
INTERCONNECTED SYSTEMS

TEARING and ZOOMING
CONTROL

Chaire Francqui, Lecture V, May 19, 2004

– p.1/89

Road Map

What is a dynamical system ?

Dynamical system := with the ‘behavior’.

– p.2/89

Road Map

What is a dynamical system ?
Historically:

‘Closed’ systems � ��� �� � � � � very limited

Input/output map?

Input/state/output structure ?

Assumes I/O partition. Possible? Obtainable? How? Needed?

Other possibilities? CS? Graph theory? Object oriented
modeling?

Dynamical system := with the ‘behavior’.

– p.2/89

Road Map

What is a dynamical system ?

What is a mathematical model, really? �
Dynamical system :=

��
	 	 �

with
� � �

the ‘behavior’.

– p.2/89

Road Map

What is a dynamical system ?

Dynamical system :=

��
	 	 �

with

� � �
the ‘behavior’.

Behavioral eq’ns contain latent variables� elimination thms, algorithms.

– p.2/89

Road Map

What is a dynamical system ?

Dynamical system :=

��
	 	 �

with

� � �
the ‘behavior’.

Basic notions

Controllability � image representation

Observability

(Dissipative systems)

(Stability)

State � state representation algorithms

– p.2/89

Road Map

What is a dynamical system ?

Dynamical system :=

��
	 	 �

with

� � �
the ‘behavior’.

Basic problems

Modeling from data (system ID)

Modeling by interconnecting components

Control (= interconnection) � LQ, � ,

...

– p.2/89

Road Map

What is a dynamical system ?

Dynamical system :=

��
	 	 �

with

� � �
the ‘behavior’.

Projects

N-d systems and PDE’s (Rocha, Shankar, Pillai, Zerz, Oberst)

Software

Stochastic systems

...

– p.2/89

THEME

1. Modeling by tearing and zooming

General ideas

Terminals

Modules

Interconnection architecture

Examples

RTCT circuits

2. Control

Control by interconnection

Implementability

3. Conclusions

– p.3/89

THEME

1. Modeling by tearing and zooming

General ideas

Terminals

Modules

Interconnection architecture

Examples

RTCT circuits

2. Control

Control by interconnection

Implementability

3. Conclusions

– p.3/89

THEME

1. Modeling by tearing and zooming

General ideas

Terminals

Modules

Interconnection architecture

Examples

RTCT circuits

2. Control

Control by interconnection

Implementability

3. Conclusions

– p.3/89

TEARING and ZOOMING

How do we model a complex interconnected system?

‘Tearing’ the system into subsystems,
and, in order to model, ‘zooming’ on the individual subsystems

– p.4/89

TEARING and ZOOMING

How do we model a complex interconnected system?

When systems are interconnected, what really happens?
How do we obtain a model from

the components and the interconnections?

‘Tearing’ the system into subsystems,
and, in order to model, ‘zooming’ on the individual subsystems

– p.4/89

TEARING and ZOOMING

How do we model a complex interconnected system?

‘Tearing’ the system into subsystems,
and, in order to model, ‘zooming’ on the individual subsystems

– p.4/89

TEARING and ZOOMING

The ingredients of the language and methodology that we propose:

1. Modules : the subsystems

2. Terminals : the physical links between subsystems

3. The interconnection architecture :
the layout of the modules and their interconnection

4. The manifest variable assignment :
which variables does the model aim at?

– p.5/89

TEARING and ZOOMING

The ingredients of the language and methodology that we propose:

1. Modules : the subsystems

2. Terminals : the physical links between subsystems

3. The interconnection architecture :
the layout of the modules and their interconnection

4. The manifest variable assignment :
which variables does the model aim at?

– p.5/89

TEARING and ZOOMING

The ingredients of the language and methodology that we propose:

1. Modules : the subsystems

2. Terminals : the physical links between subsystems

3. The interconnection architecture :
the layout of the modules and their interconnection

4. The manifest variable assignment :
which variables does the model aim at?

– p.5/89

TEARING and ZOOMING

The ingredients of the language and methodology that we propose:

1. Modules : the subsystems

2. Terminals : the physical links between subsystems

3. The interconnection architecture :
the layout of the modules and their interconnection

4. The manifest variable assignment :
which variables does the model aim at?

– p.5/89

TEARING and ZOOMING

The ingredients of the language and methodology that we propose:

1. Modules : the subsystems

2. Terminals : the physical links between subsystems

3. The interconnection architecture :
the layout of the modules and their interconnection

4. The manifest variable assignment :
which variables does the model aim at?

– p.5/89

TEARING and ZOOMING

Features:

Reality — ‘physics’ — based

Uses behavioral systems concepts
more akin to bond-graphs and across/through variables,
than to input/output thinking.

Hierarchical: allows new systems to be build from old

Models are reusable, generalizable & extendable

Assumes that accurate and detailed modelling is the aim

System theory with its inputs and outputs and signal flow graphs,
as implemented e.g. in SIMULINK c is hopelessly inadequate.
MODELICA c is much better.

– p.6/89

TEARING and ZOOMING

Features:

Reality — ‘physics’ — based

Uses behavioral systems concepts
more akin to bond-graphs and across/through variables,
than to input/output thinking.

Hierarchical: allows new systems to be build from old

Models are reusable, generalizable & extendable

Assumes that accurate and detailed modelling is the aim

System theory with its inputs and outputs and signal flow graphs,
as implemented e.g. in SIMULINK c

�

is hopelessly inadequate.
MODELICA c

�
is much better.

– p.6/89

TERMINALS

A terminal is specified by its type.

The type implies an ordered set of terminal variables.

Example:

An electrical terminal (type)
implies a (voltage, current) pair of real terminal variables.

– p.7/89

TERMINALS

A terminal is specified by its type.

The type implies an ordered set of terminal variables.

Example:

An electrical terminal (type)
implies a (voltage, current) pair of real terminal variables.

– p.7/89

TERMINALS

A terminal is specified by its type.

The type implies an ordered set of terminal variables.

Example:

An electrical terminal (type)
implies a (voltage, current) pair of real terminal variables.

– p.7/89

Examples

Type of terminal Variables Signal space

electrical (voltage, current)

� �
mechanical (1-D) (force, position)

� �
mechanical (2-D) ((position, attitude),

(force, torque))

� � ��� � ��

� � � �� � � � ��

mechanical (3-D) ((position, attitude),

� � ��� � ��

(force, torque))

� � � �� � � � ��

thermal (temp., heat flow)

� �

fluidic (pressure, flow)

� �

thermal - fluidic (pressure, temp.,

mass flow, heat flow)

� �

– p.8/89

Examples

Type of terminal Variables Signal space

chemical

input � � � �
output � � � �

m-dim input (� �! � � " " " ��#)

� � �$

p-dim output (� �% � � " " " �'&)

� � �(

etc. etc. etc.

– p.9/89

MODULES

A module is specified by

its type,

its parametrization,

and its parameter values.

The idea is the following.

By specifying the module type, we give the variables living on its
terminals. We want a fully automated way of specifying the
behavior of these variables. This typically happens by specifying
some parameters, and a map, the parametrization, which maps
these parameters into the correct behavior.

– p.10/89

MODULES

A module is specified by

its type,

its parametrization,

and its parameter values.

The idea is the following.

By specifying the module type, we give the variables living on its
terminals. We want a fully automated way of specifying the
behavior of these variables. This typically happens by specifying
some parameters, and a map, the parametrization, which maps
these parameters into the correct behavior.

– p.10/89

Example

Example: The module is a 3 Ohm resistor:

Ω

I

I1
V1

V2 2
−

3
+

The module type is ‘Ohmic resistor’.
This means that it has two electrical terminals

terminal variables .

The possible behaviors form a family of two-dimensional linear
subspaces of .

The resistance parametrization is the map from into
the behavioral eq’ns

The parameter value equals 3, via the parametrization

– p.11/89

Example

Example: The module is a 3 Ohm resistor:

Ω

I

I1
V1

V2 2
−

3
+

The module type is ‘Ohmic resistor’.

This means that it has two electrical terminals
terminal variables .

The possible behaviors form a family of two-dimensional linear
subspaces of .

The resistance parametrization is the map from into
the behavioral eq’ns

The parameter value equals 3, via the parametrization

– p.11/89

Example

Example: The module is a 3 Ohm resistor:

Ω

I

I1
V1

V2 2
−

3
+

The module type is ‘Ohmic resistor’.
This means that it has two electrical terminals� terminal variables

� �)+* 	 ,* �	 �) �	 , � � �

.

The possible behaviors form a family of two-dimensional linear
subspaces of

- .

.

The resistance parametrization is the map from into
the behavioral eq’ns

The parameter value equals 3, via the parametrization

– p.11/89

Example

Example: The module is a 3 Ohm resistor:

Ω

I

I1
V1

V2 2
−

3
+

The module type is ‘Ohmic resistor’.
This means that it has two electrical terminals� terminal variables

� �)+* 	 ,* �	 �) �	 , � � �

.

The possible behaviors form a family of two-dimensional linear
subspaces of

- .

.

