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‘ CONTROLLABILITY and OBSERVABILITY .




/ THEME

Central notions in system theory,
controllability and observability,

in the setting and language of behavioral models.
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/ THEME

Central notions in system theory,
controllability and observability,

in the setting and language of behavioral models.

e Formal definitions
e Tests for controllability and observability
e Image representations

e Autonomous systems
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CONTROLLABILITY

The time-invariant system 3 = (T, W, 28) is said to be

[ controllable ]

if for all w,, wo € B there exists w € 2B and T' > 0 such that

N

w(t) =
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CONTROLLABILITY

The time-invariant system 3 = (T, W, 28) is said to be

[ controllable ]

if for all w,, wo € B there exists w € 2B and T' > 0 such that

Controllability

N

=

w(t) =

legal trajectories must be ‘patch-able’, ‘concatenable’.
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‘ OBSERVABILITY '
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Y1 ¢ |SYSTEM W,
observed to—be—deduced
variables variables

Observability

/
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/Consider the system X = (T, W; x W5, 9B).
Each element of the behavior *5 hence consists of
a pair of trajectories (wq, ws).

w1 : observed; wo : to-be-deduced.

N
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/Consider the system X = (T, W; x W5, 9B).
Each element of the behavior 3 hence consists of
a pair of trajectories (wq, ws).

w1 : observed; wo : to-be-deduced.

Definition: w- is said to be

[observable from fwlj

if (w1, w}) € B, and (w1, wy) € B) = (wh = wy),

i.e., if on B, there exists a map w; — ws.

N
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/Consider the system X = (T, W; x W5, 9B).
Each element of the behavior 3 hence consists of
a pair of trajectories (wq, ws).

w1 : observed; wo : to-be-deduced.

Definition: w- is said to be

[observable from fwlj

if (w1, w}) € B, and (w1, wy) € B) = (wh = wy),

i.e., if on B, there exists a map w; — ws.

Very often manifest = observed, latent = to-be-deduced.

\ We then speak of an observable latent variable system.
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Special case: classical Kalman definitions

N
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Special case: classical Kalman definitions

controllability: variables = (input, state)

observability ~> observed = (input, output), to-be-deduced = state.
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Special case: classical Kalman definitions

controllability: variables = (input, state)
If a system is not (state) controllable, why is it?
Insufficient influence of the control?

Or bad choice of the state?
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Lecture 3 Observability




/ ETT N\ e FEGEeSSOr HYavin k. i \
b7 G i ~ Sp uest
e 2 EL3 A
i
= & 7 ,-;. J} ~
i~ v
i i ¥ )

Special case: classical Kalman definitions

observability ~> observed = (input, output), to-be-deduced = state.
Why is it so interesting to try to deduce the state, of all things?

The state is a derived notion, not a ‘physical’ one.
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Special case: classical Kalman definitions

controllability: variables = (input, state)
If a system is not (state) controllable, why is it?
Insufficient influence of the control?

Or bad choice of the state?

observability ~> observed = (input, output), to-be-deduced = state.
Why is it so interesting to try to deduce the state, of all things?

The state is a derived notion, not a ‘physical’ one.

\Kalman definitions address rather special situations. /
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TESTS for CONTROLLABILITY and OBSERVABILITY '
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60nsider the system defined by

d
R(—)w = 0.
(=l

Under what conditions on R € R®*¥[£] does it define a controllable system?

N

~
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60nsider the system defined by

d
R(—)w = 0.
(=l

Under what conditions on R € R®*¥[£] does it define a controllable system?

N

Theorem: R( % )w = 0 defines a controllable system

if and only if
rank(R(A)) = constant
over A € C.

~
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Notes:

1. If R(2)

w = 0 is minimal, then

controllability < R() is of full row rank V A € C

Equivalently, R is right-invertible as a polynomial matrix.

P € R*1 X82[¢] is right-invertible :<<> 3 Q € R*2 X21[¢] such that PQ = I,

N
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Notes:
1. If R(%)w = 0 is minimal, then

controllability < R() is of full row rank V A € C

Equivalently, R is right-invertible as a polynomial matrix.

