
Mathematical Models of Systems IUAP Graduate Course 2002

Solutions Exercises Set 3

Exercise 1 (Controllability and interconnection)

The aim of this exercise is (i) to illustrate the behavioral concept of controllability and (ii) to show its fragility
under system operations.

1. Let B1 ∈ L• be described by

R1(
d

dt
)w1 = R2(

d

dt
)w2, (1)

and B2 ∈ L• be described by

R3(
d

dt
)w3 = R4(

d

dt
)w4. (2)

Define their series (or cascade) interconnection by the full behavioral equations (1,2) combined with

w2 = w3.

Of course, we assume that the dimensions are such that this equation makes sense. In the manifest
behavior, consider (w1, w4) as the manifest variables and (w2, w3) as latent variables (i.e., in behavioral
equations for the manifest behavior of the series connection, w2 and w3 are eliminated).PSfrag replacements

w1 w2 w3 w4

Consider the system with transfer function
1

s
, i.e.,

d

dt
y1 = u1

and the system with transfer function s, i.e.,

y2 =
d

dt
u2.

Are these systems controllable? Compute behavioral equations for the manifest behavior of the series
connection defined by u2 = y1. Is this system controllable? What is its transfer function? Now consider
the series connection in opposite order, i.e., defined by u1 = y2. Compute behavioral equations for the
manifest behavior of this series connection. Is this system controllable? What is its transfer function?
Are the two series connections the same? If not, give a signal that belongs to the manifest behavior of
one, but not the other. Does series connection of single-input/single-output connections ‘commute’?
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(1) ⇔ R( d
dt
)

[

u1

y1

]

= 0 with R(ξ) = [−1 ξ]; rank(R(λ)) = 1 for all λ ∈ C ⇒ controllable.

(2) ⇔ R( d
dt
)

[

u2

y2

]

= 0 with R(ξ) = [−ξ 1]; rank(R(λ)) = 1 for all λ ∈ C ⇒ controllable.

series connection:

PSfrag replacements

1
s

s 1≡

d

dt
y1 = u1, y2 =

d

dt
u2, u2 = y1

Eliminating y1 and u2, yields the system u1 = y2, which is obviously controllable. The
transfer function is 1.
Consider now the series connection

in the opposite order:

PSfrag replacements
1
s

s

1
≡

1
s

s s
s≡

d

dt
y1 = u1, y2 =

d

dt
u2, u1 = y2

Eliminating y2 and u1, yields the system

d

dt
y1 =

d

dt
u2 ⇔ R(

d

dt
)

[

u2

y1

]

= 0, with R(ξ) = [−ξ ξ]

rank(R(λ)) = 1 for 0 6= λ ∈ C, and rank(R(λ)) = 0 for λ = 0, so the system is not controllable.
The transfer function is ξ−1ξ = 1.

The two series connections are not equivalent, even though they have the same transfer
function. Any non-zero constant input-output belongs to the second series connection,
but not to the first. Hence series connection does not commute. It does commute,
though, for the transfer functions, i.e., for the controllable part.

Comment: When we write s
s
for a transfer function, or, generally, a transfer function with

a common factor in the numerator and denominator, we mean exactly the same as 1
1 ,

with the common factor cancelled. Indeed, in rational functions one can by definition of

a rational function cancel (or add) common factors. So, when you read or hear: assume
that there are no common factors in the numerator and denominator of this or that

transfer function, smile, and think ‘innocence is bliss’. What this assumption usually
means is that people actually have a kernel representation, in which lack of common
factors means controllability. But since they have been brought up without the notion
of kernel representation, but with the thought that a system IS a transfer function, they
have to resort to such convoluted statements involving common factors.

2. Define, in the above spirit of series connection, parallel connection.PSfrag replacements

w1 w2

w3 w4

w′
1 w′

2
+

+

Parallel connection: (1,2) combined with

w′
1 = w1 = w3, w′

2 = w2 + w4,

with w′
1 and w′

2 the manifest variables and w1, w2, w3, and w4, the latent variables.
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3. Decide, by means of a proof or a counterexample, which of the above operations preserve controllability.
Of course, we assume that we deal with systems in L•, and that the dimensions are appropriate:

(a) series connection

Series connection does not preserve controllability, see 1.

(b) parallel connection

Parallel connection connection does not preserve controllability.

Example:

PSfrag replacements

1
s+1

s
s+1

s+1
s+1uu yy ≡

(

d

dt
+ 1

)

y1 = u1,

(

d

dt
+ 1

)

y2 =
d

dt
u2, u = u1 = u2, y = y1 + y2

After elimination: ( d
dt
+ 1)y = ( d

dt
+ 1)u, so R( d

dt
)

[

u

y

]

= 0, with R(ξ) = [−ξ − 1 ξ + 1],

which drops rank for λ = −1.

