INTERCONNECTED SYSTEMS

TEARING and ZOOMING CONTROL

Chaire Francqui, Lecture V, May 19, 2004
UCL Université catholique de Louvain

Road Map

What is a dynamical system?

Road Map

What is a dynamical system ?

Historically:

- 'Closed' systems $\leadsto \quad \frac{d}{d t} x=f(x) \quad$ very limited
- Input/output map?
- Input/state/output structure?

Assumes I/O partition. Possible? Obtainable? How? Needed?

- Other possibilities? CS? Graph theory? Object oriented modeling?

Road Map

What is a dynamical system?

What is a mathematical model, really?
Dynamical system :=(T,W, $\mathfrak{B})$ with $\mathfrak{B} \subseteq(\mathbb{W})^{\mathbb{T}}$ the 'behavior'.

Road Map

What is a dynamical system?

Dynamical system :=(T,W, $\mathbb{B})$ with $\mathfrak{B} \subseteq(\mathbb{W})^{\mathbb{T}}$ the 'behavior'.

Behavioral eq'ns contain latent variables
\leadsto elimination thms, algorithms.

Road Map

What is a dynamical system ?

Dynamical system :=(T,W, $\mathbb{B})$ with $\mathfrak{B} \subseteq(\mathbb{W})^{\mathbb{T}}$ the 'behavior'.

Basic notions

- Controllability \leadsto image representation
- Observability
- (Dissipative systems)
- (Stability)
- State \sim state representation algorithms

Road Map

What is a dynamical system ?

Dynamical system :=(T,W, $\mathbb{B})$ with $\mathfrak{B} \subseteq(\mathbb{W})^{\mathbb{T}}$ the 'behavior'.

Basic problems

- Modeling from data (system ID)
- Modeling by interconnecting components
- Control (= interconnection) $\leadsto \mathrm{LQ}, \mathcal{H}_{2}, \mathcal{H}_{\infty}$
- ...

Road Map

What is a dynamical system ?

Dynamical system :=(T, W, $\mathfrak{B})$ with $\mathfrak{B} \subseteq(\mathbb{W})^{\mathbb{T}}$ the 'behavior'.

Projects

- N-d systems and PDE's (Rocha, Shankar, Pillai, Zerz, Oberst)
- Software
- Stochastic systems

THEME

1. Modeling by tearing and zooming

- General ideas
- Terminals
- Modules
- Interconnection architecture
- Examples
- RTCT circuits

THEME

1. Modeling by tearing and zooming

- General ideas
- Terminals
- Modules
- Interconnection architecture
- Examples
- RTCT circuits

2. Control

- Control by interconnection
- Implementability

THEME

1. Modeling by tearing and zooming

- General ideas
- Terminals
- Modules
- Interconnection architecture
- Examples
- RTCT circuits

2. Control

- Control by interconnection
- Implementability

3. Conclusions

TEARING and ZOOMING

How do we model a complex interconnected system?

TEARING and ZOOMING

How do we model a complex interconnected system?

When systems are interconnected, what really happens?
How do we obtain a model from
the components and the interconnections?

TEARING and ZOOMING

How do we model a complex interconnected system?

'Tearing' the system into subsystems, and, in order to model, 'zooming' on the individual subsystems

TEARING and ZOOMING

The ingredients of the language and methodology that we propose:

TEARING and ZOOMING

The ingredients of the language and methodology that we propose:

1. Modules : the subsystems

TEARING and ZOOMING

The ingredients of the language and methodology that we propose:

1. Modules : the subsystems
2. Terminals : the physical links between subsystems

TEARING and ZOOMING

The ingredients of the language and methodology that we propose:

1. Modules : the subsystems
2. Terminals : the physical links between subsystems
3. The interconnection architecture :
the layout of the modules and their interconnection

TEARING and ZOOMING

The ingredients of the language and methodology that we propose:

1. Modules : the subsystems
2. Terminals : the physical links between subsystems
3. The interconnection architecture :
the layout of the modules and their interconnection
4. The manifest variable assignment :
which variables does the model aim at?

TEARING and ZOOMING

Features:

- Reality - 'physics' - based
- Uses behavioral systems concepts
more akin to bond-graphs and across/through variables, than to input/output thinking.
- Hierarchical: allows new systems to be build from old
- Models are reusable, generalizable \& extendable
- Assumes that accurate and detailed modelling is the aim

TEARING and ZOOMING

Features:

- Reality - 'physics' - based
- Uses behavioral systems concepts more akin to bond-graphs and across/through variables, than to input/output thinking.
- Hierarchical: allows new systems to be build from old
- Models are reusable, generalizable \& extendable
- Assumes that accurate and detailed modelling is the aim

System theory with its inputs and outputs and signal flow graphs, as implemented e.g. in SIMULINK ${ }^{\circledR}$ is hopelessly inadequate. MODELICA ${ }^{\circledR}$ is much better.

TERMINALS

A terminal is specified by its type.

TERMINALS

A terminal is specified by its type.

The type implies an ordered set of terminal variables.

TERMINALS

A terminal is specified by its type.

The type implies an ordered set of terminal variables.

Example:
An electrical terminal (type)
implies a (voltage, current) pair of real terminal variables.

Examples

| Type of terminal | Variables | Signal space |
| :--- | :--- | :--- |$|$| electrical | (voltage, current) | \mathbb{R}^{2} |
| :--- | :--- | :--- |
| mechanical (1-D) | (force, position) | \mathbb{R}^{2} |
| mechanical (2-D) | ((position, attitude),
 (force, torque)) | $\left(\mathbb{R}^{2} \times S^{1}\right)$
 $\times\left(\mathbb{R}^{2} \times T^{*} S^{1}\right)$ |
| mechanical (3-D) | ((position, attitude),
 (force, torque)) | $\left(\mathbb{R}^{2} \times S^{2}\right)$
 $\times\left(\mathbb{R}^{2} \times T^{*} S^{2}\right)$ |
| thermal | (temp., heat flow) | \mathbb{R}^{2} |
| fluidic | (pressure, flow) | \mathbb{R}^{2} |
| thermal - fluidic | (pressure, temp.,
 mass flow, heat flow) | \mathbb{R}^{4} |

Examples

Type of terminal	Variables	Signal space
chemical		
input	\boldsymbol{u}	$\mathbb{U} \subseteq \mathbb{R}$
output	\boldsymbol{y}	$\mathbb{Y} \subseteq \mathbb{R}$
m-dim input	$\left(\boldsymbol{u}_{\boldsymbol{1}}, \boldsymbol{u}_{\mathbf{2}}, \ldots, \boldsymbol{u}_{\boldsymbol{m}}\right)$	$\mathbb{U} \subseteq \mathbb{R}^{\mathrm{m}}$
p-dim output	$\left(\boldsymbol{y}_{1}, \boldsymbol{y}_{\mathbf{2}}, \ldots, \boldsymbol{y}_{\boldsymbol{p}}\right)$	$\mathbb{Y} \subseteq \mathbb{R}^{\mathrm{p}}$
etc.	etc.	etc.

MODULES

A module is specified by

- its type,
- its parametrization,
- and its parameter values.

MODULES

A module is specified by

- its type,
- its parametrization,
- and its parameter values.

The idea is the following.
By specifying the module type, we give the variables living on its terminals. We want a fully automated way of specifying the behavior of these variables. This typically happens by specifying some parameters, and a map, the parametrization, which maps these parameters into the correct behavior.

Example

Example: The module is a 3 Ohm resistor:

Example

Example: The module is a 3 Ohm resistor:

The module type is 'Ohmic resistor'.

Example

Example: The module is a 3 Ohm resistor:

The module type is 'Ohmic resistor'. This means that it has two electrical terminals \sim terminal variables $\left(\left(V_{1}, I_{1}\right),\left(V_{2}, I_{2}\right)\right)$.

The possible behaviors form a family of two-dimensional linear subspaces of \mathbb{R}^{4}.

Example

Example: The module is a 3 Ohm resistor:

The module type is 'Ohmic resistor'.
This means that it has two electrical terminals \sim terminal variables $\left(\left(V_{1}, I_{1}\right),\left(V_{2}, I_{2}\right)\right)$.

The possible behaviors form a family of two-dimensional linear subspaces of $\mathbb{R}^{\mathbf{4}}$.

The resistance parametrization is the map from $R \in[0, \infty)$ into the behavioral eq'ns

$$
V_{1}-V_{2}=R I_{1}, \quad I_{1}+I_{2}=0
$$

Example

Example: The module is a 3 Ohm resistor:

The module type is 'Ohmic resistor'.
This means that it has two electrical terminals \sim terminal variables $\left(\left(V_{1}, I_{1}\right),\left(V_{2}, I_{2}\right)\right)$.

The possible behaviors form a family of two-dimensional linear subspaces of $\mathbb{R}^{\mathbf{4}}$.

The resistance parametrization is the map from $R \in[0, \infty)$ into the behavioral eq'ns

$$
V_{1}-V_{2}=R I_{1}, \quad I_{1}+I_{2}=0
$$

The parameter value equals 3 , via the parametrization \leadsto

$$
V_{1}-V_{2}=3 I_{1}, \quad I_{1}+I_{2}=0
$$

Module type

The module type specifies an ordered set of terminals

Module type

The module type specifies an ordered set of terminals

Together with the terminal types,
\leadsto an ordered set of terminal variables

$$
\left(\left(w_{t_{1}, 1}, w_{t_{1}, 2}, \ldots\right), \ldots,\left(w_{t_{\mathrm{N}}, 1}, w_{t_{\mathbb{N}}, 2}, \ldots\right)\right)
$$

taking values in the product space of the terminal signal spaces.

