
Mathematical Models of Systems IUAP Graduate Course 2002

Solutions Exercises Set 7

Exercise 1 (Matrix norms)

Norms on signals and systems are very important in system theory, in particular in system approximation.
The purpose of this exercise is to introduce some basic facts on matrix norms. These yield a good introduction
to system norms, since linear systems have very many things in common with infinite matrices.

Recall that R•×• denotes the real matrices with any, but, of course, a finite number of rows and columns.
There are 3 basic operations defined on R•×•:

scalar multiplication ◦: α ∈ R,M ∈ R•×• 7→ α◦M ∈ R•×•,

addition +: M1,M2 ∈ R•×•, with dim(M1) = dim(M2) 7→M1 +M2 ∈ R•×•,

multiplication ∗: M1,M2 ∈ R•×•, with coldim(M1) = rowdim(M2) 7→M1 ∗M2 ∈ R•×•.

In practice, neither the ◦ nor the ∗ are written.

The main role, and an exceedingly important one at that, on the mathematical stage for matrices is as linear
transformations on R•:

M ∈ R•×•, v ∈ R•, with dim(v) = rowdim(M) 7→Mv ∈ R•.

In the sequel we will not mention explicitly the dimension restrictions that must hold for addition, multipli-
cation, and matrix action on vectors.

There are 3 types of norms on R•×•:

Vector norms, || · || : R•×• → R+, in which only the vector space structure is considered. Vector norms satisfy
the axioms

1. ||M || > 0 for M 6= 0,

2. ||α ◦M || = |α| ||M ||,

3. ||M1 +M2|| ≤ ||M1||+ ||M2|| (the triangle inequality, also called sub-additivity).

Matrix norms, (written here with 3 bars - this is not standard) ||| · ||| : R•×• → R+, in which also the algebra
(multiplication) structure is considered. Such norms satisfy, in addition to 1, 2, and 3, also the axiom

4. |||M1 ∗M2||| ≤ |||M1||| |||M2||| (called sub-multiplicativity).

Induced norms, in which the role of matrices as linear transformations comes to the foreground. Induced
norms are defined by

|||M |||1→2 = sup06=v∈R•
||Mv||2
||v||1

.

where || · ||1 and || · ||2 denote vector norms on R•. We use the notation ||| · |||1→1 if the matrix is square,
and the norm on the domain and co-domain are taken to be the same. Such a norm is sometimes called
equi-induced.
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1. Prove that an induced norm is a matrix norm (whence the ||| · |||1→2-notation, with 3 bars, is not
frivolous), i.e., prove that if you choose once and for all a norm on Rn for all n ∈ N, then the resulting
induced norm on matrices is a matrix norm.

|||M1M2|||1→3 = supx6=0

‖M1M2x‖3
‖x‖3

= sup x6=0
M2x6=0

‖M1M2x‖3
‖M2x‖2

‖M2x‖2
‖x‖3

≤ supM2x6=0

‖M1M2x‖3
‖M2x‖2

supx6=0

‖M2x‖2
‖x‖3

≤ sup06=v

‖M1v‖3
‖v‖2

supx6=0

‖M2x‖2
‖x‖3

= |||M1|||2→3 |||M2|||1→2

2. Prove that |||I||| ≥ 1.

|||I||| = |||I I||| ≤ |||I||| |||I||| ⇒ |||I||| ≥ 1

3. Prove that |||I|||1→1 = 1.

|||I|||1→1 = supx6=0

‖Ix‖1
‖x‖1

= 1

4. Prove that if || · || is a vector norm on R•×•, then so is the scaling C|| · || for C > 0.

C‖ · ‖ trivially satisfies axioms 1,2, and 3 for any C > 0.

Prove that if ||| · ||| is a matrix norm, then so is the scaling C||| · ||| for C ≥ 1.

If C ≥ 1, then axiom 4 holds as well since

|||M1M2||| ≤ |||M1||| |||M2||| and C ≥ 1 ⇒ C|||M1M2||| ≤ C|||M1||| C|||M2|||

For which C is the scaled induced norm C||| · |||1→2 an induced norm?

