MATHEMATICAL MODELS of SYSTEMS

Jan C. Willems
ESAT-SCD (SISTA), University of Leuven, Belgium

Lecture 3

CONTROLLABILITY and OBSERVABILITY

THEME

Central notions in system theory, controllability and observability, in the setting and language of behavioral models.

THEME

Central notions in system theory, controllability and observability, in the setting and language of behavioral models.

- Formal definitions
- Tests for controllability and observability
- Image representations
- Autonomous systems

CONTROLLABILITY

CONTROLLABILITY

The time-invariant system $\Sigma=(\mathbb{T}, \mathbb{W}, \mathfrak{B})$ is said to be

controllable

if for all $w_{1}, w_{2} \in \mathfrak{B}$ there exists $w \in \mathfrak{B}$ and $T \geq 0$ such that

$$
w(t)=\left\{\begin{array}{cc}
w_{1}(t) & t<0 \\
w_{2}(t-T) & t \geq T
\end{array}\right.
$$

CONTROLLABILITY

The time-invariant system $\Sigma=(\mathbb{T}, \mathbb{W}, \mathfrak{B})$ is said to be

controllable

if for all $w_{1}, w_{2} \in \mathfrak{B}$ there exists $w \in \mathfrak{B}$ and $T \geq 0$ such that

$$
w(t)=\left\{\begin{array}{cc}
w_{1}(t) & t<0 \\
w_{2}(t-T) & t \geq T
\end{array}\right.
$$

Controllability $\quad: \Leftrightarrow$
legal trajectories must be 'patch-able', 'concatenable'.

Controllability

OBSERVABILITY

Observability

Consider the system $\Sigma=\left(\mathbb{T}, \mathbb{W}_{1} \times \mathbb{W}_{2}, \mathfrak{B}\right)$.
Each element of the behavior \mathfrak{B} hence consists of a pair of trajectories $\left(w_{1}, w_{2}\right)$.
w_{1} : observed; w_{2} : to-be-deduced.

Consider the system $\Sigma=\left(\mathbb{T}, \mathbb{W}_{1} \times \mathbb{W}_{2}, \mathfrak{B}\right)$.
Each element of the behavior \mathfrak{B} hence consists of
a pair of trajectories $\left(w_{1}, w_{2}\right)$.
w_{1} : observed; w_{2} : to-be-deduced.

Definition: w_{2} is said to be
\square
if $\left(\left(w_{1}, w_{2}^{\prime}\right) \in \mathfrak{B}\right.$, and $\left.\left(w_{1}, w_{2}^{\prime \prime}\right) \in \mathfrak{B}\right) \Rightarrow\left(w_{2}^{\prime}=w_{2}^{\prime \prime}\right)$,
i.e., if on \mathfrak{B}, there exists a map $w_{1} \mapsto w_{2}$.

Consider the system $\Sigma=\left(\mathbb{T}, \mathbb{W}_{1} \times \mathbb{W}_{2}, \mathfrak{B}\right)$.
Each element of the behavior \mathfrak{B} hence consists of
a pair of trajectories $\left(w_{1}, w_{2}\right)$.
w_{1} : observed; w_{2} : to-be-deduced.

Definition: w_{2} is said to be
\square
if $\left(\left(w_{1}, w_{2}^{\prime}\right) \in \mathfrak{B}\right.$, and $\left.\left(w_{1}, w_{2}^{\prime \prime}\right) \in \mathfrak{B}\right) \Rightarrow\left(w_{2}^{\prime}=w_{2}^{\prime \prime}\right)$,
i.e., if on \mathfrak{B}, there exists a map $w_{1} \mapsto w_{2}$.

Very often manifest = observed, latent = to-be-deduced.
We then speak of an observable latent variable system.
$\underline{\text { Special case: classical Kalman definitions }}$

Special case: classical Kalman definitions

controllability: variables $=($ input, state $)$
observability \leadsto observed $=($ input, output $)$, to-be-deduced $=$ state.

Special case: classical Kalman definitions

controllability: variables $=($ input, state $)$
If a system is not (state) controllable, why is it?
Insufficient influence of the control?
Or bad choice of the state?

Special case: classical Kalman definitions

observability \leadsto observed $=$ (input, output), to-be-deduced $=$ state.
Why is it so interesting to try to deduce the state, of all things?
The state is a derived notion, not a 'physical' one.

Special case: classical Kalman definitions

controllability: variables $=($ input, state $)$
If a system is not (state) controllable, why is it?
Insufficient influence of the control?
Or bad choice of the state?
observability \leadsto observed $=$ (input, output), to-be-deduced $=$ state.
Why is it so interesting to try to deduce the state, of all things?
The state is a derived notion, not a 'physical' one.
Kalman definitions address rather special situations.

TESTS for CONTROLLABILITY and OBSERVABILITY

Consider the system defined by

$$
R\left(\frac{d}{d t}\right) w=0
$$

Under what conditions on $R \in \mathbb{R}^{\bullet \times}[\xi]$ does it define a controllable system?

Consider the system defined by

$$
R\left(\frac{d}{d t}\right) w=0
$$

Under what conditions on $R \in \mathbb{R}^{\bullet \times}[\xi]$ does it define a controllable system?

Theorem: $\quad R\left(\frac{d}{d t}\right) w=0$ defines a controllable system if and only if

$$
\operatorname{rank}(R(\lambda))=\text { constant }
$$

over $\lambda \in \mathbb{C}$.

