MATHEMATICAL MODELS of SYSTEMS

Jan C. Willems
ESAT-SCD (SISTA), University of Leuven, Belgium

Lecture 2

LINEAR DIFFERENTIAL SYSTEMS

THEME

Description, notation, and main mathematical structure of dynamical systems described by linear constant coefficient differential equations.

THEME

Description, notation, and main mathematical structure of dynamical systems described by linear constant coefficient differential equations.

- Formal definitions, notation
- Polynomial matrices
- 3 theorems:

1. \exists one-to-one relation between linear differential systems and polynomial modules
2. Structure of kernel representations
3. Elimination theorem

GENERAL PROPERTIES

> of

DYNAMICAL SYSTEMS

LINEARITY

The dynamical system $\Sigma=(\mathbb{T}, \mathbb{W}, \mathfrak{B})$ is said to be

linear

if \mathbb{W} is a vector space (over a field \mathbb{F}),
and \mathfrak{B} is a linear subspace of $\mathbb{W}^{\mathbb{T}}$
(viewed as a vector space over \mathbb{F} with respect to pointwise addition and pointwise multiplication).

LINEARITY

The dynamical system $\Sigma=(\mathbb{T}, \mathbb{W}, \mathfrak{B})$ is said to be

linear

if \mathbb{W} is a vector space (over a field \mathbb{F}),
and \mathfrak{B} is a linear subspace of $\mathbb{W} \mathbb{T}$
(viewed as a vector space over \mathbb{F} with respect to pointwise addition and pointwise multiplication).

Hence linearity $\quad: \Leftrightarrow$ the superposition principle holds:

$$
\left(\left(w_{1}, w_{2} \in \mathfrak{B}\right) \wedge(\alpha, \beta \in \mathbb{F})\right) \Rightarrow\left(\alpha w_{1}+\beta w_{2} \in \mathfrak{B}\right)
$$

TIME-INVARIANCE

The dynamical system $\Sigma=(\mathbb{T}, \mathbb{W}, \mathfrak{B})($ assume $\mathbb{T}=\mathbb{R}$ or $\mathbb{Z})$
is said to be

> time-invariant
if

$$
\left.((w \in \mathfrak{B}) \wedge(t \in \mathbb{T})) \Rightarrow\left(\sigma^{t} w \in \mathfrak{B}\right)\right)
$$

where σ^{t} denotes the backwards t-shift, defined by

$$
\sigma^{t} w\left(t^{\prime}\right):=w\left(t+t^{\prime}\right)
$$

Time-invariance

DIFFERENTIAL SYSTEMS

The dynamical system $\Sigma=(\mathbb{T}, \mathbb{W}, \mathfrak{B})$ (assume say $\mathbb{T}=\mathbb{R}$ and $\left.\mathbb{W}=\mathbb{R}^{n}\right)$ is said to be a

differential system

if its behavior \mathfrak{B} consists of the solutions of a system of differential equations,

$$
f\left(w(t), \frac{d}{d t} w(t), \frac{d^{2}}{d t^{2}} w(t), \ldots, \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} w(t), t\right)=0
$$

DIFFERENTIAL SYSTEMS

The dynamical system $\Sigma=(\mathbb{T}, \mathbb{W}, \mathfrak{B})$ (assume say $\mathbb{T}=\mathbb{R}$ and $\left.\mathbb{W}=\mathbb{R}^{\mathrm{n}}\right)$ is said to be a

differential system

if its behavior \mathfrak{B} consists of the solutions of a system of differential equations,

$$
f\left(w(t), \frac{d}{d t} w(t), \frac{d^{2}}{d t^{2}} w(t), \ldots, \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} w(t), t\right)=0
$$

It must be made clear what it means that $w: \mathbb{R} \rightarrow \mathbb{R}^{\mathrm{n}}$ satisfies a differential equation. We glance over it.

EXTENSIONS

- The notions of linearity, time-invariance, and differential system can in an obvious way be generalized to systems with latent variables. The latter leads to behavioral equations of the form

$$
f\left(w(t), \ldots, \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} w(t), \ell(t), \ldots, \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} \ell(t), t\right)=0
$$

- Easy to see: latent variable system linear / time-invariant
$\Rightarrow \quad$ same for manifest system.
- More difficult, and a most interesting question:

Latent variable system differential \Rightarrow ? manifest behavior described by differential equations?

We discuss the fundamentals of the theory of dynamical systems

$$
\boldsymbol{\Sigma}=\left(\mathbb{R}, \mathbb{R}^{\mathrm{W}}, \mathfrak{B}\right)
$$

that are

1. linear, meaning

$$
\left(\left(w_{1}, w_{2} \in \mathfrak{B}\right) \wedge(\alpha, \beta \in \mathbb{R})\right) \Rightarrow\left(\alpha w_{1}+\beta w_{2} \in \mathfrak{B}\right)
$$

We discuss the fundamentals of the theory of dynamical systems

$$
\boldsymbol{\Sigma}=\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}, \mathfrak{B}\right)
$$

that are

1. linear, meaning

$$
\left(\left(w_{1}, w_{2} \in \mathfrak{B}\right) \wedge(\alpha, \beta \in \mathbb{R})\right) \Rightarrow\left(\alpha w_{1}+\beta w_{2} \in \mathfrak{B}\right)
$$

2. time-invariant, meaning

$$
\left.((w \in \mathfrak{B}) \wedge(t \in \mathbb{R})) \Rightarrow\left(\sigma^{t} w \in \mathfrak{B}\right)\right)
$$

where σ^{t} denotes the backwards t-shift;

We discuss the fundamentals of the theory of dynamical systems

$$
\boldsymbol{\Sigma}=\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}, \mathfrak{B}\right)
$$

that are

1. linear, meaning

$$
\left(\left(w_{1}, w_{2} \in \mathfrak{B}\right) \wedge(\alpha, \beta \in \mathbb{R})\right) \Rightarrow\left(\alpha w_{1}+\beta w_{2} \in \mathfrak{B}\right)
$$

2. time-invariant, meaning

$$
\left.((w \in \mathfrak{B}) \wedge(t \in \mathbb{R})) \Rightarrow\left(\sigma^{t} w \in \mathfrak{B}\right)\right)
$$

where σ^{t} denotes the backwards t-shift;
3. differential, meaning \mathfrak{B} consists of the solutions of a system of differential equations.

NOTATION

LINEAR CONSTANT COEFFICIENT DIFFERENTIAL EQN'S.

Variables: $w_{1}, w_{2}, \ldots w_{\mathrm{w}}$, up to n -times differentiated, g equations.

$$
\begin{array}{|ccc|}
\Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{1, \mathrm{j}}^{0} w_{\mathrm{j}}+\Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{1, \mathrm{j}}^{1} \frac{d}{d t} w_{\mathrm{j}}+\cdots+\Sigma_{\mathrm{j}=1}^{\mathrm{w}} R_{1, \mathrm{j}}^{\mathrm{n}} \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} w_{\mathrm{j}} & =0 \\
\Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{2, \mathrm{j}}^{0} w_{\mathrm{j}}+\Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{2, \mathrm{j}}^{1} \frac{d}{d t} w_{\mathrm{j}}+\cdots+\Sigma_{\mathrm{j}=1}^{\mathrm{w}} R_{2, \mathrm{j}}^{\mathrm{n}} \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} w_{\mathrm{j}} & =0 \\
\vdots & \vdots & \vdots \\
\Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{\mathrm{g}, \mathrm{j}}^{0} w_{\mathrm{j}}+\Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{\mathrm{g}, \mathrm{j}}^{1} \frac{d}{d t} w_{\mathrm{j}}+\cdots+\Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{\mathrm{g}, \mathrm{j}}^{\mathrm{n}} \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} w_{\mathrm{j}} & =0 \\
\hline
\end{array}
$$

Coefficients $R_{1, \mathrm{j}}^{\mathrm{k}}: 3$ indices!

LINEAR CONSTANT COEFFICIENT DIFFERENTIAL EQN'S.

Variables: $w_{1}, w_{2}, \ldots w_{\mathrm{w}}$, up to n -times differentiated, g equations.

$$
\begin{array}{|ccc|}
\Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{1, \mathrm{j}}^{0} w_{\mathrm{j}}+\Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{1, \mathrm{j}}^{1} \frac{d}{d t} w_{\mathrm{j}}+\cdots+\Sigma_{\mathrm{j}=1}^{\mathrm{w}} R_{1, \mathrm{j}}^{\mathrm{n}} \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} w_{\mathrm{j}} & =0 \\
\Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{2, \mathrm{j}}^{0} w_{\mathrm{j}}+\Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{2, \mathrm{j}}^{1} \frac{d}{d t} w_{\mathrm{j}}+\cdots+\Sigma_{\mathrm{j}=1}^{\mathrm{w}} R_{2, \mathrm{j}}^{\mathrm{n}} \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} w_{\mathrm{j}} & =0 \\
\vdots & \vdots & \vdots \\
\Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{\mathrm{g}, \mathrm{j}}^{0} w_{\mathrm{j}}+\Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{\mathrm{g}, \mathrm{j}}^{1} \frac{d}{d t} w_{\mathrm{j}}+\cdots+\Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{\mathrm{g}, \mathrm{j}}^{\mathrm{n}} \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} w_{\mathrm{j}} & =0 \\
\hline
\end{array}
$$

Coefficients $R_{1, \mathrm{j}}^{\mathrm{k}}: 3$ indices!

$$
1=1, \ldots, g: \text { for the } 1 \text {-th differential equation, }
$$

LINEAR CONSTANT COEFFICIENT DIFFERENTIAL EQN'S.