Module type

The module type specifies an ordered set of terminals

$$
\left(t_{1}, t_{2}, \ldots, t_{\mathrm{N}}\right)
$$

Together with the terminal types,
\leadsto an ordered set of terminal variables

$$
\left(\left(w_{t_{1}, 1}, w_{t_{1}, 2}, \ldots\right), \ldots,\left(w_{t_{\mathrm{N}}, 1}, w_{t_{\mathrm{N}}, 2}, \ldots\right)\right)
$$

taking values in the product space of the terminal signal spaces.
The module type also specifies a set \mathbb{B} of possible behaviors of the terminal variables of the module.

Parametrization

We assume that the module is further specified by
a parametrization of \mathbb{B},
that is, a surjective map π from a parameterspace \mathbb{P} into the space of behaviors \mathbb{B}.

Parametrization

We assume that the module is further specified by
a parametrization of \mathbb{B},
that is, a surjective map π from a parameterspace \mathbb{P} into the space of behaviors \mathbb{B}.

\mathbb{P} is typically a combination of a set of integers and real numbers.

Parametrization

We assume that the module is further specified by
a parametrization of \mathbb{B},
that is, a surjective map π from a parameterspace \mathbb{P} into the space of behaviors \mathbb{B}.

A module is further specified by giving the value of the parameters .

Parametrization

We assume that the module is further specified by
a parametrization of \mathbb{B},
that is, a surjective map π from a parameterspace \mathbb{P} into the space of behaviors \mathbb{B}.

MODULES

By specifying a module, we thus obtain the behavior of the variables

$$
\left(w_{1}, w_{2}, \ldots, w_{\mathrm{n}}\right)
$$

on the terminals of the module.

MODULES

By specifying a module, we thus obtain the behavior of the variables

$$
\left(w_{1}, w_{2}, \ldots, w_{\mathrm{n}}\right)
$$

on the terminals of the module.

This way we obtain a dynamic model of the interaction of the module with its environment.

Examples

ELECTRICAL MODULES

Module type	Parametrization	Parameter value
2-terminal	resistance Ohmic resistor	R in ohms
2- terminal		
Ohmic resistor	conductance $\pi: \mathbb{R}_{+} \rightarrow \cdots$	G in mhos
2- terminal current	all maps: driven resistor	capacitance $\pi: \mathbb{R}_{+} \rightarrow \cdots$
capacitor	inductance $\pi: \mathbb{R}_{+} \rightarrow \cdots$	L in farads
inductor		

Examples

Module type	Parametrization domain	Parameter value
Iinear impedances	\mathbb{N} (number of ports) $\times \mathbb{R}^{\mathrm{n} \times \mathrm{n}}(\xi)$	$Z \in \mathbb{R}^{\mathrm{n} \times \mathrm{n}}[\boldsymbol{\xi}]$
resistive \triangle	\mathbb{R}	R in ohms
Y with linear diff. systems	$\left(\mathbb{R}^{2}[\xi]\right)^{3}$	$\begin{aligned} & \left(R_{1}, R_{2}, R_{3}\right) \\ & \quad \in \mathbb{R}^{\mathbf{1} \times \mathbf{2}}[\xi] \end{aligned}$
transformer	\mathbb{R}	$\boldsymbol{n} \in \mathbb{R}$
transmission line	$\left(\mathbb{R}_{+}\right)^{5}$	L, ℓ, c, r_{s}, r_{p}
transistor		
etc.	etc.	etc.

Examples

MECHANICAL MODULES

Module type	Parametrization	Parameters
mass	$\pi: \mathbb{R}_{+} \rightarrow \cdots$	\boldsymbol{m} in kg
solid bar	length, mass/unit length $\pi: \mathbb{R}_{+} \times \mathbb{R}_{+} \rightarrow \cdots$	$\boldsymbol{L}, \boldsymbol{m}$
spring		geometry
damper		
multi-terminal mass		etc.
flexible bar		etc.

Examples

OTHER DOMAINS

Module type	Parametrization	Parameters
servo joint		$m_{r}, m_{s}, J_{r}, J_{s}$,
		L, R, K
2 inlet tank		geometry
etc.	etc.	etc.

Examples

LINEAR SYSTEMS

Module type	Parametrization	Parameters
$\Sigma \in \mathfrak{L}^{\bullet}$	$\begin{aligned} & \mathbb{N} \times\{\text { ker }, \text { im, etc. }\} \\ & \times \mathbb{R}^{\bullet} \times \bullet[\xi], \text { or } \cdots \end{aligned}$	$\left(\mathrm{w}, \operatorname{ker}, \boldsymbol{R} \in \mathbb{R}^{\bullet \times \mathrm{w}}[\xi]\right)$
$\Sigma \in \mathfrak{L}_{\text {cont }}^{\bullet}$	$\mathbb{N} \times\{\mathrm{im}, \ldots\}$	$\left(\mathrm{w}, M \in \mathbb{R}^{w \times} \times[\xi]\right)$
$\Sigma \in \mathfrak{L}_{\text {cont }}^{\text {i/o }}$	$\begin{aligned} & \mathbb{N} \times \mathbb{N} \times\{\text { tf. f'n. }, \\ & \ldots\} \times \mathbb{R}^{\bullet} \times \bullet(\xi), \ldots \end{aligned}$	$\mathrm{m}, \mathrm{p}, \boldsymbol{G} \in \mathbb{R}^{\mathrm{p} \times \mathrm{m}}[\boldsymbol{\xi}]$ \ldots
$\Sigma \in \mathfrak{L}^{\mathbf{i} / \mathbf{s} / \mathbf{0}}$	\mathbb{N}^{3}, \ldots	m, n, p, (A, B, C, D)
etc.	etc.	etc.

INTERONNECTION ARCHITECTURE

Let

$$
T=\left\{t_{1}, t_{2}, \ldots, t_{|T|}\right\}
$$

be a set of terminals.

INTERONNECTION ARCHITECTURE

Let

$$
T=\left\{t_{1}, t_{2}, \ldots, t_{|T|}\right\}
$$

be a set of terminals.

The interconnection architecture is a set of terminal pairs (unordered, disjoint, and with distinct elements), denoted by \mathbb{I}.

If $\left\{t_{\mathrm{i}}, t_{\mathrm{j}}\right\} \in \mathbb{I}$, then we say that these terminals are connected.

INTERONNECTION ARCHITECTURE

The interconnection architecture is a set of terminal pairs (unordered, disjoint, and with distinct elements), denoted by \mathbb{I}.

If $\left\{t_{i}, t_{j}\right\} \in \mathbb{I}$, means that these terminals are connected.

We impose that connected terminals must be adapted.

INTERONNECTION ARCHITECTURE

The interconnection architecture is a set of terminal pairs (unordered, disjoint, and with distinct elements), denoted by \mathbb{I}. If $\left\{t_{i}, t_{j}\right\} \in \mathbb{I}$, means that these terminals are connected.

We impose that connected terminals must be adapted.

In the case of physical terminals, this means that they must be of the same type (both electrical, 2-D mechanical, thermal, etc.).

In the case of logical terminals (input or output terminals), this means that if one of the connected terminals is an m-dimensional input terminal, the other must be an m-dimensional output terminal.

Interconnection constraints

Pairing of adapted terminals imposes an interconnection law.

Interconnection constraints

Pairing of adapted terminals imposes an interconnection law.

Example: pairing 2 electrical terminals

$$
V_{1}=V_{2}, \quad I_{1}+I_{2}=0
$$

Interconnection constraints

Pairing of adapted terminals imposes an interconnection law.

Pair of terminals	Terminal 1	Terminal 2	Interconnection law
electrical	$\left(V_{1}, I_{1}\right)$	$\left(V_{2}, I_{2}\right)$	$V_{1}=V_{2}, I_{1}+I_{2}=0$
1-D mech.	$\left(F_{1}, q_{1}\right)$	$\left(F_{2}, q_{2}\right)$	$F_{1}+F_{2}=0, q_{1}=q_{2}$
2-D mech.			
thermal	$\left(Q_{1}, T_{1}\right)$	$\left(Q_{2}, T_{2}\right)$	$Q_{1}+Q_{2}=0, T_{1}=T_{2}$
fluidic	$\left(p_{1}, f_{1}\right)$	$\left(p_{2}, f_{2}\right)$	$p_{1}=p_{2}, f_{1}+f_{2}=0$
info processing	m-input u	m-output y	$u=y$
etc.	etc.	etc.	etc.

MANIFEST VARIABLE ASSIGNMENT

We finally assume that the modeler assigns the variables at which the model aims. These are the manifest variables .

MANIFEST VARIABLE ASSIGNMENT

We finally assume that the modeler assigns the variables at which the model aims. These are the manifest variables.

The model unavoidably contains many other variables. These latent variables could be
either
interconnection variables,
or
latent variables used to describe the behavior of the modules.

MODEL GENERATION

So, in order to obtain a model of an interconnected system, specify:

MODEL GENERATION

So, in order to obtain a model of an interconnected system, specify:

- A set of modules $M_{1}, M_{2}, \cdots, M_{m}$
so, for each module,
the type, the parametrization, and parameter value.
This yields a list of terminals $T=\left\{t_{1}, t_{2}, \ldots, t_{|T|}\right\}$ and the behavior $\mathfrak{B}_{i}, i=1, \ldots, m$, for the terminal variables.

Denote $\quad \mathfrak{B}^{\prime}=\mathfrak{B}_{1} \times \cdots \times \mathfrak{B}_{\mathrm{m}}$.