Obviously C||| · |||1→2 is also induced: change || · ||1 to C−1|| · ||1. But, if ||| · |||1→1 is an
equi-induced norm, then |||I|||1→1 = 1 (see 3). Hence for C||| · |||1→1 to be an equi-induced
norm, C must be 1.

Same question for C||| · |||1→1.

The most ‘famous’ matrix norms are the Frobenius norm:

||M ||F :=
√

Trace(M>M).

and the spectral norm

||M ||spectral := the square root of the maximum eigenvalue of M>M.
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5. Prove that the Frobenius norm is a matrix norm, but not, and none of its scalings, an induced norm.
More precisely, prove that, unless n1 or n2 is equal to one, there do not exist norms || · ||1 on Rn1 and

|| · ||2|| on Rn2 such that for all M ∈ Rn1×n2 , ||M ||F = sup06=v∈Rn2

||Mv||1
||v||2

.

Let Mk` denotes the (k, `)-th element of M ∈ Rn1×n2 . Then

‖M‖F =

√

√

√

√

n1
∑

k=1

n2
∑

`=1

M2
k`.

This shows that ‖ · ‖F is merely the Euclidean norm of M viewed in the obvious way as
an element of Rn1×n2 . This yields axioms 1, 2, and 3.

To show axiom 4, let M ′ ∈ Rn1×n2 and M ′′ ∈ Rn2×n3 . Then

‖M ′M ′′‖2F =

n1
∑

k=1

n3
∑

`=1

(M ′M ′′)2k`

=

n1
∑

k=1

n3
∑

`=1

( n2
∑

j=1

M ′
kjM

′′
j`

)2

≤
n1
∑

k=1

n3
∑

`=1

n2
∑

j=1

(M ′
kj)

2
n2
∑

j=1

(M ′′
j`)

2 (Cauchy–Schwartz)

=

n1
∑

k=1

n2
∑

`=1

(M ′
kj)

2
n3
∑

`=1

n2
∑

j=1

(M ′′
j`)

2

= ‖M ′‖2F ‖M ′′|2F

We now show that no matter which norms ‖ · ‖1 on Rn1 and ‖ · ‖2 on Rn2 , we choose, there
is no constant C > 0, such that

‖M |2→1
‖M‖F

= C, for all M ∈ Rn1×n2 .

This result is quite easy to prove for equi-induced norms, but we want the general case.
The proof which we give, is courtesy of Vijaya–Sekhar Chellaboina and Wassim M. Had-
dad, “Is the Frobenius norm induced?”, IEEE Transactions on Automatic Control, vol-
ume 40, pages 2137–2139, 1995. It is quite surprising that such a basic fact about matrices
was apparently first proven in a control journal.

In fact, we first prove that the only unitarily invariant (see 7) induced norms on Rn1×n2

are those which are proportional to the spectral norm.

Proposition: Let J ∈ Rn1×n2 be the matrix with a 1 in the (1, 1) element and 0 everywhere
else. Then ‖ · ‖ is a unitarily invariant induced norm on Rn1×n2 iff

‖M‖ = ‖J‖ ‖M‖spectral.

Proof: Let M be a dyad, i.e., a matrix of rank one: M = ab> with a ∈ Rn1 and b ∈ Rn2 .
Then by the SVD there exist unitary matrices U and V , such that

Uab>V > = ‖a‖En1
‖b‖En2

J,

where ‖ · ‖En
denotes the Euclidean norm on Rn. By unitary invariance, therefore,

‖ab>‖ = ‖a‖En1
‖b‖En2

‖J‖.

This proves the proposition for dyads.
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Let ‖ · ‖ be a norm on Rn. The dual norm ‖ · ‖∗ is defined by

‖x‖∗ := max
06=y∈Rn

|y>x|
‖y‖ .