(c) addition, i.e., does B1,B2 controllable imply B1 + B2 controllable?

Define B1 + B2 by,

B1 : R1(
d

dt
)w1 = 0, B2 : R2(

d

dt
)w2 = 0, B1 + B2 : w = w1 + w2,

with w1, w2 latent variables, and w the manifest one. B1 and B2 are controllable iff the
full behavior is controllable, which implies that B1 + B2 is controllable (elimination
preserves controllability, see 3e).

(d) intersection

Let

B1 : R1(
d

dt
)w1 = 0, B2 : R2(

d

dt
)w2 = 0.

The intersection of B1 and B2 does not preserve controllability.

Take, for example, R1 = [p1 q1], R2 = [p2 q2],

[

R1

R2

]

=

[

p1 q1
p2 q2

]

drops rank at the roots

of p1q2 − q1p2.

(e) elimination

Elimination preserves controllability. Go back to the basic definition of controllability
for a straightforward proof, that is also valid for nonlinear systems. Or consider the
representation R( d

dt
)w = Monl, use a unimodular pre-multiplication, if necessary, to

write this as R′( d
dt
)w = 0, R”( d

dt
)w = M”( d

dt
)`, with M” of full row rank. Note that

R′( d
dt
)w = 0 is a kernel representation of the manifest behavior. Finally, observe that

rank constancy of [R(λ) M(λ)] implies rank constancy of R′(λ). Hence controllability
of the full behavior implies controllability of the manifest behavior.

(f) action of a linear differential operator i.e., does B controllable and F ∈ R•×•[ξ] imply F ( d
dt
)B

controllable?

Assume that B is controllable. Hence it admits an image representation w =M( d
dt
)`.

It follows that F ( d
dt
)B (variables v) is defined by v = F ( d

dt
)w = F ( d

dt
)M( d

dt
)`.

Hence F ( d
dt
)B admits an image representation, so that F ( d

dt
)B is controllable.
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(g) the inverse action of a linear differential i.e., does B controllable and F ∈ R•×•[ξ] imply that
{w | F ( d

dt
)w ∈ B} (this is a system in L•!) is controllable?

Assume that B is controllable and has a representation R( d
dt
)v = 0. Then F−1( d

dt
)B is

governed by

F (
d

dt
)w ∈ B, i.e., R(

d

dt
)F (

d

dt
)w = 0.

Clearly R(λ) could have constant rank, but R(λ)F (λ) not (take for example R(ξ) = ξ).
Hence F−1( d

dt
)B need not be controllable.
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Exercise 2 (Moving average)

The aim of this exercise is to illustrate that the notion of controllability can even shed some light on some
very common algorithms.

Throughout this exercise, the time-axis is Z.

1. (Recall first exercise 2 of set 2). Let σ denote, as usual, the shift : σ(f)(t) := f(t+1). Let R ∈ R•×w[ξ, ξ−1]
and consider the system of difference equations

R(σ, σ−1)w = 0.

This defines the dynamical system Σ = (Z,Rw,B). Prove that this system is controllable iff

rank(R(λ, λ−1)) = constant over 0 6= λ ∈ C.

Prove by an example that you cannot dispense of ‘puncturing’ 0 from C in this test.

The Smith form for matrices over R[ξ, ξ−1] reads: Let M ∈ R•×•[ξ, ξ−1]. There exist
unimodular U, V ∈ R•×•[ξ, ξ−1], such that UMV is of the form

UMV =

[

D 0
0 0

]

,

with D = diag(d1, d2, . . . , dr), dk ∈ R[ξ, ξ−1], and dk+1 is a factor of dk, for k = 1, . . . , r − 1. In
fact, we can take dk ∈ R[ξ] with dk(0) 6= 0.

Now, proceed exactly as in the continuous-time case: R(σ, σ−1)w = 0 defines a controllable
system iff D(σ, σ−1)w = 0 does. The latter is the case iff each of the systems dk(σ, σ

−1)wk = 0
defines a controllable system. This is the case iff each of the dk’s is unimodular. Expressed
in terms of R, this yields the rank condition.

Note finally that the puncturing is indeed necessary. Consider the system described by
σw = 0. i.e., B = 0. It is obviously controllable. The associated R(ξ) is ξ. R(λ) drops rank
at λ = 0, but this does not contradict controllability.