The resistance parametrization is the map from

/10 213	 4 � into
the behavioral eq’ns)+* 5) � � / ,* 	 ,* 6 , � � 387

The parameter value equals 3, via the parametrization

– p.11/89

Example

Example: The module is a 3 Ohm resistor:

Ω

I

I1
V1

V2 2
−

3
+

The module type is ‘Ohmic resistor’.
This means that it has two electrical terminals� terminal variables

� �)+* 	 ,* �	 �) �	 , � � �

.

The possible behaviors form a family of two-dimensional linear
subspaces of

- .

.

The resistance parametrization is the map from

/10 213	 4 � into
the behavioral eq’ns)+* 5) � � / ,* 	 ,* 6 , � � 387

The parameter value equals 3, via the parametrization �)9* 5) � � : ,* 	 ,* 6 , � � 387

– p.11/89

Module type

The module type specifies an ordered set of terminals

�<;* 	 ; �	 7 7 7 	 ;>= �7

N

3

2

1

Together with the terminal types,
an ordered set of terminal variables

taking values in the product space of the terminal signal spaces.

The module type also specifies a set
of possible behaviors of the terminal variables of the module.

– p.12/89

Module type

The module type specifies an ordered set of terminals

�<;* 	 ; �	 7 7 7 	 ;>= �7

N

3

2

1

Together with the terminal types,� an ordered set of terminal variables� �@? ��ACB * 	 ? ��AB �	 7 7 7 �	 7 7 7 	 �@? �EDB * 	 ? � DB �	 7 7 7 � �

taking values in the product space of the terminal signal spaces.

The module type also specifies a set
of possible behaviors of the terminal variables of the module.

– p.12/89

Module type

The module type specifies an ordered set of terminals

�<;* 	 ; �	 7 7 7 	 ;>= �7

N

3

2

1

Together with the terminal types,� an ordered set of terminal variables� �@? ��ACB * 	 ? ��AB �	 7 7 7 �	 7 7 7 	 �@? �EDB * 	 ? � DB �	 7 7 7 � �

taking values in the product space of the terminal signal spaces.

The module type also specifies a set

F

of possible behaviors of the terminal variables of the module.

– p.12/89

Parametrization

We assume that the module is further specified by
a parametrization of

F

,
that is, a surjective map G from a parameterspace

H
into the space

of behaviors

F

.

PI
Parameterspace

Space of Behaviors
BI

π
B

behavior B

parameter value

– p.13/89

Parametrization

We assume that the module is further specified by
a parametrization of

F

,
that is, a surjective map G from a parameterspace

H
into the space

of behaviors

F

.

π

IP
Parameterspace

Space of Behaviors
BI

H

is typically a combination of a set of integers and real numbers.

PI
Parameterspace

Space of Behaviors
BI

π
B

behavior B

parameter value

– p.13/89

Parametrization

We assume that the module is further specified by
a parametrization of

F

,
that is, a surjective map G from a parameterspace

H
into the space

of behaviors

F

.

A module is further specified by giving the value of the
parameters .

PI
Parameterspace

Space of Behaviors
BI

π
B

behavior B

parameter value

– p.13/89

Parametrization

We assume that the module is further specified by
a parametrization of

F

,
that is, a surjective map G from a parameterspace

H
into the space

of behaviors

F

.

PI
Parameterspace

Space of Behaviors
BI

π
B

behavior B

parameter value

– p.13/89

MODULES

By specifying a module, we thus obtain the behavior of the
variables �@? * 	 ? �	 7 7 7 	 ?JI �
on the terminals of the module.

This way we obtain a dynamic model of the interaction
of the module with its environment.

– p.14/89

MODULES

By specifying a module, we thus obtain the behavior of the
variables �@? * 	 ? �	 7 7 7 	 ?JI �
on the terminals of the module.

This way we obtain a dynamic model of the interaction
of the module with its environment.

– p.14/89

Examples

ELECTRICAL MODULES

Module type Parametrization Parameter value

2-terminal

Ohmic resistor

resistanceKL �NM OQP P P
R

in ohms

2- terminal

Ohmic resistor

conductanceKL �SM OQP P P
T

in mhos

2- terminal current

driven resistor

all maps:� O � UL � O �

capacitor capacitanceKL �VM OQP P P
W

in farads

inductor inductanceKL �SM OQP P P
X

in henrys

– p.15/89

Examples

Module type Parametrization domain Parameter value

linear

impedances

Y

(number of ports)� �Z [Z �\ �]^ �Z [Z _\ `

resistive

a � R
in ohmsb

with linear

diff. systems

� � � _\ `� c � R � R � R c�^ � � [� _\ `

transformer

� d^ �

transmission line

� � M � e X f g h�i h &

transistor

etc. etc. etc.

– p.16/89

Examples

MECHANICAL MODULES

Module type Parametrization Parameters

mass KL �SM O P P P j in kg

solid bar length, mass/unit lengthKL �M � �SM OQP P P

X j

spring

damper

multi-terminal mass geometry

flexible bar

etc. etc. etc.

– p.17/89

Examples

OTHER DOMAINS

Module type Parametrization Parameters

servo joint j�k j i lk li X R m

2 inlet tank geometry

etc. etc. etc.

– p.18/89

Examples

LINEAR SYSTEMS

Module type Parametrization Parametersn ^ o p Y� qrtsu vxw etc.

y

� � p [p _\ `

, orP P P

�{z rtsu R^ � p [| _\ `�

P P Pn ^ o p~}�� � Y� q vxw " " " y �{z �^ �| [p _\ `� P P Pn ^ oi/o}�� � Y� Y� q
tf. f’n. " " " y� � p [p � \ � " " "

� � T^ � ([$ _\ `

P P Pn ^ oi/s/o Y c� " " " � � � �� � W ��

etc. etc. etc.

– p.19/89

INTERONNECTION ARCHITECTURE

Let �� � ;* 	 ; �	 7 7 7 	 ;��� � �
be a set of terminals.

The interconnection architecture is a set of terminal pairs
(unordered, disjoint, and with distinct elements), denoted by .

If , then we say that these terminals are connected.

t t
i j

– p.20/89

INTERONNECTION ARCHITECTURE

Let �� � ;* 	 ; �	 7 7 7 	 ;��� � �
be a set of terminals.

The interconnection architecture is a set of terminal pairs
(unordered, disjoint, and with distinct elements), denoted by

�

.

If

� ;�� 	 ;�� � 0 �

, then we say that these terminals are connected.

� �� �� �� �� �� �

t t
i j

– p.20/89

INTERONNECTION ARCHITECTURE

The interconnection architecture is a set of terminal pairs
(unordered, disjoint, and with distinct elements), denoted by

�
.

If

� ;�� 	 ;�� � 0 �

, means that these terminals are connected.

We impose that connected terminals must be adapted.

In the case of physical terminals, this means that they must be of
the same type (both electrical, 2-D mechanical, thermal, etc.).

In the case of logical terminals (input or output terminals), this
means that if one of the connected terminals is an -dimensional
input terminal, the other must be an -dimensional output terminal.

– p.21/89

INTERONNECTION ARCHITECTURE

The interconnection architecture is a set of terminal pairs
(unordered, disjoint, and with distinct elements), denoted by

�
.

If

� ;�� 	 ;�� � 0 �

, means that these terminals are connected.

We impose that connected terminals must be adapted.

In the case of physical terminals, this means that they must be of
the same type (both electrical, 2-D mechanical, thermal, etc.).

In the case of logical terminals (input or output terminals), this
means that if one of the connected terminals is an �-dimensional
input terminal, the other must be an �-dimensional output terminal.

– p.21/89

Interconnection constraints

Pairing of adapted terminals imposes an interconnection law .

Pair of

terminals

Terminal Terminal Interconnection law

electrical

1-D mech.

2-D mech.

thermal

fluidic

info

processing

m-input m-output

etc. etc. etc. etc.

– p.22/89

Interconnection constraints

Pairing of adapted terminals imposes an interconnection law .

Example: pairing 2 electrical terminals �

)9* �) �	 ,* 6 , � � 3 7

Pair of

terminals

Terminal Terminal Interconnection law

electrical

1-D mech.

2-D mech.

thermal

fluidic

info

processing

m-input m-output

etc. etc. etc. etc.

– p.22/89

Interconnection constraints

Pairing of adapted terminals imposes an interconnection law .

Pair of

terminals

Terminal� Terminal� Interconnection law

electrical

�� � � �� �� � � �� � � � � � � � � � � � �

1-D mech.

�� � �� �� � �� � � � � � � � � � �

2-D mech.

thermal

�¡ �! � �� �¡ � � �� ¡ � � ¡ � � � � � � � �

fluidic

��¢ �! £ �� � ¢ � £ �� ¢ � � ¢ � £ � � £ � � �

info

processing

m-input � m-output � � � �

etc. etc. etc. etc.

– p.22/89

MANIFEST VARIABLE ASSIGNMENT

We finally assume that the modeler assigns the variables at which
the model aims. These are the manifest variables .

The model unavoidably contains many other variables. These latent
variables could be
either

interconnection variables,
or

latent variables used to describe the behavior of the modules.

– p.23/89

MANIFEST VARIABLE ASSIGNMENT

We finally assume that the modeler assigns the variables at which
the model aims. These are the manifest variables .

The model unavoidably contains many other variables. These latent
variables could be
either

interconnection variables,
or

latent variables used to describe the behavior of the modules.

– p.23/89

MODEL GENERATION

So, in order to obtain a model of an interconnected system, specify:

A set of modules
Denote .