It is easy to prove that ‖ · ‖∗ also defines a norm on Rn. Further the dual of the dual is
the original (the chic way of saying this is that dualization is an involution on the space

of norms on Rn). In other words, (‖ · ‖∗)∗ = ‖ · ‖ (for a proof of this, see the book by
Roger A. Horn and Charles R. Johnson, Matrix Analysis, Cambridge University Press,
1985, theorem 5.5.14). Also, it is easy to see that the Euclidean norm is self-dual. Now
compute the norm of ab> as an induced norm from Rn2 , ‖ · ‖2 to Rn1 , ‖ · ‖1. Obviously

‖ab>‖2→1 = supx∈Rn2

|b>x|
‖x‖2

‖a‖1 = ‖a‖1‖b‖∗2.

It follows that if ‖ · ‖ is both induced and unitarily invariant, we obtain the following
relation between the various norms:

‖a‖1‖b‖∗2 = ‖a‖En1
‖b‖En2

‖J‖.

Therefore (take a fixed b), there exists a ρ > 0, such that

‖a‖1 = ρ‖a‖En1
, for all a ∈ Rn1 , and ‖b‖∗2 =

‖J‖
ρ
‖b‖En2

, for all b ∈ Rn2 .

Dualizing the latter and using (‖ · ‖∗2)∗ = ‖ · ‖2, together with ‖ · ‖En
= ‖ · ‖∗En

, yields

‖ · ‖1 = ρ‖ · ‖En1
, ‖ · ‖2 =

ρ

‖J‖‖ · ‖En2
.

Conclude that

‖M‖2→1 = sup06=x∈Rn2

‖Mx‖2
‖x‖1

= ‖J‖ sup06=x∈Rn2

‖Mx‖En1

‖x‖En2

= ‖J‖ ‖M‖spectral. (see 6)

Since (see 8)

‖M‖F =
√

σ21(M) + σ22(M) + · · ·+ σ2rank(M)(M)

and ‖M‖spectral = σ1(M), we see that c‖M‖F is not an induced norm on Rn1×n2 (unless n1

and/or n2 are 1).

6. Prove that the spectral norm is an induced norm.

The induced norm of M ∈ Rn1×n2 viewed as a map from En1 to En2 is defined by

‖M‖En1
→En2

=

√

sup06=x∈Rn2

x>M>Mx

x>x
.

Since M>M ≥ 0, this supremum equals the square root of the maximum eigenvalue of
M>M , i.e., ‖M‖En1

→En2
= ‖M‖spectral.
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7. Call a vector norm unitarily invariant if ||UMV || = ||M || for all unitary matrices U, V (U, V square and
U>U = I, V >V = I). Prove that the Frobenius and the spectral norm are both unitarily invariant.

(i)

‖M‖2F = trace
(

UMV (UMV )>
)

= trace(UMV V >M>U>)

= trace(UMM>U>)

= trace(U>UMM>) (trace(AB) = trace(BA))

= trace(MM>).

This shows that the Frobenius norm is unitarily invariant.

(ii) UMV (UMV )> = UMM>U> and U> = U−1, shows that UMV (UMV )> and MM> are
similar, and hence have the same eigenvalues. Therefore M and UMV have the same
spectral norm.

8. Denote by (σ1(M), σ2(M), . . . , σmin{n1,n2}(M) the SV’s of M ∈ Rn1×n2 . Prove that a unitarily invariant
norm on Rn1×n2 is a convex function of the SV’s. Express the Frobenius norm and the spectral norm in
terms of the SV’s.

By the SVD, there exist unitary matrices U and V , such that

UMV =











[diag(σ1(M), σ2(M), . . . , σn1(M)) 0n2−n1 ] if n1 < n2
[

diag
(

σ1(M), σ2(M), . . . , σn2(M)
)

0n1−n2

]

if n1 ≥ n2
(SVD)

Hence, if ‖ · ‖ is a unitarity invariant norm, ‖M‖ = ‖UMV ‖ is obviously a function of the
entries of UMV , whence of the singular values of M .

Call this map f : Rmin{n1,n2}
+ → R+.

f convex :⇔ f
(

αx1 + (1− α)x2
)

≤ αf(x1) + (1− α)f(x2), for all x1, x2 ∈ Rmin{n1,n2}
+ , 0 ≤ α ≤ 1.

This, however, is an immediate consequence of the convexity of norms

‖αM1 + (1− α)M2‖ ≤ α‖M1‖+ (1− α)‖M2‖

applied to diagonal matrices.

