb{T}, \mathbb{W}, \mathfrak{B})$ is said to be trim if

$$
\forall \mathbf{w} \in \mathbb{W} \text { and } \forall t \in \mathbb{T} \exists \boldsymbol{w} \in \mathfrak{B}: w(t)=\mathbf{w}
$$

Trim:= the signal space has no irrelevant elements, there is no instantaneous (local) structure.

Note: trim + memoryless \cong 'free'
(modulo niceties as measurability, integrability, ...)

Recall $\Sigma=(\mathbb{T}, \mathbb{W}, \mathfrak{B})$ with $\mathbb{T}=\mathbb{R}$ or \mathbb{Z} is said to be autonomous if

$$
\left[w_{1}, w_{2} \in \mathfrak{B}\right] \wedge[t \in \mathbb{T}] \wedge\left[w_{1}\left(t^{\prime}\right)=w_{2}\left(t^{\prime}\right) \forall t^{\prime}<t\right] \Rightarrow\left[w_{1}=w_{2}\right]
$$

Autonomous:= the past implies the future.

Let $\Sigma=\left(\mathbb{T}, \mathbb{W}_{1} \times \mathbb{W}_{2}, \mathfrak{B}\right), \mathbb{T}=\mathbb{R}$ or \mathbb{Z}, be a dynamical system. Then w_{1} is said to be input/output system with w_{1} the input and w_{2} the output if

1. $\Sigma_{1}:=\left(\mathbb{T}, \mathbb{W}_{1}, \mathfrak{B}_{1}\right)$ is free $:=$ trim and memoryless, where \mathfrak{B}_{1} denotes the \boldsymbol{w}_{1} behavior
(i.e., the manifest behavior with w_{2} viewed as a latent variable).
2. for all $w_{1} \in \mathfrak{B}_{1} \Sigma_{2}^{w_{1}}:=\left(\mathbb{T}, \mathbb{W}_{1} \times \mathbb{W}_{2}, \mathfrak{B}_{2}^{w_{1}}\right)$ is autonomous, where $\mathfrak{B}_{2}^{w_{1}}$ denotes the w_{2} behavior with fixed w_{1},

$$
\text { i.e., } \mathfrak{B}_{2}^{w_{1}}:=\left\{w_{2} \mid\left(w_{1}, w_{2}\right) \in \mathfrak{B}\right\}
$$

input \cong free; output \cong bound (determined by inputs + initial cond's).
input \cong free; output \cong bound (determined by inputs + initial cond's).

For systems in \mathfrak{L}^{\bullet}, our notion of memoryless (unfortunately) clashes with the \mathfrak{C}^{∞} assumption. We therefore decide (for \mathfrak{L}^{\bullet}) that

$$
\text { free }:=\mathfrak{B}=\mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right)={ }^{‘} \mathfrak{C}^{\infty} \text {-free'. }
$$

input \cong free; output \cong bound (determined by inputs + initial cond's).

For systems in \mathfrak{L}^{\bullet}, our notion of memoryless (unfortunately) clashes with the \mathfrak{C}^{∞} assumption. We therefore decide (for \mathfrak{L}^{\bullet}) that

$$
\text { free }:=\mathfrak{B}=\mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right)={ }^{‘} \mathfrak{C}^{\infty} \text {-free'. }
$$

In keeping with tradition

$$
w_{1} \rightarrow u ; \quad w_{2} \rightarrow y ; \quad \mathbb{W}_{1} \rightarrow \mathbb{U}, \quad \mathbb{W}_{2} \rightarrow \mathbb{Y}
$$

For linear systems:

$$
\mathbb{U}=\mathbb{R}^{\mathrm{m}} \text { (m input variables), } \quad \mathbb{Y}=\mathbb{R}^{\mathrm{p}}(\mathrm{p} \text { output variables }) .
$$

Let $\Sigma=\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}, \mathfrak{B}\right) \in \mathfrak{L}^{\mathrm{w}}$, with $\mathbb{R}^{\mathrm{w}}=\mathbb{R}^{\mathrm{m}} \times \mathbb{R}^{\mathrm{p}}, \mathrm{w}=\mathrm{m}+\mathrm{p}$.

If the corresponding $\Sigma=\left(\mathbb{R}, \mathbb{R}^{\mathrm{m}} \times \mathbb{R}^{\mathrm{p}}, \mathfrak{B}\right)$ is an input/output system, then we call $w=(u, y)$ an input/output partition of w.

Proposition: Consider the linear differential system with kernel repr.

$$
P\left(\frac{d}{d t}\right) u=Q\left(\frac{d}{d t}\right) y, w=(u, y)
$$

u is \mathfrak{C}^{∞}-free $\quad \Leftrightarrow \operatorname{rank}\left(\left[\begin{array}{ll}P & Q\end{array}\right]\right)=\operatorname{rank}(P)$, y is bound by $u \Leftrightarrow P$ is of full column rank, i.e. $\operatorname{rank}(P)=\operatorname{dim}(y)$.

Proposition: Consider the linear differential system with kernel repr.

$$
P\left(\frac{d}{d t}\right) u=Q\left(\frac{d}{d t}\right) y, w=(u, y)
$$

u is \mathfrak{C}^{∞}-free $\quad \Leftrightarrow \operatorname{rank}\left(\left[\begin{array}{ll}P & Q\end{array}\right]\right)=\operatorname{rank}(P)$,
y is bound by $u \Leftrightarrow P$ is of full column rank, i.e. $\operatorname{rank}(P)=\operatorname{dim}(y)$.
it defines an input/output partition if and only if

$$
\operatorname{rank}([P \quad Q])=\operatorname{rank}(P)=\operatorname{dim}(y)
$$

If it is minimal, then I/O partition iff P is square, and $\operatorname{det}(P) \neq 0$.

Proposition: Consider the linear differential system with kernel repr.

$$
P\left(\frac{d}{d t}\right) u=Q\left(\frac{d}{d t}\right) y, w=(u, y)
$$

u is \mathfrak{C}^{∞}-free $\quad \Leftrightarrow \operatorname{rank}\left(\left[\begin{array}{ll}P & Q\end{array}\right]\right)=\operatorname{rank}(P)$,
y is bound by $u \Leftrightarrow P$ is of full column rank, i.e. $\operatorname{rank}(P)=\operatorname{dim}(y)$.
it defines an input/output partition if and only if

$$
\operatorname{rank}\left(\left[\begin{array}{ll}
P & Q
\end{array}\right]\right)=\operatorname{rank}(P)=\operatorname{dim}(y)
$$

If it is minimal, then I/O partition iff \boldsymbol{P} is square, and $\operatorname{det}(\boldsymbol{P}) \neq 0$.

