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LINEAR DIFFERENTIAL SYSTEMS '
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Description, notation, and main mathematical structure of dynamical systems

described by linear constant coefficient differential equations.
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/ THEME \

Description, notation, and main mathematical structure of dynamical systems

described by linear constant coefficient differential equations.

e Formal definitions, notation
e Polynomial matrices

e 3 theorems:

1. d one-to-one relation between linear differential systems and
polynomial modules

2. Structure of kernel representations

3. Elimination theorem
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‘ GENERAL PROPERTIES .

of

‘ DYNAMICAL SYSTEMS .
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LINEARITY

The dynamical system 3 = (T, W, 28) is said to be

linear

if W is a vector space (over a field I),
and 2B is a linear subspace of W'
(viewed as a vector space over [ with respect to pointwise

addition and pointwise multiplication).

- /
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LINEARITY

The dynamical system 3 = (T, W, 28) is said to be

linear

if W is a vector space (over a field I),
and 2B is a linear subspace of W'
(viewed as a vector space over [ with respect to pointwise

addition and pointwise multiplication).

Hence linearity :&  the superposition principle holds:

(w1, w2 € B) A (o, B € F)) = (awr + w2 € B).

N
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TIME-INVARIANCE

The dynamical system 3 = (T, W, ) (assume T = R or Z)

is said to be

[ time-invariant ]

if
(w €B)A(tET)) = (ctw € B)),

where ot denotes the backwards t—shift, defined by
otw(t') ;= w(t+t).

N
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time

0 time

Time-invariance
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DIFFERENTIAL SYSTEMS

The dynamical system > = (T, W, 8) (assume say T = R and W = R" ) is

said to be a

[ differential system ]

if its behavior ‘B consists of the solutions of a system of differential equations,

n

Fw(t), Sw(t), Tzw(®)s. ., o w(t), 1) = 0.

- /
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DIFFERENTIAL SYSTEMS

The dynamical system > = (T, W, 8) (assume say T = R and W = R" ) is

said to be a

[ differential system ]

if its behavior ‘B consists of the solutions of a system of differential equations,

n

Fw(t), Sw(t), Tzw(®)s. ., o w(t), 1) = 0.

It must be made clear what it means that w : R — R® satisfies a differential

equation. We glance over it.

N

~
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/ EXTENSIONS \

e The notions of linearity, time-invariance, and differential system can in an

obvious way be generalized to systems with latent variables. The latter leads

to behavioral equations of the form

n

P () Z0(0), (D)5 s (1)) =0,

e Easy to see: latent variable system linear / time-invariant

=> same for manifest system.

e More difficult, and a most interesting question:
Latent variable system differential = ?

manifest behavior described by differential equations?

- /
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We discuss the fundamentals of the theory of dynamical systems

> = (R, RY, 33)

that are

1. [linear,] meaning

(w1, ws € B)A (o, 8 €ER)) = (aw; + Bws € B);

N

/
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KVe discuss the fundamentals of the theory of dynamical systems \

> = (R, RY, 33)

that are

1. [linear,] meaning

(w1, ws € B)A (o, B €ER)) = (aw; + Bws € B);

2. [time-invariant,] meaning

((w € B) A (t ER)) = (ctw € B))

where ot denotes the backwards ¢ —shift;

- /
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KVe discuss the fundamentals of the theory of dynamical systems \

> = (R, RY, 33)

that are

1. [linear,] meaning

(w1, ws € B)A (o, B €ER)) = (aw; + Bws € B);

2. [time-invariant,] meaning

((w € B) A (t ER)) = (ctw € B))

where ot denotes the backwards ¢ —shift;
3. [diﬁerential, ] meaning

5 consists of the solutions of a system of differential equations.

- /
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NOTATION .

/
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LINEAR CONSTANT COEFFICIENT DIFFERENTIAL EQN’S.

Variables: w1, ws, ... w,, up to n-times differentiated, g equations.
W 0 1 d W n dn
EJ—lR ’wJ -+ EJ—IRl 3 ” —W; + .. 4 Ejz Rl,j % i = 0
W 0 1 d W n dn
23—1R jWj + 233—1Rz i gt Wi e T J—]_Rz,j% i = 0
> R° Y R! d > R® ul =
j=140, W3 + 25—y 83 gt LAl e oD gigegm

Coefficients Ri‘, %

N

3 indices!

/
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LINEAR CONSTANT COEFFICIENT DIFFERENTIAL EQN’S.

Variables: w, ws, ... w,, up to n-times differentiated, g equations.
W 0 1 d 1% n d”
2;J—1R jWj + 2J—1R1 ; dth Tt 2J=1R1,j% i = 0
> _ Ry Y _ R, B = 0
j=1 g W5 + 2454 2,3 gt Wy e+ 2y 2 ggn 3 T
> R w;+ ¥ __R! w; + -0 4+ XY R’fli . =
j=1""g,j j=17"g,] d w; =178 g )

Coefficients Ri
1=1,...

N

i 3 indices!

, g : for the 1-th differential equation,

/
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/ LINEAR CONSTANT COEFFICIENT DIFFERENTIAL EQN’S. \

Variables: wq, ws, ... w,, up to n-times differentiated, g equations.

