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CONTROLLABILITY
and
OBSERVABILITY
in a
NEW PERSPECTIVE
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THEME

Central notions in all of system and control theory:

controllability and observability

in the setting and language of behavioral models.
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Central notions in all of system and control theory:

THEME

controllability and observability

in the setting and language of behavioral models.
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Formal definitions

Tests for controllability and observability

Image representations

Stabilizability
PDE’s
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CONTROLLABILITY

The time-invariant system X = (T, W, B) is said to be

controllable

if for all wq, ws € B there exists w € B and T' > 0 such that

{ w1 (t) t<o0

’wz(t—T) tzT
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CONTROLLABILITY

The time-invariant system X = (T, W, B) is said to be

controllable

if for all wq, ws € B there exists w € B and T' > 0 such that

. wl(t) t<O0
- ’wz(t—T) tzT

Controllability :&
legal trajectories must be ‘patch-able’, ‘concatenable’.
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CONTROLLABILITY

undersired trajectory

time

——
/_\,/

/ desired trajectory
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CONTROLLABILITY

undersired trajectory
_______ X time
/_ desired trajectory
controlled
transition
undesired past
X time

S

\/Md future
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OBSERVABILITY

" SYSTEM f : %
observed to—be—deduced
variables variables

¢ Is it possible to deduce w9 from wy and the system model ?
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OBSERVABILITY

Consider the system > = (T, W; X W5, ). Each element of 53
hence consists of a pair of trajectories (w1, w2):
w1y : observed;
wo : to-be-deduced.
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OBSERVABILITY

Consider the system > = (T, W; X W5, ). Each element of 53
hence consists of a pair of trajectories (w1, w2):
w1y : observed;
wo : to-be-deduced.

Definition: w» is said to be

observable from w;

if (w1, w5) € W, and (w1, w?l) € B) = (w) = wl),
i.e., if on B, there exists a map w; —> ws.
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OBSERVABILITY

Consider the system > = (T, W; X W5, ). Each element of 53

hence consists of a pair of trajectories (w1, w2):
w1y : observed;
w29 : to-be-deduced.

Definition: w» is said to be

observable from w;

if (w1, w5) € W, and (w1, w?l) € B) = (w) = wl),
i.e., if on B, there exists a map w; —> ws.

Very often manifest = observed, latent (auxiliary variables
introduced in the modeling process) = to-be-deduced.
We then speak of an observable (latent variable) system.
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Special case: classical Kalman definitions for

%af; = f(x,u), y = h(x,u).
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Special case: classical Kalman definitions for

%m = f(x,u), y = h(x,u).

controllability: variables = (input, state)

If a system is not (state) controllable, why is it?
Insufficient influence of the control?
Or bad choice of the state?
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Special case: classical Kalman definitions for

%:p = f(x,u), y = h(x,u).

controllability: variables = (input, state)

If a system is not (state) controllable, why is it?
Insufficient influence of the control?
Or bad choice of the state?

observability: ~» observed = (input, output),

to-be-deduced = state.
Why is it so interesting to try to deduce the state, of all things? The
state is a derived notion, not a ‘physical’ one.
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Special case: classical Kalman definitions for

%:p = f(x,u), y = h(x,u).

controllability: variables = (input, state)

If a system is not (state) controllable, why is it?
Insufficient influence of the control?
Or bad choice of the state?

observability: ~» observed = (input, output),

to-be-deduced = state.
Why is it so interesting to try to deduce the state, of all things? The
state is a derived notion, not a ‘physical’ one.

Kalman definitions address rather special situations.
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TESTS for CONTROLLABILITY

Given a system representation, derive algorithms in terms of the
parameters for controllability.

Consider the system B8 € £° defined by
d
R(—)w = 0.
(=)

Under what conditions on R € R®**"[£] does it define a
controllable system?
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TESTS for CONTROLLABILITY

Given a system representation, derive algorithms in terms of the
parameters for controllability.

Consider the system B8 € £° defined by
d
R(—)w = 0.
(=)

Under what conditions on R € R®**"[£] does it define a
controllable system?

Theorem: R(%)w = 0 defines a controllable system
<~
rank(R(\)) = constant over A € C.
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TESTS for CONTROLLABILITY

Notes:

o If R(%)w = 0 is minimal (< R of f.r.1.), then
controllability << R(\) is of fullrow rank V A\ € C.

Equivalently, R is left-invertible as a polynomial matrix (< ‘left
prime’).

P € R™1 %n2[£] is leftt-invertible
> 3 Q € R*2%"1[£] such that PQ = I,
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TESTS for CONTROLLABILITY

Notes:

» %w = Ax + Bu,w = (x, u) is controllable iff

rank([A — Al B]) = dim(x) V) € C.

Popov-Belevich-Hautus test for controllability.

Of course,

& rank([B AB --- AY™@)-1B)) = dim(x).
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TESTS for CONTROLLABILITY

Notes:

® Whenis
d d
P(a)’wl — Q(a)wz

controllable? p, g € R[£], not both zero.
Iff p and g are co-prime. No common factors!

Testable via Sylvester matrix, etc.