P € R*1 X82[¢] is right-invertible :<<> 3 Q € R*2 X21[¢] such that PQ = I,

2. %a} = Ax 4+ Bu,w = (x,u) is controllable iff

rank([A — AI B]) =dim(xz) VA € C

Hautus’ test for controllability. Of course,

& rank([B AB ... AY™@®)~1B)) = dim(x).
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3. When is
d d
P(a)’uh = Q(a)wz

controllable? p, g € R[£], not both zero.
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3. When is
d d
P(a)’uh = Q(a)wz

controllable? p, g € R[£], not both zero.

Iff p and g are co-prime. No common factors!

- /
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3. When is
d d
P(a)’uh = Q(a)wz

controllable? p, g € R[£], not both zero.

Iff p and g are co-prime. No common factors!

Testable via Sylvester matrix, etc. Generalizable.

N
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3. When is
d d
P(a)’uh = Q(a)wz

controllable? p, g € R[£], not both zero.

Iff p and g are co-prime. No common factors!

Testable via Sylvester matrix, etc. Generalizable.

4. Example: Our electrical circuit is controllable unless

L
CRC — — and RC = RL.
L

Reasonable physical systems can be uncontrollable.

N
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5. When is

controllable?

o /

Lecture 3 C & O tests




-

5. When is

controllable?

same conditions as on K....

N
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ﬂonsider the system defined by

d d
Ri(—)w; = Ro(— )ws.
l(dt)wl Z(dt)wz

Under which conditions on R, R, € R®**®[£] is wy observable from wq ?

N
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60nsider the system defined by \

d d
Ri(—)w; = Ro(— )ws.
l(dt)wl Z(dt)wz

Under which conditions on R, R, € R®**®[£] is wy observable from wq ?

Theorem: In the system R ( %)fwl = R %)wz

ws is observable from w-
if and only if
rank(Rz(A)) = dim(w2)
for all A € C.

N /
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( Notes: N

1.In R, (%)fwl = Rz(%)fwz, wo, is observable from w, if and only if Ro(\)

is of full column rank 'V \ € C.
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( Notes: N

1.In R, (%)fwl = Rz(%)fwz, wo, is observable from w, if and only if Ro(\)

is of full column rank 'V \ € C.

Equivalently, iff R+ is left-invertible as a polynomial matrix.

P € R®1 X22[¢] is left-invertible :<= 3 Q € R*2 X21[¢] such that QP = I,
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( Notes: N

1.In R, (%)fwl = Rz(%)fwz, wo, is observable from w, if and only if Ro(\)

is of full column rank 'V \ € C.

Equivalently, iff R+ is left-invertible as a polynomial matrix.

P € R®1 X22[¢] is left-invertible :<= 3 Q € R*2 X21[¢] such that QP = I,

Equivalently, iff 3 an equivalent behavioral equation representation

R( d ) 0
— )w —
dt’
d
we = M(—)w
2 ( 2 t) 1
ths representation puts observability into evidence. /
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~

2.In 22 = Az + Bu,y = Cx,w, = (u,y),w, = «x the state is observable

dt
from the input/output (u, y) iff

A— Al
C

rank (

N

) =dim(xz) VA € C
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~

2.In 22 = Az + Bu,y = Cx,w, = (u,y),w, = «x the state is observable

dt
from the input/output (u, y) iff

rank (

A— Al
C

Hautus’ test for observability. Of course,

< rank(

N

C
CA

CAdim(a:) —1

) =dim(xz) VA € C

) = dim(x).
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3. When is in

w+ observable from w?

P, q € R[£].

N

d
P(a)’w

d
1 = q(a)’wz

/
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3. When is in

w+ observable from w?

P, q € R[£].

d
P(a)’w

Iff g is a non-zero constant. No zeros!

N

d
1 = q(a)wz

/
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4. In the behavioral language, we can hence speak of

N

’a controllable system’ but not of ’an observable system’!

/
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4. In the behavioral language, we can hence speak of

’a controllable system’ but not of ’an observable system’!

But we will call the latent variable system

observable

(as a system!)

d d
R(a)w = M(a)ﬁ

if the latent variable £ is observable from the manifest variable w.

