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/ THEME \

When is a system variable an input? An output?

Inputs = free, outputs = follow from inputs + intitial conditions.

OUTLINE

e Free and bound variables, inputs and outputs: formal def’ns.
e Every linear time-invariant differential system admits a I/0 partition
e The transfer function

e Left and right co-prime factorizations, relations with controllability

ko Time-domain characterization j
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FORMAL DEFINITIONS .

/

Lecture 4

Inputs and outputs: definitions



4 N

Intuition

Our choice: the input is a free variable which, together with the ‘initial

conditions’ determines the output.

- /
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Intuition

Our choice: the input is a free variable which, together with the ‘initial

conditions’ determines the output.

These concepts (input, output) are strongly domain dependent.

We will discuss them following the usual systems & control setting.

Central is, of course, that the input must in some way causes the output.

- /
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In physical systems and in real-time signal processing and control,

non-anticipation must be an important feature.

In non-real-time signal processing problems, or when the independent

variable is not time, non-anticipation need not be an issue.

In many problems (e.g. computing, signal processing) inputs may have to be

structured, in order for machines or algorithms to be able to accept them.

In control, it is customary to assume that inputs are free, and that outputs
are bound (determined by the inputs and the initial conditions). We will

follow this tradition.

/
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We start with a couple of def’ns:

N
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We start with a couple of def’ns:

> = (T, W, B) is said to be memoryless if
w1, we €EBIA[t€T] = [wr N w2 € B,
where /t\ denotes concatenation at time t, defined by

wy () <t

(w1 A wz)(t') 1= wa(t) > ¢

Memoryless:= the past and the future are unrelated

(except by the system laws).

- /
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6] = (T, W, B) is said to be trim if \

Vw e WandVt e T Jw € B : w(t) = w.

Trim:= the signal space has no irrelevant elements,

there is no instantaneous (local) structure.

- /
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6] = (T, W, B) is said to be trim if \

Vw e WandVt e T Jw € B : w(t) = w.

Trim:= the signal space has no irrelevant elements,

there is no instantaneous (local) structure.

ns

Note: trim + memoryless = ‘free’

\ (modulo niceties as measurability, integrability, ...) /
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Recall ¥ = (T, W, ) with T = R or Z is said to be autonomous if

Autonomous:= the past implies the future.

N

[wy,we € Bl A [t € T] Awy(t) = we(t') V' < t] = [w; = ws].

/
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Let ¥ = (T, W; x W5,9), T = R or Z, be a dynamical system. Then w; is

said to be input/output system with w, the input and wo the output if

1. 3y := (T, Wy, B,) is free := trim and memoryless,
where 5, denotes the w; behavior

(i.e., the manifest behavior with wo viewed as a latent variable).
2. forall wy; € B, X5 := (T, W; X Wy, B™*) is autonomous,

where 235" denotes the ws behavior with fixed w1,
i.e., By := {ws | (w1, wsz) € B}.

N /
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input = free; output = bound (determined by inputs + initial cond’s).

- /
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input = free; output = bound (determined by inputs + initial cond’s).

For systems in £°, our notion of memoryless (unfortunately)
clashes with the €°° assumption. We therefore decide (for £°) that
free := B = €°(R, R¥) = ‘€>°-free’.

- /
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input = free; output = bound (determined by inputs + initial cond’s).

For systems in £°, our notion of memoryless (unfortunately)
clashes with the €°° assumption. We therefore decide (for £°) that
free := B = €°(R, R¥) = ‘€>°-free’.

In keeping with tradition

w1 — U; W2 — Y, W1—>U, Wy — Y.

For linear systems:

U = R" (m input variables), Y = RP (p output variables).

N

/
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Let X = (R,R", ) € £, withR* = R* X R°, w = m + p.

If the corresponding 3 = (R, R® X RP,B) is an input/output system,

then we call w = (u, y) an

N

input/output partition

of w.

/
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Proposition: Consider the linear differential system with kernel repr.

d d
P(a)u — Q(a)yaw = (u,y).

u is €°-free & rank([P Q]) = rank(P),
y is bound by v < P is of full column rank, i.e. rank(P) = dim(y).

- /
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Proposition: Consider the linear differential system with kernel repr.

d d
P(a)u — Q(a)yaw = (u,y).

u is €°-free & rank([P Q]) = rank(P),
y is bound by v < P is of full column rank, i.e. rank(P) = dim(y).

it defines an input/output partition if and only if
rank([P Q]) = rank(P) = dim(y).