Generalizable.
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TESTS for CONTROLLABILITY

Notes:

® Example: Our electrical circuit is controllable unless

L
CRc = — and Rc = Rj.
Ry,

Reasonable physical systems can be uncontrollable.
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Notes:

® Whenis

TESTS for CONTROLLABILITY

controllable?

same conditions on R...

#® d nonlinear, time-varying generalizations.

® ‘Real’ algorithms: use image representation.

® If*B € £°is controllable, transfer with T' > 0 arbitrarily

smaill.
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Given a system representation, derive algorithms in terms of the

TESTS for OBSERVABILITY

parameters for observability.
Consider the system defined by

Under which conditions on R1, Ry € R®**®[£] is w2 observable

from wq?

d d
Ri(—)Vwy = Rol(—)w-.
l(dt)wl 2(dt)w2
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TESTS for OBSERVABILITY

Given a system representation, derive algorithms in terms of the
parameters for observability.
Consider the system defined by

d d
Ri(—)Vwy = Rol(—)w-.
l(dt)wl 2(dt)w2

Under which conditions on R1, Ry € R®**®[£] is w2 observable
from wq?

Theorem: In the system Rl(%)wl = Rz(%)wz,
wo is observable from w1
<~
rank(R2(\)) = dim(w>) forall A € C.
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TESTS for OBSERVABILITY

Notes:

® In Rl(%)wl = Rz(%)wz, w3 is observable from w; <
R>(\) is of full columnrank V X € C.

Equivalently, iff Ro is right-invertible as a polynomial matrix
(< right-prime).
P € R™ %"2[£] is right-invertible

o 3 Q € Re2Xnl[¢] such that QP = I,,.

#® Equivalently, iff 3 a representation
d d
Ri(—)wy =0, w2 = Ro(—)w
1( dt) 1 y W2 2( dt) 1

This representation puts observability into evidence.
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TESTS for OBSERVABILITY

Notes:

® In %a: = Ax + Bu,y = Cx,w; = (u,y), w2 = x the

state x is observable from the input/output (u, y) iff

A— Al
C

) = dim(x) VA € C.

rank(

Popov-Belevich-Hautus test for observability.

CA
Of course, <> rank( : ) = dim(x).

i CAdir}l(m)—l i
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TESTS for OBSERVABILITY

Notes:

® Whenisin
d d
P(a)wl — Q(a)wz

wo observable from w1? p, q € R[£].

Iff g is a non-zero constant. No zeros!
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TESTS for OBSERVABILITY

Notes:

® In the behavioral language, we can speak of
‘a controllable system’ but not of ‘an observable system’! But
we will call the latent variable system

d d
R(—)w = M(—)¥¢
(=) (=)
observable (as a system!) if the latent variable £ is

observable from the manifest variable w.
Conditions, e.g. 4 equivalent representation

d d
R(—)w =0 ¢ =R (—)w
J dt dt
R(4;)w = 0 hence specifies the manifest behavior.

We can therefore speak of a controllable & observable latent
variable, and hence state system.
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TESTS for OBSERVABILITY

Notes:

® The RLC circuit is observable iff CRc # -
Reasonable physical systems can be unobservable.

® Whenisin
d? d?
Ri(— = Ro(——
() = R

w9 observable from wy ? Same conditions on R>.

Jw2

°

3 nonlinear, time-varying generalizations.

°

‘Real’ algorithms: use computer algebra.

°

If observable, deduction on [0, T'|, T" > O arbitrarily small.
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IMAGE REPRESENTATIONS

Representations of £°:
d

called a ‘kernel’ representation. Sol’n set € £°, by definition.
d d

called a ‘latent variable’ representation of
B = (R(2))IM(Z)e>(R,RE). EI. th'm = € £°.
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IMAGE REPRESENTATIONS

Representations of £°:

R(4)w =0

called a ‘kernel’ representation. Sol’n set € £°, by definition.

R(L)w = M(%)¢

called a ‘latent variable’ representation of
B = (R(2))IM(Z)e>(R,RE). EI. th'm = € £°.

Missing link: w= M(2)¢

called an ‘image’ representation of 8 = im(M (%))
Elimination theorem —=- every image is also a kernel.
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IMAGE REPRESENTATIONS

Representations of £°:

called a ‘kernel’ representation. Sol’n set € £°, by definition.

R(4)w =0

R(L)w = M(%)¢

called a ‘latent variable’ representation of

B = (R(2))IM(Z)e>(R,RE). EI. th'm = € £°.

Missing link:

called an ‘image’ representation of 8 = im(M (%))
Elimination theorem —=- every image is also a kernel.

w= M(2)¢

¢,¢, Which kernels are also images ??
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IMAGE REPRESENTATIONS

Representations of £°:

R(4)w =0

called a ‘kernel’ representation. Sol’n set € £°, by definition.

R(L)w = M(%)¢

called a ‘latent variable’ representation of
B = (R(2))IM(Z)e>(R,RE). EI. th'm = € £°.

Missing link:

w= M(2)¢

called an ‘image’ representation of 8 = im(M (%))
Elimination theorem —=- every image is also a kernel.

