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THEME

When is a system variable an input? An output?

Inputs = free, outputs = follow from inputs + intitial conditions.

OUTLINE

� Free and bound variables, inputs and outputs: formal def’ns.

� Every linear time-invariant differential system admits a I/O partition

� The transfer function

� Left and right co-prime factorizations, relations with controllability

� Time-domain characterization

Lecture 4 Introduction



FORMAL DEFINITIONS
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Intuition

Our choice: the input is a free variable which, together with the ‘initial

conditions’ determines the output.
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Intuition

Our choice: the input is a free variable which, together with the ‘initial

conditions’ determines the output.

These concepts (input, output) are strongly domain dependent.

We will discuss them following the usual systems & control setting.

Central is, of course, that the input must in some way causes the output.
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� In physical systems and in real-time signal processing and control,

non-anticipation must be an important feature.

� In non-real-time signal processing problems, or when the independent

variable is not time, non-anticipation need not be an issue.

� In many problems (e.g. computing, signal processing) inputs may have to be

structured, in order for machines or algorithms to be able to accept them.

� In control, it is customary to assume that inputs are free, and that outputs

are bound (determined by the inputs and the initial conditions). We will

follow this tradition.
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We start with a couple of def’ns:
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We start with a couple of def’ns:

� � ��� ��� �
	 � is said to be memoryless if
�� � �  �� 	 ��� ��� � � ��� �� � � �  �� 	 � �

where� � denotes concatenation at time � , defined by

�  � � �  � � � ��� ��� � �
� �

 � � ��� � ���  �

 � � �!� � �!� " �

Memoryless:= the past and the future are unrelated

(except by the system laws).
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� � ��� ��� �
	 � is said to be trim if

#$ � � and # � � � %  � 	 �  � � � � $ &

Trim:= the signal space has no irrelevant elements,

there is no instantaneous (local) structure.
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� � ��� ��� �
	 � is said to be trim if

#$ � � and # � � � %  � 	 �  � � � � $ &

Trim:= the signal space has no irrelevant elements,

there is no instantaneous (local) structure.

Note: trim + memoryless '� ‘free’

(modulo niceties as measurability, integrability, ...)
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Recall � � ��� � � � 	 � with� � ( or) is said to be autonomous if

�� � �  �� 	 �� ��� � � � � �� � � ��� � �  � � ��� � # ���  � ��� �� � �  � � &

Autonomous:= the past implies the future.
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Let � � �� � � �+* � � �	 � � � � ( or) � be a dynamical system. Then  � is

said to be input/output system with  � the input and  � the output if

1. � � � � �� � � � �	 � � is free := trim and memoryless,

where	 � denotes the  � behavior

(i.e., the manifest behavior with  � viewed as a latent variable).

2. for all  �� 	 � �-, .� � � �� � � � * � � �	 , .� � is autonomous,

where	 , .� denotes the  � behavior with fixed  � ,

i.e.,	 , .� � � /  � 0 �  � �  � �� 	 1 &
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input '� free; output '� bound (determined by inputs + initial cond’s).
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input '� free; output '� bound (determined by inputs + initial cond’s).

For systems in 2!3 , our notion of memoryless (unfortunately)

clashes with the 465 assumption. We therefore decide (for 2 3 ) that

free :=	 � 45 � ( � (87 � = ‘ 45 -free’.
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input '� free; output '� bound (determined by inputs + initial cond’s).

For systems in 2!3 , our notion of memoryless (unfortunately)

clashes with the 465 assumption. We therefore decide (for 2 3 ) that

free :=	 � 45 � ( � (87 � = ‘ 45 -free’.

In keeping with tradition

 �:9 ; <  � 9 = < � � 9 > � � � 9 ? &

For linear systems:

> � (A@ (B input variables), ? � (�C ( D output variables).
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Let � � � ( � ( 7 �	 �� 2 7 � with ( 7 � ( @ * (EC �GF � B H D .

If the corresponding � � � ( � ( @ * (�C �	 � is an input/output system,

then we call  � � ; � = � an input/output partition of  .
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Proposition: Consider the linear differential system with kernel repr.

I �JJ � � ; � K �JJ � � = �  � � ; � = � &

; is 4L5 -free M N OPQ � � I K � � � N OPQ � I � �

= is bound by ; M I is of full column rank, i.e. N O PQ � I � � RST � = � .
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Proposition: Consider the linear differential system with kernel repr.