Call $G:=P^{-1} Q \in \mathbb{R}(\xi)^{\mathrm{p} \times \mathrm{m}} \quad$ its transfer function.

Theorem:

Every system $\Sigma \in \mathfrak{L}^{\bullet}$ admits an input/output partition.

Theorem:

Every system $\Sigma \in \mathfrak{L}^{\bullet}$ admits an input/output partition.
even a componentwise I/O partition
$:=$ some well-chosen components of w are inputs, the others are outputs
\cong up to re-ordering of the variables, $w=(u, y)$,
i.e., $(u, y)=\Pi w$, with Π a permutation.

Theorem:

Every system $\Sigma \in \mathfrak{L}^{\bullet}$ admits an input/output partition.
even a componentwise I/O partition
$:=$ some well-chosen components of w are inputs, the others are outputs
\cong up to re-ordering of the variables, $w=(u, y)$,
i.e., $(u, y)=\Pi w$, with Π a permutation.

In fact, with G proper.

Theorem:

Every system $\Sigma \in \mathfrak{L}^{\bullet}$ admits an input/output partition.
even a componentwise I/O partition
$:=$ some well-chosen components of w are inputs, the others are outputs
\cong up to re-ordering of the variables, $w=(u, y)$,
i.e., $(u, y)=\Pi w$, with Π a permutation.

In fact, with G proper.
If one can choose the basis, even with G strictly proper.

We will recall the def's of proper, strictly proper, later.

Notes:

1. For a given $\mathfrak{B} \in \mathfrak{L}^{\bullet}$, which variables are input variables, and which are input variables, is not fixed.

THIS IS A GOOD THING!

Notes:

1. For a given $\mathfrak{B} \in \mathfrak{L}^{\bullet}$, which variables are input variables, and which are input variables, is not fixed.

THIS IS A GOOD THING!

Examples:
An Ohmic resistor $V=R I R \neq 0$ may be viewed as
a current controlled or as a voltage controlled device.

Notes:

1. For a given $\mathfrak{B} \in \mathfrak{L}^{\bullet}$, which variables are input variables, and which are input variables, is not fixed.

THIS IS A GOOD THING!

Examples:
An Ohmic resistor $V=R I R \neq 0$ may be viewed as
a current controlled or as a voltage controlled device.
Our RLC circuit. Since here the t ' f f'n is bi-proper, it may be viewed as a current controlled or as a voltage controlled device.
etc., etc.
2. The number of input and the number of output variables are fixed by \mathfrak{B}.
2. The number of input and the number of output variables are fixed by \mathfrak{B}.

Notation: Define the $\mathbf{3}$ maps $\mathrm{w}, \mathrm{m}, \mathrm{p}: \mathfrak{L}^{\bullet} \rightarrow \mathbb{Z}_{+}$by
$\mathrm{w}(\boldsymbol{\Sigma})=\mathrm{w}(\mathfrak{B}):=\quad$ the number of variables of $\boldsymbol{\Sigma}=\left(\mathbb{R}, \mathbb{R}^{\bullet}, \mathfrak{B}\right) \in \mathfrak{L}^{\bullet}$ $\mathrm{m}(\boldsymbol{\Sigma})=\mathrm{m}(\mathfrak{B}) \quad:=\quad$ the number of input variables of $\boldsymbol{\Sigma}=\left(\mathbb{R}, \mathbb{R}^{\bullet}, \mathfrak{B}\right) \in \mathfrak{L}^{\bullet}$ $\mathrm{p}(\boldsymbol{\Sigma})=\mathrm{p}(\mathfrak{B}):=\quad$ the number of output variables of $\boldsymbol{\Sigma}=\left(\mathbb{R}, \mathbb{R}^{\bullet}, \mathfrak{B}\right) \in \mathfrak{L}^{\bullet}$
2. The number of input and the number of output variables are fixed by \mathfrak{B}.

Notation: Define the $\mathbf{3}$ maps $\mathrm{w}, \mathrm{m}, \mathrm{p}: \mathfrak{L}^{\bullet} \rightarrow \mathbb{Z}_{+}$by
$\mathrm{w}(\boldsymbol{\Sigma})=\mathrm{w}(\mathfrak{B}):=\quad$ the number of variables of $\boldsymbol{\Sigma}=\left(\mathbb{R}, \mathbb{R}^{\bullet}, \mathfrak{B}\right) \in \mathfrak{L}^{\bullet}$
$\mathrm{m}(\boldsymbol{\Sigma})=\mathrm{m}(\mathfrak{B}) \quad:=\quad$ the number of input variables of $\boldsymbol{\Sigma}=\left(\mathbb{R}, \mathbb{R}^{\bullet}, \mathfrak{B}\right) \in \mathfrak{L}^{\bullet}$
$\mathrm{p}(\boldsymbol{\Sigma})=\mathrm{p}(\mathfrak{B}):=\quad$ the number of output variables of $\boldsymbol{\Sigma}=\left(\mathbb{R}, \mathbb{R}^{\bullet}, \mathfrak{B}\right) \in \mathfrak{L}^{\bullet}$

When Σ has the kernel representation $R\left(\frac{d}{d t}\right) w=0$, we hence have

$$
\mathrm{w}(\boldsymbol{\Sigma})=\operatorname{coldim}(\boldsymbol{R}), \mathrm{m}(\boldsymbol{\Sigma})=\operatorname{coldim}(\boldsymbol{R})-\operatorname{rank}(\boldsymbol{R}), \mathrm{p}(\boldsymbol{\Sigma})=\operatorname{rank}(\boldsymbol{P})
$$

In particular, $m+p=\mathrm{w}$.

RATIONAL FUNCTIONS

Rational functions and matrices of rational functions play an exceedingly important role in systems, signal processing, coding, etc.

Rational functions and matrices of rational functions play an exceedingly important role in systems, signal processing, coding, etc.

> What is a rational function?

Rational functions and matrices of rational functions play an exceedingly important role in systems, signal processing, coding, etc.

What is a rational function?

The field of rationals is an important mathematical structure that is constructed from a commutative ring R without zero divisors $a b=0 \Rightarrow a=0$ or $b=0$ and with an identity $\exists 1 \in R: 1 * a=a \forall a \in R$. Examples: $\mathbb{Z}, \mathbb{R}[\xi], \mathbb{C}[\xi]$.

