

CONTROLLABILITY and OBSERVABILITY in a NEW PERSPECTIVE

Chaire Francqui, Lecture II, May 12, 2004

Central notions in all of system and control theory:

controllability and observability

in the setting and language of behavioral models.

THEME

Central notions in all of system and control theory:

controllability and observability

in the setting and language of behavioral models.

- Formal definitions
- Tests for controllability and observability
- Image representations
- Stabilizability
- PDE's

The time-invariant system $\Sigma=(\mathbb{T},\mathbb{W},\mathfrak{B})$ is said to be

controllable

if for all $w_1, w_2 \in \mathfrak{B}$ there exists $w \in \mathfrak{B}$ and $T \geq 0$ such that

$$w(t) = \begin{cases} w_1(t) & t < 0 \\ w_2(t-T) & t \ge T \end{cases}$$

The time-invariant system $\Sigma=(\mathbb{T},\mathbb{W},\mathfrak{B})$ is said to be

controllable

if for all $w_1, w_2 \in \mathfrak{B}$ there exists $w \in \mathfrak{B}$ and $T \geq 0$ such that

$$w(t) = \begin{cases} w_1(t) & t < 0 \\ w_2(t-T) & t \ge T \end{cases}$$

Controllability :⇔

legal trajectories must be 'patch-able', 'concatenable'.

 \dot{c} Is it possible to deduce w_2 from w_1 and the system model?

Consider the system $\Sigma = (\mathbb{T}, \mathbb{W}_1 \times \mathbb{W}_2, \mathfrak{B})$. Each element of \mathfrak{B} hence consists of a pair of trajectories (w_1, w_2) :

 w_1 : observed;

 w_2 : to-be-deduced.

Consider the system $\Sigma = (\mathbb{T}, \mathbb{W}_1 \times \mathbb{W}_2, \mathfrak{B})$. Each element of \mathfrak{B} hence consists of a pair of trajectories (w_1, w_2) :

 w_1 : observed;

 w_2 : to-be-deduced.

Definition: w_2 is said to be

observable from w_1

if $((w_1, w_2') \in \mathfrak{B}$, and $(w_1, w_2'') \in \mathfrak{B}) \Rightarrow (w_2' = w_2'')$, i.e., if on \mathfrak{B} , there exists a map $w_1 \mapsto w_2$.

Consider the system $\Sigma = (\mathbb{T}, \mathbb{W}_1 \times \mathbb{W}_2, \mathfrak{B})$. Each element of \mathfrak{B} hence consists of a pair of trajectories (w_1, w_2) :

 w_1 : observed;

 w_2 : to-be-deduced.

Definition: w_2 is said to be

observable from w_1

if $((w_1, w_2') \in \mathfrak{B}$, and $(w_1, w_2'') \in \mathfrak{B}) \Rightarrow (w_2' = w_2'')$, i.e., if on \mathfrak{B} , there exists a map $w_1 \mapsto w_2$.

Very often manifest = observed, latent (auxiliary variables introduced in the modeling process) = to-be-deduced.

We then speak of an observable (latent variable) system.

$$\frac{d}{dt}x = f(x,u), \ y = h(x,u).$$

$$\frac{d}{dt}x = f(x,u), \ \ y = h(x,u).$$

controllability: variables = (input, state)

If a system is not (state) controllable, why is it?

Insufficient influence of the control?

Or bad choice of the state?

$$\frac{d}{dt}x = f(x,u), \ \ y = h(x,u).$$

controllability: variables = (input, state)

If a system is not (state) controllable, why is it?

Insufficient influence of the control?

Or bad choice of the state?

observability:
→ observed = (input, output),
to-be-deduced = state.

Why is it so interesting to try to deduce the state, of all things? The state is a derived notion, not a 'physical' one.

$$\frac{d}{dt}x = f(x,u), \ y = h(x,u).$$

controllability: variables = (input, state)

If a system is not (state) controllable, why is it?

Insufficient influence of the control?

Or bad choice of the state?

observability:
→ observed = (input, output),
to-be-deduced = state.

Why is it so interesting to try to deduce the state, of all things? The state is a derived notion, not a 'physical' one.

Kalman definitions address rather special situations.

Given a system representation, derive algorithms in terms of the parameters for controllability.

Consider the system $\mathfrak{B} \in \mathfrak{L}^{ullet}$ defined by

$$R(\frac{d}{dt})w = 0.$$

Under what conditions on $R\in\mathbb{R}^{ullet imes w}[m{\xi}]$ does it define a controllable system?

Given a system representation, derive algorithms in terms of the parameters for controllability.

Consider the system $\mathfrak{B} \in \mathfrak{L}^{ullet}$ defined by

$$R(\frac{d}{dt})w = 0.$$

Under what conditions on $R \in \mathbb{R}^{ullet \times \mathbb{W}}[\xi]$ does it define a controllable system?