2. Consider the system defined by

w2(t) =
1

T
Σ

t′=1,2,...,T
w1(t− t′). (3)

This algorithm is called a moving average (MA) smoothing. T ∈ N is called the averaging window. It is
very frequently used in order to filter out noise, detecting trends, etc. When T is large, it is tempting
to replace this algorithm by

w2(t) = w2(t− 1) +
1

T
(w1(t− 1)− w1(t− T − 1)). (4)

(a) Do (3) and (4) have the same transfer function?

The transfer function w1 7→ w2 of (3) is

G(ξ) =
1

T
(ξ−1 + ξ−2 + · · ·+ ξ−T ) =

1

T

ξ−1 − ξ−(T+1)

1− ξ−1
,

and the transfer function of (4) is

G(ξ) =
1

T

ξ−1 − ξ−(T+1)

1− ξ−1
.

(3) and (4) have the same transfer function.
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(b) Compare, by counting the number of additions and multiplications required per time-step, (3) and
(4) from the computational complexity point of view.

Per “time step” (3) takes T − 1 additions and 1 multiplication, while (4) takes only
2 additions and 1 multiplication. From this point of view, (4) seems simpler.

(c) Do (3) and (4) define the same system (of course, in the behavioral sense, the one and only way...)?

No, (3) is controllable and (4) is not (see 2d). For example, w1(t) = c1, w2(t) = c2 is a
solution of (4), but not of (3) if c1 6= c2.

(d) Is (3) controllable? Is (4) controllable?

Apply part 1: (3) is controllable since

R(ξ) = [−
1

T
(ξ−1 + ξ−2 + · · ·+ ξ−T ), 1], rank(R(λ)) = 1, ∀ 0 6= λ ∈ C.

For (4), we get

R(ξ) = [−
1

T
(1− ξ−(T+1)), 1− ξ−1], rank(R(1)) = 0,

so it is not controllable.

(e) Find a controllable ⊕ autonomous decomposition of (4).

Bcontrollable : kernel representation (3)

Bautonomous : kernel representation w1 = 0, σw2 = w2.

(f) Would you call (3) stable? (We use ‘stable’ as meaning [w1(t) = 0, (w1, w2) ∈ B] ⇒ [w2(t) →
t→∞].) (4)? Does this conclusion make (4) useless as an algorithm?

(3) is stable: if w1 = 0 for t ≥ 0, then w2(t)
t→∞
−−−→ 0. (4) is not stable: if w1 = 0 for

t ≥ 0, then w2(t) does not necessarily go to zero (it may be a non-zero constant, see
2e). (4) is rather useless: if an error occurs in the calculations of w2(t

′), this error
will appear in the results forever after that, for t > t′.

Conclude that stability is definitely not solely an issue about transfer functions, notwithstanding what
is written in an endless number of papers in the IEEE Transactions on Automatic Control.

3. A very close relative of (3) is

w2(t) =
1

2T + 1

∑

t′=−T,...,−1,0,1,...,T

w1(t− t′). (5)

We have seen during the lectures that every system in L• admits an componentwise input/output
partition with a proper transfer function. This result generalizes to the discrete time case (you may
want to prove this): every system admits a componentwise i/o partition in which the input does not
anticipate the output (sometimes this is called ‘causality’ ). Consider the system defined by

p(σ, σ−1)y = q(σ, σ−1)u,

with 0 6= p, q ∈ R[ξ, ξ−1]. Determine in terms of the transfer function when the input does not anticipate
the output. What is this non-anticipating input/output partition for (3)? Do you have a choice? Same
question for (5). In the first case, the answer is what every sensible person would expect. In the second
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case the answer is a bit absurd. What is the explanation of this annoying aspect of (5)? The problem,
it appears, is with the notions of input and output. They are much more context dependent that we
have been led to believe.

First, we analyze when in the system with behavior B described by

p(σ, σ−1)w1 = q(σ, σ−1)w2, 0 6= p, q ∈ R[ξ, ξ−1],

w1 does not anticipate w2. Noting the results of exercise set 2, exercise 2, we may as well
assume that p and q look like

p(ξ, ξ−1) = 1 + p1ξ
−1 + · · · , q(ξ, ξ−1) = qLξ

L + qL−1ξ
L−1 + · · · , qL 6= 0.

The resulting difference equation looks like

w1(t) = −p1w1(t− 1)− p2w1(t− 2)− · · ·+ qLw2(t+ L) + qL−1w2(t+ L− 1) + · · ·

Now w1 does not anticipate w2 iff w2(t) = 0 for t < 0 implies that there exists w1, such
that (w1, w2) ∈ B and w1(t) = 0 for t < 0. Note that w2 is free in B. The above difference
equation shows that w1 does not anticipate w2 iff L ≤ 0, equivalently if the transfer function

G(ξ) =
q(ξ, ξ−1)

p(ξ, ξ−1)

is proper (meaning limλ∈R,λ→∞ |G(λ)| <∞).