Interconnection architecture on
interconnection laws,

and a behavior for the terminal variables

The manifest variable assignment.

The yields the full behavior
contains both latent variables and manifest variables.

Elimination of latent variables the manifest behavior .

– p.24/89

MODEL GENERATION

So, in order to obtain a model of an interconnected system, specify:

A set of modules * 	 �	 ¤ ¤ ¤	 ¥
so, for each module,
the type, the parametrization, and parameter value.

This yields a list of terminals

�� � ;* 	 ; �	 7 7 7 	 ;¦�� � �

and the behavior � 	 § � ¨	 7 7 7 	 �, for the terminal variables.

Denote

©� * ª ¤ ¤ ¤ ª ¥.

Interconnection architecture on
interconnection laws,

and a behavior for the terminal variables

The manifest variable assignment.

The yields the full behavior
contains both latent variables and manifest variables.

Elimination of latent variables the manifest behavior .

– p.24/89

MODEL GENERATION

So, in order to obtain a model of an interconnected system, specify:

A set of modules * 	 �	 ¤ ¤ ¤	 ¥
Denote

©� * ª ¤ ¤ ¤ ª ¥.
Interconnection architecture

�

on

�� � ;* 	 ; �	 7 7 7 	 ;��� � �

� interconnection laws,
and a behavior

© ©

for the terminal variables

The manifest variable assignment.

The yields the full behavior
contains both latent variables and manifest variables.

Elimination of latent variables the manifest behavior .

– p.24/89

MODEL GENERATION

So, in order to obtain a model of an interconnected system, specify:

A set of modules * 	 �	 ¤ ¤ ¤	 ¥
Denote

©� * ª ¤ ¤ ¤ ª ¥.
Interconnection architecture

�

on

�� � ;* 	 ; �	 7 7 7 	 ;��� � �

� interconnection laws,
and a behavior

© ©

for the terminal variables

The manifest variable assignment.

The yields the full behavior
contains both latent variables and manifest variables.

Elimination of latent variables the manifest behavior .

– p.24/89

MODEL GENERATION

So, in order to obtain a model of an interconnected system, specify:

A set of modules * 	 �	 ¤ ¤ ¤	 ¥
Denote

©� * ª ¤ ¤ ¤ ª ¥.
Interconnection architecture

�

on

�� � ;* 	 ; �	 7 7 7 	 ;��� � �

� interconnection laws,
and a behavior

© ©

for the terminal variables

The manifest variable assignment.

The yields

©¬« © © � the full behavior
contains both latent variables and manifest variables.

Elimination of latent variables the manifest behavior .

– p.24/89

MODEL GENERATION

So, in order to obtain a model of an interconnected system, specify:

A set of modules * 	 �	 ¤ ¤ ¤	 ¥
Denote

©� * ª ¤ ¤ ¤ ª ¥.
Interconnection architecture

�

on

�� � ;* 	 ; �	 7 7 7 	 ;��� � �

� interconnection laws,
and a behavior

© ©

for the terminal variables

The manifest variable assignment.

The yields

©¬« © © � the full behavior
contains both latent variables and manifest variables.

Elimination of latent variables the manifest behavior .

– p.24/89

Examples

RLC circuit

aV

Vb

I a

I b

®
R

L

C

C

LR ¯°
±²

environment system

– p.25/89

RLC circuit

TEARING

³

1 2

3 4

5 6

7 8

9

11
12

13 14

´
connector1

connector2

10

µ·¶
µ¹¸

– p.26/89

RLC circuit

ZOOMING

The list of the modules & the associated terminals:

Module Type Terminals Parameter/»º resistor (1, 2)

/

in ohms/>¼ resistor (3, 4)

/

in ohms½

capacitor (5, 6)

½

in farad¾

inductor (7, 8)

¾

in henry

connector1 3-terminal connector (9, 10, 11)

connector2 3-terminal connector (12, 13, 14)

– p.27/89

The interconnection architecture:

Pairing� ¨ 3	 ¨ �
� ¨ ¨	 ¿ �

�1À	 Á �
�1Â	 : �

�1Ã	 ¨ : �
�Ä	 ¨Ä �

– p.28/89

RLC circuit

Manifest variable assignment:

the variables)+Å 	 ,Å)+* �	 ,* �
on the external terminals

Æ

9, 12

Ç

, i.e,

)ÉÈ �)+Å 	 ,È � ,Å)�Ê �)+* �	 ,Ê � ,* �7

The internal terminals are

The variables on these terminals are latent variables.

– p.29/89

RLC circuit

Manifest variable assignment:

the variables)+Å 	 ,Å)+* �	 ,* �
on the external terminals

Æ

9, 12

Ç

, i.e,

)ÉÈ �)+Å 	 ,È � ,Å)�Ê �)+* �	 ,Ê � ,* �7

The internal terminals are

� ¨	 À	 :	 Ä	 Á	 Ã	 ¿	 Â	 ¨ 3	 ¨ ¨	 ¨ :	 ¨Ä �

The variables on these terminals are latent variables.

– p.29/89

RLC circuit

Equations for the full behavior:

Modules Constitutive equationsRÌË � � � � � � � � �Í � � � RÌË � �R@Î �VÏ � �ÑÐ � � � Ï Í � Ð � R@Î �VÏW � e � �ÑÒ � � W ÓÓÔ �� eÍ � Ò � � � eX �VÏ � �ÑÐ � � � Ï Í � Ð � X ÓÓÔ �VÏ

connector1

�ÖÕ � � �× � � � � � � � Õ � � �× � � � �

connector2

� � � � � � c � � � � � � � � � � � � c � � � �

– p.30/89

RLC circuit

Interconnection pair Interconnection equationsq� � � y � �× � � � � � × � � � � �

q� � Ø y � � � � � Ï � � � � �SÏ � �

q� Ù y � � � � e � � � � e � �

qÚ Û y � Ð � � c �ÑÐ � � c � �

qÜ � Û y � Ò � � � c �Ò � � � c � �

qÝ � Ý y � � � � � � � � � � � � � �

– p.31/89

RLC circuit

All these eq’ns combined define a latent variable system in the
manifest variables ? � �)ÉÈ 	 ,È)�Ê 	 ,Ê �
with latent variables

Þ� �)9* 	 ,*) �	 , �)9ß 	 ,ß) .	 , .)9à 	 ,à)9á 	 ,á)>â 	 ,â)+ã 	 ,ã)+* ä	 ,* ä)+* * 	 ,* *)+* ß 	 ,* ß)+* .	 ,* . �7

The manifest behavior is given by

– p.32/89

RLC circuit

All these eq’ns combined define a latent variable system in the
manifest variables ? � �)ÉÈ 	 ,È)�Ê 	 ,Ê �
with latent variables

Þ� �)9* 	 ,*) �	 , �)9ß 	 ,ß) .	 , .)9à 	 ,à)9á 	 ,á)>â 	 ,â)+ã 	 ,ã)+* ä	 ,* ä)+* * 	 ,* *)+* ß 	 ,* ß)+* .	 ,* . �7

The manifest behavior is given by

� � �)ÉÈ 	 ,È)�Ê 	 ,Ê �å - - .Qæ ç Þå - - � .7 7 7 �

– p.32/89

RLC circuit

Elimination: for example, using Gröbner bases.

Case 1: .

Case 2: .

– p.33/89

RLC circuit

Elimination: for example, using Gröbner bases.

Case 1:

èéëê ìîí ïéñð .

ò éëê éóð ô òõ ô éê é ð ö è éê ÷÷ø ô è éëê ïé ð ÷ ù÷ø ù ö òúNû ü úñý ö

í òõ ô è éxê ÷÷ø ö òõ ô ïéóð ÷÷ø ö éê þûÿ

þû ô þý í �

Case 2: .

– p.33/89

RLC circuit

Elimination: for example, using Gröbner bases.

Case 1:

èéëê ìîí ïéñð .

ò éëê éóð ô òõ ô éê é ð ö è éê ÷÷ø ô è éëê ïé ð ÷ ù÷ø ù ö òúNû ü úñý ö

í òõ ô è éxê ÷÷ø ö òõ ô ïéóð ÷÷ø ö éê þûÿ

þû ô þý í �
Case 2:

è éxê í ïé ð .

ò éîê éóð ô è éxê ÷÷ø ö òúÑû ü úý í òõ ô è éxê ÷÷ø ö éê þû

þû ô þý í �

– p.33/89

CART

force, position

force, position, torque, angle

� � �� � �� � �� � �
� � �� � �� � �

force, position, torque, angle

force, position

Required modules: Solid bars, cart, servo’s.

– p.34/89

CART

force, position, torque, angle

force, position

� � � �� � � �� � � �� � � �
� � �� � �� � �

Required modules: Solid bars, cart, servo’s.

– p.34/89

CART

1

θ2

T1

T2

F
1,x

F
2,x

F
1,y

2,y
F

θ

Solid bar

Terminals:

À

mechanical 2-D terminals.