Notes:

1. If $R\left(\frac{d}{d t}\right) w=0$ is minimal, then controllability $\Leftrightarrow \boldsymbol{R}(\boldsymbol{\lambda})$ is of full row rank $\forall \lambda \in \mathbb{C}$
Equivalently, R is right-invertible as a polynomial matrix.
$P \in \mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}[\xi]$ is right-invertible $: \Leftrightarrow \exists Q \in \mathbb{R}^{\mathrm{n}_{2} \times{ }_{\mathrm{n} 1}}[\xi]$ such that $P Q=I_{\mathrm{n}_{1}}$

Notes:

1. If $R\left(\frac{d}{d t}\right) w=0$ is minimal, then controllability $\Leftrightarrow R(\lambda)$ is of full row rank $\forall \lambda \in \mathbb{C}$
Equivalently, R is right-invertible as a polynomial matrix.
$P \in \mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}[\xi]$ is right-invertible $: \Leftrightarrow \exists Q \in \mathbb{R}^{\mathrm{n}_{2} \times{ }^{\mathrm{n} 1}}[\xi]$ such that $P Q=I_{\mathrm{n}_{1}}$
2. $\frac{d}{d t} x=A x+B u, w=(x, u)$ is controllable iff

$$
\operatorname{rank}\left(\left[\begin{array}{ll}
A-\lambda I & B
\end{array}\right]\right)=\operatorname{dim}(x) \forall \lambda \in \mathbb{C}
$$

Hautus' test for controllability. Of course,

$$
\Leftrightarrow \operatorname{rank}\left(\left[\begin{array}{llll}
B & A B & \cdots & A^{\operatorname{dim}(x)-1} B
\end{array}\right]\right)=\operatorname{dim}(x)
$$

3. When is

$$
p\left(\frac{d}{d t}\right) w_{1}=q\left(\frac{d}{d t}\right) w_{2}
$$

controllable? $p, q \in \mathbb{R}[\xi]$, not both zero.
3. When is

$$
p\left(\frac{d}{d t}\right) w_{1}=q\left(\frac{d}{d t}\right) w_{2}
$$

controllable? $p, q \in \mathbb{R}[\xi]$, not both zero.
Iff p and q are co-prime. No common factors!
3. When is

$$
p\left(\frac{d}{d t}\right) w_{1}=q\left(\frac{d}{d t}\right) w_{2}
$$

controllable? $p, q \in \mathbb{R}[\xi]$, not both zero.
Iff p and q are co-prime. No common factors!

Testable via Sylvester matrix, etc.
Generalizable.
3. When is

$$
p\left(\frac{d}{d t}\right) w_{1}=q\left(\frac{d}{d t}\right) w_{2}
$$

controllable? $p, q \in \mathbb{R}[\xi]$, not both zero.
Iff p and q are co-prime. No common factors!
Testable via Sylvester matrix, etc. Generalizable.
4. Example: Our electrical circuit is controllable unless

$$
C R_{C}=\frac{L}{R_{L}} \text { and } R_{C}=R_{L}
$$

Reasonable physical systems can be uncontrollable.
5. When is

$$
R\left(\frac{d^{2}}{d t^{2}}\right) w=0
$$

controllable?
5. When is

$$
R\left(\frac{d^{2}}{d t^{2}}\right) w=0
$$

controllable?
same conditions as on R....

Consider the system defined by

$$
R_{1}\left(\frac{d}{d t}\right) w_{1}=R_{2}\left(\frac{d}{d t}\right) w_{2} .
$$

Under which conditions on $R_{1}, R_{2} \in \mathbb{R}^{\bullet} \times \bullet[\xi]$ is w_{2} observable from w_{1} ?

Consider the system defined by

$$
R_{1}\left(\frac{d}{d t}\right) w_{1}=R_{2}\left(\frac{d}{d t}\right) w_{2}
$$

Under which conditions on $R_{1}, R_{2} \in \mathbb{R}^{\bullet} \times \bullet[\xi]$ is w_{2} observable from w_{1} ?

Theorem: In the system $R_{1}\left(\frac{d}{d t}\right) w_{1}=R_{2}\left(\frac{d}{d t}\right) w_{2}$
w_{2} is observable from w_{1}
if and only if
$\operatorname{rank}\left(\boldsymbol{R}_{2}(\lambda)\right)=\operatorname{dim}\left(w_{2}\right)$
for all $\lambda \in \mathbb{C}$.

Notes:

1. In $R_{1}\left(\frac{d}{d t}\right) w_{1}=R_{2}\left(\frac{d}{d t}\right) w_{2}, w_{2}$ is observable from w_{1} if and only if $R_{2}(\lambda)$ is of full column rank $\forall \lambda \in \mathbb{C}$.

Notes:

1. In $R_{1}\left(\frac{d}{d t}\right) w_{1}=R_{2}\left(\frac{d}{d t}\right) w_{2}, w_{2}$ is observable from w_{1} if and only if $R_{2}(\lambda)$ is of full column rank $\forall \lambda \in \mathbb{C}$.

Equivalently, iff \boldsymbol{R}_{2} is left-invertible as a polynomial matrix. $P \in \mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}[\xi]$ is left-invertible $: \Leftrightarrow \exists Q \in \mathbb{R}^{\mathrm{n}_{2} \times{ }_{\mathrm{n} 1}}[\xi]$ such that $Q P=I_{\mathrm{n}_{2}}$

Notes:

1. In $R_{1}\left(\frac{d}{d t}\right) w_{1}=R_{2}\left(\frac{d}{d t}\right) w_{2}, \quad w_{2}$ is observable from w_{1} if and only if $R_{2}(\lambda)$ is of full column rank $\forall \lambda \in \mathbb{C}$.

