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’ Exercises Set 5 \

Exercise 1 (Inputs and outputs)

The aim of this exercise is (i) to develop a more liberal notion of input and output and obtain correspond-
ing representations, and (i) to make you reflect a bit on the slippery notion of ‘non-anticipation’.

Conceptualizing the notion of input and output is more difficult than it seems at first sight. In physical
systems, ‘causality’, the darling notion of the philosophically inclined, is a red herring. In physical systems,
variables occur together, simultaneously, ‘there can be not one without the other’, and it makes little
sense to say that one variable causes another. Newton’s second law states that a point-mass accelerates
if and only if a force acts on it. Granted, thou, that it seems to make more sense to say that it is the
force that causes motion, than that the motion causes the force to act. But is absurd to insist on viewing
the voltage or the current as the input to a resistor.

During the lectures, we have chosen to consider inputs as ‘free’. But there are many situations, for
example in computer science and in signal processing, where the externally imposed inputs need to be
structured. With this we mean not just niceties like measurability, integrability, smoothness, but instead
constraints on inputs as periodicity, piecewise constancy, etc. Also, many algorithms used in signal
processing are not ‘real time’, but nevertheless the input/structure is very appropriate (see exercise 2 of
set 2).

In this exercise we discuss a more liberal approach to the concepts of input and output, in the context of
linear differential systems.

Consider (R,R"* x R¥2,B) € £17%2 Call wy input and we output if (wy,w}), (wi,wy) € B and wh(t) =
wy(t) for t < 0 implies wh = wy.

1. (a) Prove that if wsy is observable from wy, then w; is input and ws is output.

(b) Prove that w; is input and ws is output iff {we | (0,w2) € B} is autonomous. Conclude
that wy is input and ws is output iff a kernel representation Rl(%)wl = Rg(%)wg of B has
rank(Ry) = wa.

(¢) Prove that w is input and wy is output iff there exists a minimal kernel representation of the
form
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Ry(—)w; =0, P(%)wz = Q(a

dt
with P € R"2*"2[¢] and det(P) # 0.

(d) Prove that in an autonomous system any partition of the variables qualifies as an input/output
partition.

)w1, (1)



(e) Use the representation (1) to define a notion of transfer function from wy to wy. Formulate
and prove a theorem which expresses the extent of uniqueness of the transfer function. Prove
that the transfer function is unique iff the input is ‘free’.

Note: examination of the autonomous case (e.g., wa = wy;p(<%)wi = 0) indicates that there
is more to the notion of transfer function than we have suggested here.

2. When discussing inputs and outputs, it is hard to restrain from talking of ‘causality’ and ‘non-
anticipation’. We now willingly submit to this temptation.

Consider (T,R"t x R"2 9B) € £117"2 with T = R or T = Z. Refer to exercise set 2, exercise 2 for
the basics in the case T = Z. Denote by 9B; the projection of 8 on the w; variable, i.e., with ws
eliminated.

We say that wy does not anticipate wy if (wy,w2) € B,w] € By, and wy(t) = wi(t) for ¢ < 0
implies that there exists w) with w)(t) = wa(t) for ¢ < 0 such that (w],w)) € B. Equivalently,
using linearity, if w; € B; and wq(t) = 0 for ¢ < 0 implies that there exists we such that (i)
(w1, ws) € B and (ii) wa(t) =0 for t < 0.

(a) Assume T = R. Prove that wy does not anticipate w;. Hence no variable anticipates another
one in linear differential systems. Hence, in particular, in any input/output partition, the out-
put does not anticipate the input. Notwithstanding this fact, properness of transfer functions
has often be brought in connection with non-anticipation. Some authors go as far as to argue
that in a differentiator the output anticipates the input, since

. u(t+9) —u(t)
t) = lim ——————=
y(t) = lim 5
suggests anticipation. By the same token, however,
. u(t) —u(t—9)
= 1 —_—_—mm
y(t) = lim 5

suggests non-anticipation.

