

MATHEMATICAL MODELS of SYSTEMS

Jan C. Willems

ESAT-SCD (SISTA), University of Leuven, Belgium

IUAP Graduate Course

Fall 2002

CONTROLLABILITY

CONTROLLABILITY

The time-invariant system $\Sigma = (\mathbb{T}, \mathbb{W}, \mathfrak{B})$ is said to be

controllable

if for all $w_1, w_2 \in \mathfrak{B}$ there exists $w \in \mathfrak{B}$ and $T \geq 0$ such that

$$w(t) = \begin{cases} w_1(t) & t < 0 \\ w_2(t-T) & t \ge T \end{cases}$$

Lecture 3

CONTROLLABILITY

The time-invariant system $\Sigma = (\mathbb{T}, \mathbb{W}, \mathfrak{B})$ is said to be

controllable

if for all $w_1, w_2 \in \mathfrak{B}$ there exists $w \in \mathfrak{B}$ and $T \geq 0$ such that

$$w(t) = \begin{cases} w_1(t) & t < 0 \\ w_2(t-T) & t \ge T \end{cases}$$

Controllability $:\Leftrightarrow$

legal trajectories must be 'patch-able', 'concatenable'.

OBSERVABILITY

Lecture 3

Observability

Consider the system $\Sigma = (\mathbb{T}, \mathbb{W}_1 \times \mathbb{W}_2, \mathfrak{B}).$

Each element of the behavior **B** hence consists of

a pair of trajectories (w_1, w_2) .

 w_1 : observed; w_2 : to-be-deduced.

Consider the system $\Sigma = (\mathbb{T}, \mathbb{W}_1 \times \mathbb{W}_2, \mathfrak{B}).$

Each element of the behavior **B** hence consists of

a pair of trajectories (w_1, w_2) .

 w_1 : observed; w_2 : to-be-deduced.

Definition: w_2 is said to be

observable from w_1

if $((w_1, w'_2) \in \mathfrak{B}$, and $(w_1, w''_2) \in \mathfrak{B}) \Rightarrow (w'_2 = w''_2)$, i.e., if on \mathfrak{B} , there exists a map $w_1 \mapsto w_2$. Consider the system $\Sigma = (\mathbb{T}, \mathbb{W}_1 \times \mathbb{W}_2, \mathfrak{B}).$

Each element of the behavior **B** hence consists of

a pair of trajectories (w_1, w_2) .

 w_1 : observed; w_2 : to-be-deduced.

Definition: w_2 is said to be

observable from w_1

if $((w_1, w'_2) \in \mathfrak{B}$, and $(w_1, w''_2) \in \mathfrak{B}) \Rightarrow (w'_2 = w''_2)$, i.e., if on \mathfrak{B} , there exists a map $w_1 \mapsto w_2$.

Very often manifest = observed, **latent** = **to-be-deduced**.

We then speak of an observable latent variable system.

Lecture 3

controllability: variables = (input, state)

observability ~> observed = (input, output), to-be-deduced = state.

Observability

controllability: variables = (input, state)

If a system is not (state) controllable, why is it?

Insufficient influence of the control?

Or bad choice of the state?

observability → observed = (input, output), to-be-deduced = state. Why is it so interesting to try to deduce the state, of all things? The state is a derived notion, not a 'physical' one.

Observability

controllability: variables = (input, state)
If a system is not (state) controllable, why is it?
Insufficient influence of the control?
Or bad choice of the state?

observability → observed = (input, output), to-be-deduced = state. Why is it so interesting to try to deduce the state, of all things? The state is a derived notion, not a 'physical' one. Kalman definitions address rather special situations.

TESTS for CONTROLLABILITY and OBSERVABILITY

Consider the system defined by

$$R(\frac{d}{dt})w=0.$$

Under what conditions on $R \in \mathbb{R}^{\bullet \times w}[\xi]$ does it define a controllable system?

Consider the system defined by

$$R(\frac{d}{dt})w=0.$$

Under what conditions on $R \in \mathbb{R}^{\bullet \times w}[\xi]$ does it define a controllable system?

Theorem: $R(\frac{d}{dt})w = 0$ defines a controllable systemif and only if $rank(R(\lambda)) = constant$ over $\lambda \in \mathbb{C}$.