Variables: $w_{1}, w_{2}, \ldots w_{\text {w }}$, up to n -times differentiated, g equations.

$$
\begin{array}{|ccc|}
\Sigma_{\mathrm{j}=1}^{\mathrm{w}} R_{1, \mathrm{j}}^{0} w_{\mathrm{j}}+\Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{1, \mathrm{j}}^{1} \frac{d}{d t} w_{\mathrm{j}}+\cdots+\Sigma_{\mathrm{j}=1}^{\mathrm{w}} R_{1, \mathrm{j}}^{\mathrm{n}} \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} w_{\mathrm{j}} & =0 \\
\Sigma_{\mathrm{j}=1}^{\mathrm{w}} R_{2, \mathrm{j}}^{0} w_{\mathrm{j}}+\Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{2, \mathrm{j}}^{1} \frac{d}{d t} w_{\mathrm{j}}+\cdots+\Sigma_{\mathrm{j}=1}^{\mathrm{w}} R_{2, \mathrm{j}}^{\mathrm{n}} \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} w_{\mathrm{j}} & =0 \\
\vdots & \vdots & \vdots \\
\Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{\mathrm{g}, \mathrm{j}}^{0} w_{\mathrm{j}}+\Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{\mathrm{g}, \mathrm{j}}^{1} \frac{d}{d t} w_{\mathrm{j}}+\cdots+\Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{\mathrm{g}, \mathrm{j}}^{\mathrm{n}} \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} w_{\mathrm{j}} & =0 \\
\hline
\end{array}
$$

Coefficients $R_{1, j}^{\mathrm{k}}: 3$ indices!

$$
j=1, \ldots, w: \text { for the variable } w_{j} \text { involved, }
$$

LINEAR CONSTANT COEFFICIENT DIFFERENTIAL EQN'S.

Variables: $w_{1}, w_{2}, \ldots w_{\mathrm{w}}$, up to n -times differentiated, g equations.

$$
\begin{array}{|ccc|}
\hline \Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{1, \mathrm{j}}^{0} w_{\mathrm{j}}+\Sigma_{\mathrm{j}=1}^{\mathrm{W}} \boldsymbol{R}_{1, \mathrm{j}}^{1} \frac{d}{d t} w_{\mathrm{j}}+\cdots+\Sigma_{\mathrm{j}=1}^{\mathrm{w}} \boldsymbol{R}_{1, \mathrm{j}}^{\mathrm{n}} \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} w_{\mathrm{j}} & =0 \\
\Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{2, \mathrm{j}}^{0} w_{\mathrm{j}}+\Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{2, \mathrm{j}}^{1} \frac{d}{d t} w_{\mathrm{j}}+\cdots+\Sigma_{\mathrm{j}=1}^{\mathrm{w}} \boldsymbol{R}_{2, \mathrm{j}}^{\mathrm{n}} \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} w_{\mathrm{j}} & =0 \\
\vdots & \vdots & \vdots \\
\Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{\mathrm{g}, \mathrm{j}}^{0} w_{\mathrm{j}}+\Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{\mathrm{g}, \mathrm{j}}^{1} \frac{d}{d t} w_{\mathrm{j}}+\cdots+\Sigma_{\mathrm{j}=1}^{\mathrm{W}} \boldsymbol{R}_{\mathrm{g}, \mathrm{j}}^{\mathrm{n}} \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} w_{\mathrm{j}} & =0 \\
\hline
\end{array}
$$

Coefficients $R_{1, \mathrm{j}}^{\mathrm{k}}: 3$ indices!

$$
\mathrm{k}=1, \ldots, \mathrm{n}: \text { for the order } \frac{d^{k}}{d t^{k}} \text { of differentiation. }
$$

LINEAR CONSTANT COEFFICIENT DIFFERENTIAL EQN'S.

Variables: $w_{1}, w_{2}, \ldots w_{\text {w }}$, up to n -times differentiated, g equations.

$$
\begin{array}{|ccc|}
\Sigma_{\mathrm{j}=1}^{\mathrm{w}} R_{1, \mathrm{j}}^{0} w_{\mathrm{j}}+\Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{1, \mathrm{j}}^{1} \frac{d}{d t} w_{\mathrm{j}}+\cdots+\Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{1, \mathrm{j}}^{\mathrm{n}} \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} w_{\mathrm{j}} & =0 \\
\Sigma_{\mathrm{j}=1}^{\mathrm{w}} R_{2, \mathrm{j}}^{0} w_{\mathrm{j}}+\Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{2, \mathrm{j}}^{1} \frac{d}{d t} w_{\mathrm{j}}+\cdots+\Sigma_{\mathrm{j}=1}^{\mathrm{w}} R_{2, \mathrm{j}}^{\mathrm{n}} \frac{d^{\mathrm{m}}}{d t^{\mathrm{n}}} w_{\mathrm{j}} & =0 \\
\vdots & \vdots & \vdots \\
\Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{\mathrm{g}, \mathrm{j}}^{0} w_{\mathrm{j}}+\Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{\mathrm{g}, \mathrm{j}}^{1} \frac{d}{d t} w_{\mathrm{j}}+\cdots+\Sigma_{\mathrm{j}=1}^{\mathrm{W}} R_{\mathrm{g}, \mathrm{j}}^{\mathrm{n}} \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} w_{\mathrm{j}} & =0 \\
\hline
\end{array}
$$

Coefficients $R_{1, \mathrm{j}}^{\mathrm{k}}: 3$ indices!

$$
\begin{aligned}
& \mathrm{l}=1, \ldots, \mathrm{~g}: \text { for the } 1 \text {-th differential equation, } \\
& \mathrm{j}=1, \ldots, \mathrm{w}: \text { for the variable } w_{\mathrm{j}} \text { involved, } \\
& \mathrm{k}=1, \ldots, \mathrm{n}: \text { for the order } \frac{d^{\mathrm{k}}}{d t^{k}} \text { of differentiation. }
\end{aligned}
$$

In vector/matrix notation:

$$
w=\left[\begin{array}{c}
w_{1} \\
w_{2}, \\
\vdots \\
w_{\mathrm{w}}
\end{array}\right], \quad \boldsymbol{R}_{\mathrm{k}}=\left[\begin{array}{cccc}
\boldsymbol{R}_{1,1}^{\mathrm{k}} & \boldsymbol{R}_{1,2}^{\mathrm{k}} & \cdots & \boldsymbol{R}_{1, \mathrm{w}}^{\mathrm{k}} \\
\boldsymbol{R}_{2,1}^{\mathrm{k}} & \boldsymbol{R}_{2,2}^{\mathrm{k}} & \cdots & \boldsymbol{R}_{2, \mathrm{w}}^{\mathrm{k}} \\
\vdots & \vdots & \cdots & \vdots \\
\boldsymbol{R}_{\mathrm{g}, 1}^{\mathrm{k}} & \boldsymbol{R}_{\mathrm{g}, 2}^{\mathrm{k}} & \cdots & \boldsymbol{R}_{\mathrm{g}, \mathrm{w}}^{\mathrm{k}}
\end{array}\right]
$$

Yields

$$
\boldsymbol{R}_{0} w+\boldsymbol{R}_{1} \frac{d}{d t} w+\cdots+\boldsymbol{R}_{\mathrm{n}} \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} w=0
$$

with $\boldsymbol{R}_{\mathbf{0}}, \boldsymbol{R}_{\mathbf{1}}, \cdots, \boldsymbol{R}_{\mathrm{n}} \in \mathbb{R}^{\mathrm{g} \times{ }^{\mathrm{w}}}$.

Combined with the polynomial matrix

$$
R(\xi)=R_{0}+R_{1} \xi+\cdots+R_{\mathrm{n}} \xi^{\mathrm{n}},
$$

Combined with the polynomial matrix

$$
\boldsymbol{R}(\xi)=\boldsymbol{R}_{0}+\boldsymbol{R}_{1} \xi+\cdots+\boldsymbol{R}_{\mathrm{n}} \xi^{\mathrm{n}}
$$

we obtain the mercifully short notation

$$
\boldsymbol{R}\left(\frac{d}{d t}\right) w=0
$$

Combined with the polynomial matrix

$$
\boldsymbol{R}(\xi)=\boldsymbol{R}_{0}+\boldsymbol{R}_{1} \xi+\cdots+\boldsymbol{R}_{\mathrm{n}} \xi^{\mathrm{n}}
$$

we obtain the mercifully short notation

$$
R\left(\frac{d}{d t}\right) w=0
$$

Including latent variables

$$
R\left(\frac{d}{d t}\right) w=M\left(\frac{d}{d t}\right) \ell
$$

with $R, M \in \mathbb{R}^{\bullet \times \bullet}[\xi]$.

Examples:

1. RLC-circuit: Case 1: $\quad C R_{C} \neq \frac{L}{R_{L}}$.

Then the relation between V and I is

$$
\begin{aligned}
\left(\frac{R_{C}}{R_{L}}+\left(1+\frac{R_{C}}{R_{L}}\right) C R_{C} \frac{d}{d t}+C R_{C}\right. & \left.\frac{L}{R_{L}} \frac{d^{2}}{d t^{2}}\right) V \\
& =\left(1+C R_{C} \frac{d}{d t}\right)\left(1+\frac{L}{R_{L}} \frac{d}{d t}\right) R_{C} I
\end{aligned}
$$

Examples:

1. RLC-circuit: Case 1: $\quad C R_{C} \neq \frac{L}{R_{L}}$.

Then the relation between V and I is

$$
\begin{aligned}
\left(\frac{R_{C}}{R_{L}}+\left(1+\frac{R_{C}}{R_{L}}\right) C R_{C} \frac{d}{d t}+C R_{C}\right. & \left.\frac{L}{R_{L}} \frac{d^{2}}{d t^{2}}\right) V \\
& =\left(1+C R_{C} \frac{d}{d t}\right)\left(1+\frac{L}{R_{L}} \frac{d}{d t}\right) R_{C} I
\end{aligned}
$$

We have $\mathrm{w}=2 ; \quad \mathrm{g}=1 ; \quad w=\left[\begin{array}{l}V \\ I\end{array}\right] ;$

Examples:

1. RLC-circuit: Case 1: $\quad C R_{C} \neq \frac{L}{R_{L}}$.

Then the relation between V and I is

$$
\begin{aligned}
\left(\frac{R_{C}}{R_{L}}+\left(1+\frac{R_{C}}{R_{L}}\right) C R_{C} \frac{d}{d t}+C R_{C}\right. & \left.\frac{L}{R_{L}} \frac{d^{2}}{d t^{2}}\right) V \\
& =\left(1+C R_{C} \frac{d}{d t}\right)\left(1+\frac{L}{R_{L}} \frac{d}{d t}\right) R_{C} I
\end{aligned}
$$