W 0 1 d n dn

Zj_lR ;W5 - EJ_IRl Jd W e 23_1 1,; —dtnwj = 0
W 0 1 d n dn

>V RO > R d > R® a = 0
j=11,; W + =173 gt wj 4t j=1"%,j dtnwj —

Coefficients R} . : 3 indices!

j =1,...,w:for the variable w; involved,

- /
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LINEAR CONSTANT COEFFICIENT DIFFERENTIAL EQN’S.

Variables: w, ws, ... w,, up to n-times differentiated, g equations.
W 0 1 d 1% n d?
2;J—1R jWj + ZJ—1R1 ; dth i 2J=1R1,j% j = 0
> _ Ry > Rl " R: il = 0
j=1 g W5 + 2454 2,3 gt Wy e+ 2y 2 ggn 3 T
> R w;+ ¥ __R! wi + oo+ XY RIli . =
j=1""g,j J j=1""g,] d w; =178 g )
Coefficients Ri ;¢ 3 indices!
k =1,...,n: for the order T * of differentiation.

N

/
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LINEAR CONSTANT COEFFICIENT DIFFERENTIAL EQN’S.

Variables: w, ws, ..

. wy, up to n-times differentiated, g equations.

dn

2J—1RO W3 + 23J—lRi N d Wj Tt 23—1 1,] dtn
W 0 1 2 n dn
2J—1R ;W3 + 2].1—1R2 J dt o Wi Tt J—l 2,j dtn
' R w; + 3R w4+ 3 RY il
j=1 J j=1778,] d Wj J=177g,] dtn

i = 0
w; = 0

Coefficients R} . : 3 indices!

/

1=1,...,g: for the 1-th differential equation,
j=1,...,w : for the variable wJ involved,
K k =1,...,n: for the order % % of differentiation.
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In vector/matrix notation:

w Rli,l Rli,z Rli,w
v — w32, R — Rl2{,1 Rlé,z R];,W
— : Kk = .
k k k
| W | _Rg,l Rg,Z Rg,W_
Yields
dn
Row + Ry —w + +Rn%w =0,

/
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ﬂombined with the polynomial matrix

N

R(&) = Ro + R1&+ -+ + RLEY,

/
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ﬂombined with the polynomial matrix \

R(&) = Ro + R1&+ -+ + RLEY,

we obtain the mercifully short notation

d
R(—)w = 0.
(Z)w

N /
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ﬂombined with the polynomial matrix \

R(&) = Ro + R1&+ -+ + RLEY,

we obtain the mercifully short notation

d
R(—)w = 0.
(Z)w

Including latent variables ~»

d d
R(a)’w = M(a)e

Qith R, M € R®**°®[g]. /
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Examples:

L
1. RLC-circuit: Case 1: CR¢ # T
L
Then the relation between V and [ is

Rec R d L d2
L (14 2EYCRe— + CRe— — WV
(RL +( +RL) car T CRLdtZ)

— 14+ CRceYY1+ = Y Ror
- ©dt Rpdt’ ¢

- /
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/Examples: \

L
1. RLC-circuit: Casel: CRc # B
L

Then the relation between V and 1 is

2

( +(1+R )CR d—I—CR L 4y
RyL © dt “R, dt?

=(1+ CRc—)( + RiL—)RC

Wehavew = 2; g=1; w = :

- /
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/Examples: \

L
1. RLC-circuit: Casel: CR¢c # T
L
Then the relation between V and 1 is

Ee L1+ B%0re 2t fore L)y
Ry, Ry, ©dt CRL dt?
=(1+CR d)(1+ = d)R I
B © dt Rpdt’ €
\%
Wehavew = 2; g=1; w = :
1
R(§) = -
[(RR—f+(1+g—f)CRc€+C’Rcﬁ€2 | —1—(CRC-|—RL—L)§_(CRC%)§2]
=[RS | —1]4[14+5C | —CRo—+& 1€+ [CRo7& | —CRo & | €2

- /
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/2. Linear systems:

» The ubiquitous

P(H)y = Q(g)u, w= (u,y)

with P, Q € R***[¢],det(P) # 0 and, perhaps, P~1Q proper.

N

/
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/2. Linear systems:

» The ubiquitous

P(H)y = Q(g)u, w= (u,y)

with P, Q € R***[¢],det(P) # 0 and, perhaps, P~1Q proper.

» The ubiquitous

%m:Am—I—Bu; y = Cz + Du, w= (u,y).

N

/
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/2. Linear systems:

» The ubiquitous

P(H)y = Q(g)u, w= (u,y)

with P, Q € R***[¢],det(P) # 0 and, perhaps, P~1Q proper.

» The ubiquitous

dt

4y =Ax+ Bu; y=Cx+ Du, w= (u,y).

» The descriptor systems

N

d
—F Fx+ Gw = 0.
o T + +

/
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/2. Linear systems: \

» The ubiquitous

P(H)y = Q(g)u, w= (u,y)

with P, Q € R***[¢],det(P) # 0 and, perhaps, P~1Q proper.