I �JJ � � ; � K �JJ � � = �  � � ; � = � &

; is 4L5 -free M N OPQ � � I K � � � N OPQ � I � �

= is bound by ; M I is of full column rank, i.e. N O PQ � I � � RST � = � .
it defines an input/output partition if and only if

N OPQ � � I K � � � N OPQ � I � � RST � = � &

If it is minimal, then I/O partition iff I is square, and RUV � I �W � X .
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Proposition: Consider the linear differential system with kernel repr.

I �JJ � � ; � K �JJ � � = �  � � ; � = � &

; is 4L5 -free M N OPQ � � I K � � � N OPQ � I � �

= is bound by ; M I is of full column rank, i.e. N O PQ � I � � RST � = � .
it defines an input/output partition if and only if

N OPQ � � I K � � � N OPQ � I � � RST � = � &

If it is minimal, then I/O partition iff I is square, and RUV � I �W � X .

Call Y � � I[Z � K � ( �\ �C^] @ its transfer function.
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Theorem:

Every system � � 23 admits an input/output partition.
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Theorem:

Every system � � 23 admits an input/output partition.

even a componentwise I/O partition

:= some well-chosen components of  are inputs, the others are outputs

'� up to re-ordering of the variables,  � � ; � = � ,
i.e., � ; � = � � _  , with _ a permutation.
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Theorem:

Every system � � 23 admits an input/output partition.

even a componentwise I/O partition

:= some well-chosen components of  are inputs, the others are outputs

'� up to re-ordering of the variables,  � � ; � = � ,
i.e., � ; � = � � _  , with _ a permutation.

In fact, with Y proper.
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Theorem:

Every system � � 23 admits an input/output partition.

even a componentwise I/O partition

:= some well-chosen components of  are inputs, the others are outputs

'� up to re-ordering of the variables,  � � ; � = � ,
i.e., � ; � = � � _  , with _ a permutation.

In fact, with Y proper.

If one can choose the basis, even with Y strictly proper.

We will recall the def’s of proper, strictly proper, later.
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Notes:

1. For a given	 � 2 3 , which variables are input variables, and which are input

variables, is not fixed.

THIS IS A GOOD THING!
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Notes:

1. For a given	 � 2 3 , which variables are input variables, and which are input

variables, is not fixed.

THIS IS A GOOD THING!
Examples:

An Ohmic resistor ` � ab a W � X may be viewed as

a current controlled or as a voltage controlled device.
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Notes:

1. For a given	 � 2 3 , which variables are input variables, and which are input

variables, is not fixed.

THIS IS A GOOD THING!
Examples:

An Ohmic resistor ` � ab a W � X may be viewed as

a current controlled or as a voltage controlled device.

Our RLC circuit. Since here the t’f f’n is bi-proper, it may be viewed as

a current controlled or as a voltage controlled device.

etc., etc.
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2. The number of input and the number of output variables are fixed by	 .
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2. The number of input and the number of output variables are fixed by	 .

Notation: Define the 3 maps F � B � D � 2 3 9 ) c by

F � � � � F �	 � � � the number of variables of � � � ( � (3 �	 �� 23

B � � � � B �	 � � � the number of input variables of � � � ( � (3 �	 �� 23

D � � � � D �	 � � � the number of output variables of � � � ( � (3 �	 �� 23
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2. The number of input and the number of output variables are fixed by	 .

Notation: Define the 3 maps F � B � D � 2 3 9 ) c by

F � � � � F �	 � � � the number of variables of � � � ( � (3 �	 �� 23

B � � � � B �	 � � � the number of input variables of � � � ( � (3 �	 �� 23

D � � � � D �	 � � � the number of output variables of � � � ( � (3 �	 �� 23

When � has the kernel representation a �edd � �  � X , we hence have

F � � � � fgh RST � a � � B � � � � f gh RST � a �ji N OPQ � a � � D � � � � N O PQ � I �

In particular,B H D � F &
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RATIONAL FUNCTIONS
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Rational functions and matrices of rational functions play an exceedingly

important role in systems, signal processing, coding, etc.
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Rational functions and matrices of rational functions play an exceedingly

important role in systems, signal processing, coding, etc.

What is a rational function?
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Rational functions and matrices of rational functions play an exceedingly

important role in systems, signal processing, coding, etc.