The arch-typical example is $\boldsymbol{R}=\mathbb{Z}$, but we are mainly interested in $\boldsymbol{R}=\mathbb{R}[\boldsymbol{\xi}]$.
The 'rationals' over $\mathbb{R}[\xi]$ are called rational 'functions', denoted $\mathbb{R}(\xi)$.
$\mathbb{R}(\xi)$ is constructed as follows. Consider

$$
S=\{(a, b) \in \mathbb{R}[\xi] \times \mathbb{R}[\xi] \mid b \neq 0\}
$$

Define an equivalence relation on S by

$$
\left[\left(a^{\prime}, b^{\prime}\right) \sim\left(a^{\prime \prime}, b^{\prime \prime}\right)\right]: \Leftrightarrow\left[a^{\prime} b^{\prime \prime}=a^{\prime \prime} b^{\prime}\right]
$$

Now verify that the set of equivalence classes, $S(\bmod \sim)$ becomes a field under the following definitions of addition and multiplication:

$$
\begin{aligned}
\left(a^{\prime}, b^{\prime}\right)(\bmod \sim)+\left(a^{\prime \prime}, b^{\prime \prime}\right)(\bmod \sim) & :=\left(a^{\prime} b^{\prime \prime}+a^{\prime \prime} b^{\prime}, b^{\prime} b^{\prime \prime}\right)(\bmod \sim) \\
\left(a^{\prime}, b^{\prime}\right)(\bmod \sim) *\left(a^{\prime \prime}, b^{\prime \prime}\right)(\bmod \sim) & :=\left(a^{\prime} a^{\prime \prime}, b^{\prime} b^{\prime \prime}\right)(\bmod \sim)
\end{aligned}
$$

This field is $\mathbb{R}(\xi)$.

Think intuitively of $\mathbb{R}(\xi)$ as the ratios of two polynomials, $\frac{a(\xi)}{b(\xi)}$, with common factors in a and b disregarded or cancelled,
if you like.

Think intuitively of $\mathbb{R}(\xi)$ as the ratios of two polynomials, $\frac{a(\xi)}{b(\xi)}$, with common factors in a and b
disregarded or cancelled,
if you like.
Henceforth denote $(a, b) \in S(\bmod \sim)$ as $\frac{a}{b}$.

Think intuitively of $\mathbb{R}(\xi)$ as the ratios of two polynomials, $\frac{a(\xi)}{b(\xi)}$, with common factors in a and b
disregarded or cancelled,
if you like.
Henceforth denote $(a, b) \in S(\bmod \sim)$ as $\frac{a}{b}$.

Of course, the $*$ is usually not written.

Notation for vectors and matrices of rational functions: $\mathbb{R}(\boldsymbol{\xi})^{\mathrm{n}}, \mathbb{R}(\boldsymbol{\xi})^{\bullet}, \mathbb{R}(\boldsymbol{\xi})^{\mathrm{n}_{1} \times \mathrm{n}_{2}}, \mathbb{R}(\boldsymbol{\xi})^{\bullet \times \mathrm{n}}, \mathbb{R}(\boldsymbol{\xi})^{\mathrm{n} \times \bullet}, \mathbb{R}(\boldsymbol{\xi})^{\bullet \times \bullet}$

Notation for vectors and matrices of rational functions:

$\mathbb{R}(\xi)^{\mathrm{n}}, \mathbb{R}(\xi)^{\bullet}, \mathbb{R}(\xi)^{\mathrm{n}_{1} \times \mathrm{n}_{2}}, \mathbb{R}(\xi)^{\bullet \times \mathrm{n}}, \mathbb{R}(\xi)^{\mathrm{n} \times \bullet}, \mathbb{R}(\xi)^{\bullet \times \bullet}$.
A rational function $\frac{a}{b} \in \mathbb{R}(\xi)$ is said to be
proper if degree $(a) \leq \operatorname{degree}(b)$, and strictly proper if degree $(a)<$ degree (b).
\leadsto vectors, matrices of (strictly) proper rational functions.

We are mainly interested in real rational functions, but (complex) rational f'ns, $\mathbb{C}(\xi)$, are analogously defined. Any element of $\mathbb{R}(\xi)$ is in a natural way an element of $\mathbb{C}(\boldsymbol{\xi})$.

We are mainly interested in real rational functions, but (complex) rational f'ns, $\mathbb{C}(\xi)$, are analogously defined. Any element of $\mathbb{R}(\xi)$ is in a natural way an element of $\mathbb{C}(\boldsymbol{\xi})$.

Call $\boldsymbol{\lambda} \in \mathbb{C}$
a zero of $\frac{a}{b}$ (assume no common factor) if it is a root of a and a pole if it is a root of b.
\sim the multiplicity of a zero or a pole.

We are mainly interested in real rational functions, but (complex) rational f'ns, $\mathbb{C}(\xi)$, are analogously defined. Any element of $\mathbb{R}(\xi)$ is in a natural way an element of $\mathbb{C}(\boldsymbol{\xi})$.

Call $\boldsymbol{\lambda} \in \mathbb{C}$
a zero of $\frac{a}{b}$ (assume no common factor) if it is a root of a
and a pole if it is a root of b.
\sim the multiplicity of a zero or a pole.
Call $\lambda \in \mathbb{C}$ a pole of a vector or matrix of rational functions if it is a pole of one of the elements.

We do not define zeros or multiplicities in the matrix case.
These are important, but application sensitive.

We consider $\boldsymbol{\xi}$ again as an indeterminate.
We can substitute for $\boldsymbol{\xi}$ real numbers, complex numbers, etc. (square matrices are OK for $\mathbb{R}(\xi)$, but cause problems in the matrix case. Do not mindlessly substitute the differentiation or the shift operator: all kinds of problems!)

We consider $\boldsymbol{\xi}$ again as an indeterminate.
We can substitute for $\boldsymbol{\xi}$ real numbers, complex numbers, etc. (square matrices are OK for $\mathbb{R}(\xi)$, but cause problems in the matrix case. Do not mindlessly substitute the differentiation or the shift operator: all kinds of problems!)

Let $F \in \mathbb{R}(\xi)^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$.

We consider $\boldsymbol{\xi}$ again as an indeterminate.
We can substitute for $\boldsymbol{\xi}$ real numbers, complex numbers, etc. (square matrices are $O K$ for $\mathbb{R}(\xi)$, but cause problems in the matrix case. Do not mindlessly substitute the differentiation or the shift operator: all kinds of problems!)