MODEL GENERATION

So, in order to obtain a model of an interconnected system, specify:

- A set of modules $M_{1}, M_{2}, \cdots, M_{\mathrm{m}}$ Denote $\quad \mathfrak{B}^{\prime}=\mathfrak{B}_{1} \times \cdots \times \mathfrak{B}_{\mathrm{m}}$.
- Interconnection architecture \mathbb{I} on $T=\left\{t_{1}, t_{2}, \ldots, t_{|T|}\right\}$
\sim interconnection laws, and a behavior $\mathfrak{B}^{\prime \prime}$ for the terminal variables

MODEL GENERATION

So, in order to obtain a model of an interconnected system, specify:

- A set of modules $M_{1}, M_{2}, \cdots, M_{\mathrm{m}}$ Denote $\quad \mathfrak{B}^{\prime}=\mathfrak{B}_{1} \times \cdots \times \mathfrak{B}_{\mathrm{m}}$.
- Interconnection architecture \mathbb{I} on $T=\left\{t_{1}, t_{2}, \ldots, t_{|T|}\right\}$
\sim interconnection laws, and a behavior $\mathfrak{B}^{\prime \prime}$ for the terminal variables
- The manifest variable assignment.

MODEL GENERATION

So, in order to obtain a model of an interconnected system, specify:

- A set of modules $M_{1}, M_{2}, \cdots, M_{\mathrm{m}}$ Denote $\quad \mathfrak{B}^{\prime}=\mathfrak{B}_{1} \times \cdots \times \mathfrak{B}_{\mathrm{m}}$.
- Interconnection architecture \mathbb{I} on $T=\left\{t_{1}, t_{2}, \ldots, t_{|T|}\right\}$ \sim interconnection laws, and a behavior $\mathfrak{B}^{\prime \prime}$ for the terminal variables
- The manifest variable assignment.
- The yields $\mathfrak{B}^{\prime} \cap \mathfrak{B}^{\prime \prime}=$ the full behavior contains both latent variables and manifest variables.

MODEL GENERATION

So, in order to obtain a model of an interconnected system, specify:

- A set of modules $M_{1}, M_{2}, \cdots, M_{\mathrm{m}}$ Denote $\quad \mathfrak{B}^{\prime}=\mathfrak{B}_{1} \times \cdots \times \mathfrak{B}_{\mathrm{m}}$.
- Interconnection architecture \mathbb{I} on $T=\left\{t_{1}, t_{2}, \ldots, t_{|T|}\right\}$ \sim interconnection laws, and a behavior $\mathfrak{B}^{\prime \prime}$ for the terminal variables
- The manifest variable assignment.
- The yields $\mathfrak{B}^{\prime} \cap \mathfrak{B}^{\prime \prime}=$ the full behavior contains both latent variables and manifest variables.
- Elimination of latent variables \rightarrow the manifest behavior \mathfrak{B}.

Examples

RLC circuit

RLC circuit

TEARING

RLC circuit

ZOOMING

The list of the modules \& the associated terminals:

Module	Type	Terminals	Parameter
$\boldsymbol{R}_{\boldsymbol{C}}$	resistor	$(1,2)$	\boldsymbol{R} in ohms
$\boldsymbol{R}_{\boldsymbol{L}}$	resistor	$(3,4)$	\boldsymbol{R} in ohms
\boldsymbol{C}	capacitor	$(5,6)$	C in farad
\boldsymbol{L}	inductor	$(7,8)$	L in henry
connector1	3-terminal connector	$(9,10,11)$	
connector2	3-terminal connector	$(12,13,14)$	

The interconnection architecture:

Pairing
$\{10,1\}$
$\{11,7\}$
$\{2,5\}$
$\{8,3\}$
$\{6,13\}$
$\{4,14\}$

RLC circuit

Manifest variable assignment:
the variables

$$
V_{9}, I_{9}, V_{12}, I_{12}
$$

on the external terminals $\{9,12\}$, i.e,

$$
V_{a}=V_{9}, I_{a}=I_{9}, V_{b}=V_{12}, I_{b}=I_{12}
$$

RLC circuit

Manifest variable assignment:
the variables

$$
V_{9}, I_{9}, V_{12}, I_{12}
$$

on the external terminals $\{9,12\}$, i.e,

$$
V_{a}=V_{9}, I_{a}=I_{9}, V_{b}=V_{12}, I_{b}=I_{12}
$$

The internal terminals are

$$
\{1,2,3,4,5,6,7,8,10,11,13,14\}
$$

The variables on these terminals are latent variables.

RLC circuit

Equations for the full behavior:

Modules	Constitutive equations	
R_{C}	$I_{1}+I_{2}=0$	$V_{1}-V_{2}=R_{C} I_{1}$
R_{L}	$I_{7}+I_{8}=0$	$V_{7}-V_{8}=R_{L} I_{7}$
C	$I_{5}+I_{6}=0$	$C \frac{d}{d t}\left(V_{5}-V_{6}\right)=I_{5}$
L	$I_{7}+I_{8}=0$	$V_{7}-V_{8}=L \frac{d}{d t} I_{7}$
connector1	$I_{9}+I_{10}+I_{11}=0$	$V_{9}=V_{10}=V_{11}$
connector2	$I_{12}+I_{13}+I_{14}=0$	$V_{12}=V_{13}=V_{14}$

RLC circuit

Interconnection pair	Interconnection equations	
$\{10,1\}$	$V_{10}=V_{1}$	$I_{10}+I_{1}=0$
$\{11,7\}$	$V_{11}=V_{7}$	$I_{11}+I_{7}=0$
$\{2,5\}$	$V_{2}=V_{5}$	$I_{2}+I_{5}=0$
$\{8,3\}$	$V_{8}=V_{3}$	$I_{8}+I_{3}=0$
$\{6,13\}$	$V_{6}=V_{13}$	$I_{6}+I_{13}=0$
$\{4,14\}$	$V_{4}=V_{14}$	$I_{4}+I_{14}=0$

RLC circuit

All these eq'ns combined define a latent variable system in the manifest variables

$$
w=\left(V_{a}, I_{a}, V_{b}, I_{b}\right)
$$

with latent variables

$$
\begin{gathered}
\ell=\left(V_{1}, I_{1}, V_{2}, I_{2}, V_{3}, I_{3}, V_{4}, I_{4}, V_{5}, I_{5}, V_{6}, I_{6}, V_{7}, I_{7}\right. \\
\left.V_{8}, I_{8}, V_{10}, I_{10}, V_{11}, I_{11}, V_{13}, I_{13}, V_{14}, I_{14}\right)
\end{gathered}
$$

RLC circuit

All these eq'ns combined define a latent variable system in the manifest variables

$$
w=\left(V_{a}, I_{a}, V_{b}, I_{b}\right)
$$

with latent variables

$$
\begin{gathered}
\ell=\left(V_{1}, I_{1}, V_{2}, I_{2}, V_{3}, I_{3}, V_{4}, I_{4}, V_{5}, I_{5}, V_{6}, I_{6}, V_{7}, I_{7}\right. \\
\left.V_{8}, I_{8}, V_{10}, I_{10}, V_{11}, I_{11}, V_{13}, I_{13}, V_{14}, I_{14}\right)
\end{gathered}
$$

The manifest behavior \mathfrak{B} is given by

$$
\mathfrak{B}=\left\{\left(V_{a}, I_{a}, V_{b}, I_{b}\right): \mathbb{R} \rightarrow \mathbb{R}^{4} \mid \exists \ell: \mathbb{R} \rightarrow \mathbb{R}^{24} \ldots\right\}
$$

RLC circuit

Elimination: for example, using Gröbner bases.

RLC circuit

Elimination: for example, using Gröbner bases.

Case 1: $\quad C R_{C} \neq \frac{L}{R_{L}}$.

$$
\begin{gathered}
\left(\frac{R_{C}}{R_{L}}+\left(1+\frac{R_{C}}{R_{L}}\right) C R_{C} \frac{d}{d t}+C R_{C} \frac{L}{R_{L}} \frac{d^{2}}{d t^{2}}\right)\left(V_{a}-V_{b}\right) \\
=\left(1+C R_{C} \frac{d}{d t}\right)\left(1+\frac{L}{R_{L}} \frac{d}{d t}\right) R_{C} I_{a} . \\
I_{a}+I_{b}=0
\end{gathered}
$$

RLC circuit

Elimination: for example, using Gröbner bases.

Case 1: $\quad C R_{C} \neq \frac{L}{R_{L}}$.

$$
\begin{gathered}
\left(\frac{R_{C}}{R_{L}}+\left(1+\frac{R_{C}}{R_{L}}\right) C R_{C} \frac{d}{d t}+C R_{C} \frac{L}{R_{L}} \frac{d^{2}}{d t^{2}}\right)\left(V_{a}-V_{b}\right) \\
=\left(1+C R_{C} \frac{d}{d t}\right)\left(1+\frac{L}{R_{L}} \frac{d}{d t}\right) R_{C} I_{a} \\
I_{a}+I_{b}=0
\end{gathered}
$$

Case 2: $\quad C R_{C}=\frac{L}{R_{L}}$.

$$
\begin{gathered}
\left(\frac{R_{C}}{R_{L}}+C R_{C} \frac{d}{d t}\right)\left(V_{a}-V_{b}=\left(1+C R_{C} \frac{d}{d t}\right) R_{C} I_{a}\right. \\
I_{a}+I_{b}=0
\end{gathered}
$$

CART

force, position, torque, angle

CART

force, position, torque, angle

Required modules: Solid bars, cart, servo's.