N
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4. In the behavioral language, we can hence speak of

’a controllable system’ but not of ’an observable system’!

But we will call the latent variable system

observable

(as a system!)

d d
R(a)w = M(a)ﬁ

if the latent variable £ is observable from the manifest variable w.

N
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In the behavioral language, we can hence speak of

’a controllable system’ but not of ’an observable system’!

But we will call the latent variable system

d d
R(a)w = M(a)e

observable | (as a system!)

if the latent variable £ is observable from the manifest variable w.

Conditions, e.g. 1 equivalent repr. of full behavior
d d
R(—)w =0 f=R'(—)w
() ()

R( % )w = 0 hence specifies the manifest behavior.

We can therefore speak of a controllable & observable state system.

N /
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5. The RLC circuit is observable iff

CRc # ——

N
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‘ Image representations I
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Representations of £°:

R(%)fw =0

called a ‘kernel’ representation of 28 = ker(R( %)).

Sol’n set € £°, by definition.

N
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Representations of £°:

R(G)w =0

called a ‘kernel’ representation of 28 = ker(R( %)).

Sol’n set € £°, by definition.

R(g)w = M(g)¢

called a ‘latent variable’ representation of the manifest behavior

B = (R(g)) "M(5)C>(R,R).

Elimination theorem = € £°.

N
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Missing link: w =M (%)E

called an ‘image’ representation of 8 = im (M ( %)).

N
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Missing link: w =M (%)E

called an ‘image’ representation of 8 = im (M ( %)).

Elimination theorem => every image is also a kernel.

- /
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Missing link: w =M (%)E

called an ‘image’ representation of 8 = im (M ( %)).

Elimination theorem =- every image is also a kernel.

¢ Which kernels are also images ??

- /

Lecture 3 Image Representations




-

Missing link:

w = M(%)E

called an ‘image’ representation of 8 = im (M ( %)).

Elimination theorem =- every image is also a kernel.

N

¢ Which kernels are also images ??

Controllability!

/
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Theorem: (Controllability and image repr.):

The following are equivalent for 28 € £° :

1. *B is controllable,

N
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Theorem: (Controllability and image repr.):

The following are equivalent for 28 € £° :

1. *B is controllable,

2. | B admits an image representation,

N
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Theorem: (Controllability and image repr.):

The following are equivalent for 28 € £° :

1. *B is controllable,

2. | B admits an image representation,

3. for any a € R"[£],

a ' [2]9 equals O or all of € (R, R),
4. R[£] /Dty is torsion free,
S. etc.

N
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Remarks:

1. Algorithm for testing controllability :

N
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Remarks:

1. Algorithm for testing controllability :

Start with R € R"[£].

N
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Remarks:

1. Algorithm for testing controllability :
Start with R € R"[£].
Compute a set of generators, the columns of M, (called the right syzygy of R) of

{m € R"[¢] | Rm = 0}.

- /
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/Remarks: \

1. Algorithm for testing controllability :

Start with R € R"[£].
Compute a set of generators, the columns of M, (called the right syzygy of R) of

{m € R'[¢] | Rm = 0}.

Compute a set of generators, the rows of R’, (called the left syzygy of M) of
{r e R'[¢] | rm = 0}

Note: RM = 0 = the transposes of therowsof R €< R’ > .

- /
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/Remarks: \

1. Algorithm for testing controllability :

Start with R € R"[£].
Compute a set of generators, the columns of M, (called the right syzygy of R) of

{m € R'[¢] | Rm = 0}.

Compute a set of generators, the rows of R’, (called the left syzygy of M) of
{r e R'[¢] | rm = 0}

Note: RM = 0 = the transposes of therowsof R €< R’ > .

Controllability < < R" >=< R’ > .

@ Numerical test for contr. on coefficients of R. j

Lecture 3 Image Representations
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2. There exists always an observable image representation = flatness.

- /
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2. There exists always an observable image representation

3. d similar results for time-varying systems.

4. d partial results for nonlinear systems.

N

nNJ

flatness.