Let $F \in \mathbb{R}(\xi)^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$.
$t \in \mathbb{R}$, not a pole of $\boldsymbol{F} \Rightarrow \boldsymbol{F}(\boldsymbol{t}) \in \mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$.
Hence, there is an induced map $F:\{t \in \mathbb{R} \mid$ not a pole of $\boldsymbol{F}\} \rightarrow \mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$.

We consider $\boldsymbol{\xi}$ again as an indeterminate.
We can substitute for $\boldsymbol{\xi}$ real numbers, complex numbers, etc. (square matrices are OK for $\mathbb{R}(\xi)$, but cause problems in the matrix case. Do not mindlessly substitute the differentiation or the shift operator: all kinds of problems!)

Let $\boldsymbol{F} \in \mathbb{R}(\xi)^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$.
$s \in \mathbb{C}$, not a pole of $\boldsymbol{F} \Rightarrow \boldsymbol{F}(s) \in \mathbb{C}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$.
Hence $F:\{t \in \mathbb{C} \mid$ not a pole of $F\} \rightarrow \mathbb{C}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$.

We consider $\boldsymbol{\xi}$ again as an indeterminate.
We can substitute for $\boldsymbol{\xi}$ real numbers, complex numbers, etc. (square matrices are $O K$ for $\mathbb{R}(\xi)$, but cause problems in the matrix case. Do not mindlessly substitute the differentiation or the shift operator: all kinds of problems!)

Let $\boldsymbol{F} \in \mathbb{R}(\xi)^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$.

But, what could $\frac{a\left(\frac{d}{d t}\right)}{b\left(\frac{d}{d t}\right)}$ conceivably mean?

We consider $\boldsymbol{\xi}$ again as an indeterminate.
We can substitute for $\boldsymbol{\xi}$ real numbers, complex numbers, etc. (square matrices are $O K$ for $\mathbb{R}(\xi)$, but cause problems in the matrix case. Do not mindlessly substitute the differentiation or the shift operator: all kinds of problems!)

Let $F \in \mathbb{R}(\xi)^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$.
$t \in \mathbb{R}$, not a pole of $\boldsymbol{F} \Rightarrow \boldsymbol{F}(\boldsymbol{t}) \in \mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$.
Hence, there is an induced map $F:\{t \in \mathbb{R} \mid$ not a pole of $F\} \rightarrow \mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$.
$s \in \mathbb{C}$, not a pole of $\boldsymbol{F} \Rightarrow \boldsymbol{F}(s) \in \mathbb{C}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$.
Hence $F:\{t \in \mathbb{C} \mid$ not a pole of $F\} \rightarrow \mathbb{C}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$.

But, what could $\frac{a\left(\frac{d}{d t}\right)}{b\left(\frac{d}{d t}\right)}$ conceivably mean?

PRIME POLYNOMIAL MATRICES

$P \in \mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}[\xi]$ is said to be left prime if $P=P_{1} P_{2}$, with
$P_{1} \in \mathbb{R}^{n_{1} \times n_{1}}[\xi], P_{2} \in \mathbb{R}^{n_{1} \times n_{2}}[\xi]$ implies that P_{1} must be unimodular.

PRIME POLYNOMIAL MATRICES

$P \in \mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}[\xi]$ is said to be left prime if $P=P_{1} P_{2}$, with
$P_{1} \in \mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{1}}[\xi], P_{2} \in \mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}[\xi]$ implies that \boldsymbol{P}_{1} must be unimodular.

Proposition: $P \in \mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}[\xi]$ is right prime iff $P(\lambda) \in \mathbb{C}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$ is of full row rank for all $\lambda \in \mathbb{C}$.

PRIME POLYNOMIAL MATRICES

$P \in \mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}[\xi]$ is said to be left prime if $P=P_{\mathbf{1}} P_{2}$, with $P_{1} \in \mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{1}}[\xi], P_{2} \in \mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}[\xi]$ implies that \boldsymbol{P}_{1} must be unimodular.

Proposition: $P \in \mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}[\xi]$ is right prime iff $P(\lambda) \in \mathbb{C}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$ is of full row rank for all $\lambda \in \mathbb{C}$.

Every $P \in \mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}[\xi]$ that is of full row rank (as a polynomial matrix, of course) admits a factorization $P=P_{1} P_{2}$, with $P_{1} \in \mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{1}}[\boldsymbol{\xi}]$, and $\boldsymbol{P}_{\mathbf{2}} \in \mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}[\boldsymbol{\xi}]$ left prime.

This factorization is 'essentially unique' (Explain!).

PRIME POLYNOMIAL MATRICES

$P \in \mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}[\xi]$ is said to be left prime if $P=P_{1} P_{2}$, with $P_{1} \in \mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{1}}[\xi], P_{2} \in \mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}[\xi]$ implies that \boldsymbol{P}_{1} must be unimodular.

Proposition: $P \in \mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}[\xi]$ is right prime iff $P(\lambda) \in \mathbb{C}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$ is of full row rank for all $\lambda \in \mathbb{C}$.

Every $P \in \mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}[\xi]$ that is of full row rank (as a polynomial matrix, of course) admits a factorization $P=P_{1} P_{2}$, with $P_{1} \in \mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{1}}[\boldsymbol{\xi}]$, and $\boldsymbol{P}_{\mathbf{2}} \in \mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}[\boldsymbol{\xi}]$ left prime.

This factorization is 'essentially unique' (Explain!).

Right prime and right factorization: analogous.

Call $\boldsymbol{P}_{1}, \boldsymbol{P}_{2}, \ldots, \boldsymbol{P}_{\mathrm{n}} \in \mathbb{R}^{\mathrm{n}_{1} \times \bullet}[\boldsymbol{\xi}]$ left co-prime if the composite polynomial matrix $\left[P_{1} P_{2} \ldots P_{\mathrm{n}}\right] \in \mathbb{R}^{\mathrm{n}_{1} \times} \times[\xi]$ is left prime.

Call $\boldsymbol{P}_{1}, \boldsymbol{P}_{2}, \ldots, \boldsymbol{P}_{\mathrm{n}} \in \mathbb{R}^{\bullet \times \mathrm{n}_{2}}[\xi]$ right co-prime if the composite polynomial matrix $\left[\begin{array}{c}\boldsymbol{P}_{1} \\ \boldsymbol{P}_{2} \\ \vdots \\ \boldsymbol{P}_{\mathrm{n}}\end{array}\right] \in \mathbb{R}^{\bullet \times \mathrm{n}_{2}}[\xi]$ is right prime.