If it is minimal, then I/O partition iff P is square, and det(P) # 0.
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Proposition: Consider the linear differential system with kernel repr.

d d
P(a)u — Q(a)yaw = (u,y).

u is €°-free & rank([P Q]) = rank(P),
y is bound by v < P is of full column rank, i.e. rank(P) = dim(y).

it defines an input/output partition if and only if
rank([P Q]) = rank(P) = dim(y).

If it is minimal, then I/O partition iff P is square, and det(P) # 0.

Call |G : =P 1Q| € R(&P*™ its transfer function.

- /
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Theorem:

Every system XY € £° admits an input/output partition.

N
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Theorem:

Every system XY € £° admits an input/output partition.

even a componentwise I/0 partition

:= some well-chosen components of w are inputs, the others are outputs

2 up to re-ordering of the variables, w = (u, y),

i.e., (u, y) = Ilw, with IT a permutation.

N
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Theorem:

Every system XY € £° admits an input/output partition.

even a componentwise I/0 partition

:= some well-chosen components of w are inputs, the others are outputs

2 up to re-ordering of the variables, w = (u, y),

i.e., (u, y) = Ilw, with IT a permutation.

In fact, with GG proper.

N
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Theorem:

Every system XY € £° admits an input/output partition.
even a componentwise I/0 partition
:= some well-chosen components of w are inputs, the others are outputs
= up to re-ordering of the variables, w = (u, y),
i.e., (u, y) = Ilw, with IT a permutation.

In fact, with GG proper.

If one can choose the basis, even with G strictly proper.

We will recall the def’s of proper, strictly proper, later.

N /
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1. For a given B8 € £°, which variables are input variables, and which are input

variables, is not fixed.

THIS IS A GOOD THING!

- /
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otes:

1. For a given B8 € £°, which variables are input variables, and which are input

variables, is not fixed.

THIS IS A GOOD THING!
Examples:

An Ohmic resistor V = RI R # 0 may be viewed as

a current controlled or as a voltage controlled device.

- /
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otes:

1. For a given B8 € £°, which variables are input variables, and which are input

variables, is not fixed.

THIS IS A GOOD THING!
Examples:

An Ohmic resistor V = RI R # 0 may be viewed as

a current controlled or as a voltage controlled device.

Our RLC circuit. Since here the t’f £’n is bi-proper, it may be viewed as

a current controlled or as a voltage controlled device.

etc., etc.

N /
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/2. The number of input and the number of output variables are fixed by 3. \

- /
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/2. The number of input and the number of output variables are fixed by 3. \

Notation: Define the 3 maps w,m,p : £* — Z, by

w(X) =w(2B) := the number of variables of X = (R, R®*,B) € £°
m(X) = m(2B) := the number of input variables of ¥ = (R, R®,B) € £°
p(X) = p(2B) := the number of output variables of ¥ = (R, R®*,28) € £°

N
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Notation: Define the 3 maps w,m,p : £* — Z, by

Ql particular,m + p = w.

/2. The number of input and the number of output variables are fixed by 3. \

w(X) =w(2B) := the number of variables of X = (R, R®*,B) € £°
m(X) = m(2B) := the number of input variables of ¥ = (R, R®,B) € £°
p(X) = p(2B) := the number of output variables of ¥ = (R, R®*,28) € £°

When X has the kernel representation R ( %)w = 0, we hence have

w(X) = coldim(R),mn(X¥) = coldim(R) — rank(R), p(X) = rank(P)

/
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‘ RATIONAL FUNCTIONS '

/
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Gational functions and matrices of rational functions play an exceedingly \

important role in systems, signal processing, coding, etc.
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Gational functions and matrices of rational functions play an exceedingly \

important role in systems, signal processing, coding, etc.

What is a rational function?
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Gational functions and matrices of rational functions play an exceedingly \

important role in systems, signal processing, coding, etc.

What is a rational function?

The field of rationals is an important mathematical structure that is constructed
from a commutative ring R without zero divisorsab = 0 = a =0orb =0

and with an identity 31 € R : 1 * a = aVa € R. Examples: Z, R[£], C[£].