Lecture 3

C & O tests

 If R(^d/_{dt})w = 0 is minimal, then controllability ⇔ R(λ) is of full row rank ∀ λ ∈ C
Equivalently, R is right-invertible as a polynomial matrix.
P ∈ ℝ^{n₁×n₂}[ξ] is right-invertible :⇔ ∃ Q ∈ ℝ^{n₂×n¹}[ξ] such that PQ = I_{n1}

1. If $R(\frac{d}{dt})w = 0$ is minimal, then controllability $\Leftrightarrow R(\lambda)$ is of full row rank $\forall \ \lambda \in \mathbb{C}$ Equivalently, R is right-invertible as a polynomial matrix. $P \in \mathbb{R}^{n_1 \times n_2}[\xi]$ is right-invertible : $\Leftrightarrow \exists \ Q \in \mathbb{R}^{n_2 \times n_1}[\xi]$ such that $PQ = I_{n_1}$

2. $\frac{d}{dt}x = Ax + Bu, w = (x, u)$ is controllable iff

 $\operatorname{rank}(\begin{bmatrix} A - \lambda I & B \end{bmatrix}) = \dim(x) \ \forall \ \lambda \in \mathbb{C}$

Hautus' test for controllability. Of course,

 $\Leftrightarrow \operatorname{rank}([B \ AB \ \cdots \ A^{\dim(x)-1}B]) = \dim(x).$

$$p(rac{d}{dt})w_1=q(rac{d}{dt})w_2$$

controllable? $p,q \in \mathbb{R}[\xi]$, not both zero.

$$p(rac{d}{dt})w_1 = q(rac{d}{dt})w_2$$

controllable? $p,q \in \mathbb{R}[\xi]$, not both zero.

Iff p and q are co-prime. No common factors!

$$p(rac{d}{dt})w_1 = q(rac{d}{dt})w_2$$

controllable? $p,q \in \mathbb{R}[\xi]$, not both zero.

Iff p and q are co-prime. No common factors!

Testable via Sylvester matrix, etc. Generalizable.

Lecture 3

$$p(rac{d}{dt})w_1 = q(rac{d}{dt})w_2$$

controllable? $p,q \in \mathbb{R}[\xi]$, not both zero.

Iff p and q are co-prime. No common factors!

Testable via Sylvester matrix, etc. Generalizable.

4. Example: Our electrical circuit is controllable unless $CR_C = \frac{L}{R_L}$ and $R_C = R_L$.

Reasonable physical systems can be uncontrollable.

$$R(\frac{d^2}{dt^2})w=0$$

controllable?

$$R(\frac{d^2}{dt^2})w=0$$

controllable?

same conditions as on *R*....

Consider the system defined by

$$R_1(\frac{d}{dt})w_1 = R_2(\frac{d}{dt})w_2.$$

Under which conditions on $R_1, R_2 \in \mathbb{R}^{\bullet \times \bullet}[\xi]$ is w_2 observable from w_1 ?

Consider the system defined by

$$R_1(\frac{d}{dt})w_1 = R_2(\frac{d}{dt})w_2.$$

Under which conditions on $R_1, R_2 \in \mathbb{R}^{\bullet \times \bullet}[\xi]$ is w_2 observable from w_1 ?

<u>Theorem</u>: In the system $R_1(\frac{d}{dt})w_1 = R_2(\frac{d}{dt})w_2$ w_2 is observable from w_1 if and only if $\operatorname{rank}(R_2(\lambda)) = \dim(w_2)$ for all $\lambda \in \mathbb{C}$.

Lecture 3

1. In $R_1(\frac{d}{dt})w_1 = R_2(\frac{d}{dt})w_2$, w_2 is observable from w_1 if and only if $R_2(\lambda)$ is of full column rank $\forall \lambda \in \mathbb{C}$.

1. In $R_1(\frac{d}{dt})w_1 = R_2(\frac{d}{dt})w_2$, w_2 is observable from w_1 if and only if $R_2(\lambda)$ is of full column rank $\forall \lambda \in \mathbb{C}$.

Equivalently, iff R_2 is *left-invertible* as a polynomial matrix.

 $P \in \mathbb{R}^{n_1 \times n_2}[\xi]$ is left-invertible : $\Leftrightarrow \exists \ Q \in \mathbb{R}^{n_2 \times n_1}[\xi]$ such that $QP = I_{n_2}$

1. In $R_1(\frac{d}{dt})w_1 = R_2(\frac{d}{dt})w_2$, w_2 is observable from w_1 if and only if $R_2(\lambda)$ is of full column rank $\forall \lambda \in \mathbb{C}$.