(b) The situation is significantly different in the discrete time case. There, phenomena do not
happen instantly, simultaneously, the delays are more than infinitesimal, etc. Assume T = Z.
The analogue of (1) becomes

Rl(gv O—il)wl =0, P(O—,O—il)u& = Q(Jﬂ O—il)wla (2)

with P € R¥2>*¥2[¢ ¢~ and det(P) # 0 Prove that the output does not anticipate the input
iff there exists a transfer function from w; to wo that is a matrix of proper rational functions.



Exercise 2 (Control in a behavioral setting)

Because of time limitations, we have been unable to cover control questions during the lectures. The aim
of this exercise is to motivate the behavioral setting of control problems, to illustrate it by means of a
simple example, and to present an interesting result, the controller implementability theorem.

Please brace yourself for a lengthy introduction.

The behavioral point of view is compelling as an approach to modeling dynamical systems, but this may
seem to be much less so when it comes to control. There is something natural in viewing control variables
as inputs and measured variables as outputs. When subsequently a controller is regarded as a feedback
processor that accepts the sensor outputs as its inputs and produces as its outputs the actuator inputs,
one ends up with the feeling that the input/output structure is in fact an essential feature of control.
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Figure 1: Intelligent control

Present-day control theory centers around the signal flow graph shown in figure 1. The plant has four type
of terminals (supporting variables which will typically be vector-valued). There are two input terminals,
one for the control, one for the other exogenous variables (in figure 1 these are called ‘disturbances’, but
they may also be set-points, reference signals, tracking inputs, etc.) and there are two output terminals,
one for the measurements, and one for the to-be-controlled variables. The control inputs are generated
by means of actuators and the measurements are made available through sensors. We call this structure
intelligent control. The basic idea of a controller is that of an anthropomorphic supervisor reacting in an
intelligent way to observed events, and directing on this basis the controllable events.

The paradigm embodied in figure 1 has been universally prevalent ever since the beginning of the subject.
It is indeed a very appealing paradigm, which will undoubtedly gain in impact as logic devices become ever
more prevalent, reliable, and inexpensive. This paradigm has a number of features which are important
for considerations which will follow. Some of these are:



1. The intelligent control paradigm tells us to be wary of errors in the measurements. Thus it is
considered as being ill-advised to differentiate measurements, presumably, because this will lead to noise
amplification.

2. The plant and the controller are dynamical systems which can be interconnected at any moment in
time. If for one reason or another the feedback controller temporarily fails to receive an input signal,
then the control input can be set to a default value, and, later on, the controller can resume its action.

We will now analyze an example of a very low-tech controller, a wide-spread control mechanism, namely
the traditional device which ensures the automatic closing of doors. There is nothing peculiar about this
example. Devices based on similar principles are used for the dampers and suspension of automobiles and
the points which we make through this example could also be made just as well through many vibration,
temperature, or pressure control devices. A typical automatic door-closing mechanism is schematically
shown in figure 2.
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Figure 2: Door-closing mechanism

A door-closing mechanism usually consists of a spring to ensure the closing of the door and a damper
in order to make sure that it closes gently. These mechanisms often have considerable weight so that
their mass cannot be neglected as compared to the mass of the door itself. The automatic door-closing
mechanism can be modelled as a mass/spring/damper combination.

We model the door as a mass M’, on which, neglecting friction in the hinges, two forces act. The first
force, F,, is the force exerted by the door-closing device, while the second force, Fe, is the exogenous
force exerted for example by a person pushing the door in order to open it. The equation of motion for
the door becomes

d2
dt?
where 6 denotes the opening angle of the door. The automatic door-closing mechanism, modelled as a
mass/spring/damper combination, yields

M —0=F.+F,,

M”d—29 + Die + K@ = —F,
dt2 dt e

Here, M" denotes the mass of the door-closing mechanism, D its damping coefficient, and K its spring
constant. Combining these equations yields
d? d

(M/—FM”)ﬁ@—I-D%@—FKH - Fe.

In order to ensure proper functioning of the door-closing device, the designer can to some extent choose
M", D, and K (all of which must, for physical reasons, be positive). The desired response requirements



are: small overshoot (to avoid banging of the door), fast settling time, and a reasonably high steady
state gain (to avoid having to exert excessive force when opening the door). This is an example of an
elementary control design exercise. A good design will be achieved by choosing a light mechanism (M"
small), with a reasonably strong spring (K large), but not too strong so as to avoid having to use excessive
force in order to open the door, and with the value of D chosen so as to achieve slightly less than critical
damping (ensuring gentle closing of the door).