What is a rational function?

The field of rationals is an important mathematical structure that is constructed

from a commutative ring a without zero divisors kl � X � k � X orl � X

and with an identity %m � a � m n k � k # k � a . Examples:) � ( �\ � ��o �\ � &

The arch-typical example is a �) , but we are mainly interested in a � ( �\ � .
The ‘rationals’ over ( �\ � are called rational ‘functions’, denoted ( �\ � .
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( �\ � is constructed as follows. Consider

p � / � k �l �� ( �\ �* ( �\ � 0l W � X 1 &

Define an equivalence relation on p by
� � k� �l � � ' � krq �l q � �� M � k� l q � krq l � � &

Now verify that the set of equivalence classes, p � mod ' � becomes a field under

the following definitions of addition and multiplication:

� k� �l � � � mod ' � H � krq �l q � � mod ' � � � � k� l q H kq l � �l � l q � � mod ' � <

� k� �l � � � mod ' � n � krq �l q � � mod ' � � � � k� kq �l � l q � � mod ' � &

This field is ( �\ � .
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Think intuitively of ( �\ � as the ratios of two polynomials,

k �\ �
l �\ � ,

with common factors in k andl
disregarded or cancelled,

if you like.
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Think intuitively of ( �\ � as the ratios of two polynomials,

k �\ �
l �\ � ,

with common factors in k andl
disregarded or cancelled,

if you like.

Henceforth denote � k �l �� p � mod ' � as

k
l .
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Think intuitively of ( �\ � as the ratios of two polynomials,

k �\ �
l �\ � ,

with common factors in k andl
disregarded or cancelled,

if you like.

Henceforth denote � k �l �� p � mod ' � as

k
l .

Of course, the n is usually not written.
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Notation for vectors and matrices of rational functions:

( �\ �ts � ( �\ �3 � ( �\ � s .] s u � ( �\ �3 ] s � ( �\ �ts] 3 � ( �\ �3 ] 3 .
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Notation for vectors and matrices of rational functions:

( �\ �ts � ( �\ �3 � ( �\ � s .] s u � ( �\ �3 ] s � ( �\ �ts] 3 � ( �\ �3 ] 3 .

A rational function

k
l � ( �\ � is said to be

proper if RU v NU U � k �w RU v NU U �l � ,
and strictly proper if RU v NU U � k �  RU v NU U �l � .

x vectors, matrices of (strictly) proper rational functions.
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We are mainly interested in real rational functions, but (complex) rational f’ns,

o �\ � , are analogously defined. Any element of ( �\ � is in a natural way an

element ofo �\ � .
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We are mainly interested in real rational functions, but (complex) rational f’ns,

o �\ � , are analogously defined. Any element of ( �\ � is in a natural way an

element ofo �\ � .
Call y � o

a zero of

k
l (assume no common factor) if it is a root of k

and a pole if it is a root ofl .

x the multiplicity of a zero or a pole.
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We are mainly interested in real rational functions, but (complex) rational f’ns,

o �\ � , are analogously defined. Any element of ( �\ � is in a natural way an

element ofo �\ � .
Call y � o

a zero of

k
l (assume no common factor) if it is a root of k

and a pole if it is a root ofl .

x the multiplicity of a zero or a pole.

Call y � o a pole of a vector or matrix of rational functions if it is a pole of one

of the elements.

We do not define zeros or multiplicities in the matrix case.

These are important, but application sensitive.
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We consider\ again as an indeterminate.

We can substitute for\ real numbers, complex numbers, etc. (square matrices

are OK for ( �\ � � but cause problems in the matrix case. Do not mindlessly

substitute the differentiation or the shift operator: all kinds of problems!)
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We consider\ again as an indeterminate.

We can substitute for\ real numbers, complex numbers, etc. (square matrices

are OK for ( �\ � � but cause problems in the matrix case. Do not mindlessly

substitute the differentiation or the shift operator: all kinds of problems!)

Let z � ( �\ � s .] s u .

But, what could

k �dd � �l �dd � � conceivably mean?
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We consider\ again as an indeterminate.

We can substitute for\ real numbers, complex numbers, etc. (square matrices

are OK for ( �\ � � but cause problems in the matrix case. Do not mindlessly

substitute the differentiation or the shift operator: all kinds of problems!)

Let z � ( �\ � s .] s u .

