
MATHEMATICAL MODELS of SYSTEMS

Jan C. Willems

ESAT-SCD (SISTA), University of Leuven, Belgium

IUAP Graduate Course Fall 2002



Lecture 3
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THEME

Central notions in system theory,

controllability and observability,

in the setting and language of behavioral models.
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THEME

Central notions in system theory,

controllability and observability,

in the setting and language of behavioral models.

� Formal definitions

� Tests for controllability and observability

� Image representations

� Autonomous systems
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CONTROLLABILITY

The time-invariant system � � ��� ��� �
	 � is said to be

�
 ��controllable

if for all � � � � �� 	 there exists � � 	 and � ��� such that

� ��� � � �
� �

� � � � � � ��

� � ����� � � � � �
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CONTROLLABILITY

The time-invariant system � � ��� ��� �
	 � is said to be

�
 ��controllable

if for all � � � � �� 	 there exists � � 	 and � ��� such that

� ��� � � �
� �

� � � � � � ��

� � ����� � � � � �

Controllability  !

legal trajectories must be ‘patch-able’, ‘concatenable’.
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Consider the system � � � � �� �#" � � �	 ��$

Each element of the behavior	 hence consists of

a pair of trajectories � � � � � � � .

� �  observed; � �  to-be-deduced.
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Each element of the behavior	 hence consists of

a pair of trajectories � � � � � � � .

� �  observed; � �  to-be-deduced.
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Consider the system � � � � �� �#" � � �	 ��$

Each element of the behavior	 hence consists of

a pair of trajectories � � � � � � � .

� �  observed; � �  to-be-deduced.

Definition: � � is said to be %& '(observable from � �

if � � � � � �*) � �� 	 , and � � � � �*) ) � �� 	 �,+ � �*) � � �*) ) � � �

i.e., if on	 , there exists a map � �,- . � � .

Very often manifest = observed, latent = to-be-deduced.

We then speak of an observable latent variable system.
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Special case: classical Kalman definitions
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Special case: classical Kalman definitions

controllability: variables = (input, state)

observability / observed = (input, output), to-be-deduced = state.
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Special case: classical Kalman definitions

controllability: variables = (input, state)
If a system is not (state) controllable, why is it?

Insufficient influence of the control?

Or bad choice of the state?

Lecture 3 Observability



Special case: classical Kalman definitions

observability / observed = (input, output), to-be-deduced = state.
Why is it so interesting to try to deduce the state, of all things?

The state is a derived notion, not a ‘physical’ one.
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Special case: classical Kalman definitions

controllability: variables = (input, state)
If a system is not (state) controllable, why is it?

Insufficient influence of the control?

Or bad choice of the state?

observability / observed = (input, output), to-be-deduced = state.
Why is it so interesting to try to deduce the state, of all things?

The state is a derived notion, not a ‘physical’ one.

Kalman definitions address rather special situations.
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TESTS for CONTROLLABILITY and OBSERVABILITY
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Consider the system defined by

0 �11 � � � � � $

Under what conditions on 0 � 243 56 78 9 does it define a controllable system?
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Consider the system defined by

0 �11 � � � � � $

Under what conditions on 0 � 243 56 78 9 does it define a controllable system?

Theorem: 0 �;::< � � � � defines a controllable system

if and only if

= >?@ � 0 �BA � � � constant

overA � C $
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Notes:

1. If 0 �D::< � � � � is minimal, then

controllability ! 0 �BA � is of full row rank E A � C .

Equivalently, 0 is right-invertible as a polynomial matrix.

F GH I JK I L MN O is right-invertible P QR S GH I L K IT MN O such that F S�U V I J
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Notes:

1. If 0 �D::< � � � � is minimal, then

controllability ! 0 �BA � is of full row rank E A � C .

Equivalently, 0 is right-invertible as a polynomial matrix.

F GH I JK I L MN O is right-invertible P QR S GH I L K IT MN O such that F S�U V I J

2.::< W � X W Y[Z \ � � � � W � \ � is controllable iff

= >?@ � 7 X � A] Z 9 � � ^_` � W � E A � C

Hautus’ test for controllability. Of course,

! = >?@ � 7Z XZ a a a Xcbd e fhg ikj �Z 9 � � ^_` � W � $

Lecture 3 C & O tests



3. When is

l �11 � � � � � m �11 � � � �

controllable? l � m � 2 78 9 , not both zero.
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3. When is

l �11 � � � � � m �11 � � � �

controllable? l � m � 2 78 9 , not both zero.