Equivalently, iff $\boldsymbol{R}_{\mathbf{2}}$ is left-invertible as a polynomial matrix. $P \in \mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}[\xi]$ is left-invertible $: \Leftrightarrow \exists Q \in \mathbb{R}^{\mathrm{n}_{2} \times{ }^{\mathrm{n} 1}}[\xi]$ such that $Q P=I_{\mathrm{n}_{2}}$

Equivalently, iff \exists an equivalent behavioral equation representation

$$
\begin{aligned}
R\left(\frac{d}{d t}\right) w_{1} & =0 \\
w_{2} & =M\left(\frac{d}{d t}\right) w_{1}
\end{aligned}
$$

This representation puts observability into evidence.
2. In $\frac{d}{d t} x=\boldsymbol{A x}+\boldsymbol{B u}, \boldsymbol{y}=\boldsymbol{C} \boldsymbol{x}, w_{1}=(u, y), w_{2}=x$ the state is observable from the input/output (u, y) iff

$$
\operatorname{rank}\left(\left[\begin{array}{c}
A-\lambda I \\
C
\end{array}\right]\right)=\operatorname{dim}(x) \forall \lambda \in \mathbb{C}
$$

2. In $\frac{d}{d t} x=\boldsymbol{A x}+\boldsymbol{B u}, \boldsymbol{y}=\boldsymbol{C} \boldsymbol{x}, w_{1}=(u, y), w_{2}=x$ the state is observable from the input/output (u, y) iff

$$
\operatorname{rank}\left(\left[\begin{array}{c}
A-\lambda I \\
C
\end{array}\right]\right)=\operatorname{dim}(x) \forall \lambda \in \mathbb{C}
$$

Hautus' test for observability. Of course,

$$
\Leftrightarrow \operatorname{rank}\left(\left[\begin{array}{c}
C \\
C A \\
\vdots \\
C A^{\operatorname{dim}(x)-1}
\end{array}\right]\right)=\operatorname{dim}(x) .
$$

3. When is in

$$
p\left(\frac{d}{d t}\right) w_{1}=q\left(\frac{d}{d t}\right) w_{2}
$$

w_{2} observable from w_{1} ?
$\boldsymbol{p}, \boldsymbol{q} \in \mathbb{R}[\xi]$.
3. When is in

$$
p\left(\frac{d}{d t}\right) w_{1}=q\left(\frac{d}{d t}\right) w_{2}
$$

w_{2} observable from w_{1} ?
$\boldsymbol{p}, \boldsymbol{q} \in \mathbb{R}[\xi]$.
Iff q is a non-zero constant. No zeros!
4. In the behavioral language, we can hence speak of
'a controllable system' but not of 'an observable system'!
4. In the behavioral language, we can hence speak of
'a controllable system' but not of 'an observable system'!
But we will call the latent variable system

$$
R\left(\frac{d}{d t}\right) w=M\left(\frac{d}{d t}\right) \ell
$$

observable (as a system!)
if the latent variable ℓ is observable from the manifest variable w.
4. In the behavioral language, we can hence speak of
'a controllable system' but not of 'an observable system'!
But we will call the latent variable system

$$
R\left(\frac{d}{d t}\right) w=M\left(\frac{d}{d t}\right) \ell
$$

observable (as a system!)
if the latent variable ℓ is observable from the manifest variable w.
4. In the behavioral language, we can hence speak of

> 'a controllable system' but not of 'an observable system'!

But we will call the latent variable system

$$
\boldsymbol{R}\left(\frac{d}{d t}\right) w=M\left(\frac{d}{d t}\right) \ell
$$

observable (as a system!)
if the latent variable ℓ is observable from the manifest variable w.

Conditions, e.g. \exists equivalent repr. of full behavior

$$
R\left(\frac{d}{d t}\right) w=0 \quad \ell=R^{\prime}\left(\frac{d}{d t}\right) w
$$

$R\left(\frac{d}{d t}\right) w=0$ hence specifies the manifest behavior.
We can therefore speak of a controllable \& observable state system.
5. The RLC circuit is observable iff

$$
C R_{C} \neq \frac{L}{R_{L}}
$$

Image representations

Representations of \mathfrak{L}^{\bullet} :

$$
R\left(\frac{d}{d t}\right) w=0
$$

called a 'kernel' representation of $\mathfrak{B}=\operatorname{ker}\left(\boldsymbol{R}\left(\frac{d}{d t}\right)\right)$.
Sol'n set $\in \mathfrak{L}^{\bullet}$, by definition.

Representations of \mathfrak{L}^{\bullet} :

$$
R\left(\frac{d}{d t}\right) w=0
$$

called a 'kernel' representation of $\mathfrak{B}=\operatorname{ker}\left(\boldsymbol{R}\left(\frac{d}{d t}\right)\right)$.
Sol'n set $\in \mathfrak{L}^{\bullet}$, by definition.

$$
R\left(\frac{d}{d t}\right) w=M\left(\frac{d}{d t}\right) \ell
$$

called a 'latent variable' representation of the manifest behavior $\mathfrak{B}=\left(\boldsymbol{R}\left(\frac{d}{d t}\right)\right)^{-1} M\left(\frac{d}{d t}\right) \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\ell}\right)$.
Elimination theorem $\Rightarrow \in \mathfrak{L}^{\bullet}$.

Missing link: $\quad w=M\left(\frac{d}{d t}\right) \ell$
called an 'image' representation of $\mathfrak{B}=\operatorname{im}\left(M\left(\frac{d}{d t}\right)\right)$.

Missing link: $\quad w=M\left(\frac{d}{d t}\right) \ell$
called an 'image' representation of $\mathfrak{B}=\operatorname{im}\left(M\left(\frac{d}{d t}\right)\right)$.
Elimination theorem $\quad \Rightarrow \quad$ every image is also a kernel.