» The ubiquitous

%m:Am—I—Bu; y =Cz + Du, w= (u,y).

» The descriptor systems

d
—F F Gw = 0.
o r+ e+ Gw

KWe will learn the raison d’étre of these special representations later. /
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/3. Linearization: Consider the system described by the systems of nonlinear \

differential equations

with f . (’U)O, Wiy

N

n

Fw(t), S w()yeens o

w(t)) =0

.y Wy ) — R®. Assume that w* € R" is an equilibrium:

f(w*,0,...,0) =0.

/
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/3. Linearization: Consider the system described by the systems of nonlinear \

differential equations

with f . (’U)O, Wiy

N

n

Fw(t), S w()yeens o

w(t)) =0

.y Wy ) — R®. Assume that w* € R" is an equilibrium:

f(w*,0,...,0) =0.

Linearize around w*!

/
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differential equations

n

G w(t)) =0

f(’w(t), ’w( )s - -

with f : (wg, w1,...,wy,) — R®. Assume that w* € R" is an equilibrium:
f(w*,0,...,0) =0.

Linearize around w*!

Define R, = 63 ., 0). The system

d d*
Row+Rlaw+---+Rn%’w=0,

is called the linearized system around w*. Under reasonable conditions it

kdescribes the behavior in the neighborhood of w*.

/3. Linearization: Consider the system described by the systems of nonlinear \

/
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POLYNOMIAL MATRICES '

/
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6olyn0mials and polynomial matrices play an exceedingly important role in \

systems, signal processing, coding, etc.

N

/
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Golynomials and polynomial matrices play an exceedingly important role in \

systems, signal processing, coding, etc.

What is a polynomial?

- /
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Golynomials and polynomial matrices play an exceedingly important role in \

systems, signal processing, coding, etc.

What is a polynomial?

Let R be a ring with addition + and multiplication e

Consider the set 3 g consisting of the infinite sequences (79, 71,75, .)

Qith ry € R,k € Z , with all but a finite number of the r,’s # 0. j
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Define binary operations @ (addition) and % (multiplication) on *3 p by

(T:)’Ti""?r:l"")@(Iré,,r;_,,o-o,r:l,,...)

/ 144 / 144 / 144
(rO—I—frO,'rl+'r1,...,rn—|—rn,...)

- /
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4 )

Define binary operations @ (addition) and % (multiplication) on *3 p by

(T()?Tla"-arna---)@(TO,Tl,...,Tn,...)

/ 144
Tl_l_rl,-ao,rn-l_rn’o.o)

(ro,'rl,...,rn,...)*(ro,frl,...,rn,...)

4 n
cery,roery +riery, ..., X r er. ...

* 1S, of course, convolution.

- /
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It is easy to see that (P r, D, *) is also a ring. Basically this is the ring of

polynomials with coefficients in R. Indeed, code

(70sT15ecesTny...)asT(§) 1= TO€O+T1€1+“°+Tn£n+”'

and verify that addition and multiplication corresponds to ’collecting equal

order powers’ of &.

- /
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4 )

It is easy to see that (P r, D, *) is also a ring. Basically this is the ring of

polynomials with coefficients in R. Indeed, code

(70sT15ecesTny...)asT(§) 1= TO€O+T1€1+“°+Tn£n+”'

and verify that addition and multiplication corresponds to ’collecting equal

order powers’ of &.

It is important to realize that £ in (&) is an ‘indeterminate’, nothing more than

a ‘place marker’.

- /

Lecture 2 Polynomial Matrices




4 )

It is easy to see that (P r, D, *) is also a ring. Basically this is the ring of

polynomials with coefficients in R. Indeed, code

(70sT15ecesTny...)asT(§) 1= TO€O+T1€1+“°+Tn£n+”'

and verify that addition and multiplication corresponds to ’collecting equal

order powers’ of &.

It is important to realize that £ in (&) is an ‘indeterminate’, nothing more than

a ‘place marker’.

We henceforth write @ as +, ' x 7’/ and '/, and P r as R[£].
This means that the indeterminate is denoted by £ and that the coefficients of the

polynomials are in the ring R.

- /
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4 )

R[£] is a ‘very good’ ring, meaning that it has a lot of additional structure.

- /
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4 )

R[£] is a ‘very good’ ring, meaning that it has a lot of additional structure.

Itis a ‘p.i.d.’: a principal ideal domain
=> the greatest common divisor and the least common multiple

of a set of polynomials are well defined notions in R[£].

In fact, R[&] is an Euclidean domain,
meaning that the degree of a real polynomial
is well-defined (and satisfies a number of properties required of a degree

function in a ring).

- /

Lecture 2 Polynomial Matrices




/We are mainly interested in polynomials with real coefficients, R[£].

A polynomial vector is a vector of polynomials.

A polynomial matrix is a matrix of polynomials.

N

~

/
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K’Ve are mainly interested in polynomials with real coefficients, R[£]. \
A polynomial vector is a vector of polynomials.

A polynomial matrix is a matrix of polynomials.