Equivalently, iff R_2 is *left-invertible* as a polynomial matrix. $P \in \mathbb{R}^{n_1 \times n_2}[\xi]$ is *left-invertible* : $\Leftrightarrow \exists \ Q \in \mathbb{R}^{n_2 \times n_1}[\xi]$ such that $QP = I_{n_2}$

Equivalently, iff \exists an equivalent behavioral equation representation

$$R(\frac{d}{dt})w_1 = 0$$
$$w_2 = M(\frac{d}{dt})w_1$$

This representation puts observability into evidence.

Lecture 3

2. In $\frac{d}{dt}x = Ax + Bu$, y = Cx, $w_1 = (u, y)$, $w_2 = x$ the state is observable from the input/output (u, y) iff

$$\operatorname{rank}(egin{bmatrix} A-\lambda I \ C \end{bmatrix}) = \operatorname{dim}(x) \ \forall \, \lambda \in \mathbb{C}$$

2. In $\frac{d}{dt}x = Ax + Bu, y = Cx, w_1 = (u, y), w_2 = x$ the state is observable from the input/output (u, y) iff

$$\operatorname{rank}(egin{bmatrix} A-\lambda I\ C \end{bmatrix})=\dim(x) \,\,\forall\,\lambda\in\mathbb{C}$$

Hautus' test for observability. Of course,

$$\Leftrightarrow \operatorname{rank}\left(\begin{bmatrix} C\\ CA\\ \vdots\\ CA^{\dim(x)-1} \end{bmatrix}\right) = \dim(x).$$
3. When is in

$$p(rac{d}{dt})w_1 = q(rac{d}{dt})w_2$$

 w_2 observable from w_1 ?

 $p,q\in \mathbb{R}[m{\xi}].$

3. When is in

$$p(rac{d}{dt})w_1 = q(rac{d}{dt})w_2$$

 w_2 observable from w_1 ?

 $p,q \in \mathbb{R}[\xi].$

Iff q is a non-zero constant. No zeros!

'a controllable system' but not of 'an observable system'!

'a controllable system' but not of 'an observable system'!

But we will call the latent variable system

$$R(rac{d}{dt})w = M(rac{d}{dt})\ell$$

observable (as a system!)

if the latent variable ℓ is observable from the manifest variable w.

'a controllable system' but not of 'an observable system'!

But we will call the latent variable system

$$R(rac{d}{dt})w = M(rac{d}{dt})\ell$$

observable (as a system!)

if the latent variable ℓ is observable from the manifest variable w.

'a controllable system' but not of 'an observable system'!

But we will call the latent variable system

$$R(rac{d}{dt})w = M(rac{d}{dt})\ell$$

observable (as a system!)

if the latent variable ℓ is observable from the manifest variable w.

Conditions, e.g. \exists equivalent repr. of full behavior

$$R(rac{d}{dt})w = 0$$
 $\ell = R'(rac{d}{dt})w$

 $R(\frac{d}{dt})w = 0$ hence specifies the manifest behavior. We can therefore speak of a controllable & observable state system.

5. The RLC circuit is observable iff

$$CR_C \neq rac{L}{R_L}$$

Image representations

Representations of \mathfrak{L}^{\bullet}:

$$R(rac{d}{dt})w=0$$

called a 'kernel' representation of $\mathfrak{B} = \ker(R(\frac{d}{dt}))$. Sol'n set $\in \mathfrak{L}^{\bullet}$, by definition. **Representations of \mathfrak{L}^{\bullet}:**

$$R(rac{d}{dt})w=0$$

called a 'kernel' representation of $\mathfrak{B} = \ker(R(\frac{d}{dt}))$. Sol'n set $\in \mathfrak{L}^{\bullet}$, by definition.

$$R(rac{d}{dt})w = M(rac{d}{dt})oldsymbol{\ell}$$

called a 'latent variable' representation of the manifest behavior $\mathfrak{B} = (R(\frac{d}{dt}))^{-1} M(\frac{d}{dt}) \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R}^{\ell}).$ Elimination theorem $\Rightarrow \in \mathfrak{L}^{\bullet}.$

Missing link:

$$w = M(rac{d}{dt}) oldsymbol{\ell}$$

called an *'image' representation* of $\mathfrak{B} = \operatorname{im}(M(\frac{d}{dt}))$.

$$w = M(rac{d}{dt}) oldsymbol{\ell}$$

called an *'image' representation* of $\mathfrak{B} = \operatorname{im}(M(\frac{d}{dt}))$.