We have $\mathrm{w}=2 ; \quad \mathrm{g}=1 ; \quad w=\left[\begin{array}{l}V \\ I\end{array}\right] ;$

$$
\begin{aligned}
& R(\xi)= \\
& \quad\left[\left(\left.\frac{R_{C}}{R_{L}}+\left(1+\frac{R_{C}}{R_{L}}\right) C R_{C} \xi+C R_{C} \frac{L}{R_{L}} \xi^{2} \right\rvert\,-1-\left(C R_{C}+\frac{L}{R_{L}}\right) \xi-\left(C R_{C} \frac{L}{R_{L}}\right) \xi^{2}\right]\right. \\
& \quad=\left[\begin{array}{llll}
\frac{R_{C}}{R_{L}} & \mid-1
\end{array}\right]+\left[1+\frac{R_{C}}{R_{L}} \left\lvert\,-C R_{C}-\frac{L}{R_{L}}\right.\right] \xi+\left[C R_{C} \frac{L}{R_{L}} \left\lvert\,-C R_{C} \frac{L}{R_{L}}\right.\right] \xi^{2}
\end{aligned}
$$

2. Linear systems:

- The ubiquitous

$$
P\left(\frac{d}{d t}\right) y=Q\left(\frac{d}{d t}\right) u, w=(u, y)
$$

with $P, Q \in \mathbb{R}^{\bullet \times \bullet}[\xi], \operatorname{det}(P) \neq 0$ and, perhaps, $P^{-1} Q$ proper.
2. Linear systems:

- The ubiquitous

$$
P\left(\frac{d}{d t}\right) y=Q\left(\frac{d}{d t}\right) u, w=(u, y)
$$

with $P, Q \in \mathbb{R}^{\bullet \times \bullet}[\xi], \operatorname{det}(P) \neq 0$ and, perhaps, $P^{-1} Q$ proper.

- The ubiquitous

$$
\frac{d}{d t} x=A x+B u ; \quad y=C x+D u, w=(u, y) .
$$

2. Linear systems:

- The ubiquitous

$$
P\left(\frac{d}{d t}\right) y=Q\left(\frac{d}{d t}\right) u, w=(u, y)
$$

with $P, Q \in \mathbb{R}^{\bullet \times \bullet}[\xi], \operatorname{det}(P) \neq 0$ and, perhaps, $P^{-1} Q$ proper.

- The ubiquitous

$$
\frac{d}{d t} x=A x+B u ; \quad y=C x+D u, w=(u, y)
$$

- The descriptor systems

$$
\frac{d}{d t} \boldsymbol{E} x+\boldsymbol{F} x+G w=0
$$

2. Linear systems:

- The ubiquitous

$$
P\left(\frac{d}{d t}\right) y=Q\left(\frac{d}{d t}\right) u, w=(u, y)
$$

with $P, Q \in \mathbb{R}^{\bullet \times \bullet}[\xi], \operatorname{det}(P) \neq 0$ and, perhaps, $P^{-1} Q$ proper.

- The ubiquitous

$$
\frac{d}{d t} x=A x+B u ; \quad y=C x+D u, w=(u, y)
$$

- The descriptor systems

$$
\frac{d}{d t} \boldsymbol{E} x+\boldsymbol{F} x+G w=0
$$

We will learn the raison d'être of these special representations later.
3. Linearization: Consider the system described by the systems of nonlinear differential equations

$$
f\left(w(t), \frac{d}{d t} w(t), \ldots, \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} w(t)\right)=0
$$

with $f:\left(w_{0}, w_{1}, \ldots, w_{\mathrm{n}}\right) \mapsto \mathbb{R}^{\bullet}$. Assume that $\mathrm{w}^{\star} \in \mathbb{R}^{\mathrm{w}}$ is an equilibrium:

$$
f\left(\mathrm{w}^{\star}, 0, \ldots, 0\right)=0
$$

3. Linearization: Consider the system described by the systems of nonlinear differential equations

$$
f\left(w(t), \frac{d}{d t} w(t), \ldots, \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} w(t)\right)=0
$$

with $f:\left(w_{0}, w_{1}, \ldots, w_{\mathrm{n}}\right) \mapsto \mathbb{R}^{\bullet}$. Assume that $\mathrm{w}^{\star} \in \mathbb{R}^{\mathrm{w}}$ is an equilibrium:

$$
f\left(\mathrm{w}^{\star}, 0, \ldots, 0\right)=0
$$

Linearize around w^{\star} !
3. Linearization: Consider the system described by the systems of nonlinear differential equations

$$
f\left(w(t), \frac{d}{d t} w(t), \ldots, \frac{d^{\mathrm{n}}}{d t^{\mathrm{n}}} w(t)\right)=0
$$

with $f:\left(w_{0}, w_{1}, \ldots, w_{\mathrm{n}}\right) \mapsto \mathbb{R}^{\bullet}$. Assume that $\mathrm{w}^{\star} \in \mathbb{R}^{\mathrm{w}}$ is an equilibrium:

$$
f\left(\mathrm{w}^{\star}, 0, \ldots, 0\right)=0
$$

Linearize around w*!

Define $R_{k}=\frac{\partial}{\partial x_{\mathrm{k}}} f\left(\mathrm{w}^{\star}, 0, \ldots, 0\right)$. The system

$$
\boldsymbol{R}_{0} w+\boldsymbol{R}_{1} \frac{d}{d t} w+\cdots+\boldsymbol{R}_{\mathrm{n}} \frac{\boldsymbol{d}^{\mathrm{n}}}{d t^{\mathrm{n}}} w=0
$$

is called the linearized system around w^{\star}. Under reasonable conditions it describes the behavior in the neighborhood of w^{\star}.

POLYNOMIAL MATRICES

Polynomials and polynomial matrices play an exceedingly important role in systems, signal processing, coding, etc.

Polynomials and polynomial matrices play an exceedingly important role in systems, signal processing, coding, etc.

> What is a polynomial?

Polynomials and polynomial matrices play an exceedingly important role in systems, signal processing, coding, etc.

What is a polynomial?

Let R be a ring with addition + and multiplication •

Consider the set \mathfrak{P}_{R} consisting of the infinite sequences $\left(r_{0}, r_{1}, \ldots, r_{\mathrm{n}}, \ldots\right)$ with $r_{\mathrm{k}} \in \mathbb{R}, \mathrm{k} \in \mathbb{Z}_{+}$, with all but a finite number of the r_{k} 's $\neq 0$.

Define binary operations \oplus (addition) and $*$ (multiplication) on \mathfrak{P}_{R} by

$$
\begin{aligned}
&\left(r_{0}^{\prime}, r_{1}^{\prime}, \ldots, r_{\mathrm{n}}^{\prime}, \ldots\right) \oplus\left(r_{0}^{\prime \prime}, r_{1}^{\prime \prime}, \ldots, r_{\mathrm{n}}^{\prime \prime}, \ldots\right) \\
&:=\left(r_{0}^{\prime}+r_{0}^{\prime \prime}, r_{1}^{\prime}+r_{1}^{\prime \prime}, \ldots, r_{\mathrm{n}}^{\prime}+r_{\mathrm{n}}^{\prime \prime}, \ldots\right)
\end{aligned}
$$

Define binary operations \oplus (addition) and $*$ (multiplication) on \mathfrak{P}_{R} by

$$
\begin{aligned}
& \left(r_{0}^{\prime}, r_{1}^{\prime}, \ldots, r_{\mathrm{n}}^{\prime}, \ldots\right) \oplus\left(r_{0}^{\prime \prime}, r_{1}^{\prime \prime}, \ldots, r_{\mathrm{n}}^{\prime \prime}, \ldots\right) \\
& \\
& :=\left(r_{0}^{\prime}+r_{0}^{\prime \prime}, r_{1}^{\prime}+r_{1}^{\prime \prime}, \ldots, r_{\mathrm{n}}^{\prime}+r_{\mathrm{n}}^{\prime \prime}, \ldots\right) \\
& \left(r_{0}^{\prime}, r_{1}^{\prime}, \ldots, r_{\mathrm{n}}^{\prime}, \ldots\right) *\left(r_{0}^{\prime \prime}, r_{1}^{\prime \prime}, \ldots, r_{\mathrm{n}}^{\prime \prime}, \ldots\right) \\
& \\
& :=\left(r_{0}^{\prime} \bullet r_{0}^{\prime \prime}, r_{0}^{\prime} \bullet r_{1}^{\prime \prime}+r_{1}^{\prime} \bullet r_{0}^{\prime \prime}, \ldots, \Sigma_{\mathrm{k}=0}^{\mathrm{n}} r_{\mathrm{k}}^{\prime} \bullet r_{\mathrm{n}-\mathrm{k}}^{\prime \prime}, \ldots\right)
\end{aligned}
$$

* is, of course, convolution.

It is easy to see that $\left(\mathfrak{P}_{R}, \oplus, *\right)$ is also a ring. Basically this is the ring of polynomials with coefficients in R. Indeed, code

$$
\left(r_{0}, r_{1}, \ldots, r_{\mathrm{n}}, \ldots\right) \text { as } r(\xi):=r_{0} \xi^{0}+r_{1} \xi^{1}+\cdots+r_{\mathrm{n}} \xi^{\mathrm{n}}+\cdots
$$

and verify that addition and multiplication corresponds to 'collecting equal order powers' of $\boldsymbol{\xi}$.

It is easy to see that $\left(\mathfrak{P}_{R}, \oplus, *\right)$ is also a ring. Basically this is the ring of polynomials with coefficients in R. Indeed, code

$$
\left(r_{0}, r_{1}, \ldots, r_{\mathrm{n}}, \ldots\right) \text { as } r(\xi):=r_{0} \xi^{0}+r_{1} \xi^{1}+\cdots+r_{\mathrm{n}} \xi^{\mathrm{n}}+\cdots
$$

and verify that addition and multiplication corresponds to 'collecting equal order powers' of ξ.