\Notation: R*[£], R [£], R =72 €], R®~#[£], Re>® [£], R®*® [£]. /
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/We may view P € R"t *2[£] both as a polynomial with matrix coefficients: \

P(§) = Po+ Pi§+ -+ + Po€7,

with Po,Pl, oo ,Pn - Rn1><n2,

N

/
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/We may view P € R"t *2[£] both as a polynomial with matrix coefficients: \

with Po,Pl, - ,Pn - Rn1><n2,

or as a matrix of polynomials:

P(g) =

PLi(€) Pia(é)
P1(&) Pa2(8)

_Pnl,l(g) -PI11,2 (S)

\with the P, ;’s elements of R[£].

P(§) = Po+ Pi§+ -+ + Po€7,

Pl,n2 (f) -
P2,n2 (5)

Py, n, (f)_

/
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/Important consequence of considering £ as an indeterminate:
we can substitute for £ real numbers, complex numbers, square matrices, the

differentiation operator, etc.

N

~

/
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/Important consequence of considering £ as an indeterminate: \
we can substitute for £ real numbers, complex numbers, square matrices, the

differentiation operator, etc.

Let P € R™ Xu2[g].

- /
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/Important consequence of considering £ as an indeterminate: \
we can substitute for £ real numbers, complex numbers, square matrices, the

differentiation operator, etc.

t € R = P(t) € R***"2, Hence, there is an induced map P : R — R® X?2,

- /
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/Important consequence of considering £ as an indeterminate:
we can substitute for £ real numbers, complex numbers, square matrices, the

differentiation operator, etc.

s € C = P(s) € C"*"2 Hence, in a sense, P : C — C"* X"z,

N

~

/
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/Important consequence of considering £ as an indeterminate:
we can substitute for £ real numbers, complex numbers, square matrices, the

differentiation operator, etc.

A € R2%X"2 = P(A) € R**%"2, Hence, in a sense, P : R"2 X2 — R Xn2,

N

~

/
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anortant consequence of considering £ as an indeterminate: \
we can substitute for £ real numbers, complex numbers, square matrices, the

differentiation operator, etc.

( ~) can act on maps w : R — R"2 and produces maps P ( S)w i R — R™

\(assumlng enough differentiability). /
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anortant consequence of considering £ as an indeterminate: \
we can substitute for £ real numbers, complex numbers, square matrices, the

differentiation operator, etc.

Let P € R X22[¢].

t € R = P(t) € R***"2, Hence, there is an induced map P : R — R® X?2,
s € C = P(s) € C"*"2 Hence, in a sense, P : C — C" X2,

A € R2%"2 = P(A) € R**%"2, Hence, in a sense, P : R"2%X?2 — Rr1Xn2,

( ~) can act on maps w : R — R"2 and produces maps P ( S)w i R — R™

\(assumlng enough differentiability). /
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THE BEHAVIOR OF R(2)w = 0

/
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What do we mean by the behavior of this system of differential equations?

When shall we define w : R — R" to be a solution of R( %)w = 0?

- /
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What do we mean by the behavior of this system of differential equations?

When shall we define w : R — R" to be a solution of R( %)w = 0?

Possibilities:

Strong solutions?
Weak solutions?
¢ (R, R") (infinitely differentiable) solutions?

Distributional solutions?

- /
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C>-solution: w :R — R"isa [€°°-soluti0n] of R(%)’w = 0if

1. w is infinitely differentiable ( := w € €*° (R, R") ), and

2. R(%)fw = 0.

- /
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4 N

C>-solution: w :R — R"isa [Qﬁ°°-soluti0n] of R(%)’w = 0if

1. w is infinitely differentiable ( := w € €*° (R, R") ), and

2. R(%)fw = 0.

Weak solution: w : R — R"isa [Weak solution ]of R(%)fw = 0if

1. [ |lw(t)]| dt < coforallte,t; € R, and
2. [T2(RT(—=2)a)T (t)w(t) dt =0

for all a € €°° (R, RreVdim(R) of compact support

(i.e., a is zero outside some finite interval).

- /
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/Since for w € €° (R, RY), \

+oo +o0
[ @ Epamemd= [ T @@ w0) d

every €°°-solution is a weak solution, but not the other way around.

- /
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/Since for w € €° (R, RY), \

+oo +o0
[ @ Epamemd= [ T @@ w0) d

every €°°-solution is a weak solution, but not the other way around.

Example: Consider %wz = w,. Take w4 (t) = w2 (t) = 0fort < 0, and

w1 (t) = 1, ws(t) =tfort > 0.

Verify that this step-response is a weak, but not a €°°-solution.

- /
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/Since for w € €°(R, R"), \

+oo +o0
[ @ Epamemd= [ T @@ w0) d

every €°°-solution is a weak solution, but not the other way around.

Example: Consider %wz = w,. Take w4 (t) = w2 (t) = 0fort < 0, and

w1 (t) = 1, ws(t) =tfort > 0.

Verify that this step-response is a weak, but not a €°°-solution.

We will be ‘pragmatic’, and take the easy way out: ~» | € soln’s!