Iff l and m are co-prime. No common factors!
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3. When is

l �11 � � � � � m �11 � � � �

controllable? l � m � 2 78 9 , not both zero.

Iff l and m are co-prime. No common factors!

Testable via Sylvester matrix, etc. Generalizable.
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3. When is

l �11 � � � � � m �11 � � � �

controllable? l � m � 2 78 9 , not both zero.

Iff l and m are co-prime. No common factors!

Testable via Sylvester matrix, etc. Generalizable.

4. Example: Our electrical circuit is controllable unless

n 0 o � p
0 q and 0 o � 0 q .

Reasonable physical systems can be uncontrollable.
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5. When is

0 �1
�

1 � � � � � �

controllable?
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5. When is

0 �1
�

1 � � � � � �

controllable?

same conditions as on 0 ....
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Consider the system defined by

0 � �11 � � � � � 0 � �11 � � � � $

Under which conditions on 0 � � 0 �� 23 53 78 9 is � � observable from � � ?
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Consider the system defined by

0 � �11 � � � � � 0 � �11 � � � � $

Under which conditions on 0 � � 0 �� 23 53 78 9 is � � observable from � � ?

Theorem: In the system 0 � � ::< � � � � 0 � �::< � � �

� � is observable from � �

if and only if

= >?@ � 0 � �BA � � � ^_` � � � �
for allA � C $
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Notes:

1. In 0 � �::< � � � � 0 � �::< � � � , � � is observable from � � if and only if 0 � �BA �

is of full column rank E A � C .
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Notes:

1. In 0 � �::< � � � � 0 � �::< � � � , � � is observable from � � if and only if 0 � �BA �

is of full column rank E A � C .

Equivalently, iff 0 � is left-invertible as a polynomial matrix.

F GH I JK I L MN O is left-invertible P QR S GH I L K IT MN O such that S FU V I L
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Notes:

1. In 0 � �::< � � � � 0 � �::< � � � , � � is observable from � � if and only if 0 � �BA �

is of full column rank E A � C .

Equivalently, iff 0 � is left-invertible as a polynomial matrix.

F GH I JK I L MN O is left-invertible P QR S GH I L K IT MN O such that S FU V I L

Equivalently, iff r an equivalent behavioral equation representation
0 �11 � � � � � �

� � � s �11 � � � �
This representation puts observability into evidence.
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2. In::< W � X W Y[Z \ � t � n W � � � � � \ � t � � � � � W the state is observable

from the input/output � \ � t � iff

= >?@ �vu w
X � A]

n x
y � � ^_` � W � E A � C
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2. In::< W � X W Y[Z \ � t � n W � � � � � \ � t � � � � � W the state is observable

from the input/output � \ � t � iff

= >?@ �vu w
X � A]

n x
y � � ^_` � W � E A � C

Hautus’ test for observability. Of course,

! = >?@ �
u zzzzzz

w
n

n X
...

n X{bd e fhg ikj �
x ||||||

y
� � ^_` � W ��$
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3. When is in

l �11 � � � � � m �11 � � � �

� � observable from � � ?

l � m � 2 78 9 .
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3. When is in

l �11 � � � � � m �11 � � � �

� � observable from � � ?

l � m � 2 78 9 .
Iff m is a non-zero constant. No zeros!
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4. In the behavioral language, we can hence speak of

’a controllable system’ but not of ’an observable system’!
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4. In the behavioral language, we can hence speak of

’a controllable system’ but not of ’an observable system’!

But we will call the latent variable system

0 �11 � � � � s �11 � �}

observable (as a system!)

if the latent variable} is observable from the manifest variable � .
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4. In the behavioral language, we can hence speak of

’a controllable system’ but not of ’an observable system’!

But we will call the latent variable system

0 �11 � � � � s �11 � �}

observable (as a system!)

if the latent variable} is observable from the manifest variable � .

Conditions, e.g. r equivalent repr. of full behavior

0 �11 � � � � � } � 0 ) �11 � � �

0 �D::< � � � � hence specifies the manifest behavior.