To compute ‖M‖spectral, observe that the non-zero eigenvalues of M>M equal those of

diag
(

σ21(M), σ22(M), . . . , σ2min{n1,n2}
(M)

)

.

It follows that ‖M‖spectral = σ1(M). To compute ‖M‖F, observe that

trace(M>M) = trace
(

(UMV )>(UMV )
)

= σ21(M) + σ22(M) + · · ·+ σ2min{n1,n2}
(M).

Hence
‖M‖F =

√

σ21(M) + σ22(M) + · · ·+ σ2min{n1,n2}
(M).
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There appear to be more inequalities involving norms, singular values, and eigenvalues than there are fishes
in the sea. Almost weird, for example, are the Ky-Fan norms. Let

σ(M) = (σ1(M), σ2(M), . . . , σrank(M)(M))

denote the non-zero SV’s of M . Define for k ∈ N and 1 ≤ p <∞, the (k, p) Ky-Fan norm by

||M ||(k,p) :=
(

∑

k′=1,2,...,k

σk′(M)p
)

1

p

(define σk(M) = 0 for k > rank(M)). Well, believe it or not, || · ||(k,p) is a matrix norm for all k ∈ N and
1 ≤ p <∞. For k = 1 the Ky-Fan norm becomes the spectral norm. The (rank(M), p) Ky-Fan norm is called
the Schatten p-norm. For p = 2 we obtain the Frobenius norm, and for p = 1 the Trace norm.
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Exercise 2 (Balancing, reduction, and stability)

The purpose of this exercise is (i) to make you reflect on the relations and the differences between asymptoti-
cally stable systems and systems in which the norm of the state decreases, and (ii) to show that balancing leads
to contractivity, but that strict contractivity and asymptotic stability of the reduced system is not automatic.

Consider the autonomous system

Σ :
d

dt
x = Ax, (1)

with A ∈ Rn×n. Recall from the lectures the notions of a Hurwitz matrix, stability, asymptotic stability, and
the related conditions on the spectrum of A.

In this exercise, let, for v ∈ R•, ||v|| denote the Euclidean norm, defined by ||v|| =
√
v>v, and for M ∈ R•×•,

let ||M || denote the Euclidean induced norm, ||M || := sup06=v∈R•
||Mv||
||v|| . Of course, this norm is what in

exercise 1 was called the spectral norm.

Consider also the associated equation

A>P + PA = Q (2)

relating P,Q ∈ Rn×n, called the Lyapunov equation. It is one of the most important equations of all of systems
theory.

The significance of this equation in terms of Lyapunov theory is as follows. Let V (x) = x>Px. Then the

derivative of V along solutions of Σ,
•

V Σ, is given by
•

V Σ(x) = x>Qx.

As a warm-up, remind yourself of the equivalence of

1. Σ is asymptotically stable: all solutions of Σ go to zero as t→∞.

2. A is Hurwitz.

3. ∃K ∈ R+, ε > 0 such that ||eAt|| ≤ Ke−εt for t ≥ 0.

4. for a Q = Q> ≤ 0 with (A,Q) observable, there is a (unique) solution P to (2) that is symmetric and
> 0.

Note that the smallest possible K in the third statement can be quite large, and certainly there is no reason
for K always to be 1: asymptotically stable systems can exhibit large overshoots.

Moreover, if A is Hurwitz, and for some P = P> > 0 (2) gives a Q = Q> ≤ 0, then (A,Q) is an observable
pair. If P = P> > 0 and Q = Q> ≤ 0, then x>Px is called a quadratic Lyapunov function for Σ. If moreover
(A,Q) is observable, the we call it a strict quadratic Lyapunov function. Thus Σ is (asymptotically) stable
iff it admits a (strict) quadratic Lyapunov function.

Note: this nomenclature is not standard. That Lyapunov functions should be non-increasing along solutions
(Q ≤ 0) is standard. Sometimes, however, Lyapunov functions are not required to be positive for x 6= 0
(P > 0 is not required).