Elimination theorem \Rightarrow every image is also a kernel.

$$w = M(rac{d}{dt}) oldsymbol{\ell}$$

called an *'image' representation* of $\mathfrak{B} = \operatorname{im}(M(\frac{d}{dt}))$.

Elimination theorem \Rightarrow every image is also a kernel.

¿; Which kernels are also images ??

$$w = M(rac{d}{dt}) oldsymbol{\ell}$$

called an *'image' representation* of $\mathfrak{B} = \operatorname{im}(M(\frac{d}{dt}))$.

Elimination theorem \Rightarrow every image is also a kernel.

¿¿ Which kernels are also images ??

Controllability!

<u>Theorem</u>: (Controllability and image repr.):

The following are equivalent for $\mathfrak{B} \in \mathfrak{L}^{\bullet}$:

1. B is controllable,

Theorem: (Controllability and image repr.):

The following are equivalent for $\mathfrak{B} \in \mathfrak{L}^{\bullet}$:

1. 33 is controllable,

2. B admits an image representation,

Theorem: (Controllability and image repr.):

The following are equivalent for $\mathfrak{B} \in \mathfrak{L}^{\bullet}$:

1. 33 is controllable,

2. B admits an image representation,

3. for any $a \in \mathbb{R}^{\mathbb{W}}[\xi]$, $a^{\top}[\frac{d}{dt}]\mathfrak{B}$ equals 0 or all of $\mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R})$,

4. $\mathbb{R}^{\mathbb{W}}[\xi]/\mathfrak{N}_{\mathfrak{B}}$ is torsion free,

5. etc.

1. Algorithm for testing controllability :

1. Algorithm for testing controllability :

Start with $R \in \mathbb{R}^{\mathbb{W}}[\xi]$.

1. Algorithm for testing controllability :

Start with $R \in \mathbb{R}^{\mathbb{W}}[\xi]$.

Compute a set of generators, the columns of M, (called the *right syzygy* of R) of

 $\{m \in \mathbb{R}^{\scriptscriptstyle \mathrm{W}}[\xi] \mid Rm = 0\}.$

1. Algorithm for testing controllability :

```
Start with R \in \mathbb{R}^{\mathbb{W}}[\xi].
```

Compute a set of generators, the columns of M, (called the *right syzygy* of R) of

 $\{m \in \mathbb{R}^{\mathsf{w}}[\boldsymbol{\xi}] \mid Rm = 0\}.$

Compute a set of generators, the rows of R', (called the *left syzygy* of M) of

 $\{r\in \mathbb{R}^{\scriptscriptstyle{W}}[\xi]\mid rm=0\}$

Note: $RM = 0 \Rightarrow$ the transposes of the rows of $R \in R' > .$

1. Algorithm for testing controllability :

Start with $R \in \mathbb{R}^{\mathbb{W}}[\xi]$.

Compute a set of generators, the columns of M, (called the *right syzygy* of R) of

 $\{m \in \mathbb{R}^{\scriptscriptstyle{W}}[\boldsymbol{\xi}] \mid Rm = 0\}.$

Compute a set of generators, the rows of R', (called the *left syzygy* of M) of

 $\{r\in \mathbb{R}^{ imes}[\xi]\mid rm=0\}$

Note: $RM = 0 \Rightarrow$ the transposes of the rows of $R \in R' > .$

Controllability $\Leftrightarrow < R^{\top} > = < R' >$.

 \Rightarrow Numerical test for contr. on coefficients of R.

Lecture 3

2. There exists always an observable image representation \cong flatness.

- 2. There exists always an observable image representation \cong flatness.
- **3.** ∃ similar results for time-varying systems.
- **4.** \exists partial results for nonlinear systems.

AUTONOMOUS SYSTEMS

The time-invariant system $\Sigma = (\mathbb{T}, \mathbb{W}, \mathfrak{B})$ is said to be *autonomous* if

 $[(\mathtt{w}_1,w_2\in\mathfrak{B})\wedge(w_1(t)=w_2(t) ext{ for }t<0)]\Rightarrow[w_1=w_2]$

The time-invariant system $\Sigma = (\mathbb{T}, \mathbb{W}, \mathfrak{B})$ is said to be *autonomous* if

$$[(\mathtt{w}_1,w_2\in\mathfrak{B})\wedge(w_1(t)=w_2(t) ext{ for }t<0)]\Rightarrow[w_1=w_2]$$

i.e. when the past implies the future.