We can therefore speak of a controllable & observable state system.
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5. The RLC circuit is observable iff

n 0 o ~� p
0 q
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Image representations
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Representations of � 3 :

0 �;::< � � � �

called a ‘kernel’ representation of	 �@ � = � 0 � ::< � � .
Sol’n set� � 3 , by definition.
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Representations of � 3 :

0 �;::< � � � �

called a ‘kernel’ representation of	 �@ � = � 0 � ::< � � .
Sol’n set� � 3 , by definition.

0 �::< � � � s �::< �}

called a ‘latent variable’ representation of the manifest behavior

	 � � 0 �D::< � � j � s �D::< ����� � 2 � 2�� � .
Elimination theorem+ � � 3 .
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Missing link: � � s �::< �}

called an ‘image’ representation of	 � _` � s � ::< � ��$
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Missing link: � � s �::< �}

called an ‘image’ representation of	 � _` � s � ::< � ��$

Elimination theorem + every image is also a kernel.

Lecture 3 Image Representations



Missing link: � � s �::< �}

called an ‘image’ representation of	 � _` � s � ::< � ��$

Elimination theorem + every image is also a kernel.

¿¿ Which kernels are also images ??
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Missing link: � � s �::< �}

called an ‘image’ representation of	 � _` � s � ::< � ��$

Elimination theorem + every image is also a kernel.

¿¿ Which kernels are also images ??

Controllability!
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Theorem: (Controllability and image repr.):

The following are equivalent for	 � � 3  

1.	 is controllable,
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Theorem: (Controllability and image repr.):

The following are equivalent for	 � � 3  

1.	 is controllable,

2. 	 admits an image representation,
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Theorem: (Controllability and image repr.):

The following are equivalent for	 � � 3  

1.	 is controllable,

2. 	 admits an image representation,

3. for any � � 2 6 78 9 �

��� 7::< 9	 equals� or all of� � � 2 � 2 � ,
4. 2 6 78 9��� � is torsion free,

5. etc.
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Remarks:

1. Algorithm for testing controllability :
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Remarks:

1. Algorithm for testing controllability :

Start with 0 � 2 6 78 9 .
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Remarks:

1. Algorithm for testing controllability :

Start with 0 � 2 6 78 9 .
Compute a set of generators, the columns of s , (called the right syzygy of 0 ) of

��� � 2 6 78 9� 0 � � � � $
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Remarks:

1. Algorithm for testing controllability :

Start with 0 � 2 6 78 9 .
Compute a set of generators, the columns of s , (called the right syzygy of 0 ) of

��� � 2 6 78 9� 0 � � � � $

Compute a set of generators, the rows of 0 ) , (called the left syzygy of s ) of
��� � 2 6 78 9� � � � � �

Note: 0 s � � + the transposes of the rows of 0 � � 0 ) � $
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Remarks:

1. Algorithm for testing controllability :

Start with 0 � 2 6 78 9 .
Compute a set of generators, the columns of s , (called the right syzygy of 0 ) of

��� � 2 6 78 9� 0 � � � � $

Compute a set of generators, the rows of 0 ) , (called the left syzygy of s ) of
��� � 2 6 78 9� � � � � �

Note: 0 s � � + the transposes of the rows of 0 � � 0 ) � $

Controllability ! � 0 � � � � 0 ) � $

+ Numerical test for contr. on coefficients of 0 .
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2. There exists always an observable image representation �� flatness.
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2. There exists always an observable image representation �� flatness.

3. r similar results for time-varying systems.

4. r partial results for nonlinear systems.

Lecture 3 Image Representations



AUTONOMOUS SYSTEMS
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The time-invariant system � � ��� ��� �
	 � is said to be autonomous if

7 ��� � � � �� 	 ��� � � � � � � � � � � � � for� �� � 9+ 7 � � � � � 9
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The time-invariant system � � ��� ��� �
	 � is said to be autonomous if

7 ��� � � � �� 	 ��� � � � � � � � � � � � � for� �� � 9+ 7 � � � � � 9

i.e. when the past implies the future.
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Examples:

� Kepler’s laws

� :��:< � � � � �;:�� J:< �� J � � $ $ $ � � � � reasonable �

� ::< W � � � W � � � � � � W � � reasonable � � � ?

� Discrete-time counterparts

� Most (deterministic) models studied in mathematics, physics, (not

engineering)
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When does	 � � 3 define an autonomous system?
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When does	 � � 3 define an autonomous system?