Theorem: $R(rac{d}{dt})w=0$ defines a controllable system \Leftrightarrow $\mathrm{rank}(R(\lambda))=\mathrm{constant}\ \mathrm{over}\ \lambda\in\mathbb{C}.$

Notes:

ullet If $R(rac{d}{dt})w=0$ is minimal ($\Leftrightarrow R$ of f.r.r.), then

controllability $\Leftrightarrow R(\lambda)$ is of full row rank $\forall \ \lambda \in \mathbb{C}$.

Equivalently, R is left-invertible as a polynomial matrix (\Leftrightarrow 'left prime').

$$P\in\mathbb{R}^{ ext{n}_1 imes ext{n}_2}[\xi]$$
 is *leftt-invertible* : $\Leftrightarrow\exists\;Q\in\mathbb{R}^{ ext{n}_2 imes ext{n}_1}[\xi]$ such that $PQ=I_{ ext{n}_1}$

Notes:

 $ullet \frac{d}{dt}x = Ax + Bu, w = (x,u)$ is controllable iff

$$\operatorname{rank}([A-\lambda I \ B])=\dim(x) \ orall \lambda \in \mathbb{C}.$$

Popov-Belevich-Hautus test for controllability.

Of course,

$$\Leftrightarrow \operatorname{rank}([B \ AB \ \cdots \ A^{\dim(x)-1}B]) = \dim(x).$$

Notes:

When is

$$p(\frac{d}{dt})w_1 = q(\frac{d}{dt})w_2$$

controllable? $p,q\in\mathbb{R}[oldsymbol{\xi}]$, not both zero.

Iff p and q are co-prime. No common factors!

Testable via Sylvester matrix, etc.

Generalizable.

Notes:

Example: Our electrical circuit is controllable unless

$$CR_C = rac{L}{R_L}$$
 and $R_C = R_L$.

Reasonable physical systems can be uncontrollable.

Notes:

When is

$$R(\frac{d^2}{dt^2})w = 0$$

controllable?

same conditions on R...

- ∃ nonlinear, time-varying generalizations.
- 'Real' algorithms: use image representation.
- If $\mathfrak{B} \in \mathfrak{L}^{ullet}$ is controllable, transfer with T>0 arbitrarily small.

Given a system representation, derive algorithms in terms of the parameters for observability.

Consider the system defined by

$$R_1(rac{d}{dt}) extbf{w}_1 = R_2(rac{d}{dt}) extbf{w}_2.$$

Under which conditions on $R_1, R_2 \in \mathbb{R}^{ullet imes ullet}[\xi]$ is $m{w_2}$ observable from $m{w_1}$?

Given a system representation, derive algorithms in terms of the parameters for observability.

Consider the system defined by

$$R_1(rac{d}{dt}) oldsymbol{w_1} = R_2(rac{d}{dt}) oldsymbol{w_2}.$$

Under which conditions on $R_1,R_2\in\mathbb{R}^{ullet imesullet}[\xi]$ is w_2 observable from w_1 ?

Theorem: In the system
$$R_1(rac{d}{dt})m{w_1} = R_2(rac{d}{dt})m{w_2},$$
 $m{w_2}$ is observable from $m{w_1}$

$$\operatorname{rank}(R_2(\lambda)) = \dim(oldsymbol{w_2})$$
 for all $\lambda \in \mathbb{C}$.

Notes:

• In $R_1(rac{d}{dt}) oldsymbol{w_1} = R_2(rac{d}{dt}) oldsymbol{w_2}$, $oldsymbol{w_2}$ is observable from $oldsymbol{w_1} \Leftrightarrow R_2(\lambda)$ is of full column rank orall $\lambda \in \mathbb{C}$.

Equivalently, iff R_2 is *right-invertible* as a polynomial matrix (\Leftrightarrow right-prime).

 $P \in \mathbb{R}^{\mathrm{n}_1 imes \mathrm{n}_2}[\xi]$ is right-invertible

$$:\Leftrightarrow\exists\;\;Q\in\mathbb{R}^{\mathrm{n_2} imes\mathrm{n}1}[\xi]$$
 such that $QP=I_{\mathrm{n_2}}.$

■ Equivalently, iff ∃ a representation

$$R_1(rac{d}{dt}) oldsymbol{w_1} = 0, \ oldsymbol{w_2} = R_2(rac{d}{dt}) oldsymbol{w_1}$$

This representation puts observability into evidence.

Notes:

In $\frac{d}{dt}x = Ax + Bu, y = Cx, w_1 = (u, y), w_2 = x$ the state x is observable from the input/output (u, y) iff

$$\operatorname{rank}(egin{bmatrix} A-\lambda I \ C \end{bmatrix}) = \dim(x) \,\, orall \, \lambda \in \mathbb{C}.$$

Popov-Belevich-Hautus test for observability.

