
Mathematical Models of Systems IUAP Graduate Course 2002

Solutions Exercises Set 1

Exercise 1 (Linear static models)

The aim of this exercise is (i) to let you think of the nature of behavioral equations (in the context of systems
without dynamics) and (ii) to show some parallels between behavioral equation representations of static linear
systems and those for linear differential systems studied later in the course.

Pre-amble. Equip Rn with the standard Euclidean inner product. Let R ∈ R•×n. Then ker(R) =
B iff the transposes of the rows of R form a set of generators of B⊥. Let M ∈ Rm×•. Then
im(M) = B iff the columns of M form a set of generators of B.

Let (Rw,B) be a linear mathematical model (this is newspeak, it means nothing else than that B is a linear
subset of Rw).

1. (a) Prove that B admits a behavioral equation representation

Rw = 0 (1)

with R ∈ R•×w.

Let { r1, r2, . . . , rk } be a set of generators of B⊥ and take

R = col(r>1 , r
>
2 , . . . , r

>
k ).

Call (1) a kernel representation of B, and a minimal kernel representation of B if, among
all such kernel representations of B, rowdim(R) is as small as possible.

(b) What is the relation between rank(R) and dim(B)?

rank(R) = dim(B⊥) = n− dim(B)

(c) What is the relation between rowdim(R) and dim(B) if (1) is a minimal kernel representation?

(1) is a minimal kernel representation of B iff the transposes of its columns form a
basis for B⊥. Hence in this case

rowdim(R) = rank(R) = n− dim(B).

(d) Prove that (1) is a minimal kernel representation iff the matrix R has full row rank.

full row rank := rank = rowdim.

The transposes of the columns of R form a basis for B⊥ iff the columns are linearly
independent. Hence (1) is a minimal kernel representation iff R is of full row rank.
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(e) Is it true that if (1) is not minimal, then you can simply cancel equations from (1), i.e., delete rows
from R, without changing B? Reflect on the analogy with differential systems.

Let Rw = 0 be a kernel representation of B, R = col(r>1 , r
>
2 , . . . , r

>
rowdim(R)). Then

{ r>1 , r
>
2 , . . . , r

>
rowdim(R) } forms a set of generators of B⊥. There is then a subset

{ r′1, r
′
2, . . . , r

′
k } that forms a basis for B⊥. Define

R′ := col
(

(r′1)
>, (r′2)

>, . . . , (r′k)
>).

Then R′w = 0 is a minimal kernel representation of B that has been obtained by
deleting rows from R.

Comment: For linear differential systems, it is, in contrast, in general not possible
to obtain a minimal kernel representation by simply cancelling equations in a non-
minimal kernel representation.

(f) Prove that if (1) is a minimal kernel representation of B, then R′w = is another kernel represen-
tation of the same behavior iff R′ = UR with U ∈ R•×• non-singular.

Follows from the observation that { r1, r2, . . . , rdim(B⊥) } is a basis for B⊥, then
{ r′1, r

′
2, . . . , r

′
dim(B⊥) } is another basis iff there exists a nonsingular matrix

V ∈ Rdim(B⊥)×dim(B⊥), such that [r1 r2 · · · rdim(B⊥)] = [r′1 r′2 · · · r
′
dim(B⊥)]V .

2. (a) Prove that B admits a behavioral equation representation

w = M` (2)

with M ∈ Rw×• and ` a latent variable.

Let {m1,m2, . . . ,mk } be a set of generators of B and take M = [m1 m2 · · ·mk].
Obviously, then, B = im(M). Hence (2) is an image representation of B.

Call (2) an image representation of B, and a minimal image representation of B if, among
all image representations of B, dim(`) = coldim(M) is as small as possible.

(b) Formulate the analogs of the above results obtained for kernel representations, for image represen-
tations.

(b’) rank(M) = dim(B).

(c’) (2) is a minimal image representation of its image B iff coldim(M) = dim(B).

(d’) (2) is a minimal image representation iff M is of full column rank.

(e’) If (2) is not a minimal image representation of its image B, then a minimal one
is obtained by cancelling suitable columns of M .