Theorem: Let	 � � 6 . The following are equivalent:

1.	 defines an autonomous system,
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When does	 � � 3 define an autonomous system?

Theorem: Let	 � � 6 . The following are equivalent:

1.	 defines an autonomous system,

2.	 is finite-dimensional,
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When does	 � � 3 define an autonomous system?

Theorem: Let	 � � 6 . The following are equivalent:

1.	 defines an autonomous system,

2.	 is finite-dimensional,

3.	 has a kernel repr. 0 � ::< � � � � with = >?@ � 0 � � ��� ^_` � 0 � � � ,

i.e. with 0 has full column rank,

Lecture 3 Autonomous systems



When does	 � � 3 define an autonomous system?

Theorem: Let	 � � 6 . The following are equivalent:

1.	 defines an autonomous system,

2.	 is finite-dimensional,

3.	 has a kernel repr. 0 � ::< � � � � with = >?@ � 0 � � ��� ^_` � 0 � � � ,

i.e. with 0 has full column rank,

4.	 has a kernel repr. 0 � ::< � � � � with 0 � 2 6 5 6 78 9 � ^ �  � 0 � ~� � $
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When does	 � � 3 define an autonomous system?

Theorem: Let	 � � 6 . The following are equivalent:

1.	 defines an autonomous system,

2.	 is finite-dimensional,

3.	 has a kernel repr. 0 � ::< � � � � with = >?@ � 0 � � ��� ^_` � 0 � � � ,

i.e. with 0 has full column rank,

4.	 has a kernel repr. 0 � ::< � � � � with 0 � 2 6 5 6 78 9 � ^ �  � 0 � ~� � $

5.	 has a latent variable repr.::< W � X W � � � n W .

Lecture 3 Autonomous systems



In the scalar case, the trajectories of an autonomous	 � � � can be described

very explicitly.

For simplicity, consider complex case (the � ’s are complex valued.)
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In the scalar case, the trajectories of an autonomous	 � � � can be described

very explicitly.

For simplicity, consider complex case (the � ’s are complex valued.)

Each such	 is parametrized by

¡ � ¢
A � � A � � $ $ $ � A £� C , all distinct

¤ � � ¤ � � $ $ $ � ¤ £� ¢
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In the scalar case, the trajectories of an autonomous	 � � � can be described

very explicitly.

For simplicity, consider complex case (the � ’s are complex valued.)

Each such	 is parametrized by

¡ � ¢
A � � A � � $ $ $ � A £� C , all distinct

¤ � � ¤ � � $ $ $ � ¤ £� ¢

and

	 � � �  2 . C � r � � �� � � $ $ $ �� ¥ with ^ � ¦ = � � �� ¥ � � ¤ ¥

such that � � � � � � ¥§ � ¨ª© © © ¨ £� ¥ ��� ��«­¬ ®< �
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If

l �11 � � � � �

is the kernel representation, l � C 78 9 � then indeed
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If

l �11 � � � � �

is the kernel representation, l � C 78 9 � then indeed

A � � A � � $ $ $ � A £� C are the distinct roots of l ,

and ¤ � � ¤ � � $ $ $ � ¤ £� ¢ their multiplicities.
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If

l �11 � � � � �

is the kernel representation, l � C 78 9 � then indeed

A � � A � � $ $ $ � A £� C are the distinct roots of l ,

and ¤ � � ¤ � � $ $ $ � ¤ £� ¢ their multiplicities.

Exercise: Do the real case. Get sum of products of polynomials, exponentials,

and trigonometric functions.
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If

l �11 � � � � �

is the kernel representation, l � C 78 9 � then indeed

A � � A � � $ $ $ � A £� C are the distinct roots of l ,

and ¤ � � ¤ � � $ $ $ � ¤ £� ¢ their multiplicities.

Exercise: Do the real case. Get sum of products of polynomials, exponentials,

and trigonometric functions.

In the multivariable autonomous case, all trajectories are still vectors of sums of

products of polynomial/exponentials/(trigonometric) functions, but more

structure on the coefficients of the polynomials (more that just the degree).
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Theorem:	 � � 6 admits a direct sum decomposition:

	 � 	 ¯°± ²³ °´ ´ µ¶ ´ ·¸ 	 µ¹ ²°± ° e ° ¹º �

with 	 ¯°± ²³ °´ ´ µ¶ ´ ·� � 6 controllable,

and 	 µ¹ ²°± ° e ° ¹º � � 6 autonomous.