The arch-typical example is R = 7Z, but we are mainly interested in R = R[£].

kThe ‘rationals’ over R[] are called rational ‘functions’, denoted R(&). j
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R(&) is constructed as follows. Consider

S = {(a,b) € R[¢] x R[€] | b # 0}

Define an equivalence relation on S by

[(a’,b") ~ (a”,b”)] :& [a'b” = a”b]].

Now verify that the set of equivalence classes, S(mod ~) becomes a field under

the following definitions of addition and multiplication:

(a’, ") (mod ~) + (a”,b”)(mod ~)
(a’,b")(mod ~) * (a”,b”)(mod ~)

This field is R(&).

N

(@’b” + a”b’, b'b”) (mod ~);
(a’a”,b'b”)(mod ~).

/
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Think intuitively of R(&) as the ratios of two polynomials,

with common factors in a and b
disregarded or cancelled,

if you like.

N

a(§)

b(¢)’

/
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Think intuitively of R(&) as the ratios of two polynomials,

with common factors in a and b

disregarded or cancelled,

if you like.

a
Henceforth denote (a,b) € S(mod ~) as e

N

a(§)

b(¢)’

/
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Think intuitively of R(&) as the ratios of two polynomials,

with common factors in a and b
disregarded or cancelled,

if you like.

a
Henceforth denote (a,b) € S(mod ~) as e

Of course, the * is usually not written.

N

a(§)

b(¢)’

/
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Notation for vectors and matrices of rational functions:

R(&)™, R(£)®, R(§)™ *"2, R(£)* ", R(£)™**, R(§)*™°.

o /
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Notation for vectors and matrices of rational functions:

R(&)™, R(£)®, R(§)™ *"2, R(£)* ", R(£)™**, R(§)*™°.

a
A rational function 5 € R(&) is said to be

proper if degree(a) < degree(d),

and strictly proper if degree(a) < degree(b).

~~ vectors, matrices of (strictly) proper rational functions.

N

/
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e are mainly interested in real rational functions, but (complex) rational f’ns,

C(&), are analogously defined. Any element of R(&) is in a natural way an
element of C(&).

- /
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e are mainly interested in real rational functions, but (complex) rational f’ns

C(&), are analogously defined. Any element of R(&) is in a natural way an
element of C(&).

Call A € C
a
a zero of B (assume no common factor) if it is a root of a
and a pole if it is a root of b.

~~ the multiplicity of a zero or a pole.

N

~

9
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e are mainly interested in real rational functions, but (complex) rational f’ns,
C(&), are analogously defined. Any element of R(&) is in a natural way an
element of C(&).

Call A € C
a
a zero of B (assume no common factor) if it is a root of a
and a pole if it is a root of b.

~~ the multiplicity of a zero or a pole.

Call A € C a pole of a vector or matrix of rational functions if it is a pole of one

of the elements.

We do not define zeros or multiplicities in the matrix case.

These are important, but application sensitive.

N /
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K’Ve consider £ again as an indeterminate.

We can substitute for £ real numbers, complex numbers, etc. (square matrices

are OK for R(&), but cause problems in the matrix case. Do not mindlessly

substitute the differentiation or the shift operator: all kinds of problems!)

N

~
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K’Ve consider £ again as an indeterminate. \
We can substitute for £ real numbers, complex numbers, etc. (square matrices
are OK for R(&), but cause problems in the matrix case. Do not mindlessly

substitute the differentiation or the shift operator: all kinds of problems!)

Let F € R(€)™ X"z,
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K’Ve consider £ again as an indeterminate. \
We can substitute for £ real numbers, complex numbers, etc. (square matrices
are OK for R(&), but cause problems in the matrix case. Do not mindlessly

substitute the differentiation or the shift operator: all kinds of problems!)
Let FF € R(&)™ %72,

t € R, not a pole of F' = F'(t) € R* X2,
Hence, there is an induced map F' : {t € R | not a pole of F'} — R"* X"2,

- /
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K’Ve consider £ again as an indeterminate. \
We can substitute for £ real numbers, complex numbers, etc. (square matrices
are OK for R(&), but cause problems in the matrix case. Do not mindlessly

substitute the differentiation or the shift operator: all kinds of problems!)

Let F € R(€)™ X"z,

s € C, not a pole of F' = F'(s) € Crr X2,
Hence F' : {t € C | nota pole of F'} — C"1 %72,

- /

Lecture 4 Rational functions




K’Ve consider £ again as an indeterminate. \
We can substitute for £ real numbers, complex numbers, etc. (square matrices
are OK for R(&), but cause problems in the matrix case. Do not mindlessly

substitute the differentiation or the shift operator: all kinds of problems!)