Solid bar

Terminals: 2 mechanical 2-D terminals.
Parameters:
$L \in \mathbb{R}_{+}$(length), $\quad \boldsymbol{m} \in \mathbb{R}_{+}$(mass per unit length).

Behavioral equations:

$$
\begin{aligned}
& m L \frac{d^{2}}{d t^{2}} x_{c}=F_{x_{1}}+F_{x_{2}}, \\
& m L \frac{d^{2}}{d t^{2}} y_{c}=F_{y_{1}}+F_{y_{2}}-m L g, \\
& m \frac{L^{3}}{12} \frac{d^{2}}{d t^{2}} \theta_{c}=T_{1}+T_{2}-\frac{L}{2} F_{x_{1}} \sin \left(\theta_{1}\right) \\
& \quad \quad+\frac{L}{2} F_{y_{1}} \cos \left(\theta_{1}\right)-\frac{L}{2} F_{x_{2}} \sin \left(\theta_{2}\right)+\frac{L}{2} F_{y_{2}} \cos \left(\theta_{2}\right), \\
& \theta_{1}=\theta_{c}, \theta_{2}=\theta_{1}+\pi, \\
& x_{1}=x_{c}+\frac{L}{2} \cos \left(\theta_{c}\right), x_{2}=x_{c}-\frac{L}{2} \cos \left(\theta_{c}\right), \\
& y_{1}=y_{c}+\frac{L}{2} \sin \left(\theta_{c}\right), y_{2}=y_{c}-\frac{L}{2} \sin \left(\theta_{c}\right)
\end{aligned}
$$

Note: Contains latent variables x_{c}, θ_{c}.

Hinge with servo

Terminals: 2 mechanical 2-D terminals, 2 electrical.

Parameters:
rotor mass m_{r}, the stator mass m_{s}, the rotor inertia J_{r}, the stator inertia J_{s}, the inductance L, the resistance R of the motor circuit, the motor torque constant K.

CART

Behavioral equations:

$$
\begin{aligned}
& \left(m_{r}+m_{s}\right) \frac{d^{2}}{d t^{2}} x_{1}=F_{x_{1}}+F_{x_{2}} \\
& \left(m_{r}+m_{s}\right) \frac{d^{2}}{d t^{2}} y_{1}=F_{x_{1}}+F_{x_{2}} \\
& J_{r} \frac{d^{2}}{d t^{2}} \theta_{1}=T_{1}+T_{m} \\
& J_{s} \frac{d^{2}}{d t^{2}} \theta_{2}=T_{2}-T_{m} \\
& V_{3}-V_{4}=L \frac{d}{d t} I_{3}+R I_{3}+K \frac{d}{d t}\left(\theta_{1}-\theta_{2}\right) \\
& K I_{3}=T_{m}, I_{3}=-I_{4} \\
& x_{1}=x_{2}, y_{1}=y_{2}
\end{aligned}
$$

Terminal variables: $\quad\left(\boldsymbol{x}_{1}, \boldsymbol{y}_{1}, \boldsymbol{\theta}_{1}, \boldsymbol{F}_{\boldsymbol{x}_{1}}, \boldsymbol{F}_{\boldsymbol{y}_{1}}, \boldsymbol{T}_{1}\right.$,

$$
\left.x_{2}, y_{2}, \theta_{2}, F_{x_{2}}, F_{y_{2}}, T_{2}, V_{3}, I_{4}, V_{4}, I_{4}\right)
$$

The motor torque T_{m} is a latent variable.

Terminals: 1 mechanical 1-D terminal, 1 mechanical 2-D terminal.

Parameters: mass M.

CART

Behavioral equations:

$$
\begin{aligned}
& M \frac{d^{2}}{d t^{2}} x_{1}=F_{1}+F_{x_{2}} \\
& x_{2}=x \\
& y_{2}=0 \\
& \theta_{2}=\pi / 2
\end{aligned}
$$

CART

TEARING

CART

ZOOMING

The list of the modules \& the associated terminals:

Module	Type	Terminals	Parameter
Link 1	bar	$(7,8)$	L_{1}, m_{1}
Link 2	bar	$(1,2)$	L_{2}, m_{2}
Cart	cart	$(13,14)$	M
Hinge 1	servo	$(9,10,11,12)$	$m_{r_{1}}, m_{s_{1}}, J_{r_{1}}, J_{r_{1}}, L_{1}, R_{1}, K_{1}$
Hinge 2	servo	$(3,4,5,6)$	$m_{r_{2}}, m_{s_{2}}, J_{r_{2}}, J_{r_{2}}, L_{2}, R_{2}, K_{2}$

CART

The interconnection architecture:

Pairing
$\{2,3\}$
$\{4,7\}$
$\{8,9\}$
$\{10,13\}$

CART

The interconnection architecture:

Pairing
$\{2,3\}$
$\{4,7\}$
$\{8,9\}$
$\{10,13\}$

Manifest variable assignment:
the variables on the external terminals $\{1,5,6,11,12,14\}$.

All other variables are latent variables.

CART

Equations for the full behavior:

$$
\begin{aligned}
& m_{1} L_{1} \frac{d^{2}}{d t^{2}} x_{c_{1}}=F_{x_{1}}+F_{x_{2}} \\
& m_{1} L_{1} \frac{d^{2}}{d t^{2}} y_{c_{1}}=F_{y_{1}}+F_{y_{2}}-m_{1} L_{1} g \\
& m_{1} \frac{L_{1}^{3}}{12} \frac{d^{2}}{d t^{2}} \theta_{c_{1}}=T_{1}+T_{2}- \\
& \quad \frac{L_{1}}{2} F_{x_{1}} \sin \left(\theta_{1}\right)+\frac{L_{1}}{2} F_{y_{1}} \cos \left(\theta_{1}\right)-\frac{L_{1}}{2} F_{x_{2}} \sin \left(\theta_{2}\right)+\frac{L_{1}}{2} F_{y_{2}} \cos \left(\theta_{2}\right) \\
& \theta_{1}=\theta_{c_{1}} \\
& \theta_{2}=\theta_{1}+\pi \\
& x_{1}=x_{c_{1}}+\frac{L_{1}}{2} \cos \left(\theta_{c_{1}}\right) \\
& x_{2}=x_{c_{1}}-\frac{L_{1}}{2} \cos \left(\theta_{c_{1}}\right) \\
& y_{1}=y_{c_{1}}+\frac{L_{1}}{2} \sin \left(\theta_{c_{1}}\right) \\
& y_{2}=y_{c_{1}}-\frac{L_{1}}{2} \sin \left(\theta_{c_{1}}\right)
\end{aligned}
$$

CART

$$
\begin{aligned}
& m_{2} L_{2} \frac{d^{2}}{d t^{2}} x_{c_{2}}=F_{x_{7}}+F_{x_{8}} \\
& m_{2} L_{2} \frac{d^{2}}{d t^{2}} y_{c_{2}}=F_{y_{7}}+F_{y_{8}}-m_{2} L_{2} g \\
& m_{2} \frac{L_{2}^{3}}{12} \frac{d^{2}}{d t^{2}} \theta_{c_{2}}=T_{7}+T_{8}-\frac{L_{2}}{2} F_{x_{7}} \sin \left(\theta_{7}\right)+\frac{L_{2}}{2} F_{y_{7}} \cos \left(\theta_{7}\right) \\
& \quad-\frac{L_{2}}{2} F_{x_{8}} \sin \left(\theta_{8}\right)+\frac{L_{2}}{2} F_{y_{8}} \cos \left(\theta_{8}\right) \\
& \\
& \theta_{7}=\theta_{c_{2}} \\
& \theta_{8}= \\
& \theta_{7}+\pi \\
& x_{7}=x_{c_{2}}+\frac{L_{1}}{2} \cos \left(\theta_{c_{2}}\right) \\
& x_{8}=x_{c_{2}}-\frac{L_{1}}{2} \cos \left(\theta_{c_{2}}\right) \\
& y_{7}=y_{c_{2}}+\frac{L_{1}}{2} \sin \left(\theta_{c_{2}}\right) \\
& y_{8}=y_{c_{2}}-\frac{L_{1}}{2} \sin \left(\theta_{c_{2}}\right)
\end{aligned}
$$

CART

$$
\begin{aligned}
& M \frac{d^{2}}{d t^{2}} x_{14}=F_{14}+F_{x_{14}} \\
& x_{14}=x_{13} \\
& y_{13}=0 \\
& \theta_{13}=\pi / 2
\end{aligned}
$$

CART

$$
\begin{aligned}
& \left(m_{r_{1}}+m_{s_{1}}\right) \frac{d^{2}}{d t^{2}} x_{3}=F_{x_{3}}+F_{x_{4}} \\
& \left(m_{r_{1}}+m_{s_{1}}\right) \frac{d^{2}}{d t^{2}} y_{3}=F_{y_{3}}+F_{y_{4}} \\
& J_{r_{1}} \frac{d^{2}}{d t^{2}} \theta_{3}=T_{3}+T_{m} \\
& J_{s_{1}} \frac{d^{2}}{d t^{2}} \theta_{4}=T_{4}-T_{m} \\
& V_{5}-V_{6}=L_{1} \frac{d}{d t} I_{5}+R_{1} I_{5}+K \frac{d}{d t}\left(\theta_{3}-\theta_{4}\right), \\
& K_{1} I_{5}=T_{m_{1}} \\
& x_{3}=x_{4}, y_{3}=y_{4} \\
& I_{5}=-I_{6}
\end{aligned}
$$