� � ( � not a pole of z � z � � �� ( s .] s u .

Hence, there is an induced map z � / � � ( 0 not a pole of z 1 9 ( s .] s u .

{ � o � not a pole of z � z � { �� o s .] s u .

Hence z � / � � o 0 not a pole of z 1 9 o s .] s u .

But, what could

k �dd � �l �dd � � conceivably mean?
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PRIME POLYNOMIAL MATRICES
I � ( s .] s u �\ � is said to be left prime if I � I � I � , with

I �� ( s .] s . �\ � � I �� ( s .] s u �\ � implies that I � must be unimodular.
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PRIME POLYNOMIAL MATRICES
I � ( s .] s u �\ � is said to be left prime if I � I � I � , with

I �� ( s .] s . �\ � � I �� ( s .] s u �\ � implies that I � must be unimodular.

Proposition: I � ( s .] s u �\ � is right prime iff I � y �� o s .] s u is of full row

rank for all y � o .
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PRIME POLYNOMIAL MATRICES
I � ( s .] s u �\ � is said to be left prime if I � I � I � , with

I �� ( s .] s . �\ � � I �� ( s .] s u �\ � implies that I � must be unimodular.

Proposition: I � ( s .] s u �\ � is right prime iff I � y �� o s .] s u is of full row

rank for all y � o .

Every I � ( s .] s u �\ � that is of full row rank (as a polynomial matrix, of course)

admits a factorization I � I � I � , with I �� ( s .] s . �\ � � and I �� ( s .] s u �\ �

left prime.

This factorization is ‘essentially unique’ (Explain!).
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PRIME POLYNOMIAL MATRICES
I � ( s .] s u �\ � is said to be left prime if I � I � I � , with

I �� ( s .] s . �\ � � I �� ( s .] s u �\ � implies that I � must be unimodular.

Proposition: I � ( s .] s u �\ � is right prime iff I � y �� o s .] s u is of full row

rank for all y � o .

Every I � ( s .] s u �\ � that is of full row rank (as a polynomial matrix, of course)

admits a factorization I � I � I � , with I �� ( s .] s . �\ � � and I �� ( s .] s u �\ �

left prime.

This factorization is ‘essentially unique’ (Explain!).

Right prime and right factorization: analogous.
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Call I � � I � � & & & � I s � ( s .] 3 �\ � left co-prime if the composite polynomial

matrix � I � I �}| | | I s �� ( s .] 3 �\ � is left prime.

Call I � � I � � & & & � I s � (3 ] s u �\ � right co-prime if the composite polynomial

matrix

~������
�

I �
I �

...

I s
� ������

�
� (3 ] s u �\ � is right prime.
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FACTORIZATION of MATRICES of RATIONAL F’Ns

Consider a matrix of rational f’ns z � ( s .] s u �\ � .

A factorization of z as z � I[Z � K with I � ( s .] s . �\ � � RUV � I �W � X and

K � ( s .] s u �\ � is said to be left co-prime factorization of z

if I and K are left co-prime.
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FACTORIZATION of MATRICES of RATIONAL F’Ns

Consider a matrix of rational f’ns z � ( s .] s u �\ � .

A factorization of z as z � I[Z � K with I � ( s .] s . �\ � � RUV � I �W � X and

K � ( s .] s u �\ � is said to be left co-prime factorization of z

if I and K are left co-prime.

A factorization of z as z � �� Z � with � � ( s .] s u �\ � and

� � ( s u] s u �\ � � RUV �� �W � X is said to be right co-prime factorization of z

if � and� are right co-prime.
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THE TRANSFER FUNCTION
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?? When do two systems have the same transfer function ??
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?? When do two systems have the same transfer function ??

Theorem: Consider

I � �JJ � � = � K � �JJ � � ; �  � � ; � = � �

with I �� (C ��� �] C ��� � �\ � � RUV � I � �W � X � and transfer function Y � � I�Z �� K � .
I � �JJ � � = � K � �JJ � � ; �  � � ; � = � �

with I � � (C ��� �] C ��� � �\ � � RUV � I � �W � X � and transfer function Y � � I�Z �� K � .
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?? When do two systems have the same transfer function ??