/
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AUTONOMOUS SYSTEMS '
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The time-invariant system > = (T, W, 283) is said to be autonomous if

N

[(Wl, Wo € %) N\ ('wl(t) = wz(t) for t < 0)] = [’UJl = ’LU2]

/
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The time-invariant system > = (T, W, 283) is said to be autonomous if

[(Wl, Wo € %) N\ ('wl(t) = wz(t) for t < 0)] = [’UJl = ’LU2]

i.e. when the past implies the future.

N

/
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Examples:

Kepler’s laws

dn 1
_w = f(5—=w,...,w), reasonable f

dtn dir—

—a: = f(x), w = h(x), reasonable f, h?
Discrete-time counterparts

Most (deterministic) models studied in mathematics, physics, (not

engineering)

/
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When does 28 € £° define an autonomous system?
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When does 28 € £° define an autonomous system?

Theorem: Let 28 € £". The following are equivalent:

1. B defines an autonomous system,

N
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When does 28 € £° define an autonomous system?

Theorem: Let 28 € £". The following are equivalent:

1. B defines an autonomous system,

2. *B is finite-dimensional,

N /
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When does 28 € £° define an autonomous system?

Theorem: Let 28 € £". The following are equivalent:

1. B defines an autonomous system,

2. *B is finite-dimensional,

3. B has a kernel repr. R(-2)w = 0 with rank(R) = coldim(R) = w,

i.e. with R has full column rank,

N /
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When does 28 € £° define an autonomous system?

Theorem: Let 28 € £". The following are equivalent:

1. B defines an autonomous system,

2. *B is finite-dimensional,

3. B has a kernel repr. R(-2)w = 0 with rank(R) = coldim(R) = w,

i.e. with R has full column rank,

4. 5B has a kernel repr. R(2)w = 0 with R € R"™"[¢], det(R) # 0.

N /
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When does 28 € £° define an autonomous system?

Theorem: Let 28 € £". The following are equivalent:

1. B defines an autonomous system,

2. *B is finite-dimensional,

3. B has a kernel repr. R( - )w = 0 with rank(R) = coldim(R) = w,

i.e. with R has full column rank,

4. *B has a kernel repr. R(%

4y = 0 with R € R"*"[¢], det(R) # 0.

5. *B has a latent variable repr. iaz = Az, w = Cx.

N /
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In the scalar case, the trajectories of an autonomous 8 € £! can be described
very explicitly.

For simplicity, consider complex case (the w’s are complex valued.)

- /
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In the scalar case, the trajectories of an autonomous 8 € £! can be described
very explicitly.

For simplicity, consider complex case (the w’s are complex valued.)

Each such *B is parametrized by
m € N
A1y A2, ..., Ap € C, all distinct

ni,Ng,...,n; €N

- /
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4 )

In the scalar case, the trajectories of an autonomous 8 € £! can be described
very explicitly.

For simplicity, consider complex case (the w’s are complex valued.)

Each such *B is parametrized by
m € N
A1y A2, ..., Ap € C, all distinct

ni,Ng,...,n; €N

and

B={w:R—>C| Iry,ra,...,r, withdegree(ry) < ny

such that w(t) = Sy—1,.. a7 (t)e™}

N

/
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If

is the kernel representation, p € C[£], then indeed

N
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If

d
— =0

is the kernel representation, p € C[£], then indeed

A1y A2, ..., Ap € C are the distinct roots of p,

and n;,ns,...,n, € N their multiplicities.

N
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If
d
— =0

is the kernel representation, p € C[£], then indeed

A1y A2, ..., Ap € C are the distinct roots of p,

and n;,ns,...,n, € N their multiplicities.

Exercise: Do the real case. Get sum of products of polynomials, exponentials,

and trigonometric functions.

- /
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If

d
— =0

is the kernel representation, p € C[£], then indeed

A1y A2, ..., Ap € C are the distinct roots of p,

and n;,ns,...,n, € N their multiplicities.

and trigonometric functions.

N

Exercise: Do the real case. Get sum of products of polynomials, exponentials,

products of polynomial/exponentials/(trigonometric) functions, but more

structure on the coefficients of the polynomials (more that just the degree).