Transmits main ideas, easier to handle, easy theory,

k sometimes (t0o) restrictive (step-response, etc.). j
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Whence, R(%)w = 0 defines the system X = (R, R", 23) with

B = {w € €°(R,RY) | R(Z)w = 0}.

N

/
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NOTATION .

£° : all such systems (with any - finite - number of variables)
£Y : with w variables

B = ker(R( % )

B € £7 (no ambiguity regarding T, W)

/
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NOTATION .

£° : all such systems (with any - finite - number of variables)

£Y : with w variables
B = ker(R( % )
B € £7 (no ambiguity regarding T, W)

‘ NOMENCLATURE '

Elements of £® : linear differential systems

( -)w = 0 : a kernel representation of the corresponding

e LorB c L
( - )w = 0 ‘has’ behavior 25
3. or B: the system induced by R € R®*®[£]

/
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Proposition: This system is linear and time-invariant.

N

/
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Proposition: This system is linear and time-invariant.

Some other properties of 23 € £:

N

(w € B) = (Lw € B);
(wePB and p € R[§]) = (p(%)fw € B);

/
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Proposition: This system is linear and time-invariant.

Some other properties of 23 € £:
(w € B) = (Lw € B);
(wePB and p € R[§]) = (p(%)fw € B);

Further niceties:
(w €W and f € €°(R,R)) = (f *w € B),
* denotes convolution;
¢°-solutions of R( % )w = 0 are dense in the set of

weak (or distributional) solutions.

N

/
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‘ ALGEBRAIZATION of £° '

/
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An important type of square polynomial matrix:

Definition: P € R**"[£] is said to be unimodular if there exists

Q € R***[¢] such that QP = I, ..

- /
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An important type of square polynomial matrix:

Definition: P € R**"[£] is said to be unimodular if there exists

Q € R***[¢] such that QP = I, ..

This Q is denoted as P~ 1.

N

/
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An important type of square polynomial matrix:

Definition: P € R**"[£] is said to be unimodular if there exists

Q € R***[¢] such that QP = I, ..

This Q is denoted as P~ 1.

Proposition: P € R**"[£] is unimodular iff det(P) = q,
with 0 # o € R.

- /
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/R defines B = ker(R( %)), but not vice-versa! \
Obviously, R( dt)w = 0 and U( )R( - )w = 0 define the same behavior

whenever U is unimodular.

- /
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/R defines 2B = ker(R( =) ), but not vice-versa! \
Obviously, R( - )w = 0 and U( )R( - )w = 0 define the same behavior

whenever U is unimodular.

o 3 ‘intrinsic’ chararacterization of 28 € £¥ 77
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/R defines B = ker(R( %)), but not vice-versa! \
Obviously, R( - )w = 0 and U( )R( - )w = 0 define the same behavior

whenever U is unimodular.

o 3 ‘intrinsic’ chararacterization of 28 € £¥ 77

Is there a mathematical ‘object’ that characterizes a®3 € £¥7?
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/R defines B = ker(R( %)), but not vice-versa! \
Obviously, R( dt)w = 0 and U( )R( - )w = 0 define the same behavior

whenever U is unimodular.

o 3 ‘intrinsic’ chararacterization of 28 € £¥ 77

Is there a mathematical ‘object’ that characterizes a®3 € £¥7?

Define the [annihilators] of B € £ by

My = {n € R[] | nT(L)B = 0}.

- /
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/An intermezzo about the structure of R*[£]. \

Many properties of matrices generalize to polynomial matrices, e.g., the rank:

The polynomial vectors 71, ...,r, € R*[£] are said to be independent if

((Il,...,()én - R[&], and Z a;r; = O)
=
& (0= =a, =0).
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/An intermezzo about the structure of R*[£].

Many properties of matrices generalize to polynomial matrices, e.g., the rank:

The polynomial vectors 71, ...,r, € R*[£] are said to be independent if
((X]_, 5o oo @y E R[g], and Z a;r; = O)
=1
& (ap =+ =a, =0).

Let P € R**®[&]. The row rank of R is defined as the maximal number of
independent rows. It equals the column rank of P, defined as the maximal

number of independent columns ~» rank(P).

N

~

/
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/An intermezzo about the structure of R*[£]. \

Many properties of matrices generalize to polynomial matrices, e.g., the rank:

The polynomial vectors 71, ...,r, € R*[£] are said to be independent if

((Il,...,()én - R[g], and Z a;r; = O)
=
& (0= =a, =0).

Let P € R**®[&]. The row rank of R is defined as the maximal number of
independent rows. It equals the column rank of P, defined as the maximal

number of independent columns ~» rank(P).

rank(P) = the dimension of the largest square submatrix with a non-zero

@terminant (i.e., the non-zero minors). j
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/ SMITH FORM \

The following result is very useful in proofs. It shows that, by pre- and

postmultiplying by unimodular matrices, polynomial matrices can be brought in

Smith form, a simple, diagonal like form.
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/ SMITH FORM \

The following result is very useful in proofs. It shows that, by pre- and

postmultiplying by unimodular matrices, polynomial matrices can be brought in

Smith form, a simple, diagonal like form.