Of course,
$$\Leftrightarrow \operatorname{rank}(\left[egin{array}{c} C \\ CA \\ \vdots \\ CA^{\dim(x)-1} \end{array}
ight]) = \dim(x).$$

Notes:

When is in

$$p(rac{d}{dt}) oldsymbol{w_1} = q(rac{d}{dt}) oldsymbol{w_2}$$

 $oldsymbol{w_2}$ observable from $oldsymbol{w_1}$? $p,q\in\mathbb{R}[oldsymbol{\xi}].$

Iff q is a non-zero constant. No zeros!

Notes:

In the behavioral language, we can speak of 'a controllable system' but not of 'an observable system'! But we will call the latent variable system

$$R(rac{d}{dt})\mathbf{w} = M(rac{d}{dt})\mathbf{\ell}$$

observable (as a system!) if the latent variable ℓ is observable from the manifest variable w. Conditions, e.g. \exists equivalent representation

$$R(\frac{d}{dt})\mathbf{w} = 0$$
 $\ell = R'(\frac{d}{dt})\mathbf{w}$

 $R(rac{d}{dt})w=0$ hence specifies the manifest behavior. We can therefore speak of a controllable & observable latent variable, and hence state system.

Notes:

- The RLC circuit is observable iff $CR_C \neq \frac{L}{R_L}$ Reasonable physical systems can be unobservable.
- When is in

$$R_1(rac{d^2}{dt^2}) m{w_1} = R_2(rac{d^2}{dt^2}) m{w_2}$$

 w_2 observable from w_1 ? Same conditions on R_2 .

- ∃ nonlinear, time-varying generalizations.
- 'Real' algorithms: use computer algebra.
- If observable, deduction on [0,T], T>0 arbitrarily small.

Representations of \mathfrak{L}^{\bullet} :

$$R(\frac{d}{dt})\mathbf{w} = 0$$

called a 'kernel' representation. Sol'n set $\in \mathfrak{L}^{\bullet}$, by definition.

$$R(rac{d}{dt})$$
 $oldsymbol{w} = M(rac{d}{dt})$ $oldsymbol{\ell}$

called a 'latent variable' representation of

$$\mathfrak{B}=(R(rac{d}{dt}))^{-1}M(rac{d}{dt})\mathfrak{C}^{\infty}(\mathbb{R},\mathbb{R}^{\ell}).$$
 El. th'm \Rightarrow \in $\mathfrak{L}^{ullet}.$

Representations of \mathfrak{L}^{\bullet} :

$$R(\frac{d}{dt})\mathbf{w} = 0$$

called a 'kernel' representation. Sol'n set $\in \mathfrak{L}^{\bullet}$, by definition.

$$R(rac{d}{dt}) {f w} = M(rac{d}{dt}) {m \ell}$$

called a 'latent variable' representation of

$$\mathfrak{B}=(R(rac{d}{dt}))^{-1}M(rac{d}{dt})\mathfrak{C}^{\infty}(\mathbb{R},\mathbb{R}^{\ell})$$
. El. th'm \Rightarrow \in \mathfrak{L}^{ullet} .

$$oldsymbol{w} = M(rac{d}{dt})oldsymbol{\ell}$$

called an 'image' representation of $\mathfrak{B}=\mathrm{im}(M(\frac{d}{dt}))$. Elimination theorem \Rightarrow every image is also a kernel.

Representations of \mathfrak{L}^{\bullet} :

$$R(\frac{d}{dt})\mathbf{w} = 0$$

called a 'kernel' representation. Sol'n set $\in \mathfrak{L}^{\bullet}$, by definition.

$$R(rac{d}{dt})$$
 $oldsymbol{w} = M(rac{d}{dt})$ $oldsymbol{\ell}$

called a 'latent variable' representation of

$$\mathfrak{B}=(R(rac{d}{dt}))^{-1}M(rac{d}{dt})\mathfrak{C}^{\infty}(\mathbb{R},\mathbb{R}^{\ell})$$
. El. th'm \Rightarrow \in \mathfrak{L}^{ullet} .

$$oldsymbol{w} = M(rac{d}{dt})oldsymbol{\ell}$$

called an 'image' representation of $\mathfrak{B}=\mathrm{im}(M(\frac{d}{dt}))$. Elimination theorem \Rightarrow every image is also a kernel.

¿¿ Which kernels are also images ??

Representations of \mathfrak{L}^{\bullet} :

$$R(\frac{d}{dt})\mathbf{w} = 0$$

called a 'kernel' representation. Sol'n set $\in \mathfrak{L}^{\bullet}$, by definition.

$$R(rac{d}{dt})$$
 $oldsymbol{w} = M(rac{d}{dt})$ $oldsymbol{\ell}$

called a 'latent variable' representation of

$$\mathfrak{B}=(R(rac{d}{dt}))^{-1}M(rac{d}{dt})\mathfrak{C}^{\infty}(\mathbb{R},\mathbb{R}^{\ell})$$
. El. th'm \Rightarrow \in \mathfrak{L}^{ullet} .

$$oldsymbol{w} = M(rac{d}{dt})oldsymbol{\ell}$$

called an 'image' representation of $\mathfrak{B}=\mathrm{im}(M(\frac{d}{dt}))$. Elimination theorem \Rightarrow every image is also a kernel.