Examples:

- Kepler's laws
- $\frac{d^n}{dt^n}w = f(\frac{d^{n-1}}{dt^{n-1}}w, \dots, w)$, reasonable f
- $\frac{d}{dt}x = f(x), w = h(x)$, reasonable f, h?
- Discrete-time counterparts
- Most (deterministic) models studied in mathematics, physics, (not engineering)

<u>Theorem</u>: Let $\mathfrak{B} \in \mathfrak{L}^{W}$. The following are equivalent:

1. 33 defines an autonomous system,

- 1. 33 defines an autonomous system,
- 2. 33 is finite-dimensional,

- 1. 33 defines an autonomous system,
- 2. 33 is finite-dimensional,
- 3. B has a kernel repr. $R(\frac{d}{dt})w = 0$ with rank(R) = coldim(R) = w, i.e. with R has full column rank,

- 1. 33 defines an autonomous system,
- 2. 33 is finite-dimensional,
- 3. B has a kernel repr. $R(\frac{d}{dt})w = 0$ with $\operatorname{rank}(R) = \operatorname{coldim}(R) = w$, i.e. with R has full column rank,
- 4. \mathfrak{B} has a kernel repr. $R(\frac{d}{dt})w = 0$ with $R \in \mathbb{R}^{w \times w}[\xi], \det(R) \neq 0$.

- 1. 33 defines an autonomous system,
- 2. 33 is finite-dimensional,
- 3. B has a kernel repr. $R(\frac{d}{dt})w = 0$ with rank(R) = coldim(R) = w, i.e. with R has full column rank,
- 4. \mathfrak{B} has a kernel repr. $R(\frac{d}{dt})w = 0$ with $R \in \mathbb{R}^{W \times W}[\xi], \det(R) \neq 0$.
- 5. \mathfrak{B} has a latent variable repr. $\frac{d}{dt}x = Ax, w = Cx$.

In the scalar case, the trajectories of an autonomous $\mathfrak{B} \in \mathfrak{L}^1$ can be described very explicitly.

For simplicity, consider complex case (the *w*'s are complex valued.)

In the scalar case, the trajectories of an autonomous $\mathfrak{B} \in \mathfrak{L}^1$ can be described very explicitly.

For simplicity, consider complex case (the *w*'s are complex valued.)

Each such **B** is parametrized by

 $m \in \mathbb{N}$ $\lambda_1, \lambda_2, \dots, \lambda_m \in \mathbb{C}$, all distinct $n_1, n_2, \dots, n_m \in \mathbb{N}$
In the scalar case, the trajectories of an autonomous $\mathfrak{B} \in \mathfrak{L}^1$ can be described very explicitly.

For simplicity, consider complex case (the *w*'s are complex valued.)

```
Each such B is parametrized by
```

```
m \in \mathbb{N}
\lambda_1, \lambda_2, \dots, \lambda_m \in \mathbb{C}, all distinct
n_1, n_2, \dots, n_m \in \mathbb{N}
```

and

 $\mathfrak{B} = \{ w : \mathbb{R} \to \mathbb{C} \mid \exists r_1, r_2, \dots, r_k \text{ with degree}(r_k) < n_k \$ such that $w(t) = \Sigma_{k=1,\dots,m} r_k(t) e^{\lambda_k t} \}$

$$p(rac{d}{dt})w = 0$$

is the kernel representation, $p \in \mathbb{C}[\xi],$ then indeed

$$p(rac{d}{dt})w = 0$$

is the kernel representation, $p \in \mathbb{C}[\xi],$ then indeed

 $\lambda_1, \lambda_2, \ldots, \lambda_m \in \mathbb{C}$ are the distinct roots of p, and $n_1, n_2, \ldots, n_m \in \mathbb{N}$ their multiplicities.

$$p(rac{d}{dt})w = 0$$

is the kernel representation, $p \in \mathbb{C}[{m\xi}],$ then indeed

 $\lambda_1, \lambda_2, \ldots, \lambda_m \in \mathbb{C}$ are the distinct roots of p, and $n_1, n_2, \ldots, n_m \in \mathbb{N}$ their multiplicities.

Exercise: Do the real case. Get sum of products of polynomials, exponentials, and trigonometric functions.

$$p(rac{d}{dt})w = 0$$

is the kernel representation, $p\in \mathbb{C}[m{\xi}],$ then indeed

 $\lambda_1, \lambda_2, \ldots, \lambda_m \in \mathbb{C}$ are the distinct roots of p, and $n_1, n_2, \ldots, n_m \in \mathbb{N}$ their multiplicities.