For the warm-up and the pre-amble, we refer to any of the few good introductory books on
Linear System Theory, for example: [1] J.W. Polderman and J.C. Willems, Introduction to
Mathematical Systems Theory: A Behavioral Approach, Springer Verlag, 1998. See chapter 7.
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Call Σ1 :
d
dt
x = A1x equivalent to Σ :⇔ ∃ a non-singular S ∈ Rn×n such that A1 = SAS−1.

Call Σ contractive if every solution x : R → Rn of Σ satisfies t1 ≥ t0 ⇒ ||x(t1)|| ≤ ||x(t0)||, and strictly
contractive if t1 > t0 ⇒ ||x(t1)|| < ||x(t0)||.

1. Prove that strict contractivity implies asymptotic stability.

strict contractivity⇒ ‖eAx(0)‖ < ‖x(0)‖, for all x(0) ∈ Rn

⇒ ‖eA‖ < 1

⇒ ‖eAN‖ < ‖eA‖N , for all N ∈ N

⇒ eAN N→∞−−−−→ 0

⇔ eAt t→∞−−−→ 0

⇔ asymptotic stability

2. Prove that contractivity + asymptotic stability imply strict contractivity.

contractivity⇒ ‖eAtx(0)‖ is non-increasing for t ≥ 0

⇒ d

dt
‖eAtx(0)‖2 ≤ 0, for t ≥ 0

⇒ x>(0)(A+A>)x(0) ≤ 0 (evaluate derivative at t = 0)

⇒ A+A> ≤ 0 (holds for all x(0) ∈ Rn)

Assume contractivity but not strict, then

there exists0 6= x(0) ∈ Rn and t > 0 such that ‖eAtx(0)‖ = ‖x(0)‖
⇒ ‖eAt′x(0)‖ = ‖x(0)‖, for t′ ∈ [0, t] (monotonicity)

⇒ d

dt
‖eAt′x(0)‖2 = 0, for t′ ∈ [0, t]

⇒
(

eAt′x(0)
)>

(A+A>)
(

eAt′x(0)
)

= 0, for t′ ∈ [0, t] (evaluate derivatives at 0)

⇒ (A+A>)
(

eAt′x(0)
)

= 0, for t′ ∈ [0, t] (A+A> ≤ 0)

⇒ (A+A>)Akx(0) = 0, for all k ∈ Z+ (differentiate and evaluate at t′ = 0)

⇒ (A+A>)eAtx(0) = 0, for all t ∈ R+
⇒ ‖eAtx(0)‖2 = ‖x(0)‖2, for all t ∈ R+

which contradicts asymptotic stability.
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3. Prove that Σ is asymptotically stable iff it is equivalent to a strictly contractive Σ1.

(if)

Σ1 strictly contractive⇒ Σ1 asymptotically stable (see 1)

⇔ SAS−1 Hurwitz

⇔ A Hurwitz (SAS−1 and A have the same eigenvalues)

⇔ Σ asymptotically stable

(only if)

Σ1 asymptotically stable

⇔ ∃P = P> > 0, such that A>P + PA < 0 ([1, thm 7.4.7, 3])

⇔ ∃S ∈ Rn×n non-singular, such that A>S>S + S>SA < 0 (take S ∈ Rn×n : P = S>S)

⇔ SAS−1 + (SAS−1)> < 0 (premultiply with (S>)−1

and postmultiply with S−1)

⇒ Σ1 strictly contractive

4. Prove that for a symmetric system Σ (:⇔ A = A>) the following are equivalent:

(a) Σ is strictly contractive.

(b) Σ is asymptotically stable.

(c) A < 0.

What is the analogous statement for contractivity?

(a) ⇒ (b) See 1.

(b) ⇒ (c) (b) ⇔ A Hurwitz ⇒ the eigenvalues of A are < 0⇒ (A = A>)A ≤ 0 ⇔ (c)

(c) ⇒ (a) Let x(0) 6= 0. Then

d

dt
‖eAtx(0)‖2 =

(

eAtx(0)
)>

(A+A>)
(

eAtx(0)
)

< 0,

so that ‖eAtx(0)‖2 is monotonically decreasing for t ≥ 0, which implies strict contractivity.