(f ’) If (2) is a minimal image representation of its image B, then w = M ′`′ is another
minimal image representation of B iff there exists a non-singular matrix V such that
M ′ = MV .
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3. Prove that the manifest behavior of the latent variable behavioral equation representation

Rw = M` (3)

with ` a latent variable, R ∈ R•×w,M ∈ Rw×•, and rowdim(R) = rowdim(M) is linear. (3) is the natural
outcome (emphasized throughout the course, and illustrated, e.g., by exercise 2) of a first principles
modeling procedure, and has obviously both kernel and image representations as special cases.

Let w1, w2 belong to the manifest behavior. Hence there are `1, `2, such that Rw1 = M`1,
Rw2 = M`2. Let α, β ∈ R. Then R(αw1 + βw2) = M(α`1 + β`2). Hence αw1 + βw2 belongs to
the manifest behavior, which is hence a linear subspace of Rn.
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Exercise 2 (Resistive circuits)

The aim of this exercise is (i) to convince you that first principles models invariably lead to behavioral equa-
tions containing latent variables, and (ii) to present a formal mathematical setting for obtaining models of
resistive circuits.

A digraph is a triple (N,E, π), with N a (finite) set, the set of nodes, E a (finite) set, the set of edges, and
π : E → N2 the incidence map. If π(e) = (n1, n2), then we call n1 the source and n2 the sink of e.

1. Draw a not-too-trivial digraph, and specify the associated N,E, and π.

The notion of a digraph is standard, although often the sloppy definition in which E is viewed as a subset
of N2 is preferred above the above accurate one. This follows the time-honored pedagogical principle that
confusion is good. Naturally, ’good’ means less work and less thinking for professors . . .
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N = {n1, n2, n3, n4 }
E = { e1, e2, e3, e4, e5 }

π(e1) = (n1, n2)
π(e2) = (n1, n3)
π(e3) = (n2, n3)
π(e4) = (n2, n4)
π(e5) = (n3, n4)

Less standard is the notion of a digraph with leaves. It is a quintuple (N,E,L, π, ν), with (N,E, π) a digraph,
L a (finite) set, the set of leaves, and ν : L→ N the leave incidence map. A graph with leaves is thus a graph
in which some ‘edges’ (called leaves) are connected to only one node. Note that there is no point in giving a
direction to the leaves.

2. Draw a not-too-trivial digraph with leaves, and specify the associated N,E,L, π, and ν.
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n4`2

N = {n1, n2, n3, n4 }
E = { e1, e2, e3, e4, e5 }
L = { `1, `2 }

ν(`1) = n1

ν(`2) = n2

π(e1) = (n1, n2)
π(e2) = (n1, n3)
π(e3) = (n2, n3)
π(e4) = (n2, n4)
π(e5) = (n3, n4)

We view a resistive circuit as a black box with a number of wires, external terminals, sticking out of it and
through which the circuit can be connected to the environment. Inside the black box there are resistors,
connected to each other and to the external terminals. We think of this interconnection pattern as an
‘architecture’. The aim of the modeling is to describe the behavior of the voltages (potentials) and currents at
the external terminals. We will assume that the currents are positive when they flow into the black box. This
avoids having to define directions at the external terminals. For simplicity, we consider only linear resistors,
although many of the ideas are just as well valid for the nonlinear case.

We formally define a resistive circuit as a digraph with leaves (N,E,L, π, ν), called the interconnection archi-
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tecture, and a map ρ : E→ [0,∞), called the resistance assignment.

Intuition:

• L : the external terminals.

• E : the internal branches with the resistors. Note that since we deal with a digraph (and not simply
with a graph) we have somehow chosen a positive direction for the currents in these branches. (I do
not like this aspect, since this direction is not present ‘in nature’. It is possible to avoid it, but this is
somewhat ’heavy’ for circuits containing only 2-terminal elements, as is the case studied here).

• ρ(e) : tells what the value of the resistance (say in ohms) is in the branch corresponding to edge e .

• all the edges and leaves incident to the same node are assumed connected (think ‘soldered together’).

3. Draw a not-too-trivial resistive circuit, and specify the associated N,E,L, π, ν and ρ.

PSfrag replacements

R1 R2

R3

R4 R5

e1 e2

e3
e4

e5

n1

n2 n3

n4

l1

l2

N = {n1, n2, n3, n4 }
E = { e1, e2, e3, e4, e5 }
L = { `1, `2 }

ν(l1) = n1

ν(`2) = n2

π(e1) = (n1, n2)
π(e2) = (n1, n3)
π(e3) = (n2, n3)
π(e4) = (n2, n4)
π(e5) = (n3, n4)

ρ(ek) = Rk, k = 1, . . . , 5

Comment: This circuit is the “Wheatstone bridge”. It is used to measure resistances by
putting a voltage source across the external terminals, and measuring the current I3 through
edge e3. This current is zero iff

R5 = R4
R1

R2
.