¿¿ Which kernels are also images ??

Controllability!

Theorem: (Controllability and image representations):

The following are equivalent for $\mathfrak{B} \in \mathfrak{L}^{ullet}$:

- 1. B is controllable,
- 2. B admits an image representation,

Theorem: (Controllability and image representations):

The following are equivalent for $\mathfrak{B} \in \mathfrak{L}^{ullet}$:

- 1. B is controllable,
- 2. B admits an image representation,
- 3. for any $a\in\mathbb{R}^{ t w}[\xi],$ $a^{ op}[rac{d}{dt}]\mathfrak{B}$ equals 0 or all of $\mathfrak{C}^{\infty}(\mathbb{R},\mathbb{R}),$
- 4. $\mathbb{R}^{\mathtt{W}}[\xi]/\mathfrak{N}_{\mathfrak{B}}$ is torsion free,
- 5. etc.

NUMERICAL TEST for CONTROLLABILITY

Image representation leads to an effective numerical test!

NUMERICAL TEST for CONTROLLABILITY

Start with $\mathfrak{B}\in\mathfrak{L}^{\scriptscriptstyle{\mathbb{W}}}$, in kernel representation, with $R\in\mathbb{R}^{\scriptscriptstyle{\mathbb{W}}}[\xi],\sim$ submodule $\mathfrak{R}=\mathfrak{N}_{\mathfrak{B}}$ of $\mathbb{R}^{\scriptscriptstyle{\mathbb{W}}}[\xi]$, generated by transposes of the rows $r_1,\cdots,r_{\rm g}$ of R.

Compute a set of generators $m_1,\cdots,m_{\mathrm{g'}}$, of the right syzygy of \mathfrak{R} : the submodule

$$\mathfrak{M}=\{m\in\mathbb{R}^{\scriptscriptstyle{\mathbb{V}}}[oldsymbol{\xi}]\mid Rm=0\}.$$

NUMERICAL TEST for CONTROLLABILITY

Compute a set of generators $m_1,\cdots,m_{\mathrm{g'}}$, of the right syzygy of \mathfrak{R} : the submodule

$$\mathfrak{M}=\{m\in\mathbb{R}^{\scriptscriptstyle{\mathbb{V}}}[\xi]\mid Rm=0\}.$$

Compute a set of generators, $r_1', \cdots, r_{\mathrm{g''}}'$, of the left syzygy of \mathfrak{M} : the submodule

$$\mathfrak{R}' = \{r' \in \mathbb{R}^{\scriptscriptstyle{\mathsf{W}}}[\xi] \mid r'^{\top}\mathfrak{M} = 0\}$$

Controllability
$$\Leftrightarrow r_{\mathtt{k}}^{ op} \in \ \mathfrak{R}' \ \ orall \mathtt{k}$$

i.e., $\mathfrak{R}'=\mathfrak{R}$ (inclusion \supseteq obvious).

 \Rightarrow Numerical test for controllability on coefficients of R.

OBSERVABLE IMAGE REPRESENTATION

 \blacksquare an observable image representation \cong 'flatness':

Theorem (Contr. and observable image repr'ns):

The following are equivalent for $\mathfrak{B} \in \mathfrak{L}^{ullet}$:

- 1. B is controllable,
- 2. B admits an image representation,
- 3. **23** admits an observable image representation:

$$\mathbf{w} = M(\frac{d}{dt})\mathbf{\ell}$$

in which ℓ is observable from w.

- \blacksquare similar results for time-varying systems.
- ∃ partial results for nonlinear systems.

The system $\Sigma=(\mathbb{T},\mathbb{R}^{\mathtt{w}},\mathfrak{B})$ is said to be stabilizable if, for all $w\in\mathfrak{B}$, there exists $w'\in\mathfrak{B}$ such that

$$w(t) = w'(t)$$
 for $t < 0$ and $w'(t) \xrightarrow[t \to \infty]{} 0$.

The system $\Sigma=(\mathbb{T},\mathbb{R}^{old w},\mathfrak{B})$ is said to be stabilizable if, for all $w\in\mathfrak{B}$, there exists $w'\in\mathfrak{B}$ such that

$${m w(t)} = {m w'(t)} ext{ for } t < 0 ext{ and } {m w'(t)} \underset{t o \infty}{\longrightarrow} 0.$$

Stabilizability :⇔

legal trajectories can be steered to a desired point.