Theorem: Consider

I � �JJ � � = � K � �JJ � � ; �  � � ; � = � �

with I �� (C ��� �] C ��� � �\ � � RUV � I � �W � X � and transfer function Y � � I�Z �� K � .
I � �JJ � � = � K � �JJ � � ; �  � � ; � = � �

with I � � (C ��� �] C ��� � �\ � � RUV � I � �W � X � and transfer function Y � � I�Z �� K � .

Y � � Y � : same transfer function

iff these systems have the same controllable part.
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Hence:

1. Two controllable systems with the same transfer function are equal.
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Hence:

1. Two controllable systems with the same transfer function are equal.

2. The transfer function determines only the controllable part of a system.

!!! Watch out in stability considerations !!
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Relations primeness with differential systems

a �dd � �  � X is a minimal kernel repr. of a controllable system

iff a is left prime.
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Relations primeness with differential systems

a �dd � �  � X is a minimal kernel repr. of a controllable system

iff a is left prime.

Consider the system with minimal kernel representation a � dd � �  � X .

Factor a � z a � , with a � � (C �� �] @ �� � �\ � � left prime, z � (EC �� �] C �� � �\ � .
Then a � �dd � �  � X determines the controllable part

z ‘determines’ the autonomous part.
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Relations primeness with differential systems

a �dd � �  � X is a minimal kernel repr. of a controllable system

iff a is left prime.

Consider the system with minimal kernel representation a � dd � �  � X .

Factor a � z a � , with a � � (C �� �] @ �� � �\ � � left prime, z � (EC �� �] C �� � �\ � .
Then a � �dd � �  � X determines the controllable part

z ‘determines’ the autonomous part.

 � � �dd � ��� is an observable latent variable system iff � is right prime.
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Co-prime factorizations of the transfer f’n play a very important role for

example in algorithms for � 5 -control.

What do they mean?
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Co-prime factorizations of the transfer f’n play a very important role for

example in algorithms for � 5 -control.

What do they mean?

A factorization Y � I�Z � K x a kernel representation

I �JJ � � = � K �JJ � � ;

of a system with transfer f’n Y .

A left co-prime factorization Y � I Z � K x
a kernel repr. of the (unique!) controllable system with transfer f’n Y .
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A factorization Y � � � Z � x an image representation

~
�

;
=

�
�

� ~
�

� �dd � �
� �dd � �

�
�

of the (unique) controllable system with transfer f’n Y .

Lecture 4 The transfer function



A factorization Y � � � Z � x an image representation

~
�

;
=

�
�

� ~
�

� �dd � �
� �dd � �

�
�

of the (unique) controllable system with transfer f’n Y .

A right co-prime factorization Y � �� Z � x
an observable image repr. of the controllable system with transfer f’n Y .
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THE EXPONENTIAL RESPONSE
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Let y � o . Denote byU� � � the exponential map � � (� 9 � � �� o &

Let	 � 2 7 . Define, for each y � o the set

� � � � � / k � o 7 0U� � � k � 	 1 &

Easy: � � � is a linear subspace ofo 7 .

Define the exponential response of	 as the set of all exponentials in	 :

� � � /U� � � k 0 k � � � � 1�� 	 &
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Let y � o . Denote byU� � � the exponential map � � (� 9 � � �� o &

Let	 � 2 7 . Define, for each y � o the set

� � � � � / k � o 7 0U� � � k � 	 1 &

Easy: � � � is a linear subspace ofo 7 .

Define the exponential response of	 as the set of all exponentials in	 :

� � � /U� � � k 0 k � � � � 1�� 	 &
For the system described by a �edd � �  � X we obviously have � � � �Q U N � a � y � � .
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Proposition:

1. RST � � � � � � B �	 � for all but a finite number of elements ofo .

This dimension can be larger thanB �	 � at a finite number of points.

2. RST � � � � � � constant � � B �	 � � iff	 is controllable.
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Proposition:

1. RST � � � � � � B �	 � for all but a finite number of elements ofo .

This dimension can be larger thanB �	 � at a finite number of points.

2. RST � � � � � � constant � � B �	 � � iff	 is controllable.

3. If	 is controllable, then the exponential response determines	 uniquely.
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The exponential response is closely related to the transfer function. Consider

I �JJ � � = � K �JJ � � ; �  � � ; � = � �

with I � (�C �� �] C �� � �\ � � RUV � I �W � X � and transfer function Y � I Z � K .