CART

$$
\begin{aligned}
& \left(m_{r_{2}}+m_{s_{2}}\right) \frac{d^{2}}{d t^{2}} x_{9}=F_{x_{9}}+F_{x_{10}} \\
& \left(m_{r_{2}}+m_{s_{2}}\right) \frac{d^{2}}{d t^{2}} y_{9}=F_{y_{9}}+F_{y_{10}} \\
& J_{r_{2}} \frac{d^{2}}{d t^{2}} \theta_{9}=T_{9}+T_{m} \\
& J_{s_{2}} \frac{d^{2}}{d t^{2}} \theta_{10}=T_{10}-T_{m} \\
& V_{11}-V_{12}=L_{2} \frac{d}{d t} I_{11}+R_{2} I_{11}+K \frac{d}{d t}\left(\theta_{9}-\theta_{10}\right), \\
& K_{2} I_{11}=T_{m_{2}} \\
& x_{10}=x_{11}, y_{10}=y_{11} \\
& I_{11}=-I_{12}
\end{aligned}
$$

CART

$$
\begin{aligned}
& F_{x_{2}}+F_{x_{3}}=0, F_{y_{2}}+F_{y_{3}}=0, x_{2}=x_{3}, y_{2}=y_{3}, \\
& \theta_{2}=\theta_{3}+\pi, T_{2}+T_{3}=0, \\
& F_{x_{4}}+F_{x_{7}}=0, F_{y_{4}}+F_{y_{7}}=0, x_{4}=x_{7}, y_{4}=y_{7}, \\
& \theta_{4}=\theta_{7}+\pi, T_{4}+T_{7}=0, \\
& F_{x_{8}}+F_{x_{9}}=0, F_{y_{8}}+F_{y_{9}}=0, x_{8}=x_{9}, y_{8}=y_{9}, \\
& \theta_{8}=\theta_{9}+\pi, T_{8}+T_{9}=0, \\
& F_{x_{10}}+F_{x_{13}}=0, F_{x_{10}}+F_{x_{13}}=0, \\
& x_{10}=x_{13}, y_{10}=y_{13} . \\
& \theta_{10}=\theta_{13}+\pi, T_{10}+T_{13}=0 .
\end{aligned}
$$

INPUT - to - OUTPUT CONNECTIONS

The inappropriateness of input - to - output connections is best illustrated by the following simple physical example:

Logical choice of inputs: the pressures $p_{11}, p_{12}, p_{21}, p_{22}$, and of the outputs $f_{11}, f_{12}, f_{21}, f_{22}$.

In any case, the choice should be 'symmetric'.

INPUT - to - OUTPUT CONNECTIONS

Interconnection constraints:

$$
p_{12}=p_{21}, \quad f_{12}=f_{21}
$$

Equates two 'inputs’ and two ‘outputs’.

LINEAR RLCT CIRCUITS

BUILDING BLOCKS

Module Types:
Resistors, Capacitors, Inductors, Transformers, Connectors.

All terminals are of the same type: electrical
There are 2 variables associated with each terminal, (V, I), V the potential, I the current (counted >0 when it flows into the module).
\leadsto terminal signal space \mathbb{R}^{2}.

LINEAR RLCT CIRCUITS

SPECIFICATION of the BEHAVIOR of the MODULES

Resistor: 2-terminal module.
Parameter: \boldsymbol{R} (resistance in ohms, say).

Device laws:

$$
V_{1}-V_{2}=R I_{1} ; \quad I_{1}+I_{2}=0
$$

LINEAR RLCT CIRCUITS

Capacitor: 2-terminal module.
Parameter: C (capacitance in farads, say). Device laws:

$$
C \frac{d}{d t}\left(V_{1}-V_{2}\right)=I_{1} ; \quad I_{1}+I_{2}=0
$$

LINEAR RLCT CIRCUITS

Inductor: 2-terminal module.
Parameter: L (inductance in henrys, say). Device laws:

$$
L \frac{d}{d t} I_{1}=V_{1}-V_{2} ; \quad I_{1}+I_{2}=0
$$

LINEAR RLCT CIRCUITS

Transformer: 4-terminal module; terminals (1,2): primary; terminals $(3,4)$: secondary. Parameter: N (the turns ratio, $\in(0, \infty)$). Device laws:

$$
\begin{aligned}
\hline V_{3}-V_{4}=N\left(V_{1}-V_{2}\right) ; & I_{1}=-N I_{3} \\
I_{1}+I_{2}=0 ; & I_{3}+I_{4}=0
\end{aligned}
$$

LINEAR RLCT CIRCUITS

n
Connector: many-terminal module.
Parameter: n (number of terminals, an integer). Device laws:

$$
V_{1}=V_{2}=\cdots=V_{\mathrm{n}} ; \quad I_{1}+I_{2}+\cdots+I_{\mathrm{n}}=0
$$

LINEAR RLCT CIRCUITS

MODULES and TERMINAL ASSIGNMENT

Modules
Resistors $\quad r_{1}, r_{2}, \ldots, r_{\mathrm{n}_{r}}, \quad$ parameters $R_{1}, R_{2}, \ldots, \boldsymbol{R}_{\mathrm{n}_{r}}$;
Capacitors $\quad c_{1}, c_{2}, \ldots, c_{\mathrm{n}_{c}}, \quad$ parameters $C_{1}, C_{2}, \ldots, C_{\mathrm{n}_{c}}$; Inductors $\quad \ell_{1}, \ell_{2}, \ldots, \ell_{\mathrm{n}_{\ell}}, \quad$ parameters $L_{1}, L_{2}, \ldots, L_{\mathrm{n}_{\ell}}$;
Transformers $T_{1}, T_{2}, \ldots, T_{\mathrm{n}_{T}}$, parameters $N_{1}, N_{2}, \ldots, N_{\mathrm{n}_{T}}$;
Connectors $\quad \mathrm{k}_{1}, \mathrm{k}_{2}, \ldots, \mathrm{k}_{\mathrm{n}_{\mathrm{k}}}, \quad$ parameters $\mathrm{n}_{1}, \mathrm{n}_{2}, \ldots, \mathrm{n}_{\mathrm{n}_{\mathrm{k}}}$.
This yields the set of terminals
$\mathbb{T}=\left\{1,2, \ldots, 2\left(\mathrm{n}_{r}+\mathrm{n}_{c}+\mathrm{n}_{\ell}\right)+4 \mathrm{n}_{T}+\mathrm{n}_{1}+\mathrm{n}_{2}+\ldots+\mathrm{n}_{\mathrm{n}_{\mathrm{k}}}\right\}$.

LINEAR RLCT CIRCUITS

INTERCONNECTION ARCHITECTURE

Interconnection architecture :
$\mathbb{I}=$ a set of disjoint (unordered) pairs of different elements (i.e., doubletons) from \mathbb{T}.

LINEAR RLCT CIRCUITS

MANIFEST VARIABLE ASSIGNMENT

External terminals $=\mathbb{E}:=\mathbb{T}-\cup_{\mathbb{I}}\{a, b\}$.
Manifest variables $=$ external terminal voltages and currents
$=\Pi_{\mathrm{k} \in \mathbb{I}}\left(\boldsymbol{V}_{\mathrm{k}}, \boldsymbol{I}_{\mathrm{k}}\right)$. Denote the manifest variables by
$\Pi_{\mathrm{k} \in \mathbb{I}}\left(\boldsymbol{V}_{\mathrm{k}}, \boldsymbol{I}_{\mathrm{k}}\right)$ as $(\boldsymbol{V}, \boldsymbol{I}) \in \mathbb{R}^{2 \mathbb{E}}$.
Manifest behavior: $\subseteq\left(\mathbb{R}^{2 \mathbb{E}}\right)^{\mathbb{R}}$.
Denote further the full behavior (the behavior of all the terminal voltages and currents) by $\quad \mathfrak{B}_{\mathbb{T}} \subseteq\left(\mathbb{R}^{\mathbf{2} \mathbb{T}}\right)^{\mathbb{T}}$.

LINEAR RLCT CIRCUITS

FULL BEHAVIORAL EQUATIONS

1. Module Laws:

1.1 Resistors: for each resistor r_{n}, terminals $\left(t_{1}^{r_{\mathrm{n}}}, t_{2}^{r_{\mathrm{n}}}\right)$,

$$
\boldsymbol{V}_{\boldsymbol{t}_{\mathbf{1}}^{r_{\mathrm{n}}}}-\boldsymbol{V}_{\boldsymbol{t}_{\mathbf{2}}^{r_{\mathrm{n}}}}=\boldsymbol{R}_{\mathrm{n}} \boldsymbol{I}_{\boldsymbol{t}_{\mathbf{1}}}^{r_{\mathrm{n}}} ; \quad \boldsymbol{I}_{\boldsymbol{t}_{\mathbf{1}}^{r_{\mathrm{n}}}+\boldsymbol{I}_{\mathbf{2}}^{r_{\mathrm{n}}}=\mathbf{0} . .}
$$

1.2 Capacitors: for each capacitor c_{n}, terminals $\left(t_{1}^{c_{\mathrm{n}}}, t_{2}^{c_{\mathrm{n}}}\right)$,

$$
\frac{d}{d t} C_{\mathrm{n}}\left(V_{t_{1}^{c_{\mathrm{n}}}}-V_{t_{2}^{c_{\mathrm{n}}}}\right)=\boldsymbol{I}_{t_{1}}^{c_{\mathrm{n}}} ; \quad \boldsymbol{I}_{t_{1}}^{c_{\mathrm{n}}}+\boldsymbol{I}_{t_{2}}^{c_{\mathrm{n}}}=\mathbf{0}
$$