Consider the system defined by

$$R(\frac{d}{dt})w = 0.$$

Under which conditions on $R\in\mathbb{R}^{ullet imes imes}[\xi]$ does it define a stabilizable system?

Consider the system defined by

$$R(\frac{d}{dt})w = 0.$$

Under which conditions on $R \in \mathbb{R}^{ullet imes imes}[\xi]$ does it define a stabilizable system?

 $\begin{array}{ll} \underline{\text{Theorem}} \colon & R(\frac{d}{dt})w = 0 \text{ defines a stabilizable system} \\ \Leftrightarrow & \\ \end{array}$

 $\operatorname{rank}(R(\lambda)) = \operatorname{constant} \operatorname{over} \{\lambda \in \mathbb{C} \mid \operatorname{Real}(\lambda) \geq 0\}.$

CONTROLLABLE PART

Every $\mathfrak{B} \in \mathfrak{L}^{ullet}$ admits a decomposition

$$\mathfrak{B} = \mathfrak{B}_{controllable} \oplus \mathfrak{B}_{autonomous}$$

with $\mathfrak{B}_{controllable}\in\mathfrak{L}^{ullet}$ the 'controllable part' of \mathfrak{B} def. (e.g.) by

$$\mathfrak{B}_{ ext{controllable}}:=\{w\in\mathfrak{B}\mid orall\, t_0,t_1\in\mathbb{R},\,\exists\, w'\in\mathfrak{B} \$$
 of compact support such that $w(t)=w'(t)$ for $t\in[t_0,t_1]\}$

 $\mathfrak{B}_{autonomous} \in \mathfrak{L}^{ullet}$ is not unique, but there are many invariants, e.g. its 'characteristic polynomial'.

CONTROLLABLE PART

Every $\mathfrak{B} \in \mathfrak{L}^{ullet}$ admits a decomposition

$$\mathfrak{B} = \mathfrak{B}_{\text{controllable}} \oplus \mathfrak{B}_{\text{autonomous}}$$

with $\mathfrak{B}_{controllable}\in\mathfrak{L}^{ullet}$ the 'controllable part' of \mathfrak{B} def. (e.g.) by

$$\mathfrak{B}_{ ext{controllable}}:=\{w\in\mathfrak{B}\mid orall\, t_0,t_1\in\mathbb{R},\,\exists\, w'\in\mathfrak{B} \$$
 of compact support such that $w(t)=w'(t)$ for $t\in[t_0,t_1]\}$

 $\mathfrak{B}_{autonomous} \in \mathfrak{L}^{ullet}$ is not unique, but there are many invariants, e.g. its 'characteristic polynomial'.

Exercises:

- 1. Define the charactersitic pol. of an autonomous system $\in \mathfrak{L}^{ullet}$.
- 2. Determine stabilizability in terms of the above decomposition.

RECAP

- Controllability := trajectories in behavior are patchable
- Observability := to-be-deduced variables reconstructible from observed signal and system behavior
- ► Controllability in £•
- $\Leftrightarrow \exists$ an (observable) image representation
- ► There are effective numerical tests for verifying controllability and observability
- ► Stabilizability := all sol'ns can be steered to 0
- ► These central concepts in systems and control take on a much more intrinsic meaning for behavioral systems

PDE's

What of this generalizes to PDE's?

 $\mathbb{T} = \mathbb{R}^n$, the set of independent variables, often n = 4,

 $\mathbb{W} = \mathbb{R}^{\mathtt{w}}$, the set of dependent variables,

 $\mathfrak{B} = sol'ns$ of a linear constant coefficient system of PDE's.

PDE's

What of this generalizes to PDE's?

 $\mathbb{T} = \mathbb{R}^n$, the set of independent variables, often n = 4,

 $\mathbb{W} = \mathbb{R}^{\mathtt{w}}$, the set of dependent variables,

 $\mathfrak{B} = sol'ns$ of a linear constant coefficient system of PDE's.

Let $R \in \mathbb{R}^{ullet imes imes}[oldsymbol{\xi}_1,\cdots,oldsymbol{\xi}_{ ext{n}}],$ and consider

$$R(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_{ ext{n}}})oldsymbol{w}=0.$$
 (*)

Define the associated behavior

$$\mathfrak{B}=\{w\in\mathfrak{C}^{\infty}(\mathbb{R}^{\mathrm{n}},\mathbb{R}^{\mathtt{w}})\mid (*) ext{ holds } \}.$$

PDE's

What of this generalizes to PDE's?

 $\mathbb{T} = \mathbb{R}^n$, the set of independent variables, often n = 4,

 $\mathbb{W} = \mathbb{R}^{\mathtt{w}}$, the set of dependent variables,

 $\mathfrak{B} = sol'ns$ of a linear constant coefficient system of PDE's.

