
Mathematical Models of Systems IUAP Graduate Course 2002

Exercises Set 1

Exercise 1 (Linear static models)

The aim of this exercise is (i) to let you think of the nature of behavioral equations (in the context of systems
without dynamics) and (ii) to show some parallels between behavioral equation representations of static linear
systems and those for linear differential systems studied later in the course.

Let (Rw, B) be a linear mathematical model (this is newspeak, it means nothing else than that B is a linear
subset of Rw).

1. (a) Prove that B admits a behavioral equation representation

Rw = 0 (1)

with R ∈ R•×w.
Call (1) a kernel representation of B, and a minimal kernel representation of B if, among
all such kernel representations of B, rowdim(R) is as small as possible.

(b) What is the relation between rank(R) and dim(B)?

(c) What is the relation between rowdim(R) and dim(B) if (1) is a minimal kernel representation?

(d) Prove that (1) is a minimal kernel representation iff the matrix R has full row rank.
full row rank := rank = rowdim.

(e) Is it true that if (1) is not minimal, then you can simply cancel equations from (1), i.e. delete rows
from R, without changing B? Reflect on the analogy with differential systems.

(f) Prove that if (1) is a minimal kernel representation of B, then R′w = is another kernel represen-
tation of the same behavior iff R′ = UR with U ∈ R•×• non-singular.

2. (a) Prove that B admits a behavioral equation representation

w = M` (2)

with M ∈ Rw×• and ` a latent variable.

Call (2) an image representation of B, and a minimal image representation of B if, among
all image representations of B, dim(`) = coldim(M) is as small as possible.

(b) Formulate the analogs of the above results obtained for kernel representations, for image represen-
tations.

3. Prove that the manifest behavior of the latent variable behavioral equation representation

Rw = M` (3)

with ` a latent variable, R ∈ R•×w,M ∈ Rw×•, and rowdim(R) = rowdim(M) is linear.

(3) is the natural outcome (emphasized throughout the course, and illustrated, e.g., by exercise 2) of a
first principles modeling procedure, and has obviously both kernel and image representations as special
cases.
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Exercise 2 (Resistive circuits)

The aim of this exercise is (i) to convince you that first principles models invariably lead to behavioral equa-
tions containing latent variables, and (ii) to present a formal mathematical setting for obtaining models of
resistive circuits.

A digraph is a triple (N, E, π), with N a (finite) set, the set of nodes, E a (finite) set, the set of edges, and
π : E → N2 the incidence map. If π(e) = (n1, n2), then we call n1 the source and n2 the sink of e.

1. Draw a not-too-trivial digraph, and specify the associated N,E, and π.

The notion of a digraph is standard, although often the sloppy definition in which E is viewed as a subset
of N2 is preferred above the above accurate one. This follows the time-honored pedagogical principle that
confusion is good. Naturally, ’good’ means less work and less thinking for professors...

Less standard is the notion of a digraph with leaves. It is a quintuple (N, E,L, π, ν), with (N,E, π) a digraph,
L a (finite) set, the set of leaves, and ν : L → N the leave incidence map. A graph with leaves is thus a graph
in which some ‘edges’ (called leaves) are connected to only one node. Note that there is no point in giving a
direction to the leaves.

2. Draw a not-too-trivial digraph with leaves, and specify the associated N, E, L, π, and ν.

We view of a resistive circuit as a black box with a number of wires, external terminals, sticking out of it.
Inside the black box there are resistors, connected to each other and to the external terminals. We think of
this interconnection pattern as an ‘architecture’. The aim of the modeling is to describe the behavior of the
voltages (potentials) and currents at the external terminals. We will assume that the currents are positive
when they flow into the black box. This avoids having to define directions at the external terminals. For
simplicity, we consider only linear resistors, although many of the ideas are just as well valid for the nonlinear
case.

We formally define a resistive circuit as a digraph with leaves (N, E, L, π, ν), called the interconnection archi-
tecture, and a map ρ : E → [0,∞), called the resistance assignment.

Intuition:

• L : the external terminals

• E : the internal branches with the resistors. Note that since we deal with a digraph (and not simply
with a graph) we have somehow chosen a positive direction for the currents in these branches. (I do
not like this aspect, since this direction is not present ‘in nature’. It is possible to avoid it, but this is
somewhat ’heavy’ for circuits containing only 2-terminal elements, as is the case studied here).

• ρ(e) : tells what the value of the resistance (say in ohms) is in the branch corresponding to edge e

• all the edges and leaves incident to the same node are assumed connected (think ‘soldered together’).

3. Draw a not-too-trivial resistive circuit, and specify the associated N, E, L, π, ν and ρ.

4. We are now ready to set up behavioral equations. Of course, we take as manifest variables the voltages
(potentials) at, and the currents into the external terminals. That is what the model aims at. But we need
auxiliary variables to come up with a model. For the latent variables we take the voltages (potentials) at the
internal nodes, at the connections, and the currents in the internal branches. Note that the assumption that
the potentials of the nodes are well defined comes down to assuming Kirchhoff’s voltage law.

2



Let | | denote cardinality, i.e. |S| denotes the number of elements of the (finite) set S.

In order to set up behavioral equations,

• Number the elements of L as {1, 2, . . . , |L|}, and denote the associated voltage and current vectors at
the external terminals as V = (V1, V2, . . . , V|L|) and I = (I1, I2, . . . , I|L|). Denote the vector of manifest
variables as w = (V, I). Hence W, the space of manifest variables, = R2|L|.

• Enumerate the elements of N as {n1, n2, . . . , n|N|}, and those of E as {e1, e2, . . . , n|E|}. Take for the
space of latent variables L = R|N|+|L|. The physical meaning of a typical element

((Vn1 , Vn2 , . . . , Vn|N|), (Ie1 , Ie2 , . . . , Ie|E|))

of L is obvious from the notation.

• The full behavioral equations are given by

1. Kirchhoff’s current laws: For each n ∈ N the following equation holds

Σ
{e∈E|n is the sink of e}

Ie + Σ
{t∈L|t is incident to t}

It = Σ
{e∈E|n is the source of e}

Ie.

2. Compatibility, or Kirchhoff’s voltage laws, if you like: For each ` ∈ L, the following equation holds

V` = Vν(`)

3. Constitutive equations: For each e ∈ E with (n1, n2) = π(e), the following equation holds

Vn1 + ρ(e)Ie = Vn2 .

Set up these equations for the circuit which you defined in 3.

In the sequel you may consider either the circuit which you defined in 3, or a completely general linear resistive
circuit. This illustrates that the general, if treated with the proper notation, is often easier than the specific.

5. Let B be the manifest behavior of the circuit defined by ((N,E, L, π, ν), ρ).

Prove that B is a linear subspace of R2|L|.

Let 1n denote the n-dimensional column vector with all 1’s.

Prove that

(V, I) ∈ B ⇒ 1>|L|I = 0
(V, I) ∈ B ⇒ ∀ α ∈ R : (V + α1|L|, I) ∈ B

6. Prove passivity: (V, I) ∈ B ⇒ V >I ≥ 0.

7. Prove dim(B) ≤ |L|. It can be shown that equality holds. Try it!

8. Prove reciprocity: (V1, I1), (V2, I2) ∈ B ⇒ V >
1 I2 = V >

2 I1.

9. Assume that B admits an admittance representation, i.e., e behavioral representation of the form

I = AV.

Prove, using [6-8], that A = A> ≥ 0 (≥ 0 means that the matrix is nonnegative definite).
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