It is completely natural to view in this example the door as the plant and the door-closing mechanism
as the controller. Then, if we insist on interpreting this plant/controller combination in terms of control
system configurations as figure 1, we obtain.

d2
Plant: M'@9:u+v; y=20; z=10
with u the control input (u = F,), v the exogenous input (v = F, ), y the measured output, and z the

to-be-controlled output.
2

d d
ller: w=-M"—y— D—y— Ky.
Controller: u 2V Y Y

This yields the controlled system, described by:

2
Controlled system: (M’ + M”)%z + D%z +Kz=nv.

Observe that in the control law, the measurement y should be considered as the input, and the control
u should be considered as the output. This suggests that we are using what would be called a PD?-
controller (a proportional and twice differentiating controller), a singular controller which would be
thought of as causing high noise amplification. Of course, no such noise amplification occurs in reality.
Further, the plant is second order, the controller is second order, and the closed loop system is also second
order (unequal to the sum of the order of the plant and the controller). Hence, in order to connect the
controller to the plant, we will have to ‘prepare’ the initial states of the controller and the plant. Indeed,
in attaching the door-closing mechanism to the door, we will make sure that at the moment of attachment
the initial values of 6 and %9 are zero both for the door and the door-closing mechanism.

We now come to our most important point concerning this example. Let us analyze the signal flow graph.
In the plant, it is natural to view the forces F,. and F, as inputs and 6 as output. This input/output
choice is logical both from the physical and from the cybernetic, control theoretic point of view. In the
controller, on the other hand, the physical and the cybernetic points of view clash. From the cybernetic,
control theoretic point of view, it is logical to regard the opening angle 6 as input and the control force
F. as output. From the physical point of view, however, it is logical to regard (just as in the plant) the
force F, as input and @ as output. It is evident that as an interconnection of two mechanical systems, the
door and the door-closing mechanism play completely symmetric roles. However, the cybernetic, control
theoretic point of view obliges us to treat the situation as asymmetric, making the force the cause in one
mechanical subsystem, and the effect in another.

This simple but realistic example permits to draw the following conclusions. Notwithstanding all its
merits, the intelligent control paradigm of figure 1 gives an unnecessarily restrictive view of control
theory. In many practical control problems, the signal-flow-graph interpretation of figure 1 is untenable.
There are no measurements, there are no actuators, and signal flows are a figment of our imagination. We
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Figure 3: Control as interconnection

will therefore abandon the intelligent control signal flow graph as a paradigm for control. We will abandon
the distinction between control inputs and measured outputs. Instead, we will view interconnection of a
controller to a plant as the central paradigm in control theory. In particular, 'physical’ interconnections
through terminals which carry more than one variable simultaneously, variable sharing (as described
extensively in lecture 5) should feature prominently in control theory.

We are not insinuating that the intelligent control paradigm is without merits. To the contrary, it is
extremely useful and important. Claiming that the input/output framework is not always the suitable
framework to approach a problem does not mean that one claims that it is never the suitable framework.
However, a good universal framework for control should be able to deal both with interconnection, with
designing subsystems, with the basic examples as the one given above, as well as with intelligent control.
The behavioral framework does, the intelligent control framework does not.

The importance as a controller of precisely the mass/spring/damper/ type of device has recently been
discussed by Dennis Bernstein in What makes some control problems hard?, IEEE Control Systems
Magazine, volume 24, number 4, pages 8-19, August 2002. In this article, this type of controller is called
‘a controller with build in actuators and sensors’. Absurd!

The view of control which will now be pursued is depicted in figure 3. The figure contains two systems,
shown as black-boxes with terminals. It is through their terminals that systems interact with their
environment. The black-box imposes relations on the variables that ‘live’ on its terminals. These relations
are formalized by the behavior of the system in the black-box. The system to the left in figure 3 is
called the plant, the one to the right the controller. The terminals of the plant consist of to-be-controlled
variables w, and control variables c. The controller has only terminals with the control variables c¢. Before
interconnection, the variables w and ¢ of the plant have to satisfy the laws imposed by the plant behavior.
But, after interconnection, the variables ¢ also have to satisfy the laws imposed by the controller. Thus,
after interconnection, the restrictions imposed on the variables ¢ by the controller will be transmitted to
the variables w. Choosing the black-box to the right so that the variables w have a desirable behavior in
the interconnected black-box is, in our view, the basic problem of control.