Let $R \in \mathbb{R}^{ullet imes imes}[\xi_1,\cdots,\xi_{ ext{n}}],$ and consider

$$R(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_n})w=0.$$
 (*)

Define the associated behavior

$$\mathfrak{B}=\{w\in\mathfrak{C}^{\infty}(\mathbb{R}^{\mathrm{n}},\mathbb{R}^{\mathtt{w}})\mid (*) ext{ holds } \}.$$

Notation for n-D linear differential systems:

$$(\mathbb{R}^n,\mathbb{R}^w,\mathfrak{B})\in\mathfrak{L}_n^w,\quad \text{or }\mathfrak{B}\in\mathfrak{L}_n^w.$$

Examples: Maxwell's eq'ns, diffusion eq'n, wave eq'n, . . .

$$abla \cdot \vec{E} = rac{1}{arepsilon_0}
ho \,,$$
 $abla imes \vec{E} = -rac{\partial}{\partial t} \vec{B} \,,$
 $abla \cdot \vec{B} = 0 \,,$
 $abla \cdot \vec{B} = 0 \,,$
 $abla \cdot \vec{C} \cdot$

Examples: Maxwell's eq'ns, diffusion eq'n, wave eq'n, . . .

$$abla \cdot \vec{E} = rac{1}{arepsilon_0}
ho \,,$$
 $abla imes \vec{E} = -rac{\partial}{\partial t} \vec{B} \,,$
 $abla \cdot \vec{B} = 0 \,,$
 $abla \cdot \vec{B} = 0 \,,$
 $abla \cdot \vec{C} \cdot$

 $\mathbb{T}=\mathbb{R} imes\mathbb{R}^3$ (time and space) $\mathrm{n}=4$, $w=(\vec{E},\vec{B},\vec{j},
ho)$

(electric field, magnetic field, current density, charge density),

 $\mathbb{W}=\mathbb{R}^3 imes\mathbb{R}^3 imes\mathbb{R}^3 imes\mathbb{R},$ $\mathbb{W}=10$,

 $\mathfrak{B}=$ set of solutions to these PDE's.

Note: 10 variables, 8 equations! $\Rightarrow \exists$ free variables.

 $R\in\mathbb{R}^{ullet imesullet}[\xi_1,\cdots,\xi_{\mathrm{n}}]$ defines $\mathfrak{B}=\ker(R(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_{\mathrm{n}}}))$, but not vice-versa.

값 \exists 'intrinsic' characterization of $\mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{\mathtt{w}}$??

 $R\in\mathbb{R}^{ullet imesullet}[\xi_1,\cdots,\xi_{\mathrm{n}}]$ defines $\mathfrak{B}=\ker(R(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_{\mathrm{n}}}))$, but not vice-versa.

값 \exists 'intrinsic' characterization of $\mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{\mathtt{w}}$??

Is there a mathematical 'object' that characterizes a $\mathfrak{B} \in \mathfrak{L}_{n}^{\mathtt{W}}?$

Define the $extit{annihilators}$ of $\mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{\mathtt{W}}$ by

$$\mathfrak{M}_{\mathfrak{B}} := \{n \in \mathbb{R}^{\scriptscriptstyle{\mathsf{W}}}[\pmb{\xi}_1, \cdots, \pmb{\xi}_{\scriptscriptstyle{\mathsf{n}}}] \mid n^{ op}(rac{\partial}{\partial x_1}, \cdots, rac{\partial}{\partial x_{\scriptscriptstyle{\mathsf{n}}}})\mathfrak{B} = 0\}.$$

Proposition: $\mathfrak{N}_\mathfrak{B}$ is a $\mathbb{R}[\xi_1,\cdots,\xi_n]$ sub-module of $\mathbb{R}^{\mathtt{w}}[\xi_1,\cdots,\xi_n]$.

$$\mathfrak{N}_{\mathfrak{B}} := \{n \in \mathbb{R}^{\scriptscriptstyle{\mathbb{W}}}[\xi_1, \cdots, \xi_{\scriptscriptstyle{ ext{n}}}] \mid n^{ op}(rac{\partial}{\partial x_1}, \cdots, rac{\partial}{\partial x_{\scriptscriptstyle{ ext{n}}}})\mathfrak{B} = 0\}.$$

Let $< R^{ op} >$ denote the submodule of $\mathbb{R}^{ t w}[\xi_1,\cdots,\xi_n]$ spanned by the transposes of the rows of R. Obviously $< R^{ op} > \subseteq \mathfrak{N}_{\ker(R(\frac{\partial}{\partial x_1},\cdots,\frac{\partial}{\partial x_n}))}$. But, indeed:

$$\mathfrak{N}_{\ker(R(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_{
m n}}))}=< R^ op>$$

$$\mathfrak{N}_{\mathfrak{B}} := \{n \in \mathbb{R}^{\scriptscriptstyle{\mathbb{W}}}[\xi_1, \cdots, \xi_{\scriptscriptstyle{ ext{n}}}] \mid n^{ op}(rac{\partial}{\partial x_1}, \cdots, rac{\partial}{\partial x_{\scriptscriptstyle{ ext{n}}}})\mathfrak{B} = 0\}.$$

$$\mathfrak{N}_{\ker(R(rac{\partial}{\partial x_1}, \cdots, rac{\partial}{\partial x_n}))} = < R^ op > 1$$