For y � o � not a root of RUV � I � , we have

� � � � / � k � Y � y � k � 0 k � o @ �� � 1 &
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The exponential response is closely related to the transfer function. Consider

I �JJ � � = � K �JJ � � ; �  � � ; � = � �

with I � (�C �� �] C �� � �\ � � RUV � I �W � X � and transfer function Y � I Z � K .

For y � o � not a root of RUV � I � , we have

� � � � / � k � Y � y � k � 0 k � o @ �� � 1 &

By continuity, this determines anB �	 � -dimensional subspace ofo @ �� � also at

the roots of RUV � I � . x the controllable part of the system.
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Let �� � � � ( . Define the subspace

� � � � � / k � o 7 0U� � � � k � 	 1 &

Define the frequency response of	 as the set
� � � /U � � � � k 0 k � � � � 1� 	 &

The frequency response is the exponential response restricted to the imaginary

axis.
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Let �� � � � ( . Define the subspace

� � � � � / k � o 7 0U� � � � k � 	 1 &

Define the frequency response of	 as the set
� � � /U � � � � k 0 k � � � � 1� 	 &

The frequency response is the exponential response restricted to the imaginary

axis.

Once again: the frequency response determines again the controllable part of a

system.
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Note: No stability considerations required for the exponential or the frequency

response.

In particular, the frequency transfer ;� 9 = :
; � U� � � � k� 9 = � U� � � � Y � �� � k

is well-defined for all �� ’s that are not roots of RUV � I � .
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Note: No stability considerations required for the exponential or the frequency

response.

In particular, the frequency transfer ;� 9 = :
; � U� � � � k� 9 = � U� � � � Y � �� � k

is well-defined for all �� ’s that are not roots of RUV � I � .
It is the notion of exponential response (more so than Laplace transform

considerations) that is the origin of the transfer function.
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Significance of (strictly) proper transfer functions

In continuous time: SMOOTHNESS

The output is at least as smooth (is smoother) that the input.

Lecture 4 The transfer function



Significance of (strictly) proper transfer functions

In continuous time: SMOOTHNESS

The output is at least as smooth (is smoother) that the input.

In particular, if we had used weak sol’ns, we could have proven:

The t’f f’n Y is (strictly) proper iff

� ; � = �� 	 and ; � 46� � ( � (@ �� � � imply

= � 4�� � ( � (�C �� � � ( = � 4�� c � � ( � (C �� � � ).
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Significance of (strictly) proper transfer functions

In continuous time: SMOOTHNESS

The output is at least as smooth (is smoother) that the input.

In particular, if we had used weak sol’ns, we could have proven:

The t’f f’n Y is (strictly) proper iff

� ; � = �� 	 and ; � 46� � ( � (@ �� � � imply

= � 4�� � ( � (�C �� � � ( = � 4�� c � � ( � (C �� � � ).
In discrete time: NON-ANTICIPATION

The output (lags) does not anticipate that the input. cfr. the exercises.
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TIME-DOMAIN CHARACTERIZATIONS

Lecture 4 Time-domain response



How does the time-domain response of a system	 � 2 3 look like?
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How does the time-domain response of a system	 � 2 3 look like?

Assume that an I/O partition  � � ; � = � has been made. x

= � � � � =�  ¡¢£ ¢¤ ¢  ¥ � � � H � � ¦§ ¨ª© � J �
J �� ; � � � H

�
« © � � i �-� � ; � �-� �J �-�
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How does the time-domain response of a system	 � 2 3 look like?

Assume that an I/O partition  � � ; � = � has been made. x

= � � � � =�  ¡¢£ ¢¤ ¢  ¥ � � � H � � ¦§ ¨ª© � J �
J �� ; � � � H

�
« © � � i �-� � ; � �-� �J �-�

with

1. = �  ¡¢£ ¢¤ ¢  ¥� 	 �   ¡¢£ ¢¤ ¢  ¥� 2 C �� � , an autonomous system,

2.© � � (EC �� �] @ �� � � matrices, only a finite numberW � X ,

3.© � ( 9 (�C �� �] @ �� � a matrix with each column� 	 �  ¡¢£ ¢¤ ¢  ¥ .
Lecture 4 Time-domain response



Autonomous intermezzo

Fact:

Consider the autonomous systems, behavior	 � 2 7 , kernel representation

I �dd � �  � X � RUV � I �W � X &
There is a one-to-one relation

 � 	 �¬ � ® � ( 7 �\ �� I¯Z � ® strictly proper
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Relation with the transfer function