Exercise: Do the real case. Get sum of products of polynomials, exponentials, and trigonometric functions.

In the multivariable autonomous case, all trajectories are still vectors of sums of products of polynomial/exponentials/(trigonometric) functions, but more structure on the coefficients of the polynomials (more that just the degree).

<u>Theorem</u>: $\mathfrak{B} \in \mathfrak{L}^{W}$ admits a direct sum decomposition:

 $\mathfrak{B} = \mathfrak{B}_{\text{controllable}} \oplus \mathfrak{B}_{\text{autonomous}},$

with $\mathfrak{B}_{controllable} \in \mathfrak{L}^{\mathbb{W}}$ controllable, and $\mathfrak{B}_{autonomous} \in \mathfrak{L}^{\mathbb{W}}$ autonomous.

$\mathfrak{B}_{controllable}$ is uniquely defined by \mathfrak{B} . It is the controllable part of \mathfrak{B} .

<u>Theorem</u>: $\mathfrak{B} \in \mathfrak{L}^{W}$ admits a direct sum decomposition:

 $\mathfrak{B} = \mathfrak{B}_{\text{controllable}} \oplus \mathfrak{B}_{\text{autonomous}},$

with $\mathfrak{B}_{controllable} \in \mathfrak{L}^{\mathbb{W}}$ controllable, and $\mathfrak{B}_{autonomous} \in \mathfrak{L}^{\mathbb{W}}$ autonomous.

 $\mathfrak{B}_{controllable}$ is uniquely defined by \mathfrak{B} . It is the controllable part of \mathfrak{B} .

 $\mathfrak{B}_{autonomous}$ is not uniquely defined, but they are all isomorphic.

<u>Theorem</u>: $\mathfrak{B} \in \mathfrak{L}^{W}$ admits a direct sum decomposition:

 $\mathfrak{B} = \mathfrak{B}_{\text{controllable}} \oplus \mathfrak{B}_{\text{autonomous}},$

with $\mathfrak{B}_{controllable} \in \mathfrak{L}^{\mathbb{W}}$ controllable, and $\mathfrak{B}_{autonomous} \in \mathfrak{L}^{\mathbb{W}}$ autonomous.

 $\mathfrak{B}_{controllable}$ is uniquely defined by \mathfrak{B} . It is the controllable part of \mathfrak{B} .

 $\mathfrak{B}_{autonomous}$ is not uniquely defined, but they are all isomorphic.

We now define the controllable part and isomorphic.

The controllable part

There are a number of equivalent definitions of the controllable part of a behavior.

Let $\mathfrak{B} \in \mathfrak{L}^{W}$. Define

 $\mathfrak{B}_{\text{controllable part}} := \{ w \in \mathfrak{B} | \exists w' \in \mathfrak{B} \text{ such that } \}$

w'(t) = w(t) for $t \geq 0$ and $\exists t_0 \in \mathbb{R} : w'(t) = 0$ for $t < t_0$

The controllable part

There are a number of equivalent definitions of the controllable part of a behavior.

Let $\mathfrak{B} \in \mathfrak{L}^{W}$. Define

 $\mathfrak{B}_{\text{controllable part}} := \{ w \in \mathfrak{B} | \exists w' \in \mathfrak{B} \text{ such that } \}$

w'(t) = w(t) for $t \geq 0$ and $\exists t_0 \in \mathbb{R} : w'(t) = 0$ for $t < t_0$

 $\mathfrak{B}_{\text{controllable part}}$ is also the largest controllable behavior $\in \mathfrak{L}^{\mathbb{W}}$ contained in \mathfrak{B} .

Isomorphic systems

 $\mathfrak{B}, \mathfrak{B}' \in \mathfrak{L}^{W}$ are said to be *isomorphic* if \exists a unimodular $U \in \mathbb{R}^{W \times W}[\xi]$ such that

$$\mathfrak{B}' = U(rac{d}{dt})\mathfrak{B}.$$

Differential bijection between behaviors.

Clearly isomorphy is an *equivalence relation*.

Isomorphic systems

 $\mathfrak{B}, \mathfrak{B}' \in \mathfrak{L}^{\mathbb{W}}$ are said to be *isomorphic* if \exists a unimodular $U \in \mathbb{R}^{\mathbb{W} \times \mathbb{W}}[\xi]$ such that

$$\mathfrak{B}' = U(rac{d}{dt})\mathfrak{B}.$$

Differential bijection between behaviors.