Parameters:¾ 0 - � (length)	 � 0 - � (mass per unit length)7

– p.35/89

Behavioral equations:

j X Ó �ÓÔ � �
	 � ��� � � � � j X Ó �ÓÔ � �	 � ��� � ��� � Í j X�� j Î �� � Ó �ÓÔ � �	 � � � � � �Í Î � � � � v�� � � ��� Î � �� �� � � � �� Í Î � � � � � v� � � �� � Î � ��� � � � � � � �� � � � �	 � � � � � � K � � � �
	 � Î � � � � � �	 � � � � �	 Í Î � � � � � �	 � � � � �	 � Î � � v�� � �	 � � � � �	 Í Î � � v�� � �	 �"

Note: Contains latent variables ���	 �� .

– p.36/89

3

2

4
1

RL

Hinge with servo

Terminals:

À

mechanical 2-D terminals, 2 electrical.

Parameters:
rotor mass ��� , the stator mass ��� , the rotor inertia

�� , the stator
inertia

�� , the inductance
¾

, the resistance

/

of the motor circuit,
the motor torque constant .

– p.37/89

CART

Behavioral equations:

� j�k � j i � Ó �ÓÔ � � � � � � � � � �� j�k � j i � Ó �ÓÔ � � � � � � � � � �lk Ó �ÓÔ � � � � � � � �#li Ó �ÓÔ � � � � � �Í �#� cÍ � � � X ÓÓÔ � c � R � c � m ÓÓÔ � � � Í � ��m � c � �# � c � Í � �� � � � � � � � � �
Terminal variables:

� � �! � �! � �! ��� ��� � � � � � � � � � � � �� � � � � c � � � � � ��"

The motor torque

�# is a latent variable.

– p.38/89

CART

2

1
cart

Terminals:

¨

mechanical 1-D terminal,

¨

mechanical 2-D
terminal.

Parameters: mass .

– p.39/89

CART

Behavioral equations:

� ù� � ù �* � �! " �$# ù%'& (%*)+& (,)-& (. /10

– p.40/89

CART

TEARING

1

2 2 2 22 2 2 22 2 2 2
3 3 33 3 33 3 3

13

2

7

810

9
4

3link

link

cart

servo

servo

14

6

5

12

11

– p.41/89

CART

ZOOMING

The list of the modules & the associated terminals:

Module Type Terminals Parameter

Link 1 bar (7,8)

4 , 5

Link 2 bar (1,2)

4& , 5&

Cart cart (13,14)

Hinge 1 servo (9,10,11,12) 5�67) 5�87) 967) 967) 4) :)

Hinge 2 servo (3,4,5,6) 5;6<) 5;8<) 96<) 96<) 4&) :&) &

– p.42/89

CART

The interconnection architecture:

Pairing=0) > ?
=@) A ?

=1B) C ?
=1D ,) D > ?

Manifest variable assignment:

the variables on the external terminals 1, 5, 6, 11, 12, 14 .

All other variables are latent variables.

– p.43/89

CART

The interconnection architecture:

Pairing=0) > ?
=@) A ?

=1B) C ?
=1D ,) D > ?

Manifest variable assignment:

the variables on the external terminals

E

1, 5, 6, 11, 12, 14

F

.

All other variables are latent variables.

– p.43/89

CART

Equations for the full behavior:

GIH J H K LKM L NPOQ R SUTQ V S T L WGXH J H K LKM L YOQ R S�ZQ V S�Z L [GXH J H \ WG]H ^ _QH` K LKM L aOQ R bH V b` [^Q` S TQ c d�e f aH g V ^Q` S�ZQ hi c f aH g [^Q` S�T L c d e f a` g V ^Q` S�Z L hi c f a` g WaH R aOQ Wa` R aH Vkj WN H R NlOQ V ^Q` hi c f aOQ g WN` R N
OQ [^Q` hi c f aOQ g WYH R YOQ V ^Q` c d�e f aOQ g WY` R YOQ [^Q` c d�e f aOQ g W

– p.44/89

CART

G` J` K LKM L N O L R S Tm V S Tn WG` J` K LKM L YO L R S�Zm V S�Zn [G` J` \ WG` ^ _LH` K LKM L aO L R bpo V brq [^ L` S Tm c d e f a o g V ^ L` S�Zm hi c f a o g W[^ L` S T n c d e f a q g V ^ L` S�Zn hi c f a q g Wa o R aO L Wa q R a o Vkj WN o R N
O L V ^Q` hi c f aO L g WN q R NlO L [^Q` hi c f aO L g WY o R YO L V ^Q` c d e f aO L g WY q R YO L [^Q` c d e f aO L g W

– p.45/89

CART

s K LKM L N H t R SH t V S�TQ uN H t R N Hv WYH v R w WaH v R j xy W

– p.46/89

CART

f GlzQ V Gl{Q g K LKM L Nv R S T _ V S T u Wf GlzQ V Gl{Q g K LKM L Yv R S�Z _ V S�Z u W|zQ K LKM L av R bv V b�} W|{Q K LKM L a t R b t [b�} W~�� [~�� R J H KKM � � V �H � � V � KKM f av [a t g W�H � � R b�} Q WNv R N t W Yv R Y t W� � R [� � W
– p.47/89

CART

f Glz L V Gl{ L g K LKM L NX� R S T� V S TQ� Wf Glz L V Gl{ L g K LKM L Y� R S�Z� V S�ZQ� W|z L K LKM L a� R b� V b�} W|{ L K LKM L aH� R bH� [b�} W~H H [~H` R J` KKM �H H V �` �H H V � KKM f a� [aH� g W�` �H H R b�} L WN H� R N H H W YH� R YH H W�H H R [�H` W
– p.48/89

CART

S T L V S T _ R w W S�Z L V S�Z _ R w W N` R Nv W Y` R Yv Wa` R av V j W b` V bv R w WS T u V S Tm R w W S�Z u V S�Zm R w W N t R N o W Y t R Y o Wa t R a o V j W b t V bpo R w WS T n V S T� R w W S�Zn V S�Z� R w W N q R N � W Y q R Y� Wa q R a� V j W brq V b� R w WS TQ� V S TQ _ R w W S TQ� V S TQ _ R w WN H� R N H v W YH� R YH vI�aH� R aH v Vkj W bH� V bHv R w�

– p.49/89

INPUT - to - OUTPUT CONNECTIONS

The inappropriateness of input - to - output connections is best
illustrated by the following simple physical example:

������

�� � � �� � �� � � �� � �� � � �� � �� � � �� �

Logical choice of inputs: the pressures ��� ��� ��� � �� �� �� � , and of
the outputs

�� �� ��� � �� �� �� � .

In any case, the choice should be ‘symmetric’.

– p.50/89

INPUT - to - OUTPUT CONNECTIONS

������

�� �� �� � �� �� �� ��� � � �� ��� � � �� �
Interconnection constraints:

¡ & (¡&) ¢ & (¢& ¤£

Equates two ‘inputs’ and two ‘outputs’.

– p.51/89

LINEAR RLCT CIRCUITS

BUILDING BLOCKS

Module Types:
Resistors, Capacitors, Inductors, Transformers, Connectors.

All terminals are of the same type: electrical

There are 2 variables associated with each terminal,

¥¦) § ¨

,¦

the potential,§

the current (counted
© ,

when it flows into the module).ª terminal signal space
«& £

– p.52/89

LINEAR RLCT CIRCUITS

SPECIFICATION of the BEHAVIOR of the MODULES

2
V2 I

I1
V1 +

R
−

Resistor: 2-terminal module.
Parameter:

:
(resistance in ohms, say).

Device laws:¦ ¬ ¦ & (: § § " §& (,£

– p.53/89

LINEAR RLCT CIRCUITS

®

¯±°² °
¯±³

+

² ³-

Capacitor: 2-terminal module.
Parameter:

´

(capacitance in farads, say).
Device laws:

´ µ
µ¶ ¥¦ ¬ ¦ & ¨ (§ § " §& (,£

– p.54/89

LINEAR RLCT CIRCUITS

·¹¸
º¹»

º ¸-

·» ¼+

Inductor: 2-terminal module.
Parameter:

4

(inductance in henrys, say).
Device laws:

4 µ
µ¶ § (¦ ¬ ¦ & § " §& (,£

– p.55/89

LINEAR RLCT CIRCUITS

-
½�¾

½�¿À ¿
À ¾À�Á

ÀÃÂ
½Á

½Â
Ä

Å Æ
Ç

+

-

+

Transformer: 4-terminal module; terminals (1,2): primary;
terminals (3,4): secondary.

Parameter: (the turns ratio,

È ¥ ,) É ¨

).
Device laws:¦ËÊ ¬ ¦ËÌ (¥¦ ¬ ¦ & ¨ § (¬ §Ê § " §& (, §Ê " §Ì (,£

– p.56/89

LINEAR RLCT CIRCUITS

ÍÎÐÏÒÑ ÓÏ Ô1

2

3

n

ÍÎÖÕ×Ñ ÓÕ Ô
ÍÎ
ØÑ ÓØ Ô

ÍÎÐÙÒÑ ÓÙ Ô
Connector: many-terminal module.