FACTORIZATION of MATRICES of RATIONAL F'Ns

Consider a matrix of rational f'ns $\boldsymbol{F} \in \mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}(\xi)$.

A factorization of \boldsymbol{F} as $\boldsymbol{F}=P^{-1} Q$ with $P \in \mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{1}}[\xi], \operatorname{det}(P) \neq 0$ and
$Q \in \mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}[\xi]$ is said to be left co-prime factorization of F if P and Q are left co-prime.

FACTORIZATION of MATRICES of RATIONAL F'Ns

Consider a matrix of rational f'ns $\boldsymbol{F} \in \mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}(\xi)$.

A factorization of \boldsymbol{F} as $\boldsymbol{F}=P^{-1} Q$ with $P \in \mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{1}}[\xi], \operatorname{det}(P) \neq 0$ and
$Q \in \mathbb{R}^{n_{1} \times n_{2}}[\xi]$ is said to be left co-prime factorization of F if P and Q are left co-prime.

A factorization of \boldsymbol{F} as $\boldsymbol{F}=N D^{-1}$ with $N \in \mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}[\xi]$ and $D \in \mathbb{R}^{\mathrm{n}_{2} \times \mathrm{n}_{2}}[\xi], \operatorname{det}(D) \neq 0$ is said to be right co-prime factorization of F if N and D are right co-prime.

THE TRANSFER FUNCTION

?? When do two systems have the same transfer function ??

Theorem: Consider

$$
P_{1}\left(\frac{d}{d t}\right) y=Q_{1}\left(\frac{d}{d t}\right) u, w=(u, y)
$$

with $P_{1} \in \mathbb{R}^{p(\mathfrak{B}) \times p(\mathfrak{B})}[\xi], \operatorname{det}\left(P_{1}\right) \neq 0$, and transfer function $G_{1}=P_{1}^{-1} Q_{1}$.

$$
P_{2}\left(\frac{d}{d t}\right) y=Q_{2}\left(\frac{d}{d t}\right) u, w=(u, y)
$$

with $P_{2} \in \mathbb{R}^{\mathrm{p}(\mathfrak{B}) \times \mathrm{p}(\mathfrak{B})}[\xi], \operatorname{det}\left(\boldsymbol{P}_{2}\right) \neq 0$, and transfer function $G_{2}=P_{2}^{-1} Q_{2}$.

?? When do two systems have the same transfer function ??

Theorem: Consider

$$
P_{1}\left(\frac{d}{d t}\right) y=Q_{1}\left(\frac{d}{d t}\right) u, w=(u, y)
$$

with $P_{1} \in \mathbb{R}^{p(\mathfrak{B}) \times p(\mathfrak{B})}[\xi], \operatorname{det}\left(P_{1}\right) \neq 0$, and transfer function $G_{1}=P_{1}^{-1} Q_{1}$.

$$
P_{2}\left(\frac{d}{d t}\right) y=Q_{2}\left(\frac{d}{d t}\right) u, w=(u, y)
$$

with $P_{2} \in \mathbb{R}^{p(\mathfrak{B}) \times p(\mathfrak{B})}[\xi], \operatorname{det}\left(P_{2}\right) \neq 0$, and transfer function $G_{2}=P_{2}^{-1} Q_{2}$.

$$
G_{1}=G_{2}: \text { same transfer function }
$$

iff these systems have the same controllable part.

Hence:

1. Two controllable systems with the same transfer function are equal.

Hence:

1. Two controllable systems with the same transfer function are equal.
2. The transfer function determines only the controllable part of a system.
!!! Watch out in stability considerations !!

Relations primeness with differential systems

$R\left(\frac{d}{d t}\right) w=0$ is a minimal kernel repr. of a controllable system iff R is left prime.

Relations primeness with differential systems

$R\left(\frac{d}{d t}\right) w=0$ is a minimal kernel repr. of a controllable system iff R is left prime.

Consider the system with minimal kernel representation $R\left(\frac{d}{d t}\right) w=0$.
Factor $\boldsymbol{R}=\boldsymbol{F} \boldsymbol{R}^{\prime}$, with $\boldsymbol{R}^{\prime} \in \mathbb{R}^{p(\mathfrak{B}) \times \mathrm{m}(\mathfrak{B})}[\boldsymbol{\xi}]$, left prime, $\boldsymbol{F} \in \mathbb{R}^{p(\mathfrak{B}) \times p(\mathfrak{B})}[\boldsymbol{\xi}]$.
Then $R^{\prime}\left(\frac{d}{d t}\right) w=0$ determines the controllable part
F'determines' the autonomous part.

Relations primeness with differential systems

$R\left(\frac{d}{d t}\right) w=0$ is a minimal kernel repr. of a controllable system iff R is left prime.

Consider the system with minimal kernel representation $R\left(\frac{d}{d t}\right) w=0$.
Factor $\boldsymbol{R}=\boldsymbol{F} \boldsymbol{R}^{\prime}$, with $\boldsymbol{R}^{\prime} \in \mathbb{R}^{p(\mathfrak{B}) \times \mathrm{m}(\mathfrak{B})}[\boldsymbol{\xi}]$, left prime, $\boldsymbol{F} \in \mathbb{R}^{p(\mathfrak{B}) \times p(\mathfrak{B})}[\boldsymbol{\xi}]$.
Then $R^{\prime}\left(\frac{d}{d t}\right) w=0$ determines the controllable part
F 'determines' the autonomous part.
$w=M\left(\frac{d}{d t}\right) \ell$ is an observable latent variable system iff M is right prime.

Co-prime factorizations of the transfer f'n play a very important role for example in algorithms for \mathcal{H}_{∞}-control.

What do they mean?

Co-prime factorizations of the transfer f'n play a very important role for example in algorithms for \mathcal{H}_{∞}-control.

What do they mean?

A factorization $G=P^{-1} Q \quad$ a kernel representation

$$
P\left(\frac{d}{d t}\right) y=Q\left(\frac{d}{d t}\right) u
$$

of a system with transfer $f^{\prime} n G$.

Co-prime factorizations of the transfer f'n play a very important role for example in algorithms for \mathcal{H}_{∞}-control.

What do they mean?

A factorization $G=P^{-1} Q \quad$ a kernel representation

$$
P\left(\frac{d}{d t}\right) y=Q\left(\frac{d}{d t}\right) u
$$

of a system with transfer $f^{\prime} n G$.