In the multivariable autonomous case, all trajectories are still vectors of sums of

/
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Theorem: B € £¥ admits a direct sum decomposition:

% — %controllable EB %autonomousa

with B.ontronlable € £¥ controllable,

and *B.utonomous € LY autonomous.

N

/
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Theorem: B € £¥ admits a direct sum decomposition:

% — %controllable EB %autonomousa

with B.ontronlable € £¥ controllable,

and *B.utonomous € LY autonomous.

B controllable 1S uniquely defined by 8. It is the controllable part of *3.

N

/
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Theorem: 5 € £¥ admits a direct sum decomposition:

% — %controllable EB %autonomousa

with B.ontronlable € £¥ controllable,

and *B.utonomous € LY autonomous.

N

B controllable 1S uniquely defined by 8. It is the controllable part of *3.

B . utonomous 1S Not uniquely defined, but they are all isomorphic.

/
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Theorem: 5 € £¥ admits a direct sum decomposition:

% — %controllable @ %autonomousa

with B.ontronlable € £¥ controllable,

and %autonomous E £W autonomous.

We now define the controllable part and isomorphic.

N

B controllable 1S uniquely defined by 8. It is the controllable part of *3.

B . utonomous 1S Not uniquely defined, but they are all isomorphic.

/
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The controllable part

There are a number of equivalent definitions of the controllable part of a

behavior.

Let 3 € £". Define

B controllable part +— {'U) c %l 3w’ € B such that
w'(t) = w(t)fort > 0and Itg € R: w'(t) =0fort < to}

- /
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The controllable part

There are a number of equivalent definitions of the controllable part of a

behavior.

Let 3 € £". Define

B controllable part +— {'U) c %l 3w’ € B such that
w'(t) = w(t)fort > 0and Itg € R: w'(t) =0fort < to}

B controllable part 1S also the largest controllable behavior € £¥ contained in ‘8.

N

/
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Isomorphic systems

~

B, B’ € £ are said to be isomorphic if 3 a unimodular U € R"*¥[£] such that

d
B = U(—)B.
dt

Differential bijection between behaviors.

Clearly isomorphy is an equivalence relation.

N
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/ Isomorphic systems \

B, B’ € £ are said to be isomorphic if 3 a unimodular U € R"*¥[£] such that

d
B = U(—)B.
dt

Differential bijection between behaviors.

Clearly isomorphy is an equivalence relation.
Let R( -)w =0, R ( - )w = 0 be kernel representations of 25, 23’. Then B

and B’ are isomorphic < R and R’ have same invariant factors. If minimal

kernel representations < same Smith form.

- /
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/ Isomorphic systems \

B, B’ € £ are said to be isomorphic if 3 a unimodular U € R"*¥[£] such that

d
B = U(—)B.
dt

Differential bijection between behaviors.

Clearly isomorphy is an equivalence relation.

Let R( -)w =0, R ( - )w = 0 be kernel representations of 25, 23’. Then B
and B’ are isomorphic < R and R’ have same invariant factors. If minimal

kernel representations < same Smith form.

Controllable systems are isomorphic iff rank(R) = rank(R/’):

isomorphy is very weak relation.

Qor autonomous systems: isomorphy is a very strong relation. j

Lecture 3 Autonomous systems



4 N

/

autonomous and

Whence there is a very tight relationship between 253

B Jutonomous 1N two different controllable/autonomous decompositions

/
B = %controllable D D3]

autonomous’

- 99
% — %controllable EB % autonomous-*

- /
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STABILITY

The autonomous B € £¥ is said to be asymptotically stable :<

- /

Lecture 3 Stabilizability




4 N

STABILITY

The autonomous B € £¥ is said to be asymptotically stable :<

weB=wt) — 0
t— o0
and stable : <&
w € B = w|r, is bounded.

- /
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/The system defined by R ( % )w = 0 is asymptotically stable iff \
rank(R()\)) =wfor A € CT := {\ € C | Real(\) > 0}.
All singularities of R (\’s where R(\) drops rank) in closed left half of the

complex plane.

- /
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/The system defined by R( - )w = 0 is asymptotically stable iff \
rank(R()\)) =wfor A € CT := {\ € C | Real(\) > 0}.
All singularities of R (\’s where R(\) drops rank) in closed left half of the

complex plane.