Missing link: $\quad w=M\left(\frac{d}{d t}\right) \ell$
called an 'image' representation of $\mathfrak{B}=\operatorname{im}\left(M\left(\frac{d}{d t}\right)\right)$.
Elimination theorem $\quad \Rightarrow \quad$ every image is also a kernel.
¿i Which kernels are also images ??

Missing link: $\quad w=M\left(\frac{d}{d t}\right) \ell$
called an 'image' representation of $\mathfrak{B}=\operatorname{im}\left(M\left(\frac{d}{d t}\right)\right)$.
Elimination theorem $\quad \Rightarrow \quad$ every image is also a kernel.
¿¿ Which kernels are also images ??

Controllability!

Theorem: (Controllability and image repr.):

The following are equivalent for $\mathfrak{B} \in \mathfrak{L}^{\bullet}$:

1. \mathfrak{B} is controllable,

Theorem: (Controllability and image repr.):

The following are equivalent for $\mathfrak{B} \in \mathfrak{L}^{\bullet}$:

1. \mathfrak{B} is controllable,
2. \mathfrak{B} admits an image representation,

Theorem: (Controllability and image repr.):

The following are equivalent for $\mathfrak{B} \in \mathfrak{L}^{\bullet}$:

1. \mathfrak{B} is controllable,
2. \mathfrak{B} admits an image representation,
3. for any $a \in \mathbb{R}^{w}[\xi]$,
$\boldsymbol{a}^{\top}\left[\frac{d}{d t}\right] \mathfrak{B}$ equals 0 or all of $\mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R})$,
4. $\mathbb{R}^{\mathrm{w}}[\xi] / \mathfrak{N}_{\mathfrak{B}}$ is torsion free,
5. etc.

Remarks:

1. Algorithm for testing controllability :

Remarks:

1. Algorithm for testing controllability :

Start with $R \in \mathbb{R}^{W}[\xi]$.

Remarks:

1. Algorithm for testing controllability :

Start with $R \in \mathbb{R}^{\mathrm{W}}[\boldsymbol{\xi}]$.
Compute a set of generators, the columns of M, (called the right syzygy of R) of

$$
\left\{m \in \mathbb{R}^{\mathrm{w}}[\xi] \mid \boldsymbol{R} \boldsymbol{m}=0\right\}
$$

Remarks:

1. Algorithm for testing controllability :

Start with $R \in \mathbb{R}^{W}[\xi]$.
Compute a set of generators, the columns of M, (called the right syzygy of R) of

$$
\left\{\boldsymbol{m} \in \mathbb{R}^{\mathrm{w}}[\xi] \mid \boldsymbol{R} \boldsymbol{m}=0\right\}
$$

Compute a set of generators, the rows of R^{\prime}, (called the left syzygy of M) of

$$
\left\{r \in \mathbb{R}^{W}[\xi] \mid r m=0\right\}
$$

Note: $R M=0 \Rightarrow$ the transposes of the rows of $R \in<R^{\prime}>$.

Remarks:

1. Algorithm for testing controllability :

Start with $R \in \mathbb{R}^{W}[\xi]$.
Compute a set of generators, the columns of M, (called the right syzygy of R) of

$$
\left\{\boldsymbol{m} \in \mathbb{R}^{\mathrm{w}}[\xi] \mid \boldsymbol{R} \boldsymbol{m}=0\right\}
$$

Compute a set of generators, the rows of R^{\prime}, (called the left syzygy of M) of

$$
\left\{r \in \mathbb{R}^{W}[\xi] \mid r m=0\right\}
$$

Note: $R M=0 \Rightarrow$ the transposes of the rows of $\boldsymbol{R} \in<\boldsymbol{R}^{\prime}>$.
Controllability $\Leftrightarrow<\boldsymbol{R}^{\top}>=<\boldsymbol{R}^{\prime}>$.
\Rightarrow Numerical test for contr. on coefficients of \boldsymbol{R}.
2. There exists always an observable image representation \cong flatness.
2. There exists always an observable image representation \cong flatness.
3. \exists similar results for time-varying systems.
4. \exists partial results for nonlinear systems.

AUTONOMOUS SYSTEMS

The time-invariant system $\Sigma=(\mathbb{T}, \mathbb{W}, \mathfrak{B})$ is said to be autonomous if

$$
\left[\left(\mathrm{w}_{1}, w_{2} \in \mathfrak{B}\right) \wedge\left(w_{1}(t)=w_{2}(t) \text { for } t<0\right)\right] \Rightarrow\left[w_{1}=w_{2}\right]
$$

The time-invariant system $\Sigma=(\mathbb{T}, \mathbb{W}, \mathfrak{B})$ is said to be autonomous if

$$
\left[\left(\mathrm{w}_{1}, w_{2} \in \mathfrak{B}\right) \wedge\left(w_{1}(t)=w_{2}(t) \text { for } t<0\right)\right] \Rightarrow\left[w_{1}=w_{2}\right]
$$

i.e. when the past implies the future.

Examples:

- Kepler's laws
- $\frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} \boldsymbol{w}=f\left(\frac{d^{\mathrm{n}-1}}{d t^{\mathrm{n}-1}} \boldsymbol{w}, \ldots, w\right)$, reasonable f
- $\frac{d}{d t} x=f(x), w=h(x)$, reasonable f, h ?
- Discrete-time counterparts
- Most (deterministic) models studied in mathematics, physics, (not engineering)
$\underline{\text { When does } \mathfrak{B} \in \mathfrak{L}^{\bullet} \text { define an autonomous system? }}$

When does $\mathfrak{B} \in \mathfrak{L}^{\bullet}$ define an autonomous system?