Let F € R(€)™ X"z,

d
a( m) .
But, what could ——— conceivably mean?

\_ o /
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K’Ve consider £ again as an indeterminate. \
We can substitute for £ real numbers, complex numbers, etc. (square matrices
are OK for R(&), but cause problems in the matrix case. Do not mindlessly

substitute the differentiation or the shift operator: all kinds of problems!)
Let FF € R(&)™ %72,

t € R, not a pole of F' = F'(t) € R* X2,
Hence, there is an induced map F' : {t € R | not a pole of F'} — R"* X"2,

s € C, not a pole of F' = F'(s) € Crr X2,
Hence F' : {t € C | nota pole of F'} — C"1 %72,

d
a( a) .
But, what could ——— conceivably mean?

\_ o /
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/ PRIME POLYNOMIAL MATRICES \

P € R %"2[£] is said to be left prime if P = P; Py, with
P, € Rxmg], Py € R* *"2[£] implies that P; must be unimodular.

- /
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/ PRIME POLYNOMIAL MATRICES \

P € R %"2[£] is said to be left prime if P = P; Py, with
P, € Rxmg], Py € R* *"2[£] implies that P; must be unimodular.

Proposition: P € R"* *"2[£] is right prime iff P(\) € C" **2 is of full row
rank for all A € C.

- /
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/ PRIME POLYNOMIAL MATRICES \

P € R %"2[£] is said to be left prime if P = P; Py, with
P, € Rxmg], Py € R* *"2[£] implies that P; must be unimodular.

Proposition: P € R"* *"2[£] is right prime iff P(\) € C" **2 is of full row
rank for all A € C.

Every P € R *"2[£] that is of full row rank (as a polynomial matrix, of course)
admits a factorization P = P; P;, with P; € R* *™1[£], and P, € R X2 [{]

left prime.

This factorization is ‘essentially unique’ (Explain!).

- /
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/ PRIME POLYNOMIAL MATRICES \

P € R %"2[£] is said to be left prime if P = P; Py, with
P, € Rxmg], Py € R* *"2[£] implies that P; must be unimodular.

Proposition: P € R"* *"2[£] is right prime iff P(\) € C" **2 is of full row
rank for all A € C.

Every P € R *"2[£] that is of full row rank (as a polynomial matrix, of course)
admits a factorization P = P; P;, with P; € R* *™1[£], and P, € R X2 [{]

left prime.

This factorization is ‘essentially unique’ (Explain!).

Qight prime and right factorization: analogous. j
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Call Py, P,,..., P, € R *®[£] left co-prime if the composite polynomial
matrix [Py P5 - - - P,| € R X®[£] is left prime.

Call Py, Ps,..., P, € R***2[£] right co-prime if the composite polynomial

matrix | | € R**"2[£] is right prime.

- /
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FACTORIZATION of MATRICES of RATIONAL F’Ns

Consider a matrix of rational f’ns F' € R"1 X2 (¢).

A factorization of F' as F' = P~1Q with P € R*1*"1[¢], det(P) # 0 and
Q € R *X22[£] is said to be left co-prime factorization of F
if P and () are left co-prime.

- /
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FACTORIZATION of MATRICES of RATIONAL F’Ns

Consider a matrix of rational f’ns F' € R"1 X2 (¢).

A factorization of F' as F' = P~1Q with P € R*1*"1[¢], det(P) # 0 and
Q € R *X22[£] is said to be left co-prime factorization of F
if P and () are left co-prime.

A factorization of F' as FF = ND~! with N € R*1X*2[¢] and
D € R*2%"2[£], det(D) # 0 is said to be right co-prime factorization of F
if NV and D are right co-prime.

N

/

Lecture 4 Rational functions



N

THE TRANSFER FUNCTION '

/
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?? When do two systems have the same transfer function ??

/
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/ ?? When do two systems have the same transfer function ??

Theorem: Consider

d d
Pl(a)y = Ql(a)ua w = (u,y),

~

with P; € RP(B)Xp(B)[£] det(P;) # 0, and transfer function G, = P; ' Q1.

d d
PZ(a)y = Qz(a)ua w = (u,y),

with P, € RP(B)Xp(B)[£], det(P;) # 0, and transfer function G3 = P, ' Q..