The system defined by R( - )w = 0 with R € R"*"[£] is stable iff
1. R\) =wfor X € CtT := {\ € C | Real()\) > 0}, and

2. w — rank(R(\)) = the multiplicity of A as a root of det(R) for
A €iC := {X € C | Real(\) = 0}.

All singularities of R (\’s where R(\) drops rank) in open left half of the

complex plane, and those on the imaginary axis are semi-simple.

- /
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/The system defined by R( - )w = 0 is asymptotically stable iff \
rank(R()\)) =wfor A € CT := {\ € C | Real(\) > 0}.
All singularities of R (\’s where R(\) drops rank) in closed left half of the

complex plane.

The system defined by R( - )w = 0 with R € R"*"[£] is stable iff
1. R\) =wfor X € CtT := {\ € C | Real()\) > 0}, and

2. w — rank(R(\)) = the multiplicity of \ as a root of det(R) for
A €iC := {X € C | Real(\) = 0}.

All singularities of R (\’s where R(\) drops rank) in open left half of the

complex plane, and those on the imaginary axis are semi-simple.

Q/Iore about stability (Routh-Hurwitz, Lyapunov): later in the course. /
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‘ STABILIZABILITY .

The time-invariant system 3 = (T, R", ) is said to be

[ stabilizable ]

if for all w € 2B there exists w’ € B such that w(t) = w’(t) for t < 0 and

’LU/ (t) t—>_> 0.
o @)

- /
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‘ STABILIZABILITY .

The time-invariant system 3 = (T, R", ) is said to be

[ stabilizable ]

if for all w € 2B there exists w’ € B such that w(t) = w’(t) for t < 0 and

’LU/ (t) t—>_> 0.
o @)

Stabilizability :&

legal trajectories can be steered to a desired point (0).

- /
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60nsider the system defined by

Under which conditions on R € R®*¥[£] does it define a stabilizable system?

N

d
R(—)w = 0.
(=l

~

/
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60nsider the system defined by

Under which conditions on R € R®*¥[£] does it define a stabilizable system?

d
R(—)w = 0.
(=l

Theorem: R( %)w = 0 defines a stabilizable system

if and only if

rank(R(\)) = constant
over A € Ct := {\ € C | Real(\) > 0}.

N

~

/
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60nsider the system defined by

Under which conditions on R € R®*¥[£] does it define a stabilizable system?

d
R(—)w = 0.
(=l

Theorem: R( %)w = 0 defines a stabilizable system

if and only if

rank(R(\)) = constant
over A € Ct := {\ € C | Real(\) > 0}.

quuivalently, iff ‘the autonomous part’ is stable

~

/
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‘ RECAP .

ecture




-

» Controllability := trajectories in the behavior are patchable

N
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» Controllability := trajectories in the behavior are patchable

» Observability := to-be-deduced variables reconstructible

N

from observed signal and system behavior
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» Controllability := trajectories in the behavior are patchable

» Observability := to-be-deduced variables reconstructible

from observed signal and system behavior

» There are effective tests for controllability and observability

N
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-

» Controllability := trajectories in the behavior are patchable

» Observability := to-be-deduced variables reconstructible
from observed signal and system behavior

» There are effective tests for controllability and observability

» (Asymptotic) stability = all sol’ns tend to 0, are bounded on R

N
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» Controllability := trajectories in the behavior are patchable

» Observability := to-be-deduced variables reconstructible
from observed signal and system behavior

» There are effective tests for controllability and observability
» (Asymptotic) stability = all sol’ns tend to 0, are bounded on R

» Stabilizability := all sol’ns can be steered to 0

N
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4 N

» Controllability := trajectories in the behavior are patchable

» Observability := to-be-deduced variables reconstructible
from observed signal and system behavior

» There are effective tests for controllability and observability
» (Asymptotic) stability = all sol’ns tend to 0, are bounded on R
» Stabilizability := all sol’ns can be steered to 0

» These central concepts in control take a much more intrinsic meaning in the

context of behavioral systems

N /
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End of Lecture 3