Theorem: Let $\mathfrak{B} \in \mathfrak{L}^{\mathrm{w}}$. The following are equivalent:

1. \mathfrak{B} defines an autonomous system,

When does $\mathfrak{B} \in \mathfrak{L}^{\bullet}$ define an autonomous system?

Theorem: Let $\mathfrak{B} \in \mathfrak{L}^{\mathrm{w}}$. The following are equivalent:

1. \mathfrak{B} defines an autonomous system,
2. \mathfrak{B} is finite-dimensional,

When does $\mathfrak{B} \in \mathfrak{L}^{\bullet}$ define an autonomous system?

Theorem: Let $\mathfrak{B} \in \mathfrak{L}^{\mathrm{w}}$. The following are equivalent:

1. \mathfrak{B} defines an autonomous system,
2. \mathfrak{B} is finite-dimensional,
3. \mathfrak{B} has a kernel repr. $R\left(\frac{d}{d t}\right) w=0$ with $\operatorname{rank}(R)=\operatorname{coldim}(R)=\mathrm{w}$,
i.e. with R has full column rank,

When does $\mathfrak{B} \in \mathfrak{L}^{\bullet}$ define an autonomous system?

Theorem: Let $\mathfrak{B} \in \mathfrak{L}^{\mathrm{w}}$. The following are equivalent:

1. \mathfrak{B} defines an autonomous system,
2. \mathfrak{B} is finite-dimensional,
3. \mathfrak{B} has a kernel repr. $R\left(\frac{d}{d t}\right) w=0$ with $\operatorname{rank}(R)=\operatorname{coldim}(R)=\mathrm{w}$, i.e. with R has full column rank,
4. \mathfrak{B} has a kernel repr. $R\left(\frac{d}{d t}\right) \boldsymbol{w}=0$ with $R \in \mathbb{R}^{\mathrm{w} \times \mathrm{W}}[\xi], \operatorname{det}(R) \neq 0$.

When does $\mathfrak{B} \in \mathfrak{L}^{\bullet}$ define an autonomous system?

Theorem: Let $\mathfrak{B} \in \mathfrak{L}^{\mathrm{w}}$. The following are equivalent:

1. \mathfrak{B} defines an autonomous system,
2. \mathfrak{B} is finite-dimensional,
3. \mathfrak{B} has a kernel repr. $R\left(\frac{d}{d t}\right) w=0$ with $\operatorname{rank}(R)=\operatorname{coldim}(R)=\mathrm{w}$, i.e. with R has full column rank,
4. \mathfrak{B} has a kernel repr. $R\left(\frac{d}{d t}\right) \boldsymbol{w}=0$ with $R \in \mathbb{R}^{\mathrm{w} \times \mathrm{W}}[\xi], \operatorname{det}(R) \neq 0$.
5. \mathfrak{B} has a latent variable repr. $\frac{d}{d t} x=A x, w=C x$.

In the scalar case, the trajectories of an autonomous $\mathfrak{B} \in \mathfrak{L}^{1}$ can be described very explicitly.

For simplicity, consider complex case (the w 's are complex valued.)

In the scalar case, the trajectories of an autonomous $\mathfrak{B} \in \mathfrak{L}^{1}$ can be described very explicitly.
For simplicity, consider complex case (the w's are complex valued.)
Each such \mathfrak{B} is parametrized by

$$
\begin{aligned}
& \mathrm{m} \in \mathbb{N} \\
& \boldsymbol{\lambda}_{1}, \boldsymbol{\lambda}_{2}, \ldots, \lambda_{\mathrm{m}} \in \mathbb{C}, \text { all distinct } \\
& \mathrm{n}_{1}, \mathrm{n}_{2}, \ldots, \mathrm{n}_{\mathrm{m}} \in \mathbb{N}
\end{aligned}
$$

In the scalar case, the trajectories of an autonomous $\mathfrak{B} \in \mathfrak{L}^{1}$ can be described very explicitly.

For simplicity, consider complex case (the w's are complex valued.)
Each such \mathfrak{B} is parametrized by

$$
\begin{aligned}
& \mathrm{m} \in \mathbb{N} \\
& \boldsymbol{\lambda}_{1}, \boldsymbol{\lambda}_{2}, \ldots, \lambda_{\mathrm{m}} \in \mathbb{C}, \text { all distinct } \\
& \mathrm{n}_{1}, \mathrm{n}_{2}, \ldots, \mathrm{n}_{\mathrm{m}} \in \mathbb{N}
\end{aligned}
$$

and

$$
\begin{aligned}
\mathfrak{B}=\left\{\boldsymbol{w}: \mathbb{R} \rightarrow \mathbb{C} \mid \exists r_{1}, r_{2}, \ldots,\right. & r_{\mathrm{k}} \text { with degree }\left(r_{\mathrm{k}}\right)<\mathrm{n}_{\mathrm{k}} \\
& \left.\quad \text { such that } \boldsymbol{w}(\boldsymbol{t})=\Sigma_{\mathrm{k}=1, \ldots, \mathrm{~m}} r_{\mathrm{k}}(t) e^{\lambda_{\mathrm{k}} t}\right\}
\end{aligned}
$$

If

$$
p\left(\frac{d}{d t}\right) w=0
$$

is the kernel representation, $p \in \mathbb{C}[\xi]$, then indeed

If

$$
p\left(\frac{d}{d t}\right) w=0
$$

is the kernel representation, $p \in \mathbb{C}[\xi]$, then indeed
$\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\mathrm{m}} \in \mathbb{C}$ are the distinct roots of p, and $\mathrm{n}_{1}, \mathrm{n}_{2}, \ldots, \mathrm{n}_{\mathrm{m}} \in \mathbb{N}$ their multiplicities.