Now consider (3). The transfer function w1 7→ w2 is

1

T

ξ−1 − ξ−(T+1)

1− ξ−1
.

Since this is a proper rational function w1 does not anticipate w2. (4) puts this into
evidence. The transfer function w2 7→ w1 is

T
ξ − 1

1− ξ−T
,

which is not proper, so w2 anticipates w1. Thus, if we look for a causal input/output
partition, we have no choice: w1 is input and w2 is output. This is all very reasonable.

Now consider (5). The transfer function w1 7→ w2 is

1

2T + 1
(ξT + · · ·+ ξ + 1 + ξ−1 + · · ·+ ξ−T ) =

1

2T + 1

ξT+1 − ξ−T

ξ − 1
,

which is not a proper rational function, so w1 anticipates w2. The transfer function
w2 7→ w1, on the other hand, is

(2T + 1)
ξ − 1

ξT+1 − ξ−T
,

which is a proper rational function, so w2 does not anticipates w1. Thus is we look for a
causal input/output trajectories, we have again no choice: w2 is input and w1 is output.
This is an absurd, of course, since, as a smoother, w1 is the input in (5).

Comment: Of course, this “problem” occurs because (5) is a non-real-time smoother, and
so we should not apply our control based system theoretic intuition in these situations.
But such non-real-time algorithms are very much part of the trade in signal processing.
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4. Another close relative of (3) is exponential weighting:

w2(t) =
1

ρ−1 − 1

∑

t′∈N

ρt
′

w1(t− t′) (6)

with ρ ∈ (0, 1) the weighting parameter. Convolutions as (6) or the continuous time analogs are of course
very much related to our linear difference or differential systems. For the case at hand the associated
difference equation is

w2(t) = ρw2(t− 1) +
ρ

ρ−1 − 1
w1(t− 1) (7)

(a) (6) has the drawback that it hard to give a very concrete characterization of the behavior, since it
unclear for which w1 : Z → R the infinite sum is finite. Prove that the infinite sum is finite when
w1 is bounded. Prove that (6) combined with w1 bounded, and (7) combined with w1, w2 bounded
have the same behavior.

Assume that (w1, w2) satisfies (6) and that w1 is bounded. Denote by ‖ ‖∞ the `∞-
norm. Then

|w2(t)| ≤
1

ρ−1 − 1

∣

∣

∣

∣

∣

∑

t′∈N

ρt
′

w1(t− t′)

∣

∣

∣

∣

∣

≤
1

ρ−1 − 1

∑

t′∈N

ρt
′

‖w1‖∞

≤ ‖w1‖∞

Hence w1 ∈ `∞(Z,R)⇒ w2 ∈ `∞(Z,R), and w2 is well-defined by (6). Now substitute (6)
in (7) and verify that (w1, w2) satisfy (7).

To show the converse, assume that w1, w2 ∈ `∞(Z,R) satisfy (7). We need to show
that it satisfies (6). Define w′

2 by (7) (with w1 fixed). Then as we have just proven
w′

2 ∈ `∞(Z,R) and satisfies (7). Hence w2−w′
2 ∈ `∞(Z,R) and, since (7) defines a linear

system, (0, w2 − w′
2) satisfies (7). Let ∆ := w2 − w′

2. Then ∆ satisfies ∆(t) = ρ∆(t − 1),
i.e., ∆(t) = ρt∆(0). Since ∆ is bounded (on R!), this implies ∆ = 0. Hence, w2 = w′

2,
and (w1, w2) satisfies (6).

What we have used here is that while (7) has many solutions for each w1, it has only
one bounded solution if w1 is bounded. It is this solution that is given by (6).

(b) Compare the computational complexity of (3), (6), and (7).

Per time step, (3)requires T − 1 additions and one multiplication, (6)requires in
principle an infinite number of multiplications, and (7) requires one addition and
two multiplications. Exponential weighting implemented by (7) is hence for several
reasons to be preferred above (MA) systems.

(c) Is (7) controllable?

Then R corresponding to (7) is

[

−
ρ

ρ−1 − 1
ξ−1 1−

1

ρ−1 − 1
ξ−1

]

.

There is no common factor, so that the system is controllable.

Obviously, these are reasons enough to prefer exponential weighting implemented by (7) over Moving
Average for data smoothing.
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