Parameter: Ú (number of terminals, an integer).
Device laws:¦ (¦ & (¤ ¤ ¤ (¦ÜÛ § " §& " ¤ ¤ ¤ " §Û (,£

– p.57/89

LINEAR RLCT CIRCUITS

MODULES and TERMINAL ASSIGNMENT

Modules
Resistors Ý) Ý&) £ £ £) ÝÛ Þ , parameters

:) :&) £ £ £) :Û Þ ;
Capacitors ß) ß&) £ £ £) ßÛ à , parameters

´) ´&) £ £ £) ´Û à ;
Inductors

á) á&) £ £ £) áÛ â , parameters

4) 4&) £ £ £) 4Û â ;
Transformers

ã) ã&) £ £ £) ãÛ ä , parameters) &) £ £ £) Û ä

Connectors

å) å&) £ £ £) åÛ�æ , parameters Ú) Ú&) £ £ £) ÚÛæ .

This yields the set of terminalsç (=1D) 0) £ £ £) 0 ¥ Ú6 " Ú±è " Úé ¨ " @ Úê " Ú " Ú& "£ £ £ " ÚÛæ ?£

– p.58/89

LINEAR RLCT CIRCUITS

INTERCONNECTION ARCHITECTURE

Interconnection architecture :

ë (a set of disjoint (unordered) pairs of different elements
(i.e., doubletons) from

ç

.

– p.59/89

LINEAR RLCT CIRCUITS

MANIFEST VARIABLE ASSIGNMENT

External terminals =

ìPí (ç ¬ î±ï =ñð) ò ?£
Manifest variables = external terminal voltages and currents(óõôö ï ¥¦ ôk÷ §ô ¨£ Denote the manifest variables byó ôö ï ¥¦ ôk÷ §ô ¨

as

¥¦ ÷ § ¨ È « ø ù
.

Manifest behavior:

¥ « ø ù ¨ ú£
Denote further the full behavior (the behavior of all the terminal
voltages and currents) by û ¥ « ø û ¨ û£

– p.60/89

LINEAR RLCT CIRCUITS

FULL BEHAVIORAL EQUATIONS
1. Module Laws:

1.1 Resistors: for each resistor üký , terminals

þÿ Þ��7 � ÿ Þ �< �

,��� ��Q � �� ��L 	
�� � ��Q � � ��Q � � ��L 	 ���
1.2 Capacitors: for each capacitor � � , terminals

þÿ à��7 � ÿ à��< �
,�� � �� þ �� � �Q � ��� � �L � 	 � � �Q � � � �Q � � � �L 	 � �

1.3 Inductors: for each inductor

� � , terminals

þÿ â�7 � ÿ â�< �
,�� � � � � ��Q � ��� ��� L � � ���Q � � ��� L 	 � �

1.4 Transformers: for each transformer

�� , terminals
þÿ ä�7 � ÿ ä�< � ÿ ä� � � ÿ ä�"! �

,

��� #�Q � ��� #�L 	 $� þ ��� #�_ � ��� #�u � � � #�_ 	 � $� � #�Q � #�Q � � #�L 	 � � � #�_ � � #�u 	 ���

1.5 Connectors: for each connector

% � , terminals

þÿæ �7 � � � � � ÿæ ��& � �

,�'�& �Q 	(((��& ��& � � �& �Q �(((� �& ��& � .

– p.61/89

LINEAR RLCT CIRCUITS

2. Interconnection Laws:

For each ‘connected’ terminal pair

=ð÷ ò ? È ëí

¦) * ¦ + §) , § + * -£
Solution of behavioral equations ª û£
After elimination of internal variables ª ù.

– p.62/89

LINEAR RLCT CIRCUITS

PROPERTIES of ù
When is ù ¥ « ø ù ¨ ú

the external terminal behavior of a circuit
containing a finite number of positive:

’s,

4

’s,

´

’c,

ã

’s, and connectors?

It is possible to derive necessary & sufficient conditions!

– p.63/89

LINEAR RLCT CIRCUITS

1. ù È . ø ù£

2. KVL:

¥ ¥¦ ÷ § ¨ È ù ¨

and

¥"/ È 0 1 ¥ «÷ « ¨ ¨ ¨ ¥ ¥¦ , / 2 ¨ È

ù ¨

with

2 *
33

... 3

3. KCL:

¥ ¥¦ ÷ § ¨ È ù ¨ ¥ 2 4 § * - ¨

– p.64/89

LINEAR RLCT CIRCUITS

4. Input cardinality: 5 ¥ ù ¨ * ì

5. Hybridicity:

There exists an input/output choice such that the input
variables

¥"6 3÷ 6 ø÷ £ £ £ ÷ 6 ù ¨

and output variables¥"7 3÷ 7 ø÷ ¤ ¤ ¤÷ 7 ù ¨

pair as follows:=6 8÷ 7 8 ? * =¦ 8÷ § 8 ?
Each terminal is either current controlled or voltage controlled.

– p.65/89

LINEAR RLCT CIRCUITS

6. Passivity:

Assume for simplicity ù È 9 ø ù:;< =�> ; ? ?A@ B ?AC . There holds

D 1
E ¦ 4 ¥ ¶ ¨ § ¥ ¶ ¨ µ ¶ -

for all

¥¦ ÷ § ¨ È ù of compact support.

This states that the net electrical energy flows into the circuit.

– p.66/89

LINEAR RLCT CIRCUITS

7. Reciprocity:

Assume again for simplicity ù È 9 ø ù: ;< =�> ; ? ? @ B ? C . There holds

D 1
F 1

¦ 43 ¥ ¶ ¨ § ø ¥ ¬ ¶ ¨ µ¶ * D 1
F 1

§ 43 ¥ ¶ ¨ ¦ ø ¥ ¬ ¶ ¨ µ¶

for all

¥¦ 3÷ § 3 ¨÷ ¥¦ ø÷ § ø ¨ È ù of compact support.

Equivalently: ù * rev
¥ GIHù ¨÷

where rev denotes time-reversal, and

J * K L MF M L N £

This curious properties may be translated into:

The influence of terminal

O

on terminal

P

is equal
to the influence of terminal

P

on terminal

O

.
– p.67/89

LINEAR RLCT CIRCUITS

Proof of necessity:

Show that the modules satisfy properties (1) to (7).
Show that these properties remain valid after one interconnection.
The difficult part here is (4).

Proof of necessity:

‘Synthesis’.

– p.68/89

TERMINALS or PORTS?

Note that (for instance for electrical circuits) we have used the
terminal description. It is simply more appropriate and more
general than the port description (even when using only ‘port’
devices).

The port description is not ‘closed under interconnection’.

However, port descriptions are more parsimomious in the choice of
variables (it halves their number). It is important to incorporate this
parsimony.

– p.69/89

TERMINALS or PORTS?

Note that (for instance for electrical circuits) we have used the
terminal description. It is simply more appropriate and more
general than the port description (even when using only ‘port’
devices).

The port description is not ‘closed under interconnection’.

Example:

Q QQ QQ QR RR R S SS SS ST TT TT TU UU UU UV VV VV V

2 3

1

However, port descriptions are more parsimomious in the choice of
variables (it halves their number). It is important to incorporate this
parsimony.

– p.69/89

TERMINALS or PORTS?

Note that (for instance for electrical circuits) we have used the
terminal description. It is simply more appropriate and more
general than the port description (even when using only ‘port’
devices).

The port description is not ‘closed under interconnection’.

However, port descriptions are more parsimomious in the choice of
variables (it halves their number). It is important to incorporate this
parsimony.

– p.69/89

RECAPITULATION

Modelling interconnected systems

W* Interplay of

modules and their behavior

terminals and their type

the interconnection architecture

interconnection laws

manifest variable assignment

Adapted to computer assisted modelling

Hierarchical, reusable, extendable

Many latent variables, many equations (many static relations,
i.e., algebraic equations). Far distance from i/o, i/s/o, tf. f’ns.

Importance of elimination algorithms

– p.70/89

RECAPITULATION

Modelling interconnected systems

W* Interplay of

modules and their behavior

terminals and their type

the interconnection architecture

interconnection laws

manifest variable assignment

Adapted to computer assisted modelling

Hierarchical, reusable, extendable

Many latent variables, many equations (many static relations,
i.e., algebraic equations). Far distance from i/o, i/s/o, tf. f’ns.

Importance of elimination algorithms

– p.70/89

RECAPITULATION

Modelling interconnected systems

W* Interplay of

modules and their behavior

terminals and their type

the interconnection architecture

interconnection laws

manifest variable assignment

Adapted to computer assisted modelling

Hierarchical, reusable, extendable

Many latent variables, many equations (many static relations,
i.e., algebraic equations). Far distance from i/o, i/s/o, tf. f’ns.

Importance of elimination algorithms

– p.70/89

RECAPITULATION

Modelling interconnected systems

W* Interplay of

modules and their behavior

terminals and their type

the interconnection architecture

interconnection laws

manifest variable assignment

Adapted to computer assisted modelling

Hierarchical, reusable, extendable

Many latent variables, many equations (many static relations,
i.e., algebraic equations). Far distance from i/o, i/s/o, tf. f’ns.

Importance of elimination algorithms

– p.70/89

CONCLUSION

X for physical systems (signal processors) X

External variables are basic, but what ‘drives’ what , is not.

Interconnection, variable sharing, rather that input selection,
is the basic mechanism by which a system interacts with its
environment.

– p.71/89

CONCLUSION

X for physical systems (signal processors) X
External variables are basic, but what ‘drives’ what , is not.

Interconnection, variable sharing, rather that input selection,
is the basic mechanism by which a system interacts with its
environment.

– p.71/89

CONCLUSION

X for physical systems (signal processors) X
External variables are basic, but what ‘drives’ what , is not.