N

/
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/ ?? When do two systems have the same transfer function ??

Theorem: Consider

d d
Pl(a)y = Ql(a)ua w = (u,y),

~

with P; € RP(B)Xp(B)[£] det(P;) # 0, and transfer function G, = P; ' Q1.

d d
PZ(a)y = Qz(a)ua w = (u,y),

with P, € RP(B)Xp(B)[£], det(P;) # 0, and transfer function G3 = P, ' Q..

G1 = G5: same transfer function

iff these systems have the same controllable part.

N

/
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Hence:

1. Two controllable systems with the same transfer function are equal.

- /
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Hence:

1. Two controllable systems with the same transfer function are equal.

2. The transfer function determines only the controllable part of a system.

N

!!! Watch out in stability considerations !!

/
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Relations primeness with differential systems

R( % )w = 0 is a minimal kernel repr. of a controllable system

N

iff R is left prime.

/
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Relations primeness with differential systems

( - )w = 0 is a minimal kernel repr. of a controllable system

iff R is left prime.

Consider the system with minimal kernel representation R( - )w = 0.
Factor R = FR’, with R’ € RP(B)Xn(B)[£] left prime, F' € RP(B) xp(B)[¢£],
Then R’ ( - )w = 0 determines the controllable part

F' ‘determines’ the autonomous part.

- /
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Relations primeness with differential systems

( - )w = 0 is a minimal kernel repr. of a controllable system

iff R is left prime.

Consider the system with minimal kernel representation R( - )w = 0.
Factor R = FR’, with R’ € RP(B)Xn(B)[£] left prime, F' € RP(B) xp(B)[¢£],
Then R’ ( - )w = 0 determines the controllable part

F' ‘determines’ the autonomous part.

w=M ( - )£ is an observable latent variable system iff M is right prime.

- /
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Co-prime factorizations of the transfer f’n play a very important role for
example in algorithms for H . -control.

What do they mean?

- /
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Co-prime factorizations of the transfer f’n play a very important role for

example in algorithms for H . -control.
What do they mean?

A factorization G = P~1Q ~» a kernel representation
d d
P(—)y = —)u
(y=Q()

of a system with transfer f’n G.

- /
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Co-prime factorizations of the transfer f’n play a very important role for
example in algorithms for H . -control.

What do they mean?

A factorization G = P~1Q ~» a kernel representation
d d
P(—)y = —)u
(y=Q()
of a system with transfer f’n G.

A left co-prime factorization G = P~1Q ~»

a kernel repr. of the (unique!) controllable system with transfer f’n G.

- /
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A factorization G = ND~1 ~s animage representation

) D(%)
N(%)

of the (unique) controllable system with transfer f’n G.

- /
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A factorization G = ND!

~» an image representation

u

D(
N (

-
di)

d
di)

of the (unique) controllable system with transfer f’n G.

A right co-prime factorization G = N D1

I\/)

an observable image repr. of the controllable system with transfer f’n G.

N

/
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‘ THE EXPONENTIAL RESPONSE .

/

Lecture 4

The transfer function



~

Let A € C. Denote by exp,, the exponential map t € R — e** € C.

Let B € £7. Define, for each A € C the set
¢y := {a € C' | exp,a € B}.

Easy: €Y is a linear subspace of C¥.

Define the exponential response of %5 as the set of all exponentials in 23:

¢® = {exp,a |a € €7} C B.

- /
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~

Let A € C. Denote by exp,, the exponential map t € R — e** € C.

Let B € £7. Define, for each A € C the set
¢y := {a € C' | exp,a € B}.

Easy: €Y is a linear subspace of C¥.

Define the exponential response of %5 as the set of all exponentials in 23:

¢® = {exp,a |a € €7} C B.

For the system described by R( % )w = 0 we obviously have €}° = ker(R(\)).
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Proposition:

1. dim(€3) = m(2B) for all but a finite number of elements of C.

This dimension can be larger than m(23) at a finite number of points.

2. dim (&%) = constant (= m(23)) iff 2B is controllable.
b

- /
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Proposition:

1. dim(€3) = m(2B) for all but a finite number of elements of C.

This dimension can be larger than m(23) at a finite number of points.
2. dim(€3) = constant (= m(2B)) iff 2B is controllable.