Clearly isomorphy is an *equivalence relation*.

Let $R(\frac{d}{dt})w = 0$, $R'(\frac{d}{dt})w = 0$ be kernel representations of $\mathfrak{B}, \mathfrak{B}'$. Then \mathfrak{B} and \mathfrak{B}' are isomorphic $\Leftrightarrow R$ and R' have same invariant factors. If minimal kernel representations \Leftrightarrow same Smith form.

Isomorphic systems

 $\mathfrak{B}, \mathfrak{B}' \in \mathfrak{L}^{W}$ are said to be *isomorphic* if \exists a unimodular $U \in \mathbb{R}^{W \times W}[\xi]$ such that

$$\mathfrak{B}' = U(rac{d}{dt})\mathfrak{B}.$$

Differential bijection between behaviors.

Clearly isomorphy is an *equivalence relation*.

Let $R(\frac{d}{dt})w = 0$, $R'(\frac{d}{dt})w = 0$ be kernel representations of $\mathfrak{B}, \mathfrak{B}'$. Then \mathfrak{B} and \mathfrak{B}' are isomorphic $\Leftrightarrow R$ and R' have same invariant factors. If minimal kernel representations \Leftrightarrow same Smith form.

Controllable systems are isomorphic iff rank(R) = rank(R'):

isomorphy is very weak relation.

For autonomous systems: isomorphy is a very strong relation.

Lecture 3

Whence there is a very tight relationship between $\mathfrak{B}'_{autonomous}$ and $\mathfrak{B}''_{autonomous}$ in two different controllable/autonomous decompositions

 $\mathfrak{B} = \mathfrak{B}_{\text{controllable}} \oplus \mathfrak{B}'_{\text{autonomous}},$

 $\mathfrak{B} = \mathfrak{B}_{controllable} \oplus \mathfrak{B}^{"autonomous}$

STABILITY

The autonomous $\mathfrak{B} \in \mathfrak{L}^{W}$ is said to be *asymptotically stable* : \Leftrightarrow

$$w\in\mathfrak{B}\Rightarrow w(t)\underset{t
ightarrow\infty}{\longrightarrow}0$$

STABILITY

The autonomous $\mathfrak{B} \in \mathfrak{L}^{W}$ is said to be *asymptotically stable* : \Leftrightarrow

$$w \in \mathfrak{B} \Rightarrow w(t) \xrightarrow[t \to \infty]{} 0$$

and *stable* :⇔

 $w\in\mathfrak{B}\Rightarrow w|_{\mathbb{R}_+}$ is bounded.

Lecture 3

The system defined by $R(\frac{d}{dt})w = 0$ is asymptotically stable iff rank $(R(\lambda)) = w$ for $\lambda \in \mathbb{C}^+ := \{\lambda \in \mathbb{C} \mid \text{Real}(\lambda) \ge 0\}$. All singularities of R (λ 's where $R(\lambda)$ drops rank) in closed left half of the complex plane. The system defined by $R(\frac{d}{dt})w = 0$ is asymptotically stable iff rank $(R(\lambda)) = w$ for $\lambda \in \mathbb{C}^+ := \{\lambda \in \mathbb{C} \mid \text{Real}(\lambda) \ge 0\}$. All singularities of R (λ 's where $R(\lambda)$ drops rank) in closed left half of the complex plane.

The system defined by $R(rac{d}{dt})w=0$ with $R\in\mathbb{R}^{ imes imes imes}[\xi]$ is stable iff

- 1. $R(\lambda) = w$ for $\lambda \in \mathbb{C}^{++} := \{\lambda \in \mathbb{C} \mid \text{Real}(\lambda) > 0\}$, and
- 2. $w \operatorname{rank}(R(\lambda)) =$ the multiplicity of λ as a root of det(R) for

 $\lambda \in \mathrm{i}\mathbb{C} := \{\lambda \in \mathbb{C} \mid \mathrm{Real}(\lambda) = 0\}.$

All singularities of R (λ 's where $R(\lambda)$ drops rank) in open left half of the complex plane, and those on the imaginary axis are semi-simple.

The system defined by $R(\frac{d}{dt})w = 0$ is asymptotically stable iff rank $(R(\lambda)) = w$ for $\lambda \in \mathbb{C}^+ := \{\lambda \in \mathbb{C} \mid \text{Real}(\lambda) \ge 0\}$. All singularities of R (λ 's where $R(\lambda)$ drops rank) in closed left half of the complex plane.