Interconnection, variable sharing, rather that input selection,
is the basic mechanism by which a system interacts with its
environment.

– p.71/89

BONDGRAPHS

Views interconnected systems indeed in terms of
ports, modules, and interconnections.

It is assumed that for each of the terminals the interconnection
variables come in pairs:

an effort variable and a flow variable

their (inner) product must be power.

– p.72/89

BONDGRAPHS

Views interconnected systems indeed in terms of
ports, modules, and interconnections.

It is assumed that for each of the terminals the interconnection
variables come in pairs:

an effort variable and a flow variable

their (inner) product must be power.

– p.72/89

BONDGRAPHS

Views interconnected systems indeed in terms of
ports, modules, and interconnections.

It is assumed that for each of the terminals the interconnection
variables come in pairs:

an effort variable and a flow variable

their (inner) product must be power.
Examples:

Electrical ports: effort: voltage, flow: current

Mechanical ports: effort: force, flow: velocity

Thermal ports: effort:

ã
, flow:

Y ã

etc. etc.

– p.72/89

BONDGRAPHS

Bondgraphs ideas very good, brilliant

certainly superior to SIMULINK c

Z

notation very awkward, mathematical notions primitive

terminal variable structure seems limited to linearity

some interconnections fail their assumptions:
mechanical terminals equate positions, NOT velocities

effort/flow, while apparently deep, remains unexplored

interconnections happen via terminals, not ports.

there is more structure to interconnection variables than
effort/flow.

– p.73/89

BONDGRAPHS

Bondgraphs ideas very good, brilliant

certainly superior to SIMULINK c

Z

notation very awkward, mathematical notions primitive

terminal variable structure seems limited to linearity

some interconnections fail their assumptions:
mechanical terminals equate positions, NOT velocities

effort/flow, while apparently deep, remains unexplored

interconnections happen via terminals, not ports.

there is more structure to interconnection variables than
effort/flow.

– p.73/89

BONDGRAPHS

Bondgraphs ideas very good, brilliant

certainly superior to SIMULINK c

Z

notation very awkward, mathematical notions primitive

terminal variable structure seems limited to linearity

some interconnections fail their assumptions:
mechanical terminals equate positions, NOT velocities

effort/flow, while apparently deep, remains unexplored

interconnections happen via terminals, not ports.

there is more structure to interconnection variables than
effort/flow.

– p.73/89

CONTROL in a BEHAVIORAL SETTING

– p.74/89

FEEDBACK CONTROL

The usual paradigm for control:

outputs

Actuators Sensors
Plant

Controller
inputscontrol outputsmeasured

inputs
to−be−controlledexogenous

‘Intelligent’ Control

– p.75/89

BEHAVIORAL CONTROL

[[[[\ \ \ \]]]]^ ^ ^ ^_ _ _ _` ` ` `a a a ab b b bc c c c
SYSTEM

to−be−controlled

CONTROLLED

CONTROLLERvariables PLANT
control
variables

Control as interconnection

– p.76/89

BEHAVIORAL CONTROL

d d d de e e ef f f fg g g gh h h hi i i ij j j jk k k kl l l l

to−be−controlled

m m m mn n n n

variables
control

PLANTvariables CONTROLLER

Before interconnection

– p.76/89

BEHAVIORAL CONTROL

o o o op p p pq q q qr r r rs s s st t t tu u u uv v v vw w w w

to−be−controlled

x x x xy y y y

variables
control

PLANTvariables CONTROLLER

Before interconnection
z z z z{ { { {

SYSTEM

to−be−controlled

CONTROLLED

CONTROLLERvariables PLANT
control
variables

After interconnection

Control = designing a subsystem

– p.76/89

Feedback control as an example

to−be−controlled variables

control variables

Sensors
Plant

Controller
inputscontrol outputsmeasured

exogenous
inputs

to−be−controlled
outputs

Actuators

– p.77/89

‘Example’

Many practical control devices do not function as feedback
controllers! Dampers, heat fins, pressure valves, overflows,
turbulence control strips, characteristic impedances, etc. etc.

wall

hinges

door

spring

damper

CONTROLLER

PLANT

wall

door

spring

damper

wall

door

spring

damper

hinges

hinges

CONTROLLER

PLANT

wall

door

spring

damper

wall

door

spring

damper

hinges

hinges

Equation of motion of the door (the plant):

: opening angle,

force device, exogenous force.

Door closing mechanism (the controller):

Controlled behavior:

Specs: small overshoot, fast settling, not-to-high gain from . Controller , and .

Note: Plant: second order; Controller: second order; Controlled plant: second (not fourth) order.

Note: PDD controller, but no noise problems

– p.78/89

‘Example’

Many practical control devices do not function as feedback
controllers! Dampers, heat fins, pressure valves, overflows,
turbulence control strips, characteristic impedances, etc. etc.

Mechanical object
Mechanical object

wall

hinges

door

spring

damper

CONTROLLER

PLANT

wall

door

spring

damper

wall

door

spring

damper

hinges

hinges

CONTROLLER

PLANT

wall

door

spring

damper

wall

door

spring

damper

hinges

hinges

Equation of motion of the door (the plant):

: opening angle,

force device, exogenous force.

Door closing mechanism (the controller):

Controlled behavior:

Specs: small overshoot, fast settling, not-to-high gain from . Controller , and .

Note: Plant: second order; Controller: second order; Controlled plant: second (not fourth) order.

Note: PDD controller, but no noise problems

– p.78/89

‘Example’

Many practical control devices do not function as feedback
controllers! Dampers, heat fins, pressure valves, overflows,
turbulence control strips, characteristic impedances, etc. etc.

Mechanical object
Mechanical object

PLANT

CONTROLLER

wall

hinges

door

spring

damper

CONTROLLER

PLANT

wall

door

spring

damper

wall

door

spring

damper

hinges

hinges

CONTROLLER

PLANT

wall

door

spring

damper

wall

door

spring

damper

hinges

hinges

Equation of motion of the door (the plant):

: opening angle,

force device, exogenous force.

Door closing mechanism (the controller):

Controlled behavior:

Specs: small overshoot, fast settling, not-to-high gain from . Controller , and .

Note: Plant: second order; Controller: second order; Controlled plant: second (not fourth) order.

Note: PDD controller, but no noise problems

– p.78/89

‘Example’

Many practical control devices do not function as feedback
controllers! Dampers, heat fins, pressure valves, overflows,
turbulence control strips, characteristic impedances, etc. etc.

wall

hinges

door

spring

damper

CONTROLLER

PLANT

wall

door

spring

damper

wall

door

spring

damper

hinges

hinges

CONTROLLER

PLANT

wall

door

spring

damper

wall

door

spring

damper

hinges

hinges

Equation of motion of the door (the plant):

: opening angle,

force device, exogenous force.

Door closing mechanism (the controller):

Controlled behavior:

Specs: small overshoot, fast settling, not-to-high gain from . Controller , and .

Note: Plant: second order; Controller: second order; Controlled plant: second (not fourth) order.

Note: PDD controller, but no noise problems

– p.78/89

‘Example’

Many practical control devices do not function as feedback
controllers! Dampers, heat fins, pressure valves, overflows,
turbulence control strips, characteristic impedances, etc. etc.

CONTROLLER

PLANT

wall

door

spring

damper

wall

door

spring

damper

hinges

hinges

CONTROLLER

PLANT

wall

door

spring

damper

wall

door

spring

damper

hinges

hinges

Equation of motion of the door (the plant):

: opening angle,

force device, exogenous force.

Door closing mechanism (the controller):

Controlled behavior:

Specs: small overshoot, fast settling, not-to-high gain from . Controller , and .

Note: Plant: second order; Controller: second order; Controlled plant: second (not fourth) order.

Note: PDD controller, but no noise problems

– p.78/89

‘Example’

CONTROLLER

PLANT

wall

door

spring

damper

wall

door

spring

damper

hinges

hinges

Equation of motion of the door (the plant):

| } ~ ��~ÿ � 	 � à � ����
: opening angle,� à force device,

� � exogenous force.

Door closing mechanism (the controller):

| } } ~ ���~ÿ � � � ~� ~ÿ � �� 	 � � à �

Controlled behavior:

Specs: small overshoot, fast settling, not-to-high gain from . Controller , and .

Note: Plant: second order; Controller: second order; Controlled plant: second (not fourth) order.

Note: PDD controller, but no noise problems

– p.78/89

‘Example’

CONTROLLER

PLANT

wall

door

spring

damper

wall

door

spring

damper

hinges

hinges

Equation of motion of the door (the plant):

| } ~ ��~ÿ � 	 � à � ����
: opening angle,� à force device,

� � exogenous force.

Door closing mechanism (the controller):

| } } ~ ���~ÿ � � � ~� ~ÿ � �� 	 � � à �

Controlled behavior:
þ | } � | } } � ~ ��~ÿ � � � ~� ~ÿ � �� 	 ���

Specs: small overshoot, fast settling, not-to-high gain from

� � � � �

. Controller � | }

,

�

and

�

.

Note: Plant: second order; Controller: second order; Controlled plant: second (not fourth) order.