This leads to the following mathematical formulation. The plant and the controller are both dynamical
systems Xpiant = (T, W X V, Bplant) and Zeontroller = (T, V, Beontrotier) Where W denotes the signal space
of the to-be-controlled variables, V denotes the signal space of control variables, and both systems are
assumed to have the same time axis T. The interconnection of Xpjant and Yeontroller leads to the system
St = (T, W, V, Bga1) which is a system with latent variables (V) and full behavior defined by

%full = {(U), C) T—WxV | (w; C) S %plant and ¢ € %controllcr}



The manifest system obtained by X,y is the controlled system and is hence defined as Ycontrolled =
(T’ W, %controlled) with

Beontrolled = {W : T — W | there exists ¢ : T — V such that(w, ¢) € Bplant and ¢ € Beontroller |

A nice question that arises in this context is the following. Assume that X jan¢ is given.

’ Which systems Ycontrolled Can be obtained by suitably choosing Yeontroller ¢ ‘

This question can be answered very explicitly for linear time-invariant differential systems. Assume that
the plant is given by Xpjant = (R, R X R®, Bpjant) € £7Fte. Let and assume that Beontroller is similarly
described in kernel representation by a system of linear constant coefficient differential equations, i.e.,
Ylcontroller = (R7 RC7 %controller) € £e. Then7 by the elimination theorem, Y controlled = (Rwav %controlled) €
£ i.e., it has also a behavior that is described as the set of solutions of a system of linear constant
coefficient differential equations. It turns out that the possible behaviors Beontrollea € L that can be
obtained this way can be characterized in a very nice, simple, and explicit way.

Define therefore two behaviors, 8 and 9; P is called the realizable (plant) behavior and 2N the hidden
behavior. They are defined as follows: 3 is the manifest behavior of the system, i.e.,

"I} ={w:R — RY| there exists ¢ : R — R® such that (w,c) € Bplant } ‘

and D1 is defined as

"ﬁ:{w:RHR" | (w,0) € Bplant }- \

Hence P is the behavior consisting of all to-be-controlled signals that can occur (without a controller
acting), and 91 is the behavior of the to-be-controlled variables that are compatible with the control
variables put equal to zero. We say that Beontroller tmplements Beontrolled if there exists a controller such
that the controlled behavior after interconnecting the controller with behavior Bcontroller to the plant,
yields Beontrolled @s the controlled behavior.

The controller implementability problem asks what behaviors B ontrolled can be obtained this way. For
linear time-invariant systems it is possible to prove that Bcontrolled 1S implementable if and only if

N Q sBcontrolled g Yp

This result shows that the behaviors that are implementable by means of a controller are precisely those
that are wedged in between the hidden behavior 91 and the realizable plant . It reduces the controller
design problem (assuming no further restrictions on the controller than Ycontroler € £°) to finding a
suitable a behavior that is wedged in between two given behaviors.

1. Prove that this implementability condition is necessary.

2. Prove that 91 = 0 iff w is observable from ¢ in Bpjane. Prove that in this case the implementable
behaviors are the same as those that can be obtained when ¢ = w (this is called ‘full control’). More
concretely, define a new plant X, = (R,RY x R*, B, ) with B, = {(w,c) |[w € P and c =
w}, and compare the controlled behaviors that can be obtained from attaching a controller to Xpiant

with those that can be obtained from attaching a controller to Zglam.



3. Assume that the plant is described by
d
7T = Az + Bu+ Gdy,y =Cx +ds,z = Hx,c = (u,y),w = (d1,ds, u, 2).

Note that, as in this example, often some of control variables (in casu the u’s) will also be to-be-
controlled variables: as in LQ-control, they will appear in the performance functional.

Give a representation of 9t and ‘B for this system.