Let P € R* **2[£]. There exist unimodular polynomial matrices
U € RrX™M[€]land V € R*2%"2[£] such that
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SMITH FORM

The following result is very useful in proofs. It shows that, by pre- and

~

postmultiplying by unimodular matrices, polynomial matrices can be brought in

Smith form, a simple, diagonal like form.

Let P € R* **2[£]. There exist unimodular polynomial matrices
U € RrX™M[€]land V € R*2%"2[£] such that

UPV =

diag(p1,P2y:- .5 Pr)

O(nl —r)Xr

Or X (nz —r)

O(nl —r) X (nz—r)_

where r = rank(P) and py 1 is a factor of p, fork = 1,2,...k — 1.

N

/
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SMITH FORM

The following result is very useful in proofs. It shows that, by pre- and

~

postmultiplying by unimodular matrices, polynomial matrices can be brought in

Smith form, a simple, diagonal like form.

Let P € R* **2[£]. There exist unimodular polynomial matrices
U € RrX™M[€]land V € R*2%"2[£] such that

UPV =

diag(p1,P2y:- .5 Pr)

O(nl —r)Xr

Or X (nz —r)

O(nl —r) X (nz—r)_

where r = rank(P) and py 1 is a factor of p, fork = 1,2,...k — 1.

Qhe polynomials pq, p2, . .., p, are called the invariant factors of P.

/
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R® [&] has the structure of a module over the ring of ‘scalars’ R[].
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R® [&] has the structure of a module over the ring of ‘scalars’ R[].

This means that the obvious

1. binary operation, addition, (+) on R*[£],

2. and scalar multiplication, (e), the map from R[£] X R"*[£] to R® [£]

3. satisfy the required obvious axioms.

Usually scalar multiplication, p e v is simply written as p v.

N

/
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A submodule of R* [£] is a subset of R™ [£] that is closed under addition and scalar

multiplication (multiplication by polynomials).
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A submodule of R* [£] is a subset of R™ [£] that is closed under addition and scalar

multiplication (multiplication by polynomials).

An important property of submodules of R”[£] is that they are all finitely
generated, meaning that )t C R*[£] is a submodule iff there exists
di,92, ..., gx such that

) {m € Rn[é] | A p1,P2y - Px

such that m = p; @ g1 + P2 .92+"‘+pk.gk}

In fact, one can always take | k < n
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A submodule of R* [£] is a subset of R™ [£] that is closed under addition and scalar

multiplication (multiplication by polynomials).

An important property of submodules of R”[£] is that they are all finitely
generated, meaning that )t C R*[£] is a submodule iff there exists
di,92, ..., gx such that

) {m € Rn[é] | A p1,P2y - Px

such that m = p; @ g1 + P2 .92+"‘+pk.gk}

In fact, one can always take | k < n

d a nice system theoretic proof of this result.

/
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Gack to £":

Proposition: Dty is a R[&] sub-module of R [£].

N

/

Lecture 2

Algebraic Structure



Gack to £": \

Proposition: Dty is a R[&] sub-module of R [£].

Let < R' > denote the sub-module of R”[£] spanned by the transposes of the
rows of R. Obviously < R" >C Iy,

N /
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Gack to £": \

Proposition: Dty is a R[&] sub-module of R [£].

Let < R' > denote the sub-module of R”[£] spanned by the transposes of the
rows of R. Obviously < R" >C Iy,

But, indeed:

Ny =< RT >!

Note: Depends on €°°. C may be false for compact support soln’s.

N /
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Gack to £": \

Proposition: Dty is a R[&] sub-module of R [£].

Let < R' > denote the sub-module of R”[£] spanned by the transposes of the
rows of R. Obviously < RT >C Dgs.

But, indeed:

Ny =< RT >!

Note: Depends on €°°. C may be false for compact support soln’s.

Theorem: v &1 sub-modules of R¥ €]

N /
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Definition: R( - )w = 0 is said to be a[ minimal ] kernel representation of

MINIMAL KERNEL REPRESENTATIONS

B = ker(R( - )) if, whenever R’ ( - )w = 0 is another kernel representation
of this 2B, i.e., whenever ker(R(a)) = ker(R’ (E))’ there holds:

N

rowdim(R) < rowdim(R’).

/
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MINIMAL KERNEL REPRESENTATIONS

Definition: R( - )w = 0 is said to be a[ minimal ] kernel representation of

B = ker(R( - )) if, whenever R’ ( - )w = 0 is another kernel representation
of this 2B, i.e., whenever ker(R(a)) = ker(R’ (E))’ there holds:

rowdim(R) < rowdim(R’).

Nomenclature: R(%)w = 0 ‘is’ minimal.

minimal :< number of equations ‘as small as possible’.

- /
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/P € R®**®[£] is said to be of full row rank if its rows are linearly independent \

i.e., iff rank(P) = rowdim(P). Equivalently iff 3 a submatrix of size

rowdim(P) X rowdim(P) with non-zero determinant.

N

/
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/P € R®**®[£] is said to be of full row rank if its rows are linearly independent \
i.e., iff rank(P) = rowdim(P). Equivalently iff 3 a submatrix of size

rowdim(P) X rowdim(P) with non-zero determinant.