A left co-prime factorization $G=P^{-1} Q \leadsto$ a kernel repr. of the (unique!) controllable system with transfer f'n G.

A factorization $G=N D^{-1} \leadsto$ an image representation

$$
\left[\begin{array}{l}
u \\
y
\end{array}\right]=\left[\begin{array}{l}
D\left(\frac{d}{d t}\right) \\
N\left(\frac{d}{d t}\right)
\end{array}\right]
$$

of the (unique) controllable system with transfer f'n G.

A factorization $G=N D^{-1} \leadsto$ an image representation

$$
\left[\begin{array}{l}
u \\
y
\end{array}\right]=\left[\begin{array}{l}
D\left(\frac{d}{d t}\right) \\
N\left(\frac{d}{d t}\right)
\end{array}\right]
$$

of the (unique) controllable system with transfer f'n G.

A right co-prime factorization $G=N D^{-1}$ an observable image repr. of the controllable system with transfer f'n G.

THE EXPONENTIAL RESPONSE

Let $\lambda \in \mathbb{C}$. Denote by $\exp _{\lambda}$ the exponential map $t \in \mathbb{R} \mapsto e^{\lambda t} \in \mathbb{C}$.

Let $\mathfrak{B} \in \mathfrak{L}^{\mathrm{w}}$. Define, for each $\lambda \in \mathbb{C}$ the set

$$
\mathfrak{E}_{\lambda}^{\mathfrak{B}}:=\left\{a \in \mathbb{C}^{\mathbb{W}} \mid \exp _{\lambda} a \in \mathfrak{B}\right\} .
$$

Easy: $\mathfrak{E}_{\lambda}^{\mathfrak{B}}$ is a linear subspace of $\mathbb{C}^{\underline{W}}$.

Define the exponential response of \mathfrak{B} as the set of all exponentials in \mathfrak{B} :

$$
\mathfrak{E}^{\mathfrak{B}}=\left\{\exp _{\lambda} a \mid a \in \mathfrak{E}_{\lambda}^{\mathfrak{B}}\right\} \subset \mathfrak{B} .
$$

Let $\lambda \in \mathbb{C}$. Denote by $\exp _{\lambda}$ the exponential map $t \in \mathbb{R} \mapsto e^{\lambda t} \in \mathbb{C}$.

Let $\mathfrak{B} \in \mathfrak{L}^{\mathrm{w}}$. Define, for each $\lambda \in \mathbb{C}$ the set

$$
\mathfrak{E}_{\lambda}^{\mathfrak{B}}:=\left\{a \in \mathbb{C}^{\mathbb{W}} \mid \exp _{\lambda} a \in \mathfrak{B}\right\} .
$$

Easy: $\mathfrak{E}_{\lambda}^{\mathfrak{B}}$ is a linear subspace of \mathbb{C}^{W}.

Define the exponential response of \mathfrak{B} as the set of all exponentials in \mathfrak{B} :

$$
\mathfrak{E}^{\mathfrak{B}}=\left\{\exp _{\lambda} a \mid a \in \mathfrak{E}_{\lambda}^{\mathfrak{B}}\right\} \subset \mathfrak{B} .
$$

For the system described by $R\left(\frac{d}{d t}\right) w=0$ we obviously have $\mathfrak{E}_{\lambda}^{\mathfrak{B}}=\operatorname{ker}(\boldsymbol{R}(\lambda))$.

Proposition:

1. $\operatorname{dim}\left(\mathfrak{E}_{\lambda}^{\mathfrak{B}}\right)=m(\mathfrak{B})$ for all but a finite number of elements of \mathbb{C}. This dimension can be larger than $m(\mathfrak{B})$ at a finite number of points.
2. $\operatorname{dim}\left(\mathfrak{E}_{\boldsymbol{\lambda}}^{\mathfrak{B}}\right)=$ constant $(=m(\mathfrak{B}))$ iff \mathfrak{B} is controllable.

Proposition:

1. $\operatorname{dim}\left(\mathfrak{E}_{\lambda}^{\mathfrak{B}}\right)=m(\mathfrak{B})$ for all but a finite number of elements of \mathbb{C}. This dimension can be larger than $m(\mathfrak{B})$ at a finite number of points.
2. $\operatorname{dim}\left(\mathfrak{E}_{\boldsymbol{\lambda}}^{\mathfrak{B}}\right)=$ constant $(=m(\mathfrak{B}))$ iff \mathfrak{B} is controllable.
3. If \mathfrak{B} is controllable, then the exponential response determines \mathfrak{B} uniquely.

The exponential response is closely related to the transfer function. Consider

$$
P\left(\frac{d}{d t}\right) y=Q\left(\frac{d}{d t}\right) u, w=(u, y)
$$

with $P \in \mathbb{R}^{p(\mathfrak{B}) \times p(\mathfrak{B})}[\xi], \operatorname{det}(P) \neq 0$, and transfer function $G=P^{-1} Q$.

For $\lambda \in \mathbb{C}$, not a root of $\operatorname{det}(P)$, we have

$$
\mathfrak{E}_{\lambda}^{\mathfrak{B}}=\left\{(a, G(\lambda) a) \mid a \in \mathbb{C}^{\mathrm{m}(\mathfrak{B})}\right\}
$$

The exponential response is closely related to the transfer function. Consider

$$
P\left(\frac{d}{d t}\right) y=Q\left(\frac{d}{d t}\right) u, w=(u, y)
$$

with $P \in \mathbb{R}^{p(\mathfrak{B}) \times p(\mathfrak{B})}[\xi], \operatorname{det}(P) \neq 0$, and transfer function $G=P^{-1} Q$.

For $\lambda \in \mathbb{C}$, not a root of $\operatorname{det}(P)$, we have

$$
\mathfrak{E}_{\lambda}^{\mathfrak{B}}=\left\{(a, G(\lambda) a) \mid a \in \mathbb{C}^{\mathrm{m}(\mathfrak{B})}\right\}
$$

By continuity, this determines an $m(\mathfrak{B})$-dimensional subspace of $\mathbb{C}^{m(\mathfrak{B})}$ also at the roots of $\operatorname{det}(P) . \sim \quad$ the controllable part of the system.