Note: PDD controller, but no noise problems

– p.78/89

MATHEMATIZATION

Domain of the to-be-controlled variables:
Domain of the control variables:

�

Typically: families of time-signals

Full plant behavior:

allowed by plant laws

Controller:

allowed by controller laws

Controlled behavior:

such that and

– p.79/89

MATHEMATIZATION

Full plant behavior:

����� ? ? * � ¥� ÷ ß ¨ È � � �

allowed by plant laws

�

Controller:

� * � ß È � �

allowed by controller laws

�

Controlled behavior:

such that and

– p.79/89

MATHEMATIZATION

Full plant behavior:

����� ? ? * � ¥� ÷ ß ¨ È � � �

allowed by plant laws

�

Controller:

� * � ß È � �

allowed by controller laws

�

Controlled behavior:

� í * � � È � � ß È �
such that

¥ � ÷ ß ¨ È ����� ? ? and ß È � �£

– p.79/89

MATHEMATIZATION

Controlled behavior:

� í * � � È � � ß È �

such that

¥ � ÷ ß ¨ È ����� ? ? and ß È � �£

We say that

�

implements

�

, and that
�

is implementable

Questions:

Which implements the desired controlled behavior ?

Given , which are implementable?

– p.80/89

MATHEMATIZATION

Controlled behavior:

� í * � � È � � ß È �

such that

¥ � ÷ ß ¨ È ����� ? ? and ß È � �£

We say that

�

implements

�

, and that
�

is implementable

Questions:

Which

�

implements the desired controlled behavior ?

Given

� ��� ? ? , which
�

are implementable?

– p.80/89

��

We henceforth restrict attention to
linear time-invariant differential systems.

The behavior belongs to

a polynomial matrix such that

– p.81/89

��

We henceforth restrict attention to
linear time-invariant differential systems.

The behavior belongs to

. �
��

a polynomial matrix

��� � � � ¡¢ £
such that

* � � � ¤ ¥ ¦ �¨§ � � © � � ¦ ªª« © � ¬ �¯®

– p.81/89

��

Plant: � ��� ° ° � ± � ²´³ ®

Controller: � � ±³ ®
Controlled system:

� ¬ � � � ¤ ¥ ¦ � § � � © � �µ � � � ¦� § µ © � � ��� ° ° �®

By the ‘elimination theorem’

– p.82/89

��

Plant: � ��� ° ° � ± � ²´³ ®

Controller: � � ±³ ®
Controlled system:

� ¬ � � � ¤ ¥ ¦ � § � � © � �µ � � � ¦� § µ © � � ��� ° ° �®

By the ‘elimination theorem’
� � ± �

– p.82/89

IMPLEMENTABILITY

Which behaviors

� � ± �

can be implemented by
attaching a controller

� � ±³

to a given plant����� ° ° � ± � ²³

?

– p.83/89

IMPLEMENTABILITY

Which behaviors

� � ± �

can be implemented by
attaching a controller

� � ±³

to a given plant����� ° ° � ± � ²³

?

This question has a very concrete and intuitive answer.

Theorem: Let

� ��� ° ° � ± � ²´³

be given.

The behavior

� � ± �

is implementable if and only if
� �

– p.83/89

IMPLEMENTABILITY

The behavior

� � ± �

is implementable if and only if

� �
where

� ± �

is the hidden behavior defined by

� ¬ � � � ¤ ¥ ¦ � § � � © � ¦� § © � � ��� ° ° � §

and

�

is the manifest plant behavior defined by

� � ¬ � � � ¤ ¥ ¦ � § � � © � �µ � ¦� § µ © � ����� ° ° �®

– p.83/89

IMPLEMENTABILITY

� ± �

, the hidden behavior

0

¶ ¶ ¶ ¶· · · ·
¸ ¸ ¸ ¸¹ ¹ ¹ ¹

to−be−controlled
variablesvariables
control

PLANT

– p.83/89

IMPLEMENTABILITY

� � ± �

, the manifest plant behavior

º º º º» » » »
¼ ¼ ¼ ¼½ ½ ½ ½

to−be−controlled

PLANT variablesvariables
control

– p.83/89

IMPLEMENTABILITY

The behavior

� � ± �

is implementable if and only if

� �
This theorem reduces control to linear algebra / functional analysis:
finding suitable subspaces wedged between given subspaces.

Example:
Assume observability of the to-be-controlled variables � from the
control variablesµ ¬ � �

. Assume

� ¾ ¬ � �

, controllable.
pole assignability stabilizability

e.g.,

ªª « ¿ ¬ À ¿ Á ÂÄÃ § Å ¬ Æ ¿ Á Ã § µ ¬ ¦"Ã § Å © § Ç ¬ ¿®

– p.83/89

IMPLEMENTABILITY

The behavior

È � ± É

is implementable if and only if

È Ê
This theorem reduces control to linear algebra / functional analysis:
finding suitable subspaces wedged between given subspaces.

LQ-control and ¥ control are very neatly worked out from this
point of view/

– p.83/89

Regularity

The full controlled behavior

È�Ë�Ì ° ° ÊË Ì ° ° is defined by

È�Ë Ì ° ° � ¬ Í ¦ Ç § µ © � ÊË�Ì ° ° Î µ � Ï Ð®

Consider the maps
with the number of input variables,
and the number of output variables in .

The controller is said to be regular if

– p.84/89

Regularity

The full controlled behavior

È�Ë�Ì ° ° ÊË Ì ° ° is defined by

È�Ë Ì ° ° � ¬ Í ¦ Ç § µ © � ÊË�Ì ° ° Î µ � Ï Ð®
Consider the maps Ñ § Ò � ± É Í § Ó § ® ® ® § Ô Ð
with Ñ ¦ ©

the number of input variables,
and Ò ¦ ©

the number of output variables in .

The controller is said to be regular if

– p.84/89

Regularity

The full controlled behavior

È�Ë�Ì ° ° ÊË Ì ° ° is defined by

È�Ë Ì ° ° � ¬ Í ¦ Ç § µ © � ÊË�Ì ° ° Î µ � Ï Ð®
Consider the maps Ñ § Ò � ± É Í § Ó § ® ® ® § Ô Ð
with Ñ ¦ ©

the number of input variables,
and Ò ¦ ©

the number of output variables in .

The controller

Ï � ±³

is said to be regular if

Ò ¦ È�Ë�Ì ° ° © ¬ Ò ¦ ÊË�Ì ° ° © Á Ò ¦ Ï © ®

– p.84/89

Regularity

Õ Õ Õ ÕÖ Ö Ö Ö× × × ×Ø Ø Ø ØÙ Ù Ù ÙÚ Ú Ú ÚÛ Û Û ÛÜ Ü Ü ÜÝ Ý Ý Ý

to−be−controlled

Þ Þ Þ Þß ß ß ß

variables
control

PLANTvariables CONTROLLER

à à à àá á á á

SYSTEM

to−be−controlled

CONTROLLED

CONTROLLERvariables PLANT
control
variables

Regularity :=
if the controller has â bound (i.e. output) variables, then the plant
looses â free variables after interconnection.

– p.85/89

Regularity

A controller is regular if and only if it can be realized as a feedback
controller with a (possibly non-proper) transfer function from an
output to an input in

ÊË Ì ° ° for an input/output partition ofµ .

outputs

Actuators Sensors
Plant

Controller
inputscontrol outputsmeasured

inputs
to−be−controlledexogenous

A controller is regular if and only if it can be viewed as an
‘intelligent controller’ that processes sensor inputs outputs into
actuator inputs.

If is controllable, then every implementable controlled
behavior is actually regularly implementable.

In feedback control, we have the additional property that the
controller can be (de)coupled at any time. No state perparatiuon is
required in attaching the controller.

– p.86/89

Regularity

outputs

Actuators Sensors
Plant

Controller
inputscontrol outputsmeasured

inputs
to−be−controlledexogenous

A controller is regular if and only if it can be viewed as an
‘intelligent controller’ that processes sensor inputs outputs into
actuator inputs.

If is controllable, then every implementable controlled
behavior is actually regularly implementable.

In feedback control, we have the additional property that the
controller can be (de)coupled at any time. No state perparatiuon is
required in attaching the controller.

– p.86/89

Regularity

A controller is regular if and only if it can be viewed as an
‘intelligent controller’ that processes sensor inputs outputs into
actuator inputs.

If

Ê

is controllable, then every implementable controlled
behavior

È

is actually regularly implementable.

In feedback control, we have the additional property that the
controller can be (de)coupled at any time. No state perparatiuon is
required in attaching the controller.

– p.86/89

Regularity

A controller is regular if and only if it can be viewed as an
‘intelligent controller’ that processes sensor inputs outputs into
actuator inputs.

If

Ê

is controllable, then every implementable controlled
behavior

È

is actually regularly implementable.

In feedback control, we have the additional property that the
controller can be (de)coupled at any time. No state perparatiuon is
required in attaching the controller.

– p.86/89

A LOOK BACK

What have we been trying to do, really ?

Basic observations:

Any reasonable theory takes open systems as the basic
paradigm.

Most dynamical models will be described by (differential or
difference) equations, but we need a basic notion of
equivalence of models.

First principles models invariably contain auxiliary variables

a complete theory for linear time-invariant systems.

– p.87/89

A LOOK BACK

What have we been trying to do, really ?

Set up a ‘correct’ mathematical framework for discussing
dynamical systems.