1.3 Inductors: for each inductor ℓ_{n}, terminals $\left(t_{1}^{\ell_{n}}, t_{2}^{\ell_{n}}\right)$,

$$
\frac{d}{d t} L_{\mathrm{n}} I_{t_{1}^{\ell_{\mathrm{n}}}}-V_{t_{2}^{\ell_{\mathrm{n}}}} ; \quad \boldsymbol{I}_{t_{1}^{\ell_{\mathrm{n}}}}+I_{t_{2}^{\ell_{\mathrm{n}}}}=\mathbf{0}
$$

1.4 Transformers: for each transformer T_{n}, terminals $\left(t_{1}^{T_{\mathrm{n}}}, t_{2}^{T_{\mathrm{n}}}, t_{3}^{T_{\mathrm{n}}}, t_{4}^{T_{\mathrm{n}}}\right)$,

$$
\begin{aligned}
V_{t_{1} T_{\mathrm{n}}}-V_{t_{2}^{T_{\mathrm{n}}}}=N_{\mathrm{n}}\left(V_{t_{3}^{T_{\mathrm{n}}}}-V_{t_{4}^{T_{\mathrm{n}}}}\right) ; & I_{t_{3}^{T_{\mathrm{n}}}}=-\boldsymbol{N}_{\mathrm{n}} \boldsymbol{I}_{t_{1}^{T_{\mathrm{n}}}} \\
\boldsymbol{I}_{t_{1}^{T_{\mathrm{n}}}}+\boldsymbol{I}_{t_{2}^{T_{\mathrm{n}}}}=0 ; & \boldsymbol{I}_{t_{3}^{T_{\mathrm{n}}}}+\boldsymbol{I}_{\boldsymbol{t}_{4}^{T_{\mathrm{n}}}}=\mathbf{0}
\end{aligned}
$$

1.5 Connectors: for each connector k_{n}, terminals $\left(t_{1}^{\mathrm{k}_{\mathrm{n}}}, \ldots, t_{\mathrm{n}_{\mathrm{k}_{\mathrm{n}}}}^{\mathrm{k}_{\mathrm{n}}}\right)$,

$$
\boldsymbol{V}_{\boldsymbol{t}_{1}^{k_{\mathrm{n}}}}=\cdots=\boldsymbol{V}_{\boldsymbol{t}_{\mathrm{n}_{\mathrm{k}_{\mathrm{n}}}}^{\mathrm{k}_{\mathrm{n}}}} ; \quad \boldsymbol{I}_{\boldsymbol{t}_{1}^{\mathrm{k}_{\mathrm{n}}}}+\cdots+\boldsymbol{I}_{\boldsymbol{t}_{\mathrm{n}_{\mathrm{k}_{\mathrm{n}}}}^{\mathrm{k}_{\mathrm{n}}}}
$$

LINEAR RLCT CIRCUITS

2. Interconnection Laws:

For each 'connected' terminal pair $\{a, b\} \in \mathbb{I}$:

$$
V_{a}=V_{b} ; \quad I_{a}+I_{b}=0
$$

Solution of behavioral equations $\sim \mathfrak{B}_{\mathbb{T}}$.
After elimination of internal variables $\sim \mathfrak{B}_{\mathbb{E}}$.

LINEAR RLCT CIRCUITS

PROPERTIES of $\mathfrak{B}_{\mathbb{E}}$

When is $\quad \mathfrak{B}_{\mathbb{E}} \subseteq\left(\mathbb{R}^{2 \mathbb{E}}\right)^{\mathbb{R}}$
the external terminal behavior of a circuit containing a finite number of positive R 's, L 's, C^{\prime} c, T 's, and connectors?

It is possible to derive necessary \& sufficient conditions!

LINEAR RLCT CIRCUITS

1. $\quad \mathfrak{B}_{\mathbb{E}} \in \mathfrak{L}^{2 \mathbb{E}}$.
2. KVL:
$\left((V, I) \in \mathfrak{B}_{\mathbb{E}}\right)$ and $\left.\left(\alpha \in \mathfrak{C}^{\infty}(\mathbb{R}, \mathbb{R})\right)\right) \Rightarrow((V+\alpha e) \in$ $\left.\mathfrak{B}_{\mathbb{E}}\right)$
with

$$
e=\left[\begin{array}{c}
1 \\
1 \\
\vdots \\
\vdots
\end{array}\right]
$$

3. KCL:

$$
\left((V, I) \in \mathfrak{B}_{\mathbb{E}}\right) \Rightarrow\left(e^{\top} \boldsymbol{I}=0\right)
$$

LINEAR RLCT CIRCUITS

4. Input cardinality: $\quad m\left(\mathfrak{B}_{\mathbb{E}}\right)=\mathbb{E}$
5. Hybridicity:

There exists an input/output choice such that the input variables $\left(u_{1}, u_{2}, \ldots, u_{\mathbb{E}}\right)$ and output variables $\left(y_{1}, y_{2}, \cdots, y_{\mathbb{E}}\right)$ pair as follows:
$\left\{\boldsymbol{u}_{\mathrm{i}}, \boldsymbol{y}_{\mathrm{i}}\right\}=\left\{\boldsymbol{V}_{\mathrm{i}}, \boldsymbol{I}_{\mathrm{i}}\right\}$
Each terminal is either current controlled or voltage controlled.

LINEAR RLCT CIRCUITS

6. Passivity:

Assume for simplicity $\mathfrak{B}_{\mathbb{E}} \in \mathbb{L}_{\text {controllable }}^{2 \mathbb{E}}$. There holds

$$
\int_{0}^{+\infty} V^{\top}(t) I(t) d t \geq 0
$$

for all $(V, I) \in \mathfrak{B}_{\mathbb{E}}$ of compact support.

This states that the net electrical energy flows into the circuit.

LINEAR RLCT CIRCUITS

7. Reciprocity:

Assume again for simplicity $\mathfrak{B}_{\mathbb{E}} \in \mathbb{L}_{\text {controllable }}^{2 \mathbb{E}}$. There holds

$$
\int_{-\infty}^{+\infty} V_{1}^{\top}(t) I_{2}(-t) d t=\int_{-\infty}^{+\infty} I_{1}^{\top}(t) V_{2}(-t) d t
$$

for all $\left(V_{1}, I_{1}\right),\left(V_{2}, I_{2}\right) \in \mathfrak{B}_{\mathbb{E}}$ of compact support.
Equivalently: $\mathfrak{B}_{\mathbb{E}}=\operatorname{rev}\left(\mathfrak{B}_{\mathbb{E}}^{\perp_{\Sigma}}\right)$,
where rev denotes time-reversal, and $\Sigma=\left[\begin{array}{cc}O & I \\ -I & O\end{array}\right]$.
This curious properties may be translated into:
The influence of terminal i on terminal j is equal to the influence of terminal j on terminal i.

LINEAR RLCT CIRCUITS

Proof of necessity:
Show that the modules satisfy properties (1) to (7).
Show that these properties remain valid after one interconnection. The difficult part here is (4).

Proof of necessity:
'Synthesis'.

TERMINALS or PORTS?

Note that (for instance for electrical circuits) we have used the terminal description. It is simply more appropriate and more general than the port description (even when using only 'port' devices).

The port description is not 'closed under interconnection'.

TERMINALS or PORTS?

Note that (for instance for electrical circuits) we have used the terminal description. It is simply more appropriate and more general than the port description (even when using only 'port' devices).

The port description is not 'closed under interconnection'.

Example:

TERMINALS or PORTS?

Note that (for instance for electrical circuits) we have used the terminal description. It is simply more appropriate and more general than the port description (even when using only 'port' devices).

The port description is not 'closed under interconnection'.

However, port descriptions are more parsimomious in the choice of variables (it halves their number). It is important to incorporate this parsimony.

RECAPITULATION

- Modelling interconnected systems \cong Interplay of

RECAPITULATION

- Modelling interconnected systems \cong Interplay of
- modules and their behavior
- terminals and their type
- the interconnection architecture
- interconnection laws
- manifest variable assignment

RECAPITULATION

- Modelling interconnected systems \cong Interplay of
- modules and their behavior
- terminals and their type
- the interconnection architecture
- interconnection laws
- manifest variable assignment
- Adapted to computer assisted modelling
- Hierarchical, reusable, extendable

RECAPITULATION

- Modelling interconnected systems \cong Interplay of
- modules and their behavior
- terminals and their type
- the interconnection architecture
- interconnection laws
- manifest variable assignment
- Adapted to computer assisted modelling
- Hierarchical, reusable, extendable
- Many latent variables, many equations (many static relations, i.e., algebraic equations). Far distance from i/o, i/s/o, tf. f'ns.
- Importance of elimination algorithms

CONCLUSION

* for physical systems ($\Rightarrow \Leftarrow$ signal processors) $*$

CONCLUSION

* for physical systems $(\Rightarrow \Leftarrow$ signal processors) $*$
- External variables are basic, but what 'drives' what , is not.

CONCLUSION

* for physical systems $(\Rightarrow \Leftarrow$ signal processors) $*$
- External variables are basic, but what 'drives' what , is not.
- Interconnection, variable sharing, rather that input selection, is the basic mechanism by which a system interacts with its environment.

BONDGRAPHS

Views interconnected systems indeed in terms of ports, modules, and interconnections.

BONDGRAPHS

Views interconnected systems indeed in terms of ports, modules, and interconnections.
It is assumed that for each of the terminals the interconnection variables come in pairs:
an effort variable and a flow variable
their (inner) product must be power.