If

$$
p\left(\frac{d}{d t}\right) w=0
$$

is the kernel representation, $p \in \mathbb{C}[\xi]$, then indeed
$\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\mathrm{m}} \in \mathbb{C}$ are the distinct roots of p, and $\mathrm{n}_{1}, \mathrm{n}_{2}, \ldots, \mathrm{n}_{\mathrm{m}} \in \mathbb{N}$ their multiplicities.

Exercise: Do the real case. Get sum of products of polynomials, exponentials, and trigonometric functions.

If

$$
p\left(\frac{d}{d t}\right) w=0
$$

is the kernel representation, $p \in \mathbb{C}[\xi]$, then indeed
$\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\mathrm{m}} \in \mathbb{C}$ are the distinct roots of p, and $\mathrm{n}_{1}, \mathrm{n}_{2}, \ldots, \mathrm{n}_{\mathrm{m}} \in \mathbb{N}$ their multiplicities.

Exercise: Do the real case. Get sum of products of polynomials, exponentials, and trigonometric functions.

In the multivariable autonomous case, all trajectories are still vectors of sums of products of polynomial/exponentials/(trigonometric) functions, but more structure on the coefficients of the polynomials (more that just the degree).

Theorem: $\mathfrak{B} \in \mathfrak{L}^{\mathrm{w}}$ admits a direct sum decomposition:

$$
\mathfrak{B}=\boldsymbol{\mathfrak { B }}_{\text {controllable }} \oplus \boldsymbol{\mathfrak { B }}_{\text {autonomous }}
$$

with $\mathfrak{B}_{\text {controllable }} \in \mathfrak{L}^{\text {w }}$ controllable, and $\mathfrak{B}_{\text {autonomous }} \in \mathfrak{L}^{\mathbf{W}}$ autonomous.

Theorem: $\mathfrak{B} \in \mathfrak{L}^{\mathrm{W}}$ admits a direct sum decomposition:

$$
\mathfrak{B}=\mathfrak{B}_{\text {controllable }} \oplus \mathfrak{B}_{\text {autonomous }}
$$

with $\mathfrak{B}_{\text {controllable }} \in \mathfrak{L}^{\text {W }}$ controllable, and $\mathfrak{B}_{\text {autonomous }} \in \mathfrak{L}^{\text {w }}$ autonomous.
$\mathfrak{B}_{\text {controllable }}$ is uniquely defined by \mathfrak{B}. It is the controllable part of \mathfrak{B}.

Theorem: $\mathfrak{B} \in \mathfrak{L}^{\mathrm{W}}$ admits a direct sum decomposition:

$$
\mathfrak{B}=\mathfrak{B}_{\text {controllable }} \oplus \boldsymbol{\mathfrak { B }}_{\text {autonomous }}
$$

with $\mathfrak{B}_{\text {controllable }} \in \mathfrak{L}^{\text {W }}$ controllable, and $\mathfrak{B}_{\text {autonomous }} \in \mathfrak{L}^{\text {w }}$ autonomous.
$\mathfrak{B}_{\text {controllable }}$ is uniquely defined by \mathfrak{B}. It is the controllable part of \mathfrak{B}.
$\mathfrak{B}_{\text {autonomous }}$ is not uniquely defined, but they are all isomorphic.

Theorem: $\mathfrak{B} \in \mathfrak{L}^{\mathrm{W}}$ admits a direct sum decomposition:

$$
\mathfrak{B}=\mathfrak{B}_{\text {controllable }} \oplus \boldsymbol{\mathfrak { B }}_{\text {autonomous }}
$$

with $\mathfrak{B}_{\text {controllable }} \in \mathfrak{L}^{\mathbf{W}}$ controllable, and $\mathfrak{B}_{\text {autonomous }} \in \mathfrak{L}^{\mathrm{w}}$ autonomous.
$\mathfrak{B}_{\text {controllable }}$ is uniquely defined by \mathfrak{B}. It is the controllable part of \mathfrak{B}.
$\mathfrak{B}_{\text {autonomous }}$ is not uniquely defined, but they are all isomorphic.

We now define the controllable part and isomorphic.

The controllable part

There are a number of equivalent definitions of the controllable part of a behavior.

Let $\mathfrak{B} \in \mathfrak{L}^{\mathrm{w}}$. Define
$\mathfrak{B}_{\text {controllable part }}:=\left\{\boldsymbol{w} \in \mathfrak{B} \mid \exists \boldsymbol{w}^{\prime} \in \mathfrak{B}\right.$ such that

$$
\left.w^{\prime}(t)=w(t) \text { for } t \geq 0 \text { and } \exists t_{0} \in \mathbb{R}: w^{\prime}(t)=0 \text { for } t<t_{0}\right\}
$$

The controllable part

There are a number of equivalent definitions of the controllable part of a behavior.

Let $\mathfrak{B} \in \mathfrak{L}^{\mathrm{w}}$. Define

$$
\begin{aligned}
\mathfrak{B}_{\text {controllable part }} & :=\left\{w \in \mathfrak{B} \mid \exists w^{\prime} \in \mathfrak{B}\right. \text { such that } \\
\qquad w^{\prime}(t) & \left.=w(t) \text { for } t \geq 0 \text { and } \exists t_{0} \in \mathbb{R}: w^{\prime}(t)=0 \text { for } t<t_{0}\right\}
\end{aligned}
$$

$\boldsymbol{B}_{\text {controllable part }}$ is also the largest controllable behavior $\in \mathfrak{L}^{W}$ contained in \mathfrak{B}.