Now, by putting a resistor of unknown value in edge e5 and changing the value of the calibrating
resistor R4 in edge e4 until I3 = 0, the value of R5 is obtained. R1 and R2 are assumed to be
known. They are used to adapt the measuring range.

4. We are now ready to set up behavioral equations. Of course, we take as manifest variables the voltages
(potentials) at, and the currents into, the external terminals. That is what the model aims at. But we need
auxiliary variables to come up with a model. For the latent variables we take the voltages (potentials) at the
internal nodes, at the connections, and the currents in the internal branches. Note that the assumption that
the potentials of the nodes are well defined comes down to assuming Kirchhoff’s voltage law.

Let | | denote cardinality, i.e. |S| denotes the number of elements of the (finite) set S.
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In order to set up behavioral equations,

• Number the elements of L as {1, 2, . . . , |L|}, and denote the associated voltage and current vectors at
the external terminals as V = (V1, V2, . . . , V|L|) and I = (I1, I2, . . . , I|L|). Denote the vector of manifest

variables as w = (V, I). Hence W, the space of manifest variables, is R2|L|.

• Enumerate the elements of N as {n1, n2, . . . , n|N|}, and those of E as {e1, e2, . . . , e|E|}. Take for the

space of latent variables L = R|N|+|L|. The physical meaning of a typical element

((Vn1
, Vn2

, . . . , Vn|N|
), (Ie1 , Ie2 , . . . , Ie|E|

))

of L is obvious from the notation.

• The full behavioral equations are given by

1. Kirchhoff’s current laws: For each n ∈ N the following equation holds

∑

{e∈E|n is the sink of e}

Ie +
∑

{t∈L|t is incident to n}

It =
∑

{e∈E|n is the source of e}

Ie.

2. Compatibility, or Kirchhoff’s voltage laws, if you like: For each ` ∈ L, the following equation holds

V` = Vν(`)

3. Constitutive equations: For each e ∈ E with (n1, n2) = π(e), the following equation holds

Vn1
+ ρ(e)Ie = Vn2

.

Set up these equations for the circuit which you defined in 3.

In the sequel you may consider either the circuit which you defined in 3, or a completely general linear resistive
circuit. This illustrates that the general, if treated with the proper notation, is often easier than the specific.

In order to answer questions 4 to 9, it is useful to introduce, for a digraph with leaves, two
matrices, E, the edge incidence matrix, and L, the leave incidence matrix. E is an |E| × |N|
matrix, defined as follows. Let π = (π1, π2), then Eij, the (i, j)-th element of E, is equal to

Eij =











−1 if nj = π1(ei) 6= π2(ei)

+1 if nj = π2(ei) 6= π1(ei)

0 otherwise.

L is an |L| × |N| matrix, with Lij, the (i, j)-th element of L, is equal to

Lij =

{

+1 if nj = ν(i)

0 otherwise.

Finally, let R ∈ R|E|×|E| be defined by

R = diag
(

ρ(e1), ρ(e2), . . . , ρ(e|E|)
)

.

In terms of these matrices, the behavioral equations of a resistive electrical circuit may be
written as

KCL : E>IE + L>I = 0 (KCL)

VL : V = LVN (VL)

CE : EVN +RIE = 0 (CE)
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In (KCL,VL,CE), (V, I) are the manifest variables and (VN, IE) are the latent variables, where
VN = (Vn1

, Vn1
, . . . , Vn|N|

) and VE = (Ve1 , Ve1 , . . . , Ve|E|
).

For the Wheatstone bridge we have

E =













−1 1 0 0
−1 0 1 0
0 −1 1 0
0 −1 0 1
0 0 −1 1













, L =

[

1 0 0 0
0 0 0 1

]

, R = diag
(

R1, R2, R2, R3, R4, R5

)

,

so that (KCL), (VL), and (CE) yield

KCL:

−Ie1 − Ie2 + I1 = 0
Ie1 − Ie3 − Ie4 = 0
Ie2 + Ie3 − Ie5 = 0
Ie4 + Ie5 + I2 = 0

, VL:
V1 = Vn1

V2 = Vn4

, CE:

R1Ie1 = −Vn1
+ Vn2

R2Ie2 = −Vn1
+ Vn3

R3Ie3 = −Vn2
+ Vn3

R4Ie4 = −Vn2
+ Vn5

R5Ie5 = −Vn3
+ Vn4

5. Let B be the manifest behavior of the circuit defined by ((N,E,L, π, ν), ρ). Prove that B is a linear
subspace of R2|L|.