It is important to realize that $\boldsymbol{\xi}$ in $r(\xi)$ is an 'indeterminate', nothing more than a 'place marker'.

It is easy to see that $\left(\mathfrak{P}_{R}, \oplus, *\right)$ is also a ring. Basically this is the ring of polynomials with coefficients in R. Indeed, code

$$
\left(r_{0}, r_{1}, \ldots, r_{\mathrm{n}}, \ldots\right) \text { as } r(\xi):=r_{0} \xi^{0}+r_{1} \xi^{1}+\cdots+r_{\mathrm{n}} \xi^{\mathrm{n}}+\cdots
$$

and verify that addition and multiplication corresponds to 'collecting equal order powers' of ξ.

It is important to realize that ξ in $r(\xi)$ is an 'indeterminate', nothing more than a 'place marker'.

We henceforth write \oplus as,$+ r^{\prime} * r^{\prime \prime}$ and $r^{\prime} r^{\prime \prime}$, and \mathfrak{P}_{R} as $R[\xi]$.
This means that the indeterminate is denoted by $\boldsymbol{\xi}$ and that the coefficients of the polynomials are in the ring R.
$\mathbb{R}[\xi]$ is a 'very good' ring, meaning that it has a lot of additional structure.
$\mathbb{R}[\xi]$ is a 'very good' ring, meaning that it has a lot of additional structure.

It is a 'p.i.d.': a principal ideal domain
\Rightarrow the greatest common divisor and the least common multiple of a set of polynomials are well defined notions in $\mathbb{R}[\xi]$.

In fact, $\mathbb{R}[\xi]$ is an Euclidean domain, meaning that the degree of a real polynomial is well-defined (and satisfies a number of properties required of a degree function in a ring).

We are mainly interested in polynomials with real coefficients, $\mathbb{R}[\xi]$.

A polynomial vector is a vector of polynomials.

A polynomial matrix is a matrix of polynomials.

We are mainly interested in polynomials with real coefficients, $\mathbb{R}[\xi]$.

A polynomial vector is a vector of polynomials.

A polynomial matrix is a matrix of polynomials.

Notation: $\mathbb{R}^{\mathrm{n}}[\xi], \mathbb{R}^{\bullet}[\xi], \mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}[\xi], \mathbb{R}^{\bullet \times n}[\xi], \mathbb{R}^{\mathrm{n} \times \bullet}[\xi], \mathbb{R}^{\bullet \times \bullet}[\xi]$.

We may view $P \in \mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}[\xi]$ both as a polynomial with matrix coefficients:

$$
P(\xi)=P_{0}+P_{1} \xi+\cdots+P_{\mathrm{n}} \xi^{\mathrm{n}}
$$

with $P_{0}, P_{1}, \ldots, P_{\mathrm{n}} \in \mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$,

We may view $P \in \mathbb{R}^{n_{1} \times n_{2}}[\xi]$ both as a polynomial with matrix coefficients:

$$
P(\xi)=P_{0}+P_{1} \xi+\cdots+P_{\mathrm{n}} \xi^{\mathrm{n}}
$$

with $P_{0}, P_{1}, \ldots, P_{\mathrm{n}} \in \mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$,
or as a matrix of polynomials:

$$
P(\xi)=\left[\begin{array}{cccc}
P_{1,1}(\xi) & P_{1,2}(\xi) & \cdots & P_{1, \mathrm{n}_{2}}(\xi) \\
P_{2,1}(\xi) & P_{2,2}(\xi) & \cdots & P_{2, \mathrm{n}_{2}}(\xi) \\
\vdots & \vdots & \cdots & \vdots \\
P_{\mathrm{n}_{1}, 1}(\xi) & P_{\mathrm{n}_{1}, 2}(\xi) & \cdots & P_{\mathrm{n}_{1}, \mathrm{n}_{2}}(\xi)
\end{array}\right]
$$

with the $P_{1, j}$'s elements of $\mathbb{R}[\xi]$.

Important consequence of considering $\boldsymbol{\xi}$ as an indeterminate: we can substitute for $\boldsymbol{\xi}$ real numbers, complex numbers, square matrices, the differentiation operator, etc.

Important consequence of considering $\boldsymbol{\xi}$ as an indeterminate:
we can substitute for $\boldsymbol{\xi}$ real numbers, complex numbers, square matrices, the differentiation operator, etc.

Let $P \in \mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}[\xi]$.

Important consequence of considering $\boldsymbol{\xi}$ as an indeterminate: we can substitute for $\boldsymbol{\xi}$ real numbers, complex numbers, square matrices, the differentiation operator, etc.
$t \in \mathbb{R} \Rightarrow P(t) \in \mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$. Hence, there is an induced map $P: \mathbb{R} \rightarrow \mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$.

Important consequence of considering $\boldsymbol{\xi}$ as an indeterminate: we can substitute for $\boldsymbol{\xi}$ real numbers, complex numbers, square matrices, the differentiation operator, etc.
$s \in \mathbb{C} \Rightarrow P(s) \in \mathbb{C}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$ Hence, in a sense, $\boldsymbol{P}: \mathbb{C} \rightarrow \mathbb{C}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$.

Important consequence of considering $\boldsymbol{\xi}$ as an indeterminate: we can substitute for $\boldsymbol{\xi}$ real numbers, complex numbers, square matrices, the differentiation operator, etc.
$A \in \mathbb{R}^{\mathrm{n}_{2} \times \mathrm{n}_{2}} \Rightarrow P(A) \in \mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$. Hence, in a sense, $P: \mathbb{R}^{\mathrm{n}_{2} \times \mathrm{n}_{2}} \rightarrow \mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$.

Important consequence of considering $\boldsymbol{\xi}$ as an indeterminate: we can substitute for $\boldsymbol{\xi}$ real numbers, complex numbers, square matrices, the differentiation operator, etc.
$P\left(\frac{d}{d t}\right)$ can act on maps $w: \mathbb{R} \rightarrow \mathbb{R}^{\boldsymbol{n}_{2}}$ and produces maps $P\left(\frac{d}{d t}\right) w: \mathbb{R} \rightarrow \mathbb{R}^{\boldsymbol{n}_{1}}$ (assuming enough differentiability).

Important consequence of considering $\boldsymbol{\xi}$ as an indeterminate: we can substitute for $\boldsymbol{\xi}$ real numbers, complex numbers, square matrices, the differentiation operator, etc.

Let $P \in \mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}[\xi]$.
$t \in \mathbb{R} \Rightarrow P(t) \in \mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$. Hence, there is an induced map $P: \mathbb{R} \rightarrow \mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$.
$s \in \mathbb{C} \Rightarrow P(s) \in \mathbb{C}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$ Hence, in a sense, $P: \mathbb{C} \rightarrow \mathbb{C}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$.
$A \in \mathbb{R}^{\mathrm{n}_{2} \times \mathrm{n}_{2}} \Rightarrow P(A) \in \mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$. Hence, in a sense, $P: \mathbb{R}^{\mathrm{n}_{2} \times \mathrm{n}_{2}} \rightarrow \mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}$.
$P\left(\frac{d}{d t}\right)$ can act on maps $w: \mathbb{R} \rightarrow \mathbb{R}^{\boldsymbol{n}_{2}}$ and produces maps $P\left(\frac{d}{d t}\right) w: \mathbb{R} \rightarrow \mathbb{R}^{\boldsymbol{n}_{1}}$ (assuming enough differentiability).

THE BEHAVIOR OF $R\left(\frac{d}{d t}\right) w=0$

When shall we define $w: \mathbb{R} \rightarrow \mathbb{R}^{w}$ to be a solution of $R\left(\frac{d}{d t}\right) w=0$?

When shall we define $w: \mathbb{R} \rightarrow \mathbb{R}^{w}$ to be a solution of $R\left(\frac{d}{d t}\right) w=0$?
Possibilities:
Strong solutions?
Weak solutions?
$\mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right)$ (infinitely differentiable) solutions?
Distributional solutions?
\mathfrak{C}^{∞}-solution: $\quad w: \mathbb{R} \rightarrow \mathbb{R}^{w}$ is a \mathfrak{C}^{∞}-solution of $R\left(\frac{d}{d t}\right) w=0$ if

1. w is infinitely differentiable $\left(:=w \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right)\right.$), and
2. $R\left(\frac{d}{d t}\right) w=0$.
\mathfrak{C}^{∞}-solution: $\quad w: \mathbb{R} \rightarrow \mathbb{R}^{w}$ is a \mathfrak{C}^{∞}-solution of $R\left(\frac{d}{d t}\right) w=0$ if
3. w is infinitely differentiable $\left(:=w \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right)\right.$), and
4. $R\left(\frac{d}{d t}\right) w=0$.

Weak solution: $w: \mathbb{R} \rightarrow \mathbb{R}^{w}$ is a weak solution of $R\left(\frac{d}{d t}\right) w=0$ if

1. $\int_{t_{0}}^{t_{1}}\|w(t)\| d t<\infty$ for all $t_{0}, t_{1} \in \mathbb{R}$, and
2. $\int_{-\infty}^{+\infty}\left(R^{\top}\left(-\frac{d}{d t}\right) a\right)^{\top}(t) w(t) d t=0$
for all $a \in \mathbb{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\text {rowdim }(R)}\right.$ of compact support
(i.e., a is zero outside some finite interval).

Since for $w \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right)$,

$$
\int_{-\infty}^{+\infty}\left(\boldsymbol{R}^{\top}\left(-\frac{d}{d t}\right) a\right)(t) w(t) d t=\int_{-\infty}^{+\infty} a^{\top}(t)\left(R\left(\frac{d}{d t}\right) w(t)\right) d t
$$

every \mathfrak{C}^{∞}-solution is a weak solution, but not the other way around.

Since for $w \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right)$,

$$
\int_{-\infty}^{+\infty}\left(\boldsymbol{R}^{\top}\left(-\frac{d}{d t}\right) a\right)(t) w(t) d t=\int_{-\infty}^{+\infty} a^{\top}(t)\left(R\left(\frac{d}{d t}\right) w(t)\right) d t
$$

every \mathfrak{C}^{∞}-solution is a weak solution, but not the other way around.