Note: Assume R(%)fw = 0 has an R € R**" that is not of full row rank.

Can one or more of the equations be removed?
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/P € R®**®[£] is said to be of full row rank if its rows are linearly independent \
i.e., iff rank(P) = rowdim(P). Equivalently iff 3 a submatrix of size

rowdim(P) X rowdim(P) with non-zero determinant.

Note: Assume R(%)fw = 0 has an R € R**" that is not of full row rank.

Can one or more of the equations be removed?

No!
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/P € R®**®[£] is said to be of full row rank if its rows are linearly independent \
i.e., iff rank(P) = rowdim(P). Equivalently iff 3 a submatrix of size

rowdim(P) X rowdim(P) with non-zero determinant.

Note: Assume R(%)fw = 0 has an R € R**" that is not of full row rank.

Can one or more of the equations be removed?
No!

Can the number of equations be reduced?
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/P € R®**®[£] is said to be of full row rank if its rows are linearly independent \
i.e., iff rank(P) = rowdim(P). Equivalently iff 3 a submatrix of size

rowdim(P) X rowdim(P) with non-zero determinant.

Note: Assume R(%)fw = 0 has an R € R**" that is not of full row rank.

Can one or more of the equations be removed?
No!
Can the number of equations be reduced?

Yes!

- /
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nheorem (Structure of kernel representations):

N

/
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G heorem (Structure of kernel representations): \

1. Let U be unimodular. Then R(2)w = 0 and U( )R( - )w = 0 have the

dt)
same behavior.

N /
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G heorem (Structure of kernel representations): \

1. Let U be unimodular. Then R( -)w = 0 and U( )R( - )w = 0 have the
same behavior.

2. Let R1( - )w = 0 have behavior 25, and Rz( - )w = 0 have behavior B..
Then %5, C 9B, iff 3 F € R***[£] such that

Rz — FRl.

N /
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G heorem (Structure of kernel representations): \

1. Let U be unimodular. Then R( -)w = 0 and U( )R( - )w = 0 have the

same behavior.

2. Let R1( - )w = 0 have behavior 25, and Rz( - )w = 0 have behavior B..
Then %5, C 9B, iff 3 F € R***[£] such that

R2 — FRl.

3. R(%)w = 0 is minimal iff R is of full row rank.

at)
We may hence use minimal representation and full row rank Kernel

representation as synonymous.

N /
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G heorem (Structure of kernel representations): \

1. Let U be unimodular. Then R( -)w = 0 and U( )R( - )w = 0 have the

same behavior.

2. Let R1( - )w = 0 have behavior 25, and Rz( - )w = 0 have behavior B..
Then %5, C 9B, iff 3 F € R***[£] such that

R2 — FRl.

3. R(2)

We may hence use minimal representation and full row rank Kernel

w = 0 is minimal iff R is of full row rank.

representation as synonymous.

4. Let R( - )w = 0 be minimal. All minimal kernel representations with the

same behavior are obtained by pre-multiplying R by an arbitrary unimodular

\polynomial matrix. /
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/ LATENT VARIABLE SYSTEMS

First principle models ~» latent variables. In the case of systems described

by linear constant coefficient differential equations:

Row + -+ + Ryw = Mol + -+ +

In polynomial matrix notation ~»

n

d d
R(a)’w = M(a)ﬁ

N

n

M,—F¢.

b din

~

/
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/ LATENT VARIABLE SYSTEMS

by linear constant coefficient differential equations:

n

In polynomial matrix notation ~»

d d
R(a)’w = M(a)ﬁ

time-invariant systems!!

n

Row—l—---+Rn%w=M0£—|—----|—M—£.

b din

First principle models ~» latent variables. In the case of systems described

This is the natural model class to start a study of finite dimensional linear

k But is it(s manifest behavior) really a differential system ??

~

/
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/The full behavior of R( SJw =M ( )L, e,

Bean = {(w, ) € €2 (R, R"TE) | R( )w = M(—)e}

belongs to £° 1%, by definition. Its manifest behavior equals

d d
B ={w € €°(R,R") | I £such that R(a)w = M(E)E}

N

/
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/The full behavior of R( SJw =M ( )L, e,

Bean = {(w, ) € €2 (R, R"TE) | R( )w = M(—)e}

belongs to £° 1%, by definition. Its manifest behavior equals

d d
B ={w € €°(R,R") | I £such that R(a)w = M(E)E}

Does *B belong to £ ?

N

/
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/The full behavior of R( % Yw = M ( %)E, i.e., \
oo w+£ d d
Bran = {(w, £) € E*(R,R™) | R(—)w = M ()¢}
dt dt
belongs to £° 1%, by definition. Its manifest behavior equals

d d
B ={w € €°(R,R") | I £such that R(a)w = M(E)E}

Does *B belong to £ ?

K Theorem: It does! /
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Gxample:

» The ubiquitous

42 = Ac+ Bu; y = Cz+ Du, w = (u,y).

N
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Gxample:

» The ubiquitous

42 = Ac+ Bu; y = Cz+ Du, w = (u,y).