3. If *B is controllable, then the exponential response determines 25 uniquely.

- /
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The exponential response is closely related to the transfer function. Consider

Py = Q5 uw = (u,v),

with P € Re(B) Xp(B)[£], det(P) # 0, and transfer function G = P~1Q.

For A € C, not a root of det(P), we have

N

¢¥ = {(a,G(N)a) | a € C"P)}.

~

/
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The exponential response is closely related to the transfer function. Consider

Py = Q5 uw = (u,v),

with P € Re(B) Xp(B)[£], det(P) # 0, and transfer function G = P~1Q.

For A € C, not a root of det(P), we have

¢¥ = {(a,G(N)a) | a € C"P)}.

By continuity, this determines an m(25)-dimensional subspace of C*(*) also at

the roots of det(P). ~» the controllable part of the system.

- /
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Let 1w, w € R. Define the subspace
F> = {a € C' | exp,,a € B}.
Define the frequency response of 8 as the set

§° = {expi,a|a €]} CB.

The frequency response is the exponential response restricted to the imaginary

axis.

N

/
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Let 1w, w € R. Define the subspace
F> = {a € C' | exp,,a € B}.
Define the frequency response of 8 as the set

F° = {exp;,a|a € F.} CB.
axis.

system.

N

The frequency response is the exponential response restricted to the imaginary

Once again: the frequency response determines again the controllable part of a

/
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Note: No stability considerations required for the exponential or the frequency

response.

In particular, the frequency transfer v — y:

u = exp,;,a — y = exp,;,G(iw)a

is well-defined for all zw’s that are not roots of det(P).

N

~

/
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Note: No stability considerations required for the exponential or the frequency
response.
In particular, the frequency transfer u — y:
u = exp,;,a — y = exp,;,G(iw)a
is well-defined for all zw’s that are not roots of det(P).

It is the notion of exponential response (more so than Laplace transform

considerations) that is the origin of the transfer function.

N

~

/
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Significance of (strictly) proper transfer functions

In continuous time: SMOOTHNESS

The output is at least as smooth (is smoother) that the input.

N
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Significance of (strictly) proper transfer functions

In continuous time: SMOOTHNESS

N

The output is at least as smooth (is smoother) that the input.

In particular, if we had used weak sol’ns, we could have proven:

The f ’n G is (strictly) proper iff

(u,y) € B and u € (R, R*B)) imply

y € Q:k(R’ Rp(%)) (y € €k+1(]R, Rp(%))).

/
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Significance of (strictly) proper transfer functions

In continuous time: SMOOTHNESS

The output is at least as smooth (is smoother) that the input.

In particular, if we had used weak sol’ns, we could have proven:

The f ’n G is (strictly) proper iff

(u,y) € B and u € (R, R*B)) imply

y € Q:k(R’ Rp(%)) (y € €k+1(]R, Rp(%))).

In discrete time: NON-ANTICIPATION

N

The output (lags) does not anticipate that the input. cfr. the exercises.

/

Lecture 4

The transfer function



N

‘ TIME-DOMAIN CHARACTERIZATIONS .
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ﬁlow does the time-domain response of a system 28 € £° look like? \
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/I‘IOW does the time-domain response of a system 28 € £° look like? \

Assume that an I/O partition w = (u, y) has been made. ~»

k

d t
y(t) — yautonomous(t) + 23kEZ_|_I_Ik %U(t) + / H(t — t,)’LL(t’)dt’
0
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/I‘IOW does the time-domain response of a system 28 € £° look like?

Assume that an I/O partition w = (u, y) has been made. ~»

k

d t
y(t) — yautonomous(t) + 23kEZ_|_I_Ik %U(t) + / H(t — t,)’LL(t’)dt’
0

with
1- Yautonomous S %autonomous (S SP(%)’ an autonomous SyStema
2. H, € Rr(B) xn(B) matrices, only a finite number # 0,

Q H : R — Rr(B)Xn(B) 3 matrix with each column € B, uionomouss
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Autonomous intermezzo

Fact:

Consider the autonomous systems, behavior 25 € £, kernel representation

P(L)w = 0,det(P) # 0.

There is a one-to-one relation

we B S f € R¥[¢] : P~ f strictly proper

N

/
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/ Relation with the transfer function

In terms of the minimal kernel representation

P(5y = QU s w = (),

and the transfer function G = P~ 1Q, we have:

N

/
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/ Relation with the transfer function \

In terms of the minimal kernel representation

P(5y = QU s w = (),

and the transfer function G = P~ 1Q, we have:

P( %)y — 0 is a kernel representation of the autonomous system 3, ,;tonomouss

and
G(&) = EkEZ+Hk£k + G’(é)

with G/ € R"*P(¢) strictly proper, such that the columns of G’ correspond to
the solutions of P( %)y = 0.