Lecture 3 Autonomous systems



Theorem:	 � � 6 admits a direct sum decomposition:
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with 	 ¯°± ²³ °´ ´ µ¶ ´ ·� � 6 controllable,

and 	 µ¹ ²°± ° e ° ¹º � � 6 autonomous.

	 ¯°± ²³ °´ ´ µ¶ ´ · is uniquely defined by	 . It is the controllable part of	 .
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Theorem:	 � � 6 admits a direct sum decomposition:

	 � 	 ¯°± ²³ °´ ´ µ¶ ´ ·¸ 	 µ¹ ²°± ° e ° ¹º �

with 	 ¯°± ²³ °´ ´ µ¶ ´ ·� � 6 controllable,

and 	 µ¹ ²°± ° e ° ¹º � � 6 autonomous.

	 ¯°± ²³ °´ ´ µ¶ ´ · is uniquely defined by	 . It is the controllable part of	 .

	 µ¹ ²°± ° e ° ¹º is not uniquely defined, but they are all isomorphic.
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Theorem:	 � � 6 admits a direct sum decomposition:

	 � 	 ¯°± ²³ °´ ´ µ¶ ´ ·¸ 	 µ¹ ²°± ° e ° ¹º �

with 	 ¯°± ²³ °´ ´ µ¶ ´ ·� � 6 controllable,

and 	 µ¹ ²°± ° e ° ¹º � � 6 autonomous.

	 ¯°± ²³ °´ ´ µ¶ ´ · is uniquely defined by	 . It is the controllable part of	 .

	 µ¹ ²°± ° e ° ¹º is not uniquely defined, but they are all isomorphic.

We now define the controllable part and isomorphic.
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The controllable part

There are a number of equivalent definitions of the controllable part of a

behavior.

Let	 � � 6 . Define

	 ¯°± ² ³ °´ ´ µ¶ ´ · » µ ³ ²  � � � � 	 � r �) � 	 such that

�) � � � � � ��� � for� ��� and r � ¼ � 2  �½) ��� � � � for� � � ¼ �
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The controllable part

There are a number of equivalent definitions of the controllable part of a

behavior.

Let	 � � 6 . Define

	 ¯°± ² ³ °´ ´ µ¶ ´ · » µ ³ ²  � � � � 	 � r �) � 	 such that

�) � � � � � ��� � for� ��� and r � ¼ � 2  �½) ��� � � � for� � � ¼ �

	 ¯°± ²³ °´ ´ µ¶ ´ · » µ ³ ² is also the largest controllable behavior� � 6 contained in	 .
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Isomorphic systems
	 �	 ) � � 6 are said to be isomorphic if r a unimodular ¾ � 2 6 56 78 9 such that

	 ) � ¾ �11 � �	 $

Differential bijection between behaviors.

Clearly isomorphy is an equivalence relation.
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Isomorphic systems
	 �	 ) � � 6 are said to be isomorphic if r a unimodular ¾ � 2 6 56 78 9 such that

	 ) � ¾ �11 � �	 $

Differential bijection between behaviors.

Clearly isomorphy is an equivalence relation.

Let 0 �;::< � � � � � 0 ) �::< � � � � be kernel representations of	 �	 ) . Then	

and	 ) are isomorphic ! 0 and 0 ) have same invariant factors. If minimal

kernel representations ! same Smith form.

Controllable systems are isomorphic iff = >?@ � 0 � � = >?@ � 0 ) � :
isomorphy is very weak relation.

For autonomous systems: isomorphy is a very strong relation.
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Whence there is a very tight relationship between	 ) µ¹ ²°± ° e ° ¹º and

	 ¿ µ¹ ²°± ° e ° ¹º in two different controllable/autonomous decompositions
	 � 	 ¯°± ²³ °´ ´ µ ¶ ´ ·¸ 	 ) µ¹ ²°± ° e ° ¹ º �

	 � 	 ¯°± ²³ °´ ´ µ¶ ´ ·¸ 	 ¿ µ¹ ²°± ° e ° ¹º $
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STABILITY

The autonomous	 � � 6 is said to be asymptotically stable  !