Associate with the submodule \mathfrak{M} of $\mathbb{R}^{\mathtt{w}}[oldsymbol{\xi}_1,\cdots,oldsymbol{\xi}_{\mathtt{n}}]$ the system

$$\mathfrak{B} = \{w \in \mathfrak{C}^{\infty}(\mathbb{R}^{\mathrm{n}}, \mathbb{R}^{\mathtt{w}}) \mid n^{ op}(rac{\partial}{\partial x_{1}}, \cdots, rac{\partial}{\partial x_{\mathrm{n}}})w = 0 \; orall \, n \in \mathfrak{M} \}$$

Again, every sub-module of $\mathbb{R}^{\mathtt{W}}[\xi_1,\cdots,\xi_n]$ is finitely generated (but number of generators may be > w), $\mathfrak{B}\in\mathfrak{L}_{\mathtt{n}}^{\mathtt{W}}$.

$$\mathfrak{N}_{\mathfrak{B}} := \{n \in \mathbb{R}^{\scriptscriptstyle{\mathbb{W}}}[\xi_1, \cdots, \xi_{\scriptscriptstyle{ ext{n}}}] \mid n^{ op}(rac{\partial}{\partial x_1}, \cdots, rac{\partial}{\partial x_{\scriptscriptstyle{ ext{n}}}})\mathfrak{B} = 0\}.$$

$$\mathfrak{N}_{\ker(R(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_{
m n}}))}=< R^ op>$$

Associate with the submodule \mathfrak{M} of $\mathbb{R}^{\mathtt{w}}[oldsymbol{\xi}_1,\cdots,oldsymbol{\xi}_{\mathtt{n}}]$ the system

$$\mathfrak{B} = \{w \in \mathfrak{C}^{\infty}(\mathbb{R}^{\mathrm{n}}, \mathbb{R}^{\mathtt{w}}) \mid n^{ op}(rac{\partial}{\partial x_{1}}, \cdots, rac{\partial}{\partial x_{\mathrm{n}}})w = 0 \; orall \, n \in \mathfrak{M} \}$$

Again, every sub-module of $\mathbb{R}^{\mathbb{W}}[\xi_1,\cdots,\xi_n]$ is finitely generated (but number of generators may be $> \mathbb{W}$), $\mathfrak{B} \in \mathfrak{L}_n^{\mathbb{W}}$.

Theorem 1:

$$\mathfrak{L}_{\mathrm{n}}^{\mathtt{w}} \overset{1:1}{\longleftrightarrow}$$
 submodules of $\mathbb{R}^{\mathtt{w}}[\xi_{1},\cdots,\xi_{\mathrm{n}}]$

ELIMINATION THEOREM

The fundamental principle, and hence the elimination theorem generalize to PDE's!

Which PDE's describe (ρ, \vec{E}, \vec{j}) in Maxwell's equations?

Eliminate \vec{B} from Maxwell's equations \rightsquigarrow

$$egin{array}{lll}
abla \cdot ec{m{E}} &= rac{1}{arepsilon_0}
ho \,, \ &arepsilon_0 rac{\partial}{\partial t}
abla \cdot ec{m{E}} \, + \,
abla \cdot ec{m{j}} &= 0, \ &arepsilon_0 rac{\partial^2}{\partial t^2} ec{m{E}} + arepsilon_0 c^2
abla imes
abla imes rac{\partial}{\partial t}
abla \cdot ec{m{E}} \, + \, rac{\partial}{\partial t} ec{m{j}} &= 0. \end{array}$$

$$R(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_{ ext{n}}})w=0$$

is called a kernel representation of the associated $\mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{\mathtt{W}}$.

$$R(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_{ ext{n}}})w=0$$

is called a kernel representation of the associated $\mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{\mathtt{w}}$.

Another representation: image representation

$$w=M(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_{
m n}})\ell.$$

'Elimination' thm
$$\Rightarrow$$
 $\operatorname{im}(M(\frac{\partial}{\partial x_1},\cdots,\frac{\partial}{\partial x_n}))\in \mathfrak{L}_{\mathrm{n}}^{\mathtt{W}}$!

$$R(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_{ ext{n}}})w=0$$

is called a kernel representation of the associated $\mathfrak{B} \in \mathfrak{L}_{n}^{\mathtt{W}}$.

Another representation: image representation

$$w=M(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_{
m n}})\ell$$
 .