Let $i \omega, \omega \in \mathbb{R}$. Define the subspace

$$
\mathfrak{F}_{\omega}^{\mathfrak{B}}:=\left\{a \in \mathbb{C}^{\mathfrak{W}} \mid \exp _{i \omega} a \in \mathfrak{B}\right\} .
$$

Define the frequency response of \mathfrak{B} as the set

$$
\mathfrak{F}^{\mathfrak{B}}=\left\{\exp _{i \omega} a \mid a \in \mathfrak{F}_{\omega}^{\mathfrak{B}}\right\} \subset \mathfrak{B}
$$

The frequency response is the exponential response restricted to the imaginary axis.

Let $i \omega, \omega \in \mathbb{R}$. Define the subspace

$$
\mathfrak{F}_{\omega}^{\mathfrak{B}}:=\left\{a \in \mathbb{C}^{\mathfrak{W}} \mid \exp _{i \omega} a \in \mathfrak{B}\right\} .
$$

Define the frequency response of \mathfrak{B} as the set

$$
\mathfrak{F}^{\mathfrak{B}}=\left\{\exp _{i \omega} a \mid a \in \mathfrak{F}_{\omega}^{\mathfrak{B}}\right\} \subset \mathfrak{B}
$$

The frequency response is the exponential response restricted to the imaginary axis.

Once again: the frequency response determines again the controllable part of a system.

Note: No stability considerations required for the exponential or the frequency response.

In particular, the frequency transfer $u \mapsto y$:

$$
u=\exp _{i \omega} a \mapsto y=\exp _{i \omega} G(i \omega) a
$$

is well-defined for all $i \omega$'s that are not roots of $\operatorname{det}(P)$.

Note: No stability considerations required for the exponential or the frequency response.

In particular, the frequency transfer $u \mapsto y$:

$$
u=\exp _{i \omega} a \mapsto y=\exp _{i \omega} G(i \omega) a
$$

is well-defined for all $i \omega$'s that are not roots of $\operatorname{det}(P)$.
It is the notion of exponential response (more so than Laplace transform considerations) that is the origin of the transfer function.

Significance of (strictly) proper transfer functions

In continuous time: SMOOTHNESS
The output is at least as smooth (is smoother) that the input.

Significance of (strictly) proper transfer functions

In continuous time: SMOOTHNESS
The output is at least as smooth (is smoother) that the input.

In particular, if we had used weak sol'ns, we could have proven:
The t'f f 'n G is (strictly) proper iff
$(u, y) \in \mathfrak{B}$ and $u \in \mathfrak{C}^{\mathrm{k}}\left(\mathbb{R}, \mathbb{R}^{\mathrm{m}(\mathfrak{B})}\right)$ imply

$$
y \in \mathfrak{C}^{\mathrm{k}}\left(\mathbb{R}, \mathbb{R}^{\mathrm{p}(\mathfrak{B})}\right)\left(y \in \mathfrak{C}^{\mathrm{k}+1}\left(\mathbb{R}, \mathbb{R}^{\mathrm{p}(\mathfrak{B})}\right)\right)
$$

Significance of (strictly) proper transfer functions

In continuous time: SMOOTHNESS
The output is at least as smooth (is smoother) that the input.

In particular, if we had used weak sol'ns, we could have proven:
The t'f f 'n G is (strictly) proper iff
$(u, y) \in \mathfrak{B}$ and $u \in \mathfrak{C}^{\mathrm{k}}\left(\mathbb{R}, \mathbb{R}^{\mathrm{m}(\mathfrak{B})}\right)$ imply

$$
y \in \mathfrak{C}^{\mathrm{k}}\left(\mathbb{R}, \mathbb{R}^{\mathrm{p}(\mathfrak{B})}\right)\left(y \in \mathfrak{C}^{\mathrm{k}+1}\left(\mathbb{R}, \mathbb{R}^{\mathrm{p}(\mathfrak{B})}\right)\right)
$$

In discrete time: NON-ANTICIPATION
The output (lags) does not anticipate that the input. cfr. the exercises.

TIME-DOMAIN CHARACTERIZATIONS

How does the time-domain response of a system $\mathfrak{B} \in \mathfrak{L}^{\bullet}$ look like?

How does the time-domain response of a system $\mathfrak{B} \in \mathfrak{L}^{\bullet}$ look like?

Assume that an I/O partition $w=(u, y)$ has been made. \sim

$$
y(t)=y_{\text {autonomous }}(t)+\Sigma_{\mathrm{k} \in \mathbb{Z}_{+}} H_{\mathrm{k}} \frac{d^{\mathrm{k}}}{d t^{\mathrm{k}}} u(t)+\int_{0}^{t} H\left(t-t^{\prime}\right) u\left(t^{\prime}\right) d t^{\prime}
$$

How does the time-domain response of a system $\mathfrak{B} \in \mathfrak{L}^{\bullet}$ look like?

Assume that an I/O partition $w=(u, y)$ has been made. \leadsto

$$
y(t)=y_{\text {autonomous }}(t)+\Sigma_{\mathrm{k} \in \mathbb{Z}_{+}} H_{\mathrm{k}} \frac{d^{\mathrm{k}}}{d t^{\mathrm{k}}} u(t)+\int_{0}^{t} H\left(t-t^{\prime}\right) u\left(t^{\prime}\right) d t^{\prime}
$$

with

1. $\boldsymbol{y}_{\text {autonomous }} \in \mathfrak{B}_{\text {autonomous }} \in \mathfrak{L}^{p(\mathfrak{B})}$, an autonomous system,
2. $\boldsymbol{H}_{\mathrm{k}} \in \mathbb{R}^{\mathrm{p}(\mathfrak{B}) \times \mathrm{m}(\mathfrak{B})}$, matrices, only a finite number $\neq 0$,
3. $\boldsymbol{H}: \mathbb{R} \rightarrow \mathbb{R}^{\mathrm{p}(\mathfrak{B}) \times \mathrm{m}(\mathfrak{B})}$ a matrix with each column $\in \mathfrak{B}_{\text {autonomous }}$.

Autonomous intermezzo

Fact:
Consider the autonomous systems, behavior $\mathfrak{B} \in \mathfrak{L}^{\mathrm{w}}$, kernel representation $P\left(\frac{d}{d t}\right) w=0, \operatorname{det}(P) \neq 0$.