Isomorphic systems

$\mathfrak{B}, \mathfrak{B}^{\prime} \in \mathfrak{L}^{\mathrm{W}}$ are said to be isomorphic if \exists a unimodular $U \in \mathbb{R}^{\mathrm{W} \times \mathrm{w}}[\boldsymbol{\xi}]$ such that

$$
\mathfrak{B}^{\prime}=U\left(\frac{d}{d t}\right) \mathfrak{B}
$$

Differential bijection between behaviors.
Clearly isomorphy is an equivalence relation.

Isomorphic systems

$\mathfrak{B}, \mathfrak{B}^{\prime} \in \mathfrak{L}^{\mathrm{w}}$ are said to be isomorphic if \exists a unimodular $U \in \mathbb{R}^{\mathrm{w} \times \mathrm{w}}[\xi]$ such that

$$
\mathfrak{B}^{\prime}=U\left(\frac{d}{d t}\right) \mathfrak{B}
$$

Differential bijection between behaviors.
Clearly isomorphy is an equivalence relation.
Let $R\left(\frac{d}{d t}\right) w=0, R^{\prime}\left(\frac{d}{d t}\right) w=0$ be kernel representations of $\mathfrak{B}, \mathfrak{B}^{\prime}$. Then \mathfrak{B} and \mathfrak{B}^{\prime} are isomorphic $\Leftrightarrow R$ and \boldsymbol{R}^{\prime} have same invariant factors. If minimal kernel representations \Leftrightarrow same Smith form.

Isomorphic systems

$\mathfrak{B}, \mathfrak{B}^{\prime} \in \mathfrak{L}^{\mathrm{w}}$ are said to be isomorphic if \exists a unimodular $U \in \mathbb{R}^{w \times w}[\boldsymbol{\xi}]$ such that

$$
\mathfrak{B}^{\prime}=U\left(\frac{d}{d t}\right) \mathfrak{B}
$$

Differential bijection between behaviors.
Clearly isomorphy is an equivalence relation.
Let $R\left(\frac{d}{d t}\right) w=0, R^{\prime}\left(\frac{d}{d t}\right) w=0$ be kernel representations of $\mathfrak{B}, \mathfrak{B}^{\prime}$. Then \mathfrak{B} and \mathfrak{B}^{\prime} are isomorphic $\Leftrightarrow \boldsymbol{R}$ and \boldsymbol{R}^{\prime} have same invariant factors. If minimal kernel representations \Leftrightarrow same Smith form.

Controllable systems are isomorphic iff $\operatorname{rank}(R)=\operatorname{rank}\left(R^{\prime}\right):$ isomorphy is very weak relation.
For autonomous systems: isomorphy is a very strong relation.

Whence there is a very tight relationship between $\mathfrak{B}_{\text {autonomous }}^{\prime}$ and $\mathfrak{B}{ }^{\prime}$ autonomous in two different controllable/autonomous decompositions

$$
\begin{aligned}
\mathfrak{B} & =\mathfrak{B}_{\text {controllable }} \oplus \mathfrak{B}_{\text {autonomous }}^{\prime} \\
\mathfrak{B} & =\mathfrak{B}_{\text {controllable }} \oplus \mathfrak{B}^{\prime \prime} \text { autonomous }
\end{aligned}
$$

STABILITY

The autonomous $\mathfrak{B} \in \mathfrak{L}^{w}$ is said to be asymptotically stable $: \Leftrightarrow$

$$
w \in \mathfrak{B} \Rightarrow w(t) \underset{t \rightarrow \infty}{\longrightarrow} 0
$$

STABILITY

The autonomous $\mathfrak{B} \in \mathfrak{L}^{w}$ is said to be asymptotically stable $: \Leftrightarrow$

$$
w \in \mathfrak{B} \Rightarrow w(t) \underset{t \rightarrow \infty}{\longrightarrow} 0
$$

and stable $: \Leftrightarrow$

$$
\left.w \in \mathfrak{B} \Rightarrow w\right|_{\mathbb{R}_{+}} \text {is bounded. }
$$

The system defined by $R\left(\frac{d}{d t}\right) w=0$ is asymptotically stable iff $\operatorname{rank}(R(\lambda))=\mathrm{w}$ for $\lambda \in \mathbb{C}^{+}:=\{\lambda \in \mathbb{C} \mid \operatorname{Real}(\lambda) \geq 0\}$. All singularities of $R(\lambda$'s where $R(\lambda)$ drops rank) in closed left half of the complex plane.

The system defined by $R\left(\frac{d}{d t}\right) w=0$ is asymptotically stable iff $\operatorname{rank}(R(\lambda))=\mathrm{w}$ for $\lambda \in \mathbb{C}^{+}:=\{\lambda \in \mathbb{C} \mid \operatorname{Real}(\lambda) \geq 0\}$. All singularities of R (λ 's where $R(\lambda)$ drops rank) in closed left half of the complex plane.

The system defined by $R\left(\frac{d}{d t}\right) w=0$ with $R \in \mathbb{R}^{w \times w}[\xi]$ is stable iff

1. $R(\lambda)=\mathrm{w}$ for $\lambda \in \mathbb{C}^{++}:=\{\lambda \in \mathbb{C} \mid \operatorname{Real}(\lambda)>0\}$, and
2. $\mathrm{w}-\operatorname{rank}(R(\lambda))=$ the multiplicity of λ as a root of $\operatorname{det}(R)$ for

$$
\lambda \in \mathbf{i} \mathbb{C}:=\{\lambda \in \mathbb{C} \mid \operatorname{Real}(\lambda)=0\}
$$

All singularities of \boldsymbol{R} ($\boldsymbol{\lambda}$'s where $\boldsymbol{R}(\boldsymbol{\lambda})$ drops rank) in open left half of the complex plane, and those on the imaginary axis are semi-simple.