The analogous statement for contractivity is the equivalence for A = A> of

(a) Σ is contractive,

(b) Σ is stable (i.e., all solutions are bounded on [0,∞)), and

(c) A ≤ 0.

5. Prove that the following conditions are equivalent

(a) Σ is contractive

(b) ||eAt|| ≤ 1 for all t > 0

(c) A+A> ≤ 0

(d) Σ and d
dt
x = A>x have a common quadratic Lyapunov function

What is the analogous equivalences for strict contractivity?
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(a)⇔ ‖eAtx(0)‖ ≤ ‖x(0)‖, for all x(0) ∈ Rn and t ≥ 0

⇔ sup06=x(0)∈Rn

‖eAtx(0)‖
‖x(0)‖ ≤ 1, for all t ≥ 0

⇔ ‖eAt‖ ≤ 1, for all t ≥ 0

⇔ ‖eAt‖ ≤ 1, for all t > 0

⇔ (b)

(a)⇔ d

dt
‖eAtx(0)‖2 ≤ 0, for all x(0) ∈ Rn and t ≥ 0

⇔
(

eAtx(0)
)>

(A+A>)
(

eAtx(0)
)

, for all x(0) ∈ Rn and t ≥ 0

⇔ A+A> ≤ 0

⇔ (c)

(c)⇔ A+A> ≤ 0

⇔ ‖x‖2 is a Lyapunov function for both
d

dt
x = Ax and

d

dt
x = A>x

⇒ d

dt
x = Ax and

d

dt
x = A>x have a common Lyapunov function

⇔ (d)

(d)⇔ ∃Q = Q> > 0 such that A>Q+QA ≤ 0 and AQ+QA> ≤ 0

⇔ ∃Q = Q> > 0 such that (A+A>)Q+Q(A+A>) ≤ 0 (add)

⇒ d

dt
x = (A+A>)x is stable

⇔ A+A> ≤ 0 (see 4)

⇔ (c)

The analogous statement for strict contractivity is. The following statements are equiv-
alent:

(a) Σ is strictly contractive,

(b) ‖eAt‖ < 1 for all t > 0,

(c) A+A> < 0, and

(d) Σ and d
dt
x = A>x have a common proper quadratic Lyapunov function.

6. Assume that d
dt
x = Ax+Bu, y = Cx+Du is controllable, observable, stable (:⇔ A Hurwitz, as is often

done we identify stability of the input/output system Σ with asymptotic stability of the autonomous
system d

dt
x = Ax), and balanced (see lecture 7). Prove that d

dt
x = Ax is strictly contractive. This

shows that balanced state representations bring stability strongly into evidence.

The system d
dt
x = Ax is balanced iff

∃ ∆ = diag(σ1, σ2, · · · , σn) with σ1 ≥ σ2 ≥ · · · ≥ σn, s.t. A∆ = ∆A> = −BB>, A>∆+∆A = −C>C.

Thus d
dt
x = Ax and d

dt
x = A>x have a common proper Lyapunov function, and, by 5,

d
dt
x = Ax is strictly contractive.
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7. Assume again that d
dt
x = Ax + Bu, y = Cx + Du is controllable, observable, stable (we call an in-

put/output system stable if A is Hurwitz), and balanced. Partition A as
[

A11 A12

A21 A22

]

. Prove that
d
dt
x1 = A11x1 is contractive, but not always strictly contractive. Whence stability of the reduced

systems d
dt
x1 = A11x1 + B1u, y = C1x + D1u is not an automatism. Do you recall from the lectures

which simple condition on the Hankel SV’s yields strict contractivity, and hence stability?

For example,

A =

[

0 1
−1 −1/2

]

, B =

[

0
1

]

, C = [0 1], D = 0

yields a balanced system with ∆ =

[

1 0
0 1

]

, but the reduced system Ã = 0, B̃ = 0, C̃ = 0,

D̃ = 0 is not asymptotically stable. The simple condition on the Hankel singular values
that guarantees stability of the reduced system is:

the neglected singular values are distinct from the non-neglected singular values.

Watch out: the discrete time case is significantly different!
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