� � 	 + � ��� �� .< À� �
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STABILITY

The autonomous	 � � 6 is said to be asymptotically stable  !

� � 	 + � ��� �� .< À� �

and stable  !

� � 	 + � �Á Â is bounded.

Lecture 3 Stabilizability



The system defined by 0 �D::< � � � � is asymptotically stable iff
= >?@ � 0 �BA � � � � forA � CÄÃ  � � A � C ��Å � >� �BA � ��� � $

All singularities of 0 (A ’s where 0 �BA � drops rank) in closed left half of the

complex plane.
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The system defined by 0 �D::< � � � � is asymptotically stable iff
= >?@ � 0 �BA � � � � forA � CÄÃ  � � A � C ��Å � >� �BA � ��� � $

All singularities of 0 (A ’s where 0 �BA � drops rank) in closed left half of the

complex plane.

The system defined by 0 �D::< � � � � with 0 � 2 6 56 78 9 is stable iff

1. 0 �BA � � � forA � CÄÃ Ã  � � A � C ��Å � >� �BA � �� � � and

2. � � = >?@ � 0 � A � � = the multiplicity ofA as a root of ^ �  � 0 � for

A � _ C  � � A � C ��Å � >� � A � � � � .

All singularities of 0 (A ’s where 0 �BA � drops rank) in open left half of the

complex plane, and those on the imaginary axis are semi-simple.
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The system defined by 0 �D::< � � � � is asymptotically stable iff
= >?@ � 0 �BA � � � � forA � CÄÃ  � � A � C ��Å � >� �BA � ��� � $

All singularities of 0 (A ’s where 0 �BA � drops rank) in closed left half of the

complex plane.

The system defined by 0 �D::< � � � � with 0 � 2 6 56 78 9 is stable iff

1. 0 �BA � � � forA � CÄÃ Ã  � � A � C ��Å � >� �BA � �� � � and

2. � � = >?@ � 0 � A � � = the multiplicity ofA as a root of ^ �  � 0 � for

A � _ C  � � A � C ��Å � >� � A � � � � .

All singularities of 0 (A ’s where 0 �BA � drops rank) in open left half of the

complex plane, and those on the imaginary axis are semi-simple.

More about stability (Routh-Hurwitz, Lyapunov): later in the course.
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STABILIZABILITY

The time-invariant system � � ��� � 2 6 �	 � is said to be

�
 ��stabilizable

if for all � � 	 there exists � ) � 	 such that � � � � � � ) ��� � for� �� and

�Æ) ��� �� .< À� � .
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STABILIZABILITY

The time-invariant system � � ��� � 2 6 �	 � is said to be

�
 ��stabilizable

if for all � � 	 there exists � ) � 	 such that � � � � � � ) ��� � for� �� and

�Æ) ��� �� .< À� � .

Stabilizability  !

legal trajectories can be steered to a desired point (0).
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Consider the system defined by

0 �11 � � � � � $

Under which conditions on 0 � 23 56 78 9 does it define a stabilizable system?
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Consider the system defined by

0 �11 � � � � � $

Under which conditions on 0 � 23 56 78 9 does it define a stabilizable system?

Theorem: 0 �;::< � � � � defines a stabilizable system

if and only if

= >?@ � 0 �BA � � � constant

overA � CÇÃ  � � A � C ��Å � >� �BA � ��� � $
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Consider the system defined by

0 �11 � � � � � $

Under which conditions on 0 � 23 56 78 9 does it define a stabilizable system?

Theorem: 0 �;::< � � � � defines a stabilizable system

if and only if

= >?@ � 0 �BA � � � constant

overA � CÇÃ  � � A � C ��Å � >� �BA � ��� � $

Equivalently, iff ‘the autonomous part’ is stable

Lecture 3 Stabilizability



RECAP
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È Controllability := trajectories in the behavior are patchable
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È Controllability := trajectories in the behavior are patchable

È Observability := to-be-deduced variables reconstructible

from observed signal and system behavior

È There are effective tests for controllability and observability

È (Asymptotic) stability �� all sol’ns tend to 0, are bounded on 2 Ã

È Stabilizability := all sol’ns can be steered to 0

È These central concepts in control take a much more intrinsic meaning in the

context of behavioral systems
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End of Lecture 3