The system defined by $R\left(\frac{d}{d t}\right) w=0$ is asymptotically stable iff $\operatorname{rank}(R(\lambda))=\mathrm{w}$ for $\lambda \in \mathbb{C}^{+}:=\{\lambda \in \mathbb{C} \mid \operatorname{Real}(\lambda) \geq 0\}$. All singularities of R (λ 's where $R(\lambda)$ drops rank) in closed left half of the complex plane.

The system defined by $R\left(\frac{d}{d t}\right) w=0$ with $R \in \mathbb{R}^{w \times w}[\xi]$ is stable iff

1. $R(\lambda)=\mathrm{w}$ for $\lambda \in \mathbb{C}^{++}:=\{\lambda \in \mathbb{C} \mid \operatorname{Real}(\lambda)>0\}$, and
2. $\mathrm{w}-\operatorname{rank}(R(\lambda))=$ the multiplicity of λ as a root of $\operatorname{det}(R)$ for

$$
\lambda \in \mathbf{i} \mathbb{C}:=\{\lambda \in \mathbb{C} \mid \operatorname{Real}(\lambda)=0\}
$$

All singularities of \boldsymbol{R} ($\boldsymbol{\lambda}$'s where $\boldsymbol{R}(\boldsymbol{\lambda})$ drops rank) in open left half of the complex plane, and those on the imaginary axis are semi-simple.

More about stability (Routh-Hurwitz, Lyapunov): later in the course.

STABILIZABILITY

The time-invariant system $\Sigma=\left(\mathbb{T}, \mathbb{R}^{w}, \mathfrak{B}\right)$ is said to be

stabilizable

if for all $w \in \mathfrak{B}$ there exists $w^{\prime} \in \mathfrak{B}$ such that $w(t)=w^{\prime}(t)$ for $t<0$ and $w^{\prime}(t) \underset{t \rightarrow \infty}{\longrightarrow} 0$.

STABILIZABILITY

The time-invariant system $\Sigma=\left(\mathbb{T}, \mathbb{R}^{\mathrm{w}}, \mathfrak{B}\right)$ is said to be

stabilizable

if for all $w \in \mathfrak{B}$ there exists $w^{\prime} \in \mathfrak{B}$ such that $w(t)=w^{\prime}(t)$ for $t<0$ and $w^{\prime}(t) \underset{t \rightarrow \infty}{\longrightarrow} 0$.

Stabilizability $\quad: \Leftrightarrow$
legal trajectories can be steered to a desired point (0).

Consider the system defined by

$$
R\left(\frac{d}{d t}\right) w=0 .
$$

Under which conditions on $R \in \mathbb{R}^{\bullet \times w}[\xi]$ does it define a stabilizable system?

Consider the system defined by

$$
R\left(\frac{d}{d t}\right) w=0
$$

Under which conditions on $R \in \mathbb{R}^{\bullet \times w}[\xi]$ does it define a stabilizable system?

Theorem: $\quad R\left(\frac{d}{d t}\right) w=0$ defines a stabilizable system if and only if $\operatorname{rank}(R(\lambda))=$ constant over $\lambda \in \mathbb{C}^{+}:=\{\lambda \in \mathbb{C} \mid \operatorname{Real}(\lambda) \geq 0\}$.

Consider the system defined by

$$
R\left(\frac{d}{d t}\right) w=0
$$

Under which conditions on $R \in \mathbb{R}^{\bullet \times w}[\xi]$ does it define a stabilizable system?

Theorem: $\quad R\left(\frac{d}{d t}\right) w=0$ defines a stabilizable system

if and only if

$$
\operatorname{rank}(R(\lambda))=\text { constant }
$$

$$
\text { over } \lambda \in \mathbb{C}^{+}:=\{\lambda \in \mathbb{C} \mid \operatorname{Real}(\lambda) \geq 0\}
$$

Equivalently, iff 'the autonomous part' is stable

$\xrightarrow{\text { RECAP }}$

- Controllability := trajectories in the behavior are patchable
- Controllability := trajectories in the behavior are patchable
- Observability := to-be-deduced variables reconstructible from observed signal and system behavior
- Controllability := trajectories in the behavior are patchable
- Observability := to-be-deduced variables reconstructible from observed signal and system behavior
- There are effective tests for controllability and observability
- Controllability := trajectories in the behavior are patchable
- Observability := to-be-deduced variables reconstructible from observed signal and system behavior
- There are effective tests for controllability and observability
- (Asymptotic) stability \cong all sol'ns tend to 0 , are bounded on \mathbb{R}_{+}
- Controllability := trajectories in the behavior are patchable
- Observability := to-be-deduced variables reconstructible from observed signal and system behavior
- There are effective tests for controllability and observability
- (Asymptotic) stability \cong all sol'ns tend to 0 , are bounded on \mathbb{R}_{+}
- Stabilizability := all sol'ns can be steered to 0
- Controllability := trajectories in the behavior are patchable
- Observability := to-be-deduced variables reconstructible
from observed signal and system behavior
- There are effective tests for controllability and observability
- (Asymptotic) stability \cong all sol'ns tend to 0 , are bounded on \mathbb{R}_{+}
- Stabilizability := all sol'ns can be steered to 0
- These central concepts in control take a much more intrinsic meaning in the context of behavioral systems

End of Lecture 3