Example: Consider $\frac{d}{d t} w_{2}=w_{1}$. Take $w_{1}(t)=w_{2}(t)=0$ for $t<0$, and $w_{1}(t)=1, w_{2}(t)=t$ for $t \geq 0$.
Verify that this step-response is a weak, but not a \mathfrak{C}^{∞}-solution.

Since for $w \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right)$,

$$
\int_{-\infty}^{+\infty}\left(R^{\top}\left(-\frac{d}{d t}\right) a\right)(t) w(t) d t=\int_{-\infty}^{+\infty} a^{\top}(t)\left(R\left(\frac{d}{d t}\right) w(t)\right) d t
$$

every \mathfrak{C}^{∞}-solution is a weak solution, but not the other way around.

Example: Consider $\frac{d}{d t} w_{2}=w_{1}$. Take $w_{1}(t)=w_{2}(t)=0$ for $t<0$, and $w_{1}(t)=1, w_{2}(t)=t$ for $t \geq 0$.
Verify that this step-response is a weak, but not a \mathfrak{C}^{∞}-solution.

We will be 'pragmatic', and take the easy way out: $\sim \mathfrak{C}^{\infty}$ soln's!
Transmits main ideas, easier to handle, easy theory, sometimes (too) restrictive (step-response, etc.).

Whence, $R\left(\frac{d}{d t}\right) w=0$ defines the system $\Sigma=\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}, \mathfrak{B}\right)$ with

$$
\mathfrak{B}=\left\{w \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right) \left\lvert\, \boldsymbol{R}\left(\frac{d}{d t}\right) w=0\right.\right\}
$$

NOTATION

\mathfrak{L}^{\bullet} : all such systems (with any - finite - number of variables)
$\mathfrak{L}^{\mathrm{W}}$: with w variables
$\mathfrak{B}=\operatorname{ker}\left(\boldsymbol{R}\left(\frac{d}{d t}\right)\right)$
$\mathfrak{B} \in \mathfrak{L}^{\mathrm{W}}$ (no ambiguity regarding \mathbb{T}, \mathbb{W})

NOTATION

\mathfrak{L}^{\bullet} : all such systems (with any - finite - number of variables)
$\mathfrak{L}^{\mathrm{W}}$: with w variables
$\mathfrak{B}=\operatorname{ker}\left(\boldsymbol{R}\left(\frac{d}{d t}\right)\right)$
$\mathfrak{B} \in \mathfrak{L}^{\mathrm{W}}$ (no ambiguity regarding \mathbb{T}, \mathbb{W})

NOMENCLATURE

Elements of \mathfrak{L}^{\bullet} : linear differential systems
$R\left(\frac{d}{d t}\right) w=0:$ a kernel representation of the corresponding $\boldsymbol{\Sigma} \in \mathfrak{L}^{\bullet}$ or $\mathfrak{B} \in \mathfrak{L}^{\bullet}$
$R\left(\frac{d}{d t}\right) w=0$ 'has' behavior \mathfrak{B}
Σ or \mathfrak{B} : the system induced by $R \in \mathbb{R}^{\bullet \times}[\xi]$

Proposition: This system is linear and time-invariant.

Proposition: This system is linear and time-invariant.
Some other properties of $\mathfrak{B} \in \mathfrak{L}^{\text {w }}$:
$(w \in \mathfrak{B}) \Rightarrow\left(\frac{d}{d t} w \in \mathfrak{B}\right) ;$
$(w \in \mathfrak{B}$ and $p \in \mathbb{R}[\xi]) \Rightarrow\left(p\left(\frac{d}{d t}\right) w \in \mathfrak{B}\right) ;$

Proposition: This system is linear and time-invariant.

Some other properties of $\mathfrak{B} \in \mathfrak{L}^{\mathrm{w}}$:

$$
\begin{aligned}
& (w \in \mathfrak{B}) \Rightarrow\left(\frac{d}{d t} w \in \mathfrak{B}\right) \\
& (w \in \mathfrak{B} \text { and } p \in \mathbb{R}[\xi]) \Rightarrow\left(p\left(\frac{d}{d t}\right) w \in \mathfrak{B}\right)
\end{aligned}
$$

Further niceties:
$\left(w \in \mathfrak{B}\right.$ and $\left.f \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R})\right) \Rightarrow(f * w \in \mathfrak{B})$,

* denotes convolution;
\mathfrak{C}^{∞}-solutions of $\boldsymbol{R}\left(\frac{d}{d t}\right) w=0$ are dense in the set of weak (or distributional) solutions.

ALGEBRAIZATION of \mathfrak{L}^{\bullet}

An important type of square polynomial matrix:

Definition: $P \in \mathbb{R}^{\mathrm{n} \times \mathrm{n}}[\xi]$ is said to be unimodular if there exists $Q \in \mathbb{R}^{\mathrm{n} \times \mathrm{n}}[\xi]$ such that $Q P=I_{\mathrm{n} \times \mathrm{n}}$.

An important type of square polynomial matrix:

Definition: $P \in \mathbb{R}^{\mathrm{n} \times \mathrm{n}}[\xi]$ is said to be unimodular if there exists $Q \in \mathbb{R}^{\mathrm{n} \times \mathrm{n}}[\xi]$ such that $Q P=I_{\mathrm{n} \times \mathrm{n}}$.

This Q is denoted as P^{-1}.

An important type of square polynomial matrix:

Definition: $P \in \mathbb{R}^{\mathrm{n} \times \mathrm{n}}[\xi]$ is said to be unimodular if there exists $Q \in \mathbb{R}^{\mathrm{n} \times \mathrm{n}}[\xi]$ such that $Q P=I_{\mathrm{n} \times \mathrm{n}}$.

This Q is denoted as P^{-1}.
Proposition: $P \in \mathbb{R}^{\mathrm{n} \times \mathrm{n}}[\xi]$ is unimodular iff $\operatorname{det}(P)=\alpha$, with $0 \neq \alpha \in \mathbb{R}$.
\boldsymbol{R} defines $\mathfrak{B}=\operatorname{ker}\left(\boldsymbol{R}\left(\frac{d}{d t}\right)\right)$, but not vice-versa!
Obviously, $R\left(\frac{d}{d t}\right) w=0$ and $U\left(\frac{d}{d t}\right) R\left(\frac{d}{d t}\right) w=0$ define the same behavior whenever U is unimodular.
R defines $\mathfrak{B}=\operatorname{ker}\left(\boldsymbol{R}\left(\frac{d}{d t}\right)\right)$, but not vice-versa!
Obviously, $R\left(\frac{d}{d t}\right) \boldsymbol{w}=0$ and $U\left(\frac{d}{d t}\right) R\left(\frac{d}{d t}\right) w=0$ define the same behavior whenever U is unimodular.

$$
\text { ¿ } \exists \text { 'intrinsic' chararacterization of } \mathfrak{B} \in \mathfrak{L}^{\mathrm{w}} \text { ?? }
$$

\boldsymbol{R} defines $\mathfrak{B}=\operatorname{ker}\left(\boldsymbol{R}\left(\frac{d}{d t}\right)\right)$, but not vice-versa!
Obviously, $R\left(\frac{d}{d t}\right) w=0$ and $U\left(\frac{d}{d t}\right) R\left(\frac{d}{d t}\right) w=0$ define the same behavior whenever U is unimodular.

$$
i i \exists \text { 'intrinsic' chararacterization of } \mathfrak{B} \in \mathfrak{L}^{\mathrm{w}} ? ?
$$

Is there a mathematical 'object' that characterizes a $\mathfrak{B} \in \mathfrak{L}^{\mathrm{w}}$?
\boldsymbol{R} defines $\mathfrak{B}=\operatorname{ker}\left(\boldsymbol{R}\left(\frac{d}{d t}\right)\right)$, but not vice-versa!
Obviously, $R\left(\frac{d}{d t}\right) w=0$ and $U\left(\frac{d}{d t}\right) R\left(\frac{d}{d t}\right) w=0$ define the same behavior whenever U is unimodular.

```
ii \exists 'intrinsic' chararacterization of }\mathfrak{B}\in\mp@subsup{\mathfrak{L}}{}{\textrm{W}}\mathrm{ '??
```

Is there a mathematical 'object' that characterizes a $\mathfrak{B} \in \mathfrak{L}^{W}$?

Define the annihilators of $\mathfrak{B} \in \mathfrak{L}^{\mathrm{W}}$ by

$$
\mathfrak{N}_{\mathfrak{B}}:=\left\{n \in \mathbb{R}^{\mathrm{w}}[\xi] \left\lvert\, n^{\top}\left(\frac{d}{d t}\right) \mathfrak{B}=0\right.\right\}
$$

An intermezzo about the structure of $\mathbb{R}^{n}[\xi]$.

Many properties of matrices generalize to polynomial matrices, e.g., the rank:

The polynomial vectors $r_{1}, \ldots, r_{\mathrm{n}} \in \mathbb{R}^{\mathrm{n}}[\xi]$ are said to be independent if $\left(\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}[\xi]\right.$, and $\left.\sum_{j=1}^{n} \alpha_{j} r_{j}=0\right)$
$\Leftrightarrow \quad\left(\alpha_{1}=\cdots=\alpha_{n}=0\right)$.

An intermezzo about the structure of $\mathbb{R}^{n}[\xi]$.

Many properties of matrices generalize to polynomial matrices, e.g., the rank:

The polynomial vectors $r_{1}, \ldots, r_{\mathrm{n}} \in \mathbb{R}^{\mathrm{n}}[\xi]$ are said to be independent if

$$
\begin{aligned}
& \left(\alpha_{1}, \ldots, \alpha_{\mathrm{n}} \in \mathbb{R}[\xi], \text { and } \sum_{j=1}^{\mathrm{n}} \alpha_{\mathrm{j}} r_{\mathrm{j}}=0\right) \\
& \quad \Leftrightarrow \quad\left(\alpha_{1}=\cdots=\alpha_{\mathrm{n}}=0\right)
\end{aligned}
$$

Let $P \in \mathbb{R}^{\bullet \times}[\xi]$. The row rank of R is defined as the maximal number of independent rows. It equals the column rank of P, defined as the maximal number of independent columns $\leadsto \operatorname{rank}(P)$.