Which eq’ns describe the (u, y) (input-output) behavior?

N
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Gxample:

» The ubiquitous

42 = Ac+ Bu; y = Cz+ Du, w = (u,y).

Which eq’ns describe the (u, y) (input-output) behavior?

Elimination theorem => it is a system of differential eq’ns:

P(w=a(5)u

N
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Gxample: \

» The ubiquitous

42 = Ac+ Bu; y = Cz+ Du, w = (u,y).

Which eq’ns describe the (u, y) (input-output) behavior?

Elimination theorem => it is a system of differential eq’ns:

P(w=a(5)u

Qith P square and det(P) # 0. Why: soon! /
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Gxample:

» The descriptor systems

N

d
—F F Gw = 0.
o r+ re + Gw
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Gxample:

» The descriptor systems

d
—F F Gw = 0.
o r+ re + Gw

Which eqn’s describe the w behavior?

N
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Gxample: \

» The descriptor systems

d
—FEx + Fxr+ Gw = 0.
4t + +

Which eqn’s describe the w behavior?

Elimination theorem =- it is a system of differential eq’ns:

d
R(—)w =20
(L )w

- /
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Gxample: \

» The descriptor systems

d
—FEx + Fxr+ Gw = 0.
4t + +

Which eqn’s describe the w behavior?

Elimination theorem =- it is a system of differential eq’ns:

d
R(—)w =20
(L )w

k!Compute (E, F,G) — R. Dimension minimal kernel representation? j
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Gxample: Consider the RLC circuit. \
First principles modeling (=2 CE’s, KVL, & KCL)

~» 15 behavioral equations.

These include both the port and the branch voltages and currents.
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Gxample: Consider the RLC circuit. \
First principles modeling (= CE’s, KVL, & KCL)

~» 15 behavioral equations.

These include both the port and the branch voltages and currents.

Why can the port behavior be described by a system of linear constant
coefficient differential equations?
Because:
1. The CE’s, KVL, & KCL are all linear constant coefficient
differential equations.

2. The elimination theorem.
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Gxample: Consider the RLC circuit. \
First principles modeling (= CE’s, KVL, & KCL)

~» 15 behavioral equations.

These include both the port and the branch voltages and currents.

Why can the port behavior be described by a system of linear constant
coefficient differential equations?
Because:
1. The CE’s, KVL, & KCL are all linear constant coefficient
differential equations.

2. The elimination theorem.

\W hy is there only one equation? Passivity! ... Later. /
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Let
d d
R(— = M(—)?
(dt)w (dt)

be a kernel representation of the full behavior.

Let
d
R (— =0
(dt)w

be a kernel representation of the manifest behavior.

N

/
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Let
d d
R(— = M(—)?
(dt)w (dt)

be a kernel representation of the full behavior.

Let
d
R (— =0
(dt)w

be a kernel representation of the manifest behavior.

There exist effective algorithms for
(R,M) — R’

incorporating, if desired, minimality of R’ ( % )w = 0.

- /
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/» Linear differential systems: those described by a set of linear constant \

coefficient differential equations ~ £°, etc.

N /
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/b Linear differential systems: those described by a set of linear constant \

coefficient differential equations ~» £, etc.

» Behavior := the set of €°°-solutions (for convenience)

N /
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/» Linear differential systems: those described by a set of linear constant \

coefficient differential equations ~» £°, etc.
» Behavior := the set of €°°-solutions (for convenience)

> £° <% sub-modules of R¥ (€]

N /

Lecture 2 Recap




/» Linear differential systems: those described by a set of linear constant \

coefficient differential equations ~» £°, etc.
» Behavior := the set of €°°-solutions (for convenience)
> £° <% sub-modules of R¥ (€]

» Minimal kernel representations: those of full row rank
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/» Linear differential systems: those described by a set of linear constant \

coefficient differential equations ~» £°, etc.
» Behavior := the set of €°°-solutions (for convenience)
> £° <% sub-modules of R¥ (€]

» Minimal kernel representations: those of full row rank

» A minimal kernel representation is unique up to pre-multiplication by a

unimodular polynomial matrix
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/» Linear differential systems: those described by a set of linear constant \

coefficient differential equations ~» £°, etc.
» Behavior := the set of €°°-solutions (for convenience)
> £° <% sub-modules of R¥ (€]

» Minimal kernel representations: those of full row rank

» A minimal kernel representation is unique up to pre-multiplication by a

unimodular polynomial matrix

» Elimination theorem:

k full behavior linear ODE => manifest behavior linear ODE /
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It follows from all this that £° is closed under:

N

e Intersection: (2B,,B. € £7) = (B; NV, € L£Y).

Addition: (%1, B, € ,QW) — (%1 + B, € ,QW).

Projection: (B € £"17V2) = (I, B € £).

Action of a linear differential operator:

(B € £, P € R"2X"[¢]) = (P(Z)B € £°2).

Inverse image of a linear differential operator:

(% € g2 P c R¥2 XW1 [5]) = (P(%))—l% c le).
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End of Lecture 2

Lecture 2

Recap