Usable in control, signal processing, econometrics, and, especially,
incorporating in an honest way the classical models of physical
systems.

Basic observations:

Any reasonable theory takes open systems as the basic
paradigm.

Most dynamical models will be described by (differential or
difference) equations, but we need a basic notion of
equivalence of models.

First principles models invariably contain auxiliary variables

a complete theory for linear time-invariant systems.

– p.87/89

A LOOK BACK

What have we been trying to do, really ?

Basic observations:

Any reasonable theory takes open systems as the basic
paradigm.

Most dynamical models will be described by (differential or
difference) equations, but we need a basic notion of
equivalence of models.

First principles models invariably contain auxiliary variablesã

a complete theory for linear time-invariant systems.

– p.87/89

A LOOK BACK

What have we been trying to do, really ?

Basic observations:

Any reasonable theory takes open systems as the basic
paradigm. ä the predominance in mathematical research of
closed systems is very hard to comprehend.

Most dynamical models will be described by (differential or
difference) equations, but we need a basic notion of
equivalence of models.

First principles models invariably contain auxiliary variablesã

a complete theory for linear time-invariant systems.

– p.87/89

A LOOK BACK

What have we been trying to do, really ?

Basic observations:

Any reasonable theory takes open systems as the basic
paradigm.

Most dynamical models will be described by (differential or
difference) equations, but we need a basic notion of
equivalence of models. äthe behavior.

First principles models invariably contain auxiliary variablesã

a complete theory for linear time-invariant systems.

– p.87/89

A LOOK BACK

What have we been trying to do, really ?

Basic observations:

Any reasonable theory takes open systems as the basic
paradigm.

Most dynamical models will be described by (differential or
difference) equations, but we need a basic notion of
equivalence of models.

First principles models invariably contain auxiliary variablesämanifest and latent variables.ã

a complete theory for linear time-invariant systems.

– p.87/89

A LOOK BACK

What have we been trying to do, really ?

Basic observations:

Any reasonable theory takes open systems as the basic
paradigm.

Most dynamical models will be described by (differential or
difference) equations, but we need a basic notion of
equivalence of models.

First principles models invariably contain auxiliary variablesã

a complete theory for linear time-invariant systems.äpolyomial matrix based models, with as highlights the
elimination thm., controllability, and image repr.

– p.87/89

A LOOK BACK

What have we been trying to do, really ?

Basic observations:

The manifest variables of systems do not come as input/output
pairs. On a physical terminal, many variables live
simulaneously. I/O structures give the wrong suggestion. An
I/O partition, if possible at all, is usually not unique, and if
needed, depends on the purpose of the model.

An input/output model is simply not a ‘map’.

The state is a construct, and so are the input and output.

Many technologically very relevant controllers are not
sensor-output-to-actuator-input signal processors.

The behavioral approach is consistent, pedagogically
attractive, pragmatic, and practical.

– p.88/89

A LOOK BACK

What have we been trying to do, really ?

Basic observations:

The manifest variables of systems do not come as input/output
pairs. On a physical terminal, many variables live
simulaneously. I/O structures give the wrong suggestion. An
I/O partition, if possible at all, is usually not unique, and if
needed, depends on the purpose of the model.

An input/output model is simply not a ‘map’.

The state is a construct, and so are the input and output.

Many technologically very relevant controllers are not
sensor-output-to-actuator-input signal processors.

The behavioral approach is consistent, pedagogically
attractive, pragmatic, and practical.

– p.88/89

A LOOK BACK

What have we been trying to do, really ?

Basic observations:

The manifest variables of systems do not come as input/output
pairs. On a physical terminal, many variables live
simulaneously. I/O structures give the wrong suggestion. An
I/O partition, if possible at all, is usually not unique, and if
needed, depends on the purpose of the model.ä The classical I/O framework fails in the first and most
elementary examples.

An input/output model is simply not a ‘map’.

The state is a construct, and so are the input and output.

Many technologically very relevant controllers are not
sensor-output-to-actuator-input signal processors.

The behavioral approach is consistent, pedagogically
attractive, pragmatic, and practical.

– p.88/89

A LOOK BACK

What have we been trying to do, really ?

Basic observations:

The manifest variables of systems do not come as input/output
pairs. On a physical terminal, many variables live
simulaneously. I/O structures give the wrong suggestion. An
I/O partition, if possible at all, is usually not unique, and if
needed, depends on the purpose of the model.

An input/output model is simply not a ‘map’.ä This is the historical raison d’être of state models .

The state is a construct, and so are the input and output.

Many technologically very relevant controllers are not
sensor-output-to-actuator-input signal processors.

The behavioral approach is consistent, pedagogically
attractive, pragmatic, and practical.

– p.88/89

A LOOK BACK

What have we been trying to do, really ?

Basic observations:

The manifest variables of systems do not come as input/output
pairs. On a physical terminal, many variables live
simulaneously. I/O structures give the wrong suggestion. An
I/O partition, if possible at all, is usually not unique, and if
needed, depends on the purpose of the model.

An input/output model is simply not a ‘map’.

The state is a construct, and so are the input and output. ä

Algorithmically well worked out for linear time-invariant
systems.

Many technologically very relevant controllers are not
sensor-output-to-actuator-input signal processors.

The behavioral approach is consistent, pedagogically
attractive, pragmatic, and practical.

– p.88/89

A LOOK BACK

What have we been trying to do, really ?

Basic observations:

The manifest variables of systems do not come as input/output
pairs. On a physical terminal, many variables live
simulaneously. I/O structures give the wrong suggestion. An
I/O partition, if possible at all, is usually not unique, and if
needed, depends on the purpose of the model.

An input/output model is simply not a ‘map’.

The state is a construct, and so are the input and output.

Many technologically very relevant controllers are not
sensor-output-to-actuator-input signal processors.

The behavioral approach is consistent, pedagogically
attractive, pragmatic, and practical. – p.88/89

Thank you
Thank you

Thank you

Thank you

Thank you

Thank you

Thank you

Thank you
– p.89/89

End of the Lecture V

– p.90/89

	small cbby {Road Map}
	small �b {THEME}
	small �b {TEARING and ZOOMING}
	small �b {TEARING and ZOOMING}
	small �b {TEARING and ZOOMING}
	small �b {TERMINALS}
	small Examples
	small Examples
	small �b {MODULES}
	small Example
	small Module type
	small Parametrization
	small �b {MODULES}
	small Examples
	small Examples
	small Examples
	small Examples
	small Examples
	small �b {INTERONNECTION ARCHITECTURE}
	small �b {INTERONNECTION ARCHITECTURE}
	small Interconnection constraints
	small �b {MANIFEST VARIABLE ASSIGNMENT}
	small �b {MODEL GENERATION}
	small Examples
	small �b { RLC circuit}
	small �b { RLC circuit}
	
	small �b { RLC circuit}
	small �b { RLC circuit}
	small �b { RLC circuit}
	small �b { RLC circuit}
	small �b { RLC circuit}
	small �b {CART}
	small �b {CART}
	
	
	small �b {CART}
	small �b {CART}
	small �b {CART}
	small �b {CART}
	small �b {CART}
	small �b {CART}
	small �b {CART}
	small �b {CART}
	small �b {CART}
	small �b {CART}
	small �b {CART}
	small �b {CART}
	small �b {INPUT - to - OUTPUT CONNECTIONS}
	small �b {INPUT - to - OUTPUT CONNECTIONS}
	small �b {LINEAR~~ RLCT ~~ CIRCUITS}
	small �b {LINEAR~~ RLCT ~~ CIRCUITS}
	small �b {LINEAR~~ RLCT ~~ CIRCUITS}
	small �b {LINEAR~~ RLCT ~~ CIRCUITS}
	small �b {LINEAR~~ RLCT ~~ CIRCUITS}
	small �b {LINEAR~~ RLCT ~~ CIRCUITS}
	small �b {LINEAR~~ RLCT ~~ CIRCUITS}
	small �b {LINEAR~~ RLCT ~~ CIRCUITS}
	small �b {LINEAR~~ RLCT ~~ CIRCUITS}
	small �b {LINEAR~~ RLCT ~~ CIRCUITS}
	small �b {LINEAR~~ RLCT ~~ CIRCUITS}
	small �b {LINEAR~~ RLCT ~~ CIRCUITS}
	small �b {LINEAR~~ RLCT ~~ CIRCUITS}
	small �b {LINEAR~~ RLCT ~~ CIRCUITS}
	small �b {LINEAR~~ RLCT ~~ CIRCUITS}
	small �b {LINEAR~~ RLCT ~~ CIRCUITS}
	small �b {LINEAR~~ RLCT ~~ CIRCUITS}
	small �b {TERMINALS or PORTS?}
	small �b {RECAPITULATION}
	small �b {CONCLUSION}
	small �b {BONDGRAPHS}
	small �b {BONDGRAPHS}
	
	small �b {FEEDBACK CONTROL}
	small �b {BEHAVIORAL CONTROL }
	small Feedback control as an example
	small `Example'
	small �b {MATHEMATIZATION}
	small �b {MATHEMATIZATION}
	small �b {$Ldot $}
	small �b {$Ldot $}
	small �b {IMPLEMENTABILITY}
	small Regularity
	small Regularity
	small Regularity
	small �b {A LOOK BACK}
	small �b {A LOOK BACK}
	
	