An intermezzo about the structure of $\mathbb{R}^{n}[\xi]$.

Many properties of matrices generalize to polynomial matrices, e.g., the rank:

The polynomial vectors $r_{1}, \ldots, r_{\mathrm{n}} \in \mathbb{R}^{\mathrm{n}}[\xi]$ are said to be independent if $\left(\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{R}[\xi]\right.$, and $\left.\sum_{j=1}^{n} \alpha_{j} r_{j}=0\right)$

$$
\Leftrightarrow \quad\left(\alpha_{1}=\cdots=\alpha_{n}=0\right)
$$

Let $P \in \mathbb{R}^{\bullet \times}[\xi]$. The row rank of R is defined as the maximal number of independent rows. It equals the column rank of P, defined as the maximal number of independent columns $\leadsto \operatorname{rank}(P)$.
$\operatorname{rank}(P)=$ the dimension of the largest square submatrix with a non-zero determinant (i.e., the non-zero minors).

SMITH FORM

The following result is very useful in proofs. It shows that, by pre- and postmultiplying by unimodular matrices, polynomial matrices can be brought in Smith form, a simple, diagonal like form.

SMITH FORM

The following result is very useful in proofs. It shows that, by pre- and postmultiplying by unimodular matrices, polynomial matrices can be brought in Smith form, a simple, diagonal like form.
Let $P \in \mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}[\xi]$. There exist unimodular polynomial matrices
$U \in \mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{1}}[\xi]$ and $V \in \mathbb{R}^{\mathrm{n}_{2} \times \mathrm{n}_{2}}[\xi]$ such that

SMITH FORM

The following result is very useful in proofs. It shows that, by pre- and postmultiplying by unimodular matrices, polynomial matrices can be brought in Smith form, a simple, diagonal like form.
Let $P \in \mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}[\xi]$. There exist unimodular polynomial matrices
$U \in \mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{1}}[\xi]$ and $V \in \mathbb{R}^{\mathrm{n}_{2} \times \mathrm{n}_{2}}[\xi]$ such that

$$
U P V=\left[\begin{array}{cc}
\operatorname{diag}\left(p_{1}, p_{2}, \ldots, p_{r}\right) & 0_{r \times\left(n_{2}-r\right)} \\
0_{\left(n_{1}-r\right) \times r} & 0_{\left(n_{1}-r\right) \times\left(n_{2}-r\right)}
\end{array}\right]
$$

where $r=\operatorname{rank}(P)$ and $p_{\mathrm{k}+1}$ is a factor of p_{k} for $\mathrm{k}=1,2, \ldots \mathrm{k}-1$.

SMITH FORM

The following result is very useful in proofs. It shows that, by pre- and postmultiplying by unimodular matrices, polynomial matrices can be brought in Smith form, a simple, diagonal like form.
Let $P \in \mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{2}}[\xi]$. There exist unimodular polynomial matrices
$U \in \mathbb{R}^{\mathrm{n}_{1} \times \mathrm{n}_{1}}[\xi]$ and $V \in \mathbb{R}^{\mathrm{n}_{2} \times \mathrm{n}_{2}}[\xi]$ such that

$$
\boldsymbol{U P} \boldsymbol{V}=\left[\begin{array}{cc}
\operatorname{diag}\left(p_{1}, p_{2}, \ldots, p_{r}\right) & 0_{r \times\left(n_{2}-r\right)} \\
0_{\left(n_{1}-r\right) \times r} & 0_{\left(n_{1}-r\right) \times\left(n_{2}-r\right)}
\end{array}\right]
$$

where $r=\operatorname{rank}(P)$ and $p_{\mathrm{k}+1}$ is a factor of p_{k} for $\mathrm{k}=1,2, \ldots \mathrm{k}-1$.

The polynomials $p_{1}, p_{2}, \ldots, \mathrm{p}_{\mathrm{r}}$ are called the invariant factors of \boldsymbol{P}.
$\mathbb{R}^{\mathrm{n}}[\xi]$ has the structure of a module over the ring of 'scalars' $\mathbb{R}[\xi]$.
$\mathbb{R}^{\mathrm{n}}[\xi]$ has the structure of a module over the ring of 'scalars' $\mathbb{R}[\xi]$.
This means that the obvious

1. binary operation, addition, $(+)$ on $\mathbb{R}^{\mathrm{n}}[\xi]$,
2. and scalar multiplication, (\bullet), the map from $\mathbb{R}[\xi] \times \mathbb{R}^{\mathrm{n}}[\xi]$ to $\mathbb{R}^{\mathrm{n}}[\xi]$
3. satisfy the required obvious axioms.

Usually scalar multiplication, $p \bullet v$ is simply written as $p \boldsymbol{v}$.

A submodule of $\mathbb{R}^{n}[\xi]$ is a subset of $\mathbb{R}^{n}[\xi]$ that is closed under addition and scalar multiplication (multiplication by polynomials).

A submodule of $\mathbb{R}^{\mathrm{n}}[\xi]$ is a subset of $\mathbb{R}^{\mathrm{n}}[\xi]$ that is closed under addition and scalar multiplication (multiplication by polynomials).

An important property of submodules of $\mathbb{R}^{n}[\xi]$ is that they are all finitely generated, meaning that $\mathfrak{M} \subset \mathbb{R}^{n}[\xi]$ is a submodule iff there exists $g_{1}, g_{2}, \ldots, g_{\mathrm{k}}$ such that

$$
\begin{aligned}
& \mathfrak{M}=\left\{m \in \mathbb{R}^{\mathrm{n}}[\xi] \mid \exists p_{1}, p_{2}, \ldots, p_{\mathrm{k}}\right. \\
& \left.\quad \text { such that } m=p_{1} \bullet g_{1}+p_{2} \bullet g_{2}+\cdots+p_{\mathrm{k}} \bullet g_{\mathrm{k}}\right\}
\end{aligned}
$$

In fact, one can always take $\mathrm{k} \leq \mathrm{n}$

A submodule of $\mathbb{R}^{n}[\xi]$ is a subset of $\mathbb{R}^{\mathrm{n}}[\xi]$ that is closed under addition and scalar multiplication (multiplication by polynomials).

An important property of submodules of $\mathbb{R}^{n}[\xi]$ is that they are all finitely generated, meaning that $\mathfrak{M} \subset \mathbb{R}^{n}[\xi]$ is a submodule iff there exists $g_{1}, g_{2}, \ldots, g_{\mathrm{k}}$ such that

$$
\begin{aligned}
& \mathfrak{M}=\left\{m \in \mathbb{R}^{\mathrm{n}}[\xi] \mid \exists p_{1}, p_{2}, \ldots, p_{\mathrm{k}}\right. \\
& \\
& \left.\quad \text { such that } m=p_{1} \bullet g_{1}+p_{2} \bullet g_{2}+\cdots+p_{\mathrm{k}} \bullet g_{\mathrm{k}}\right\}
\end{aligned}
$$

In fact, one can always take $\mathrm{k} \leq \mathrm{n}$
\exists a nice system theoretic proof of this result.

Back to $\mathfrak{L}^{\mathrm{w}}$:

Proposition: $\mathfrak{N}_{\mathfrak{B}}$ is a $\mathbb{R}[\boldsymbol{\xi}]$ sub-module of $\mathbb{R}^{\mathrm{w}}[\xi]$.

Back to $\mathfrak{L}^{\mathrm{w}}$:

Proposition: $\mathfrak{N}_{\mathfrak{B}}$ is a $\mathbb{R}[\boldsymbol{\xi}]$ sub-module of $\mathbb{R}^{\mathrm{w}}[\boldsymbol{\xi}]$.

Let $<\boldsymbol{R}^{\top}>$ denote the sub-module of $\mathbb{R}^{w}[\xi]$ spanned by the transposes of the rows of \boldsymbol{R}. Obviously $<\boldsymbol{R}^{\top}>\subset \mathfrak{N}_{\mathfrak{B}}$.

Back to $\mathfrak{L}^{\mathrm{w}}$:

Proposition: $\mathfrak{N}_{\mathfrak{B}}$ is a $\mathbb{R}[\boldsymbol{\xi}]$ sub-module of $\mathbb{R}^{\mathrm{w}}[\boldsymbol{\xi}]$.

Let $<\boldsymbol{R}^{\top}>$ denote the sub-module of $\mathbb{R}^{w}[\xi]$ spanned by the transposes of the rows of \boldsymbol{R}. Obviously $<\boldsymbol{R}^{\top}>\subset \mathfrak{N}_{\mathfrak{B}}$.

But, indeed:

$$
\mathfrak{N}_{\mathfrak{B}}=<\boldsymbol{R}^{\top}>!
$$

Note: Depends on $\mathfrak{C}^{\infty} . \subset$ may be false for compact support soln's.

Back to $\mathfrak{L}^{\mathrm{w}}$:

Proposition: $\mathfrak{N}_{\mathfrak{B}}$ is a $\mathbb{R}[\boldsymbol{\xi}]$ sub-module of $\mathbb{R}^{\mathrm{w}}[\boldsymbol{\xi}]$.

Let $<\boldsymbol{R}^{\top}>$ denote the sub-module of $\mathbb{R}^{w}[\xi]$ spanned by the transposes of the rows of \boldsymbol{R}. Obviously $<\boldsymbol{R}^{\top}>\subset \mathfrak{N}_{\mathfrak{B}}$.

But, indeed:

$$
\mathfrak{N}_{\mathfrak{B}}=<\boldsymbol{R}^{\top}>!
$$

Note: Depends on $\mathfrak{C}^{\infty} . \subset$ may be false for compact support soln's.