BONDGRAPHS

Views interconnected systems indeed in terms of ports, modules, and interconnections.
It is assumed that for each of the terminals the interconnection variables come in pairs:
an effort variable and a flow variable
their (inner) product must be power.

Examples:

- Electrical ports: effort: voltage, flow: current
- Mechanical ports: effort: force, flow: velocity
- Thermal ports: effort: T, flow: Q / T
- etc. etc.

BONDGRAPHS

- Bondgraphs ideas very good, brilliant
- certainly superior to SIMULINK ${ }^{\text {© }}$

BONDGRAPHS

- Bondgraphs ideas very good, brilliant
- certainly superior to SIMULINK ${ }^{\text {© }}$
- notation very awkward, mathematical notions primitive
- terminal variable structure seems limited to linearity
- some interconnections fail their assumptions: mechanical terminals equate positions, NOT velocities

BONDGRAPHS

- Bondgraphs ideas very good, brilliant
- certainly superior to SIMULINK ${ }^{\text {© }}$
- notation very awkward, mathematical notions primitive
- terminal variable structure seems limited to linearity
- some interconnections fail their assumptions: mechanical terminals equate positions, NOT velocities
- effort/flow, while apparently deep, remains unexplored
- interconnections happen via terminals, not ports.
- there is more structure to interconnection variables than effort/flow.

CONTROL in a BEHAVIORAL SETTING

FEEDBACK CONTROL

The usual paradigm for control:

'Intelligent' Control

BEHAVIORAL CONTROL

Control as interconnection

BEHAVIORAL CONTROL

Before interconnection

BEHAVIORAL CONTROL

Before interconnection

After interconnection

Control = designing a subsystem

Feedback control as an example

'Example'

Many practical control devices do not function as feedback controllers! Dampers, heat fins, pressure valves, overflows, turbulence control strips, characteristic impedances, etc. etc.

'Example'

Many practical control devices do not function as feedback controllers! Dampers, heat fins, pressure valves, overflows, turbulence control strips, characteristic impedances, etc. etc.

Mechanical object

Mechanical object

'Example'

Many practical control devices do not function as feedback controllers! Dampers, heat fins, pressure valves, overflows, turbulence control strips, characteristic impedances, etc. etc.

Mechanical object

Mechanical object

'Example'

Many practical control devices do not function as feedback controllers! Dampers, heat fins, pressure valves, overflows, turbulence control strips, characteristic impedances, etc. etc.

'Example’

Many practical control devices do not function as feedback controllers! Dampers, heat fins, pressure valves, overflows, turbulence control strips, characteristic impedances, etc. etc.

'Example'

Equation of motion of the door (the plant):

$$
\begin{array}{r}
M^{\prime} \frac{d^{2} \theta}{d t^{2}}=F_{c}+F_{e} \\
\theta: \text { opening angle, }
\end{array}
$$

$\boldsymbol{F}_{\boldsymbol{c}}$ force device, $\boldsymbol{F}_{\boldsymbol{e}}$ exogenous force.

Door closing mechanism (the controller):

$$
M^{\prime \prime} \frac{d^{2} \theta}{d t^{2}}+D \frac{d \theta}{d t}+K \theta=-F_{c}
$$

'Example'

Equation of motion of the door (the plant):

$$
\begin{array}{r}
M^{\prime} \frac{d^{2} \theta}{d t^{2}}=F_{c}+F_{e} \\
\theta: \text { opening angle, }
\end{array}
$$

$\boldsymbol{F}_{\boldsymbol{c}}$ force device, $\boldsymbol{F}_{\boldsymbol{e}}$ exogenous force.

Door closing mechanism (the controller):

$$
M^{\prime \prime} \frac{d^{2} \theta}{d t^{2}}+D \frac{d \theta}{d t}+K \theta=-F_{c}
$$

Controlled behavior:

$$
\left(M^{\prime}+M^{\prime \prime}\right) \frac{d^{2} \theta}{d t^{2}}+D \frac{d \theta}{d t}+K \theta=F_{e}
$$

Specs: small overshoot, fast settling, not-to-high gain from $\boldsymbol{F}_{\boldsymbol{e}} \mapsto \boldsymbol{\theta}$. Controller $\sim M^{\prime}, K$ and D.
Note: Plant: second order; Controller: second order; Controlled plant: second (not fourth) order.
Note: PDD controller, but no noise problems

MATHEMATIZATION

Domain of the to-be-controlled variables: \mathbb{W}
Domain of the control variables: \mathbb{C}
Typically: families of time-signals

MATHEMATIZATION

Full plant behavior:

$$
\mathcal{P}_{\text {full }}=\{(w, c) \in \mathbb{W} \times \mathbb{C} \mid \text { allowed by plant laws }\}
$$

Controller:

$$
\mathcal{C}=\{c \in \mathbb{C} \mid \text { allowed by controller laws }\}
$$

MATHEMATIZATION

Full plant behavior:

$$
\mathcal{P}_{\text {full }}=\{(w, c) \in \mathbb{W} \times \mathbb{C} \mid \text { allowed by plant laws }\}
$$

Controller:

$$
\mathcal{C}=\{c \in \mathbb{C} \mid \text { allowed by controller laws }\}
$$

Controlled behavior:

$$
\mathcal{K}:=\{w \in \mathbb{W} \mid \exists c \in \mathbb{C}
$$

such that $(w, c) \in \mathcal{P}_{\text {full }}$ and $\left.c \in \mathcal{C}\right\}$.

MATHEMATIZATION

Controlled behavior:

$$
\mathcal{K}:=\{w \in \mathbb{W} \mid \exists c \in \mathbb{C}
$$

$$
\text { such that } \left.(w, c) \in \mathcal{P}_{\text {full }} \text { and } c \in \mathcal{C}\right\}
$$

We say that \mathcal{C} implements \mathcal{K}, and that \mathcal{K} is implementable

MATHEMATIZATION

Controlled behavior:

$$
\mathcal{K}:=\{w \in \mathbb{W} \mid \exists c \in \mathbb{C}
$$

$$
\text { such that } \left.(w, c) \in \mathcal{P}_{\text {full }} \text { and } c \in \mathcal{C}\right\}
$$

We say that \mathcal{C} implements \mathcal{K}, and that \mathcal{K} is implementable

Questions:

- Which \mathcal{C} implements the desired controlled behavior \mathcal{D} ?
- Given $\mathcal{P}_{\text {full, }}$ which $\mathcal{K} \subseteq \mathbb{W}$ are implementable?

We henceforth restrict attention to
linear time-invariant differential systems.

We henceforth restrict attention to
linear time-invariant differential systems.
The behavior \mathfrak{B} belongs to \mathfrak{L}^{W}

$$
: \Leftrightarrow
$$

\exists a polynomial matrix $R \in \mathbb{R}^{\bullet \times w}[\xi]$ such that

$$
\mathfrak{B}=\left\{w \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right) \left\lvert\, \boldsymbol{R}\left(\frac{d}{d t}\right) w=0\right.\right\}
$$

Plant:

$$
\mathcal{P}_{\text {full }} \in \mathfrak{L}^{\mathrm{w}+\mathrm{c}}
$$

Controller:

$$
\mathcal{C} \in \mathfrak{L}^{\mathrm{c}}
$$

Controlled system:

$$
\mathcal{K}=\left\{w \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right) \mid \exists c \in \mathcal{C}:(w, c) \in \mathcal{P}_{\text {full }}\right\}
$$

Plant:

$$
\mathcal{P}_{\text {full }} \in \mathfrak{L}^{\mathrm{w}+\mathrm{c}}
$$

Controller:

$$
\mathcal{C} \in \mathfrak{L}^{\mathrm{C}}
$$

Controlled system:

$$
\mathcal{K}=\left\{w \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right) \mid \exists c \in \mathcal{C}:(w, c) \in \mathcal{P}_{\mathrm{full}}\right\}
$$

By the 'elimination theorem'

$$
\mathcal{K} \in \mathfrak{L}^{\mathrm{W}}
$$

IMPLEMENTABILITY

Which behaviors $\mathcal{K} \in \mathfrak{L}^{\mathrm{W}}$ can be implemented by attaching a controller $\mathcal{C} \in \mathfrak{L}^{c}$ to a given plant

$$
\mathcal{P}_{\text {full }} \in \mathfrak{L}^{\mathrm{w}+\mathrm{c}} ?
$$

IMPLEMENTABILITY

Which behaviors $\mathcal{K} \in \mathfrak{L}^{\mathrm{W}}$ can be implemented by attaching a controller $\mathcal{C} \in \mathfrak{L}^{\mathrm{C}}$ to a given plant $\mathcal{P}_{\text {full }} \in \mathfrak{L}^{\mathrm{w}+\mathrm{c}}$?

This question has a very concrete and intuitive answer.
Theorem: Let $\mathcal{P}_{\text {full }} \in \mathfrak{L}^{\mathrm{w}+\mathrm{c}}$ be given.
The behavior $\mathcal{K} \in \mathfrak{L}^{\mathrm{W}}$ is implementable if and only if
$\mathcal{N} \subseteq \mathcal{K} \subseteq \mathcal{P}$

IMPLEMENTABILITY

The behavior $\mathcal{K} \in \mathfrak{L}^{\text {w }}$ is implementable if and only if

$\mathcal{N} \subseteq \mathcal{K} \subseteq \mathcal{P}$

where $\mathcal{N} \in \mathfrak{L}^{W}$ is the hidden behavior defined by

$$
\mathcal{N}:=\left\{w \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right) \mid(w, 0) \in \mathcal{P}_{\text {full }}\right\}
$$

and \mathcal{P} is the manifest plant behavior defined by

$$
\mathcal{P}:=\left\{w \in \mathfrak{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right) \mid \exists c:(w, c) \in \mathcal{P}_{\text {full }}\right\}
$$

IMPLEMENTABILITY

$\mathcal{N} \in \mathfrak{L}^{\mathrm{w}}$, the hidden behavior

IMPLEMENTABILITY

$\mathcal{P} \in \mathfrak{L}^{\mathrm{W}}$, the manifest plant behavior

IMPLEMENTABILITY

The behavior $\mathcal{K} \in \mathfrak{L}^{\mathrm{W}}$ is implementable if and only if

$\mathcal{N} \subseteq \mathcal{K} \subseteq \mathcal{P}$

This theorem reduces control to linear algebra / functional analysis: finding suitable subspaces wedged between given subspaces.