There is a one-to-one relation

$$
w \in \mathfrak{B} \stackrel{1: 1}{\leftrightarrow} f \in \mathbb{R}^{w}[\xi]: P^{-1} f \text { strictly proper }
$$

Relation with the transfer function

In terms of the minimal kernel representation

$$
P\left(\frac{d}{d t}\right) y=Q\left(\frac{d}{d t}\right) u, w=(u, y)
$$

and the transfer function $G=P^{-1} Q$, we have:

Relation with the transfer function

In terms of the minimal kernel representation

$$
P\left(\frac{d}{d t}\right) y=Q\left(\frac{d}{d t}\right) u, w=(u, y)
$$

and the transfer function $G=P^{-1} Q$, we have:
$\boldsymbol{P}\left(\frac{d}{d t}\right) \boldsymbol{y}=0$ is a kernel representation of the autonomous system $\mathfrak{B}_{\text {autonomous }}$, and

$$
G(\xi)=\Sigma_{\mathrm{k} \in \mathbb{Z}_{+}} H_{\mathrm{k}} \xi^{\mathrm{k}}+G^{\prime}(\xi)
$$

with $G^{\prime} \in \mathbb{R}^{\mathrm{m} \times \mathrm{p}}(\xi)$ strictly proper, such that the columns of G^{\prime} correspond to the solutions of $P\left(\frac{d}{d t}\right) y=0$.

Relation with the transfer function

In terms of the minimal kernel representation

$$
P\left(\frac{d}{d t}\right) y=Q\left(\frac{d}{d t}\right) u, w=(u, y)
$$

and the transfer function $G=P^{-1} Q$, we have:
$\boldsymbol{P}\left(\frac{d}{d t}\right) \boldsymbol{y}=0$ is a kernel representation of the autonomous system $\mathfrak{B}_{\text {autonomous }}$, and

$$
G(\xi)=\Sigma_{\mathrm{k} \in \mathbb{Z}_{+}} H_{\mathrm{k}} \xi^{\mathrm{k}}+G^{\prime}(\xi)
$$

with $G^{\prime} \in \mathbb{R}^{\mathrm{m} \times \mathrm{p}}(\xi)$ strictly proper, such that the columns of G^{\prime} correspond to the solutions of $P\left(\frac{d}{d t}\right) y=0$.
There is a great deal more that can be said, for example, related to image representations, Laplace transforms, partial fraction expansion of the transfer function, but ...

$\xrightarrow{\text { RECAP }}$

- We have chosen for a rather strict notion of input.

Input $=$ free, output $=$ bound by input $\&$ initial condition.

- We have chosen for a rather strict notion of input.

Input $=$ free, output $=$ bound by input $\&$ initial condition.

- Minor annoyance with our \mathfrak{C}^{∞}-assumption. We define free $:=\mathfrak{C}^{\infty}$-free.
- We have chosen for a rather strict notion of input. Input $=$ free, output $=$ bound by input $\&$ initial condition.
- Minor annoyance with our \mathfrak{C}^{∞}-assumption. We define free $:=\mathfrak{C}^{\infty}$-free.
- !! Every system in \mathfrak{L}^{\bullet} admits a componentwise input/output partition!!
- We have chosen for a rather strict notion of input. Input $=$ free, output $=$ bound by input $\&$ initial condition.
- Minor annoyance with our \mathfrak{C}^{∞}-assumption. We define free $:=\mathfrak{C}^{\infty}$-free.
- !! Every system in \mathfrak{L}^{\bullet} admits a componentwise input/output partition!!
- Input variables, output variables: not fixed by the system.

No unique input/output partition.
In applications often no natural choice.

- The number of input and output variables is, however, invariant under the choice of input and output variables.
- We have chosen for a rather strict notion of input. Input $=$ free, output $=$ bound by input $\&$ initial condition.
- Minor annoyance with our \mathfrak{C}^{∞}-assumption. We define free $:=\mathfrak{C}^{\infty}$-free.
- !! Every system in \mathfrak{L}^{\bullet} admits a componentwise input/output partition!!
- Input variables, output variables: not fixed by the system.

No unique input/output partition.
In applications often no natural choice.

- The number of input and output variables is, however, invariant under the choice of input and output variables.
- The transfer function determines the controllable part (only).
- The transfer function determines the controllable part (only).
- The transfer function \sim the exponential response \sim the frequency response may forget the non-controllable part.
- The transfer function determines the controllable part (only).
- The transfer function \sim the exponential response \sim the frequency response may forget the non-controllable part.
- (Co-prime) factorizations of the transfer functions: a way of obtaining (controllable/observable) kernel and image representations from the transfer function.
- The transfer function determines the controllable part (only).
- The transfer function \sim the exponential response \sim the frequency response may forget the non-controllable part.
- (Co-prime) factorizations of the transfer functions: a way of obtaining (controllable/observable) kernel and image representations from the transfer function.
- (Strict) properness of the transfer f'n \cong Does the system smooth inputs?

A final example: Coaxial cable

\sim The PDE's:

$$
\begin{aligned}
\frac{\partial}{\partial x} V & =-L_{0} \frac{\partial}{\partial t} I \\
\frac{\partial}{\partial x} I & =-C_{0} \frac{\partial}{\partial t} V
\end{aligned}
$$

with L_{0} the inductance, and C_{0} the capacitance per unit length.

With boundary conditions (cable of length L):
!! Model the relation between the voltages V_{0}, V_{1} and the currents I_{0}, I_{1} at the ends of a uniform cable of length L.

Introduce the voltage $V(x, t)$ and the current flow $I(x, t) 0 \leq x \leq L$ in the cable.

\sim The equations:

$$
\begin{aligned}
\frac{\partial}{\partial x} V & =-L_{0} \frac{\partial}{\partial t} I, \\
\frac{\partial}{\partial x} I & =-C_{0} \frac{\partial}{\partial t} V \\
V_{0}(t) & =V(0, t), \\
V_{1}(t) & =V(L, t), \\
I_{0}(t) & =I(0, t) \\
I_{1}(t) & =-I(L, t) .
\end{aligned}
$$

Viewed as a black box

Relation between V_{0}, V_{1} :

$$
\frac{\partial^{2}}{\partial x^{2}} V=L_{0} C_{0} \frac{\partial^{2}}{\partial t^{2}} V, \quad V_{0}(\cdot)=V(0, \cdot), V_{1}(\cdot)=V(L, \cdot)
$$

and between I_{0}, I_{1} :

$$
\frac{\partial^{2}}{\partial x^{2}} I=L_{0} C_{0} \frac{\partial^{2}}{\partial t^{2}} I, \quad I_{0}(\cdot)=I(0, \cdot), I_{1}(\cdot)=I(L, \cdot)
$$

Two terminal variables are 'free', the other two are 'bound',
(free $=$ one voltage, one current, bound $=$ one voltage, one current), but there is no reasonable choice of inputs and outputs!

It breaks the symmetry

End of Lecture 4