Theorem:

$$
\mathfrak{L}^{\mathrm{W}} \stackrel{1: 1}{\longleftrightarrow} \text { sub-modules of } \mathbb{R}^{\mathrm{W}}[\xi]
$$

KERNEL REPRESENTATIONS

MINIMAL KERNEL REPRESENTATIONS

Definition: $R\left(\frac{d}{d t}\right) w=0$ is said to be a minimal kernel representation of $\mathfrak{B}=\operatorname{ker}\left(R\left(\frac{d}{d t}\right)\right)$ if, whenever $\boldsymbol{R}^{\prime}\left(\frac{d}{d t}\right) w=0$ is another kernel representation of this \mathfrak{B}, i.e., whenever $\operatorname{ker}\left(R\left(\frac{d}{d t}\right)\right)=\operatorname{ker}\left(\boldsymbol{R}^{\prime}\left(\frac{d}{d t}\right)\right)$, there holds:

$$
\operatorname{rowdim}(R) \leq \operatorname{rowdim}\left(R^{\prime}\right)
$$

MINIMAL KERNEL REPRESENTATIONS

Definition: $R\left(\frac{d}{d t}\right) w=0$ is said to be a minimal kernel representation of $\mathfrak{B}=\operatorname{ker}\left(R\left(\frac{d}{d t}\right)\right)$ if, whenever $\boldsymbol{R}^{\prime}\left(\frac{d}{d t}\right) w=0$ is another kernel representation of this \mathfrak{B}, i.e., whenever $\operatorname{ker}\left(\boldsymbol{R}\left(\frac{d}{d t}\right)\right)=\operatorname{ker}\left(\boldsymbol{R}^{\prime}\left(\frac{d}{d t}\right)\right)$, there holds:

$$
\operatorname{rowdim}(R) \leq \operatorname{rowdim}\left(R^{\prime}\right)
$$

Nomenclature: $\boldsymbol{R}\left(\frac{d}{d t}\right) w=0$ 'is' minimal.
minimal $: ~ \Leftrightarrow$ number of equations 'as small as possible'.
$P \in \mathbb{R}^{\bullet \times}[\xi]$ is said to be of full row rank if its rows are linearly independent i.e., iff $\operatorname{rank}(P)=\operatorname{rowdim}(P)$. Equivalently iff \exists a submatrix of size rowdim $(P) \times$ rowdim (P) with non-zero determinant.
$P \in \mathbb{R}^{\bullet \bullet}[\xi]$ is said to be of full row rank if its rows are linearly independent i.e., iff $\operatorname{rank}(P)=\operatorname{rowdim}(P)$. Equivalently iff \exists a submatrix of size $\operatorname{rowdim}(P) \times \operatorname{rowdim}(P)$ with non-zero determinant.

Note: Assume $R\left(\frac{d}{d t}\right) w=0$ has an $R \in \mathbb{R}^{\bullet \times \text { w }}$ that is not of full row rank.
Can one or more of the equations be removed?
$P \in \mathbb{R}^{\bullet \bullet}[\xi]$ is said to be of full row rank if its rows are linearly independent i.e., iff $\operatorname{rank}(P)=\operatorname{rowdim}(P)$. Equivalently iff \exists a submatrix of size $\operatorname{rowdim}(P) \times \operatorname{rowdim}(P)$ with non-zero determinant.

Note: Assume $R\left(\frac{d}{d t}\right) w=0$ has an $R \in \mathbb{R}^{\bullet \times w}$ that is not of full row rank.
Can one or more of the equations be removed?
No!
$P \in \mathbb{R}^{\bullet \bullet}[\xi]$ is said to be of full row rank if its rows are linearly independent i.e., iff $\operatorname{rank}(P)=\operatorname{rowdim}(P)$. Equivalently iff \exists a submatrix of size $\operatorname{rowdim}(P) \times \operatorname{rowdim}(P)$ with non-zero determinant.

Note: Assume $R\left(\frac{d}{d t}\right) w=0$ has an $R \in \mathbb{R}^{\bullet \times w}$ that is not of full row rank.
Can one or more of the equations be removed?
No!
Can the number of equations be reduced?
$P \in \mathbb{R}^{\bullet \bullet}[\xi]$ is said to be of full row rank if its rows are linearly independent i.e., iff $\operatorname{rank}(P)=\operatorname{rowdim}(P)$. Equivalently iff \exists a submatrix of size $\operatorname{rowdim}(P) \times \operatorname{rowdim}(P)$ with non-zero determinant.

Note: Assume $R\left(\frac{d}{d t}\right) w=0$ has an $R \in \mathbb{R}^{\bullet \times w}$ that is not of full row rank.
Can one or more of the equations be removed?
No!
Can the number of equations be reduced?
Yes!

Theorem (Structure of kernel representations):

Theorem (Structure of kernel representations):

1. Let U be unimodular. Then $R\left(\frac{d}{d t}\right) w=0$ and $U\left(\frac{d}{d t}\right) R\left(\frac{d}{d t}\right) w=0$ have the same behavior.

Theorem (Structure of kernel representations):

1. Let U be unimodular. Then $R\left(\frac{d}{d t}\right) w=0$ and $U\left(\frac{d}{d t}\right) R\left(\frac{d}{d t}\right) w=0$ have the same behavior.
2. Let $R_{1}\left(\frac{d}{d t}\right) w=0$ have behavior \mathfrak{B}_{1}, and $\boldsymbol{R}_{2}\left(\frac{d}{d t}\right) w=0$ have behavior \mathfrak{B}_{2}. Then $\mathfrak{B}_{1} \subseteq \mathfrak{B}_{2}$ iff $\exists \boldsymbol{F} \in \mathbb{R}^{\bullet \times \bullet}[\xi]$ such that

$$
R_{2}=F R_{1}
$$

Theorem (Structure of kernel representations):

1. Let U be unimodular. Then $R\left(\frac{d}{d t}\right) w=0$ and $U\left(\frac{d}{d t}\right) R\left(\frac{d}{d t}\right) w=0$ have the same behavior.
2. Let $\boldsymbol{R}_{1}\left(\frac{d}{d t}\right) w=0$ have behavior \mathfrak{B}_{1}, and $\boldsymbol{R}_{2}\left(\frac{d}{d t}\right) w=0$ have behavior \mathfrak{B}_{2}. Then $\mathfrak{B}_{1} \subseteq \mathfrak{B}_{2}$ iff $\exists \boldsymbol{F} \in \mathbb{R}^{\bullet \times} \cdot[\xi]$ such that

$$
R_{2}=F R_{1}
$$

3. $R\left(\frac{d}{d t}\right) w=0$ is minimal iff \boldsymbol{R} is of full row rank.

We may hence use minimal representation and full row rank kernel representation as synonymous.

Theorem (Structure of kernel representations):

1. Let U be unimodular. Then $R\left(\frac{d}{d t}\right) w=0$ and $U\left(\frac{d}{d t}\right) R\left(\frac{d}{d t}\right) w=0$ have the same behavior.
2. Let $R_{1}\left(\frac{d}{d t}\right) w=0$ have behavior \mathfrak{B}_{1}, and $R_{2}\left(\frac{d}{d t}\right) w=0$ have behavior \mathfrak{B}_{2}. Then $\mathfrak{B}_{1} \subseteq \mathfrak{B}_{2}$ iff $\exists \boldsymbol{F} \in \mathbb{R}^{\bullet} \times \bullet[\xi]$ such that

$$
R_{2}=F R_{1}
$$

3. $R\left(\frac{d}{d t}\right) w=0$ is minimal iff \boldsymbol{R} is of full row rank.

We may hence use minimal representation and full row rank kernel representation as synonymous.
4. Let $R\left(\frac{d}{d t}\right) w=0$ be minimal. All minimal kernel representations with the same behavior are obtained by pre-multiplying \boldsymbol{R} by an arbitrary unimodular polynomial matrix.

ELIMINATION

LATENT VARIABLE SYSTEMS

First principle models \leadsto latent variables. In the case of systems described by linear constant coefficient differential equations:

$$
\boldsymbol{R}_{0} w+\cdots+\boldsymbol{R}_{\mathrm{n}} \frac{\boldsymbol{d}^{\mathrm{n}}}{\boldsymbol{d t ^ { \mathrm { n } }}} w=M_{0} \ell+\cdots+M_{\mathrm{n}} \frac{\boldsymbol{d}^{\mathrm{n}}}{\boldsymbol{d t ^ { \mathrm { n } }}} \ell
$$

In polynomial matrix notation \sim

$$
R\left(\frac{d}{d t}\right) w=M\left(\frac{d}{d t}\right) \ell
$$

LATENT VARIABLE SYSTEMS

First principle models \leadsto latent variables. In the case of systems described by linear constant coefficient differential equations:

$$
\boldsymbol{R}_{0} w+\cdots+\boldsymbol{R}_{\mathrm{n}} \frac{\boldsymbol{d}^{\mathrm{n}}}{\boldsymbol{d t ^ { \mathrm { n } }}} w=M_{0} \ell+\cdots+M_{\mathrm{n}} \frac{\boldsymbol{d}^{\mathrm{n}}}{\boldsymbol{d t}^{\mathrm{n}}} \ell
$$

In polynomial matrix notation \sim

$$
R\left(\frac{d}{d t}\right) w=M\left(\frac{d}{d t}\right) \ell
$$

This is the natural model class to start a study of finite dimensional linear time-invariant systems!!

But is it(s manifest behavior) really a differential system ??