Rather than proving 5–9 for the specific circuit at hand, we prove the claims in their full
generality, using equations (KCL,VL,CE).

Since (KCL,VL,CE) are linear equations, linearity of the manifest behavior follows from ex-
ercise 1, part 3.

Let 1n denote the n-dimensional column vector with all 1’s. Prove that

(V, I) ∈ B ⇒ 1>|L|I = 0

(V, I) ∈ B ⇒ ∀ α ∈ R : (V + α1|L|, I) ∈ B

Note that E1|N| = 0 and L1|N| = 1|L|. Assume that (V, I) ∈ B, i.e., there are V|N|, I|E|, such that
(KCL,VL,CE) hold. Clearly (KCL) (premultiply (KCL) by 1|N|) implies 1|L|I = 0. Moreover,
if (V, I, V|N|, I|E|) satisfies (KCL,VL,CE), so does (V + α1|L|, I, V|N| + α1|N|, I|E|). Hence (V, I) ∈ B

implies (V + α1|L|, I) ∈ B.

6. Prove passivity: (V, I) ∈ B⇒ V >I ≥ 0.

If (V, I, VN, IE) satisfies (KCL,VL,CE), then

V >I = (LVN)
>I = V >

N L>I = −V >
N E>IE = −(EVN)

>IE = I>E RIE.

Since, ρ ≥ 0 this implies R = RT ≥ 0, and hence V >I ≥ 0.

7. Prove the dim(B) ≤ |L|. It can be shown that equality holds. Try it!

It is easy to see that if L1, L2 are linear subspaces of Rn, and dim(L1) + dim(L2) > n, then
L1∩L2 6= {0}. Now consider the subspace A of R2|L| consisting of all vectors of the form (V,−V ),
V ∈ R|L|. Obviously dim(A) = |L|, so if dim(B) > |L|, there exists an 0 6= a ∈ A ∩B. Obviously
a = (V, I) has I = −V hence V T I = −‖V ‖2 < 0. This is in contradiction with 6.
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Comment: The proof that for any passive linear circuit actually dim(B) = |L| (the input cardi-

nality property) needs to be added.

8. Prove reciprocity: (V1, I1), (V2, I2) ∈ B⇒ V >
1 I2 = V >

2 I1.

Assume that (Vk, Ik) ∈ B, k = 1, 2. Hence there exist VN,k, IN,k, k = 1, 2, such that (Vk, Ik, VN,k, IN,k)
satisfy (KCL,VL,CE). Then

V >
1 I2 = (LVN,1)

>I2 = V >
N,1L

>I2 = −V
>
N,1E

>IE,2 = −(EVN,1)
>IE,2 = (RIE,1)

>IE,2 = I>E,1RIE,2

Hence V >
1 I2 = I>

E,1RIE,2. By the same argument V >
2 I1 = I>

E,2RIE,1. Since R = RT , reciprocity
follows.

9. Assume that B admits an admittance representation, i.e., a behavioral representation of the form

I = AV.

Prove, using [6-8], that A = A> ≥ 0 (≥ 0 means that the matrix is nonnegative definite).

If I = AV , 8 implies V >
1 AV2 = V >

2 AV1 for all V1, V2 ∈ R|L|. Hence V >
1 (A − A>)V2 = 0 for all

V1, V2 ∈ R|L|. This obviously implies A = A>. In turn 6 implies V >AV ≥ 0. Hence A = A> ≥ 0.

This exercise shows that in order to model a resistive electrical circuit, input/output thinking is
awkward, inconvenient, unnatural, and certainly not needed. Also, the derivation of important
properties as passivity and reciprocity proceeds very smoothly using the behavioral framework.
The behavioral framework is the only reasonable framework already in the case of simple linear
memoryless systems, as resistive electrical circuits. There is consequently no reason why this
should not be the case for more complex systems. Complexity does not give more structure,
to the contrary!
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