The system defined by $R(\frac{d}{dt})w = 0$ with $R \in \mathbb{R}^{w \times w}[\xi]$ is stable iff

- 1. $R(\lambda) = w$ for $\lambda \in \mathbb{C}^{++} := \{\lambda \in \mathbb{C} \mid \text{Real}(\lambda) > 0\}$, and
- 2. $w \operatorname{rank}(R(\lambda)) =$ the multiplicity of λ as a root of det(R) for $\lambda \in i\mathbb{C} := \{\lambda \in \mathbb{C} \mid \operatorname{Real}(\lambda) = 0\}.$

All singularities of R (λ 's where $R(\lambda)$ drops rank) in open left half of the complex plane, and those on the imaginary axis are semi-simple.

More about stability (Routh-Hurwitz, Lyapunov): later in the course.

Lecture 3

STABILIZABILITY

The time-invariant system $\Sigma = (\mathbb{T}, \mathbb{R}^{w}, \mathfrak{B})$ is said to be

stabilizable

if for all $w \in \mathfrak{B}$ there exists $w' \in \mathfrak{B}$ such that w(t) = w'(t) for t < 0 and $w'(t) \xrightarrow[t \to \infty]{} 0$.

STABILIZABILITY

The time-invariant system $\Sigma = (\mathbb{T}, \mathbb{R}^{w}, \mathfrak{B})$ is said to be

stabilizable

if for all $w \in \mathfrak{B}$ there exists $w' \in \mathfrak{B}$ such that w(t) = w'(t) for t < 0 and $w'(t) \xrightarrow[t \to \infty]{} 0$.

Stabilizability $:\Leftrightarrow$

legal trajectories can be steered to a desired point (0).

Consider the system defined by

$$R(\frac{d}{dt})w=0.$$

Under which conditions on $R \in \mathbb{R}^{\bullet \times w}[\xi]$ does it define a stabilizable system?

Consider the system defined by

$$R(\frac{d}{dt})w=0.$$

Under which conditions on $R \in \mathbb{R}^{\bullet \times w}[\xi]$ does it define a stabilizable system?

Theorem: $R(\frac{d}{dt})w = 0$ defines a stabilizable systemif and only if $rank(R(\lambda)) = constant$ over $\lambda \in \mathbb{C}^+ := \{\lambda \in \mathbb{C} \mid Real(\lambda) \geq 0\}.$

Lecture 3

Consider the system defined by

$$R(\frac{d}{dt})w=0.$$

Under which conditions on $R \in \mathbb{R}^{\bullet \times w}[\xi]$ does it define a stabilizable system?

 $\begin{array}{ll} \underline{\text{Theorem}}: & R(\frac{d}{dt})w = 0 \text{ defines a stabilizable system} \\ & \quad \text{if and only if} \\ & \quad \text{rank}(R(\lambda)) = \text{ constant} \\ & \quad \text{over } \lambda \in \mathbb{C}^+ := \{\lambda \in \mathbb{C} \mid \text{Real}(\lambda) \geq 0\}. \end{array}$

Equivalently, iff 'the autonomous part' is stable

Lecture 3

Observability := to-be-deduced variables reconstructible from observed signal and system behavior

- Controllability := trajectories in the behavior are patchable
- Observability := to-be-deduced variables reconstructible from observed signal and system behavior
- ► There are effective tests for controllability and observability

- Controllability := trajectories in the behavior are patchable
- Observability := to-be-deduced variables reconstructible from observed signal and system behavior
- ► There are effective tests for controllability and observability
- ▶ (Asymptotic) stability \cong all sol'ns tend to 0, are bounded on \mathbb{R}_+

Controllability := trajectories in the behavior are patchable

Observability := to-be-deduced variables reconstructible from observed signal and system behavior

► There are effective tests for controllability and observability

▶ (Asymptotic) stability \cong all sol'ns tend to 0, are bounded on \mathbb{R}_+

► Stabilizability := all sol'ns can be steered to 0

Controllability := trajectories in the behavior are patchable

Observability := to-be-deduced variables reconstructible from observed signal and system behavior

► There are effective tests for controllability and observability

▶ (Asymptotic) stability \cong all sol'ns tend to 0, are bounded on \mathbb{R}_+

► Stabilizability := all sol'ns can be steered to 0

These central concepts in control take a much more intrinsic meaning in the context of behavioral systems

End of Lecture 3