The full behavior of $R\left(\frac{d}{d t}\right) w=M\left(\frac{d}{d t}\right) \ell, \quad$ i.e.,

$$
\mathfrak{B}_{\text {full }}=\left\{(w, \ell) \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w+\ell}\right) \left\lvert\, R\left(\frac{d}{d t}\right) w=M\left(\frac{d}{d t}\right) \ell .\right.\right\}
$$

belongs to $\mathfrak{L}^{\mathbb{w}+\ell}$, by definition. Its manifest behavior equals

$$
\mathfrak{B}=\left\{w \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right) \mid \exists \ell \text { such that } R\left(\frac{d}{d t}\right) w=M\left(\frac{d}{d t}\right) \ell\right\} .
$$

The full behavior of $R\left(\frac{d}{d t}\right) w=M\left(\frac{d}{d t}\right) \ell, \quad$ i.e.,

$$
\mathfrak{B}_{\text {full }}=\left\{(w, \ell) \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w+\ell}\right) \left\lvert\, R\left(\frac{d}{d t}\right) w=M\left(\frac{d}{d t}\right) \ell .\right.\right\}
$$

belongs to $\mathfrak{L}^{w+\ell}$, by definition. Its manifest behavior equals

$$
\mathfrak{B}=\left\{w \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right) \mid \exists \ell \text { such that } R\left(\frac{d}{d t}\right) w=M\left(\frac{d}{d t}\right) \ell\right\} .
$$

Does \mathfrak{B} belong to $\mathfrak{L}^{\text {w }}$?

The full behavior of $R\left(\frac{d}{d t}\right) w=M\left(\frac{d}{d t}\right) \ell, \quad$ i.e.,

$$
\mathfrak{B}_{\text {full }}=\left\{(w, \ell) \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w+\ell}\right) \left\lvert\, R\left(\frac{d}{d t}\right) w=M\left(\frac{d}{d t}\right) \ell .\right.\right\}
$$

belongs to $\mathfrak{L}^{\mathbb{w}+\ell}$, by definition. Its manifest behavior equals

$$
\mathfrak{B}=\left\{w \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right) \mid \exists \ell \text { such that } R\left(\frac{d}{d t}\right) w=M\left(\frac{d}{d t}\right) \ell\right\} .
$$

Does \mathfrak{B} belong to $\mathfrak{L}^{\text {² }}$?

Theorem: It does!

Example:

- The ubiquitous

$$
\frac{d}{d t} x=\boldsymbol{A} x+\boldsymbol{B} u ; y=\boldsymbol{C} x+\boldsymbol{D} u, w=(u, y) .
$$

Example:

- The ubiquitous

$$
\frac{d}{d t} x=A x+B u ; \quad y=C x+D u, \quad w=(u, y)
$$

Which eq'ns describe the (u, y) (input-output) behavior?

Example:

- The ubiquitous

$$
\frac{d}{d t} x=A x+B u ; \quad y=C x+D u, w=(u, y)
$$

Which eq'ns describe the (u, y) (input-output) behavior?

Elimination theorem \Rightarrow it is a system of differential eq'ns:

$$
P\left(\frac{d}{d t}\right) y=Q\left(\frac{d}{d t}\right) u
$$

Example:

- The ubiquitous

$$
\frac{d}{d t} x=A x+B u ; \quad y=C x+D u, w=(u, y)
$$

Which eq'ns describe the (u, y) (input-output) behavior?

Elimination theorem \Rightarrow it is a system of differential eq'ns:

$$
P\left(\frac{d}{d t}\right) y=Q\left(\frac{d}{d t}\right) u
$$

with P square and $\operatorname{det}(P) \neq 0$. Why: soon!

Example:

- The descriptor systems

$$
\frac{d}{d t} E x+F x+G w=0 .
$$

Example:

- The descriptor systems

$$
\frac{d}{d t} E x+F x+G w=0 .
$$

Which eqn's describe the w behavior?

Example:

- The descriptor systems

$$
\frac{d}{d t} E x+F x+G w=0
$$

Which eqn's describe the w behavior?

Elimination theorem \Rightarrow it is a system of differential eq'ns:

$$
R\left(\frac{d}{d t}\right) w=0
$$

Example:

- The descriptor systems

$$
\frac{d}{d t} E x+F x+G w=0
$$

Which eqn's describe the w behavior?

Elimination theorem \Rightarrow it is a system of differential eq'ns:

$$
R\left(\frac{d}{d t}\right) w=0
$$

! Compute $(E, F, G) \mapsto R$. Dimension minimal kernel representation?

Example: Consider the RLC circuit.

First principles modeling (\cong CE's, KVL, \& KCL)
$~ 15$ behavioral equations.
These include both the port and the branch voltages and currents.

Example: Consider the RLC circuit.
First principles modeling (\cong CE's, KVL, \& KCL)
$\leadsto 15$ behavioral equations.
These include both the port and the branch voltages and currents.

Why can the port behavior be described by a system of linear constant coefficient differential equations?

Because:

1. The CE's, KVL, \& KCL are all linear constant coefficient differential equations.
2. The elimination theorem.

Example: Consider the RLC circuit.
First principles modeling (\cong CE's, KVL, \& KCL)
$\leadsto 15$ behavioral equations.
These include both the port and the branch voltages and currents.

Why can the port behavior be described by a system of linear constant coefficient differential equations?

Because:

1. The CE's, KVL, \& KCL are all linear constant coefficient differential equations.
2. The elimination theorem.

Why is there only one equation? Passivity! ... Later.

Let

$$
R\left(\frac{d}{d t}\right) w=M\left(\frac{d}{d t}\right) \ell
$$

be a kernel representation of the full behavior.

Let

$$
R^{\prime}\left(\frac{d}{d t}\right) w=0
$$

be a kernel representation of the manifest behavior.

Let

$$
R\left(\frac{d}{d t}\right) w=M\left(\frac{d}{d t}\right) \ell
$$

be a kernel representation of the full behavior.

Let

$$
R^{\prime}\left(\frac{d}{d t}\right) w=0
$$

be a kernel representation of the manifest behavior.

There exist effective algorithms for

$$
(R, M) \mapsto R^{\prime}
$$

incorporating, if desired, minimality of $R^{\prime}\left(\frac{d}{d t}\right) w=0$.

$\xrightarrow{\text { RECLI }}$

- Linear differential systems: those described by a set of linear constant coefficient differential equations $\leadsto \mathfrak{L}^{\bullet}$, etc.
- Linear differential systems: those described by a set of linear constant coefficient differential equations $\sim \mathfrak{L}^{\bullet}$, etc.
- Behavior := the set of \mathfrak{C}^{∞}-solutions (for convenience)
- Linear differential systems: those described by a set of linear constant coefficient differential equations $\sim \mathfrak{L}^{\bullet}$, etc.
- Behavior := the set of \mathfrak{C}^{∞}-solutions (for convenience)
$\rightarrow \mathfrak{L}^{\mathrm{W}} \stackrel{1: 1}{\longleftrightarrow}$ sub-modules of $\mathbb{R}^{\mathrm{W}}[\boldsymbol{\xi}]$
- Linear differential systems: those described by a set of linear constant coefficient differential equations $\sim \mathfrak{L}^{\bullet}$, etc.
- Behavior := the set of \mathfrak{C}^{∞}-solutions (for convenience)
$\rightarrow \mathfrak{L}^{\mathrm{W}} \stackrel{1: 1}{\longleftrightarrow}$ sub-modules of $\mathbb{R}^{\mathrm{W}}[\xi]$
- Minimal kernel representations: those of full row rank
- Linear differential systems: those described by a set of linear constant coefficient differential equations $\leadsto \mathfrak{L}^{\bullet}$, etc.
- Behavior := the set of \mathfrak{C}^{∞}-solutions (for convenience)
$\triangleright \mathfrak{L}^{\mathrm{W}} \stackrel{1: 1}{\longleftrightarrow}$ sub-modules of $\mathbb{R}^{\mathrm{W}}[\xi]$
- Minimal kernel representations: those of full row rank
- A minimal kernel representation is unique up to pre-multiplication by a unimodular polynomial matrix
- Linear differential systems: those described by a set of linear constant coefficient differential equations $\leadsto \mathfrak{L}^{\bullet}$, etc.
- Behavior := the set of \mathfrak{C}^{∞}-solutions (for convenience)
$\triangleright \mathfrak{L}^{\mathrm{W}} \stackrel{1: 1}{\longleftrightarrow}$ sub-modules of $\mathbb{R}^{\mathrm{W}}[\xi]$
- Minimal kernel representations: those of full row rank
- A minimal kernel representation is unique up to pre-multiplication by a unimodular polynomial matrix
- Elimination theorem:
full behavior linear ODE \Rightarrow manifest behavior linear ODE

It follows from all this that \mathfrak{L}^{\bullet} is closed under:

- Intersection: $\quad\left(\mathfrak{B}_{1}, \mathfrak{B}_{2} \in \mathfrak{L}^{W}\right) \Rightarrow\left(\mathfrak{B}_{1} \cap \mathfrak{B}_{2} \in \mathfrak{L}^{w}\right)$.
- Addition: $\quad\left(\mathfrak{B}_{1}, \mathfrak{B}_{2} \in \mathfrak{L}^{\mathrm{W}}\right) \Rightarrow\left(\mathfrak{B}_{1}+\mathfrak{B}_{2} \in \mathfrak{L}^{\mathrm{W}}\right)$.
- Projection: $\quad\left(\mathfrak{B} \in \mathfrak{L}^{w_{1}+w_{2}}\right) \Rightarrow\left(\Pi_{w_{1}} \mathfrak{B} \in \mathfrak{L}^{w_{1}}\right)$.
- Action of a linear differential operator:
$\left(\mathfrak{B} \in \mathfrak{L}^{\mathrm{w}_{1}}, \boldsymbol{P} \in \mathbb{R}^{\mathrm{w}_{2} \times{ }^{W_{1}}}[\boldsymbol{\xi}]\right) \Rightarrow\left(\boldsymbol{P}\left(\frac{d}{d t}\right) \boldsymbol{\mathfrak { B }} \in \mathfrak{L}^{\mathrm{W}_{2}}\right)$.
- Inverse image of a linear differential operator:
$\left.\left(\mathfrak{B} \in \mathfrak{L}^{\mathrm{w}_{2}}, P \in \mathbb{R}^{\mathrm{w}_{2} \times{ }^{W_{1}}}[\boldsymbol{\xi}]\right) \Rightarrow\left(\boldsymbol{P}\left(\frac{d}{d t}\right)\right)^{-1} \mathfrak{B} \in \mathfrak{L}^{\mathrm{w}_{1}}\right)$.

End of Lecture 2