- /
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/ Relation with the transfer function \

In terms of the minimal kernel representation

P(5y = QU s w = (),

and the transfer function G = P~ 1Q, we have:

P( %)y — 0 is a kernel representation of the autonomous system 3, ,;tonomouss

and

G(&) = ez, H&" + G'(§)
with G/ € R"*P(¢) strictly proper, such that the columns of G’ correspond to
the solutions of P( %)y = 0.

There is a great deal more that can be said, for example, related to image

representations, Laplace transforms, partial fraction expansion of the transfer

Kfunction, but ... j

Lecture 4 Time-domain response




‘ RECAP .

ecture




/» We have chosen for a rather strict notion of input.

Input = free, output = bound by input & initial condition.

N
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/» We have chosen for a rather strict notion of input.

Input = free, output = bound by input & initial condition.

» Minor annoyance with our €°°-assumption. We define free := €°°-free.
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/» We have chosen for a rather strict notion of input.

Input = free, output = bound by input & initial condition.
» Minor annoyance with our €°°-assumption. We define free := €°°-free.

» !! Every system in £°® admits a componentwise input/output partition!!

N

Lecture 4 Recap



/b We have chosen for a rather strict notion of input.

Input = free, output = bound by input & initial condition.
» Minor annoyance with our €°°-assumption. We define free := €°°-free.

» !! Every system in £°® admits a componentwise input/output partition!!

» Input variables, output variables: not fixed by the system.
No unique input/output partition.

In applications often no natural choice.

» The number of input and output variables is, however,

kinvariant under the choice of input and output variables.
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/b We have chosen for a rather strict notion of input.

Input = free, output = bound by input & initial condition.
» Minor annoyance with our €°°-assumption. We define free := €°°-free.

» !! Every system in £°® admits a componentwise input/output partition!!

» Input variables, output variables: not fixed by the system.
No unique input/output partition.

In applications often no natural choice.

» The number of input and output variables is, however,

kinvariant under the choice of input and output variables.
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/» The transfer function determines the controllable part (only). \

N /
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/» The transfer function determines the controllable part (only). \

» The transfer function ~ the exponential response ~ the frequency response

may forget the non-controllable part.
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/» The transfer function determines the controllable part (only). \

» The transfer function ~ the exponential response ~ the frequency response

may forget the non-controllable part.

» (Co-prime) factorizations of the transfer functions: a way of obtaining
(controllable/observable) kernel and image representations from the transfer

function.
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/» The transfer function determines the controllable part (only). \

» The transfer function ~ the exponential response ~ the frequency response

may forget the non-controllable part.

» (Co-prime) factorizations of the transfer functions: a way of obtaining
(controllable/observable) kernel and image representations from the transfer

function.

! (Strict) properness of the transfer f’n = Does the system smooth inputs? j
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A final example: Coaxial cable

ORI —
~» The PDE’s:
0 0
—V — —LO—I,
ox 0
0
—I1 = —Cog—V
ox 0

with Ly theinductance,and Cjy the capacitance per unit length.

N




/W ith boundary conditions (cable of length L): \

!! Model the relation between the voltages V;, V7 and

the currents I, I; at the ends of a uniform cable of length L.

L

Introduce the voltage V (x, t) and the current flow I (x,t) 0 < < L in the

cable.
I(x,t)
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~» The equations:

0 0]
il v _Lo—T1,
ox ot

0 0
—1 _CO_Va
ox ot
Vo (t) V(0,1),
Vl(t) V(Lat)a
Iﬂ(t) I(O?t)a
I, (t) —I(L,t).




-

Viewed as a black box




-

Relation between V., V;:
03 03
@V = L()CO@V, V()(‘) — V(O, '), Vl(') — V(L, '),
and between [, I;:
2 2

0
@I — LOC()@I, Iy(-) =1(0,-), I1(-) = I(L,-).

Two terminal variables are ‘free’, the other two are ‘bound’,
(free = one voltage, one current, bound = one voltage, one current), but

there is no reasonable choice of inputs and outputs!

It breaks the symmetry

N




End of Lecture 4