In terms of the minimal kernel representation

I �JJ � � = � K �JJ � � ; �  � � ; � = � �

and the transfer function Y � I Z � K , we have:
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Relation with the transfer function

In terms of the minimal kernel representation

I �JJ � � = � K �JJ � � ; �  � � ; � = � �

and the transfer function Y � I Z � K , we have:

I �dd � � = � X is a kernel representation of the autonomous system	 �   ¡¢£ ¢¤ ¢  ¥ ,
and

Y �\ � � � � ¦§ ¨ª© � \ � H Y � �\ �

with Y � � (°@] C �\ � strictly proper, such that the columns of Y � correspond to

the solutions of I �dd � � = � X .
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Relation with the transfer function

In terms of the minimal kernel representation

I �JJ � � = � K �JJ � � ; �  � � ; � = � �

and the transfer function Y � I Z � K , we have:

I �dd � � = � X is a kernel representation of the autonomous system	 �   ¡¢£ ¢¤ ¢  ¥ ,
and

Y �\ � � � � ¦§ ¨ª© � \ � H Y � �\ �

with Y � � (°@] C �\ � strictly proper, such that the columns of Y � correspond to

the solutions of I �dd � � = � X .

There is a great deal more that can be said, for example, related to image

representations, Laplace transforms, partial fraction expansion of the transfer

function, but ...
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RECAP
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± We have chosen for a rather strict notion of input.

Input = free, output = bound by input & initial condition.
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± We have chosen for a rather strict notion of input.

Input = free, output = bound by input & initial condition.

± Minor annoyance with our 4 5 -assumption. We define free := 4 5 -free.

± !! Every system in 2 3 admits a componentwise input/output partition!!

± Input variables, output variables: not fixed by the system.

No unique input/output partition.

In applications often no natural choice.

± The number of input and output variables is, however,

invariant under the choice of input and output variables.
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± The transfer function determines the controllable part (only).
± The transfer function ' the exponential response ' the frequency response

may forget the non-controllable part.

± (Co-prime) factorizations of the transfer functions: a way of obtaining

(controllable/observable) kernel and image representations from the transfer

function.
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± The transfer function determines the controllable part (only).
± The transfer function ' the exponential response ' the frequency response

may forget the non-controllable part.

± (Co-prime) factorizations of the transfer functions: a way of obtaining

(controllable/observable) kernel and image representations from the transfer

function.

± (Strict) properness of the transfer f’n '� Does the system smooth inputs?
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A final example: Coaxial cable

V(x,t)
x

I(x,t)

+

−

x The PDE’s:
²

²³ ` � i ´ « ²
² �b �

²
²³ b � i µ « ²
² � ` &

with ´ « the inductance, and µ « the capacitance per unit length.



With boundary conditions (cable of length ´ ):

!! Model the relation between the voltages ` « � ` � and

the currentsb « �b � at the ends of a uniform cable of length ´ &

0I

V0

V1−

1

−

+

I

+

L

Introduce the voltage ` �³ � � � and the current flowb �³ � � � X w ³ w ´ in the

cable.

0
0 1

1
IV(x,t)V

x+

−

+

−
V

I

I(x,t)



x The equations:

²
²³ ` � i ´ « ²
² �b �

²
²³ b � i µ « ²
² � ` �

` « � � � � ` � X � � � �

` � � � � � ` � ´ � � � �

b « � � � � b � X � � � �

b � � � � � i b � ´ � � � &



Viewed as a black box

¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶

· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·· · · · · · · ·
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0

0

0

1

1

1

V

V

I

I IV(x,t)
x +

−
V

I(x,t)

+

−

+

−
V

+

−

I



Relation between ` « � ` � :

² �
²³ � ` � ´ « µ « ² �
² � � ` � ` « �| � � ` � X �| � � ` � �| � � ` � ´ �| � �

and betweenb « �b � :

² �
²³ �b � ´ « µ « ² �
² � �b � b « �| � � b � X �| � �b � �| � � b � ´ �| � &

Two terminal variables are ‘free’, the other two are ‘bound’,

(free = one voltage, one current, bound = one voltage, one current), but

there is no reasonable choice of inputs and outputs!

It breaks the symmetry



End of Lecture 4