Example:

Assume observability of the to-be-controlled variables \boldsymbol{w} from the control variables $c \Leftrightarrow \mathcal{N}=\{0\}$. Assume $\mathcal{P} \neq\{0\}$, controllable. \Rightarrow pole assignability \Rightarrow stabilizability
e.g., $\frac{d}{d t} x=A x+B u, y=C x+D u, c=(u, y), w=x$.

IMPLEMENTABILITY

The behavior $\mathcal{K} \in \mathfrak{L}^{\text {w }}$ is implementable if and only if

$$
\mathcal{N} \subseteq \mathcal{K} \subseteq \mathcal{P}
$$

This theorem reduces control to linear algebra / functional analysis: finding suitable subspaces wedged between given subspaces.

LQ-control and \mathcal{H}_{∞} control are very neatly worked out from this point of view/

Regularity

The full controlled behavior $\mathcal{K}_{\text {full }} \subseteq \mathcal{P}_{\text {full }}$ is defined by

$$
\mathcal{K}_{\text {full }}:=\left\{(w, c) \in \mathcal{P}_{\text {full }} \mid c \in \mathcal{C}\right\}
$$

Regularity

The full controlled behavior $\mathcal{K}_{\text {full }} \subseteq \mathcal{P}_{\text {full }}$ is defined by

$$
\mathcal{K}_{\text {full }}:=\left\{(w, c) \in \mathcal{P}_{\text {full }} \mid c \in \mathcal{C}\right\} .
$$

Consider the maps $\mathrm{m}, \mathrm{p}: \mathfrak{L}^{\mathrm{w}} \rightarrow\{0,1, \ldots, \mathrm{w}\}$ with $m(\mathfrak{B})$ the number of input variables, and $p(\mathfrak{B})$ the number of output variables in \mathfrak{B}.

Regularity

The full controlled behavior $\mathcal{K}_{\text {full }} \subseteq \mathcal{P}_{\text {full }}$ is defined by

$$
\mathcal{K}_{\text {full }}:=\left\{(w, c) \in \mathcal{P}_{\text {full }} \mid c \in \mathcal{C}\right\} .
$$

Consider the maps $m, p: \mathfrak{L}^{\mathrm{w}} \rightarrow\{0,1, \ldots, \mathrm{w}\}$ with $m(\mathfrak{B})$ the number of input variables, and $\mathrm{p}(\boldsymbol{\mathfrak { B }})$ the number of output variables in \mathfrak{B}.

The controller $\mathcal{C} \in \mathfrak{L}^{\text {c }}$ is said to be regular if

$$
\mathrm{p}\left(\mathcal{K}_{\text {full }}\right)=\mathrm{p}\left(\mathcal{P}_{\text {full }}\right)+\mathrm{p}(\mathcal{C}) .
$$

Regularity

Regularity :=

if the controller has p bound (i.e. output) variables, then the plant looses \boldsymbol{p} free variables after interconnection.

Regularity

A controller is regular if and only if it can be realized as a feedback controller with a (possibly non-proper) transfer function from an output to an input in $\mathcal{P}_{\text {full }}$ for an input/output partition of \boldsymbol{c}.

Regularity

\Rightarrow A controller is regular if and only if it can be viewed as an 'intelligent controller' that processes sensor inputs outputs into actuator inputs.

Regularity

\Rightarrow A controller is regular if and only if it can be viewed as an 'intelligent controller' that processes sensor inputs outputs into actuator inputs.

If \mathcal{P} is controllable, then every implementable controlled behavior \mathcal{K} is actually regularly implementable.

Regularity

\Rightarrow A controller is regular if and only if it can be viewed as an 'intelligent controller' that processes sensor inputs outputs into actuator inputs.

> If \mathcal{P} is controllable, then every implementable controlled behavior \mathcal{K} is actually regularly implementable.

In feedback control, we have the additional property that the controller can be (de)coupled at any time. No state perparatiuon is required in attaching the controller.

A LOOK BACK

What have we been trying to do, really ?

A LOOK BACK

What have we been trying to do, really ?

Set up a 'correct' mathematical framework for discussing dynamical systems.

Usable in control, signal processing, econometrics, and, especially, incorporating in an honest way the classical models of physical systems.

A LOOK BACK

What have we been trying to do, really ?

Basic observations:

- Any reasonable theory takes open systems as the basic paradigm.
- Most dynamical models will be described by (differential or difference) equations, but we need a basic notion of equivalence of models.
- First principles models invariably contain auxiliary variables
- \exists a complete theory for linear time-invariant systems.

A LOOK BACK

What have we been trying to do, really ?

Basic observations:

- Any reasonable theory takes open systems as the basic paradigm. \sim the predominance in mathematical research of closed systems is very hard to comprehend.
- Most dynamical models will be described by (differential or difference) equations, but we need a basic notion of equivalence of models.
- First principles models invariably contain auxiliary variables
- \exists a complete theory for linear time-invariant systems.

A LOOK BACK

What have we been trying to do, really ?

Basic observations:

- Any reasonable theory takes open systems as the basic paradigm.
- Most dynamical models will be described by (differential or difference) equations, but we need a basic notion of equivalence of models. \sim the behavior.
- First principles models invariably contain auxiliary variables
- \exists a complete theory for linear time-invariant systems.

A LOOK BACK

What have we been trying to do, really ?

Basic observations:

- Any reasonable theory takes open systems as the basic paradigm.
- Most dynamical models will be described by (differential or difference) equations, but we need a basic notion of equivalence of models.
- First principles models invariably contain auxiliary variables $~ m a n i f e s t ~ a n d ~ l a t e n t ~ v a r i a b l e s . ~$
- \exists a complete theory for linear time-invariant systems.

A LOOK BACK

What have we been trying to do, really ?

Basic observations:

- Any reasonable theory takes open systems as the basic paradigm.
- Most dynamical models will be described by (differential or difference) equations, but we need a basic notion of equivalence of models.
- First principles models invariably contain auxiliary variables
- \exists a complete theory for linear time-invariant systems. $~$ polyomial matrix based models, with as highlights the elimination thm., controllability, and image repr.

A LOOK BACK

What have we been trying to do, really ?

A LOOK BACK

What have we been trying to do, really ?

Basic observations:

- The manifest variables of systems do not come as input/output pairs. On a physical terminal, many variables live simulaneously. I/O structures give the wrong suggestion. An I/O partition, if possible at all, is usually not unique, and if needed, depends on the purpose of the model.
- An input/output model is simply not a 'map'.
- The state is a construct, and so are the input and output.
- Many technologically very relevant controllers are not sensor-output-to-actuator-input signal processors.

A LOOK BACK

What have we been trying to do, really ?

Basic observations:

- The manifest variables of systems do not come as input/output pairs. On a physical terminal, many variables live simulaneously. I/O structures give the wrong suggestion. An I/O partition, if possible at all, is usually not unique, and if needed, depends on the purpose of the model.
$~$ The classical I/O framework fails in the first and most elementary examples.
- An input/output model is simply not a 'map'.
- The state is a construct, and so are the input and output.
- Many technologically very relevant controllers are not sensor-output-to-actuator-input signal processors.

A LOOK BACK

What have we been trying to do, really ?

Basic observations:

- The manifest variables of systems do not come as input/output pairs. On a physical terminal, many variables live simulaneously. I/O structures give the wrong suggestion. An I/O partition, if possible at all, is usually not unique, and if needed, depends on the purpose of the model.
- An input/output model is simply not a 'map'. \sim This is the historical raison d'être of state models .
- The state is a construct, and so are the input and output.
- Many technologically very relevant controllers are not sensor-output-to-actuator-input signal processors.

A LOOK BACK

What have we been trying to do, really ?

Basic observations:

- The manifest variables of systems do not come as input/output pairs. On a physical terminal, many variables live simulaneously. I/O structures give the wrong suggestion. An I/O partition, if possible at all, is usually not unique, and if needed, depends on the purpose of the model.
- An input/output model is simply not a 'map'.
- The state is a construct, and so are the input and output. ~ Algorithmically well worked out for linear time-invariant systems.
- Many technologically very relevant controllers are not sensor-output-to-actuator-input signal processors.

A LOOK BACK

What have we been trying to do, really ?

Basic observations:

- The manifest variables of systems do not come as input/output pairs. On a physical terminal, many variables live simulaneously. I/O structures give the wrong suggestion. An I/O partition, if possible at all, is usually not unique, and if needed, depends on the purpose of the model.
- An input/output model is simply not a 'map'.
- The state is a construct, and so are the input and output.
- Many technologically very relevant controllers are not sensor-output-to-actuator-input signal processors.
- The behavioral approach is consistent, pedagogically attractive, pragmatic, and practical.

Thank you

Thank you

Thank you

Thank you
Thank you
Thank you

Thank you

Thank you

End of the Lecture V