'Elimination' thm \Rightarrow $\operatorname{im}(M(\frac{\partial}{\partial x_1},\cdots,\frac{\partial}{\partial x_n}))\in \mathfrak{L}_{\mathrm{n}}^{\mathtt{W}}$!

Which linear diff. systems admit an image representation???

$$R(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_{ ext{n}}})w=0$$

is called a kernel representation of the associated $\mathfrak{B} \in \mathfrak{L}_{n}^{\mathtt{W}}$.

Another representation: image representation

$$w=M(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_{
m n}})\ell.$$

'Elimination' thm
$$\Rightarrow$$
 $\operatorname{im}(M(\frac{\partial}{\partial x_1},\cdots,\frac{\partial}{\partial x_n}))\in \mathfrak{L}_{\mathrm{n}}^{\mathtt{W}}$!

Which linear diff. systems admit an image representation???

 $\mathfrak{B} \in \mathfrak{L}_{\mathrm{n}}^{\mathtt{w}}$ admits an image representation iff it is 'controllable'.

CONTROLLABILITY of PDE's

Controllability def'n in pictures:

 $w_1,w_2\in\mathfrak{B}$.

CONTROLLABILITY of PDE's

 $w\in \mathfrak{B}$ 'patches' $w_1,w_2\in \mathfrak{B}$.

CONTROLLABILITY of PDE's

 $w\in \mathfrak{B}$ 'patches' $w_1,w_2\in \mathfrak{B}$.

Controllability :⇔ 'patch-ability'.

Are Maxwell's equations controllable?

Are Maxwell's equations controllable?

The following equations in the scalar potential $\phi: \mathbb{R} \times \mathbb{R}^3 \to \mathbb{R}$ and the vector potential $\vec{A}: \mathbb{R} \times \mathbb{R}^3 \to \mathbb{R}^3$, generate exactly the solutions to Maxwell's equations:

$$\vec{E} = -\frac{\partial}{\partial t} \vec{A} - \nabla \phi,$$

$$\vec{B} = \nabla \times \vec{A},$$

$$\vec{j} = \varepsilon_0 \frac{\partial^2}{\partial t^2} \vec{A} - \varepsilon_0 c^2 \nabla^2 \vec{A} + \varepsilon_0 c^2 \nabla (\nabla \cdot \vec{A}) + \varepsilon_0 \frac{\partial}{\partial t} \nabla \phi,$$

$$\rho = -\varepsilon_0 \frac{\partial}{\partial t} \nabla \cdot \vec{A} - \varepsilon_0 \nabla^2 \phi.$$

Proves controllability.

Are Maxwell's equations controllable?

The following equations in the scalar potential $\phi: \mathbb{R} \times \mathbb{R}^3 \to \mathbb{R}$ and the vector potential $\vec{A}: \mathbb{R} \times \mathbb{R}^3 \to \mathbb{R}^3$, generate exactly the solutions to Maxwell's equations:

$$egin{array}{lll} ec{E} &=& -rac{\partial}{\partial t} ec{A} -
abla \phi, \ ec{B} &=&
abla imes ec{A}, \ ec{J} &=& arepsilon_0 rac{\partial^2}{\partial t^2} ec{A} - arepsilon_0 c^2
abla^2 ec{A} + arepsilon_0 c^2
abla (
abla \cdot ec{A}) + arepsilon_0 rac{\partial}{\partial t}
abla \phi, \
ho &=& -arepsilon_0 rac{\partial}{\partial t}
abla \cdot ec{A} - arepsilon_0
abla^2 e$$

Proves controllability. Illustrates the interesting connection

controllability $\Leftrightarrow \exists$ potential!

OBSERVABILITY

Observability of the image representation

$$w=M(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_{
m n}})\ell$$

is defined as:

 ℓ can be deduced from w,

i.e., $M(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_n})$ should be injective.

OBSERVABILITY

Observability of the image representation

$$w=M(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_{
m n}})\ell$$

is defined as:

 ℓ can be deduced from w,

i.e., $M(\frac{\partial}{\partial x_1},\cdots,\frac{\partial}{\partial x_n})$ should be injective.

Not all controllable systems admit an observable image repr'ion. For n=1, they do. For n>1, exceptionally so. The latent variable in an image repr'ion may be 'hidden'.

OBSERVABILITY

Observability of the image representation

$$w=M(rac{\partial}{\partial x_1},\cdots,rac{\partial}{\partial x_{
m n}})\ell$$

is defined as: ℓ can

 ℓ can be deduced from w,

i.e., $M(\frac{\partial}{\partial x_1},\cdots,\frac{\partial}{\partial x_n})$ should be injective.

Not all controllable systems admit an observable image repr'ion. For n=1, they do. For n>1, exceptionally so. The latent variable in an image repr'ion may be 'hidden'.

Example: Maxwell's equations do not allow a potential representation that is observable.

End of the Lecture II