¢,¢, Which kernels are also images ??

Controllability!
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IMAGE REPRESENTATIONS

Theorem: (Controllability and image representations):

The following are equivalent for 83 € £° :

1. B is controllable,

2. ‘B admits an image representation,

~p.13/29



IMAGE REPRESENTATIONS

Theorem: (Controllability and image representations):

The following are equivalent for 83 € £° :

1. B is controllable,

2. ‘B admits an image representation,

3. forany a € R¥[¢],
aT[%]% equals O or all of €°° (R, R),

4. RY[£] /Dty is torsion free,

5. etc.
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NUMERICAL TEST for CONTROLLABILITY

® Image representation leads to an effective numerical test!

—p.14/29



NUMERICAL TEST for CONTROLLABILITY

Start with 8 € £7, in kernel representation, with R € R"[£], ~»
submodule R = Dty of R¥[£], generated by transposes of the
rows 11, -+ , 7z of R.

Compute a set of generators 1711, - - - , Ty, Of the right syzygy of
SR: the submodule

W = {m € R[¢] | Rm = 0}.
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NUMERICAL TEST for CONTROLLABILITY

Compute a set of generators 11, - - - , M, of the right syzygy of
’RKR: the submodule

W = {m € R'[¢] | Rm = 0}.

!, of the

Compute a set of generators, 17, - - - , Ty

left syzygy of Ji: the submodule

R = {r' e R[¢] | "9 = 0}

Controllability < 7] € SR’ Vk

i.e., R’ = 2R (inclusion D obvious).

—> Numerical test for controllability on coefficients of R.
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OBSERVABLE IMAGE REPRESENTATION

Y

#® dan observable image representation = ‘flatness’:

Theorem (Contr. and observable image repr’ns):
The following are equivalent for 25 € £° :

1. B is controllable,
2. ‘B admits an image representation,

3. ‘B admits an observable image representation:

d
= M(—)¢
w (=)

in which £ is observable from w.

#® d similar results for time-varying systems.

® d partial results for nonlinear systems.
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STABILIZABILITY

The system 3 = (T, RY, B) is said to be
w € B, there exists w’ € B such that

stabilizable

w(t) = w'(t)fort <0 and w’'(t) — O.

t—o00

if, for all
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STABILIZABILITY

The system X = (T, R", B) is said to be |stabilizable

w € B, there exists w’ € B such that

w(t) = w'(t)fort <0 and w’'(t) — O.

t—o00

Stabilizability :<&

legal trajectories can be steered to a desired point.

-

~— w

b

time

if, for all
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STABILIZABILITY

Consider the system defined by

Under which conditions on R € R®**¥[£] does it define a

stabilizable system?

d
R(Z)w = 0.
(@
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STABILIZABILITY

Consider the system defined by
d

R(—)w = 0.
dt

Under which conditions on R € R®**¥[£] does it define a
stabilizable system?

Theorem: R(%)w = 0 defines a stabilizable system
<~
rank(R(A\)) = constant over {\ € C | Real(\) > 0}.

—p17/29



CONTROLLABLE PART

Every B € £° admits a decomposition

B = %controllable D %autonomous

with B .ontrollable € £° the ‘controllable part’ of B def. (e.g.) by

B controllable := {w €5 | Vito,t1 € R, 3 w'’ c ‘B
of compact support such that w(t) = w’(t) for t € [to, 1]}

B.utonomous & £° is not unique, but there are many invariants,
e.g. its ‘characteristic polynomial’.
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CONTROLLABLE PART

Every B € £° admits a decomposition

B = %controllable D %autonomous

with B .ontrollable € £° the ‘controllable part’ of B def. (e.g.) by

B controllable := {w €5 | Vito,t1 € R, 3 w'’ c ‘B
of compact support such that w(t) = w’(t) for t € [to, 1]}

B.utonomous & £° is not unique, but there are many invariants,
e.g. its ‘characteristic polynomial’.

Exercises:
1. Define the charactersitic pol. of an autonomous system € £°.
2. Determine stabilizability in terms of the above decomposition.
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RECAP

» Controllability := trajectories in behavior are patchable

» Observability :=to-be-deduced variables reconstructible
from observed signal and system behavior

» Controllability in £°
<> d an (observable) image representation

» There are effective numerical tests for verifying
controllability and observability

» Stabilizability := all solI’ns can be steered to 0

» These central concepts in systems and control take on a much
more intrinsic meaning for behavioral systems
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PDE’s

What of this generalizes to PDE’s?

T = R", the set of independent variables, often n = 4,
W = RRY, the set of dependent variables,
% — sol’ns of a linear constant coefficient system of PDE’s.
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PDE’s

What of this generalizes to PDE’s?

T = R", the set of independent variables, often n = 4,
W = RRY, the set of dependent variables,
% — sol’ns of a linear constant coefficient system of PDE’s.

Let R € R**¥[&y, -+ , &), and consider
R(a%l’ oo, 2V =0, (%)

Define the associated behavior

B = {w € €°(R*,R") | (*) holds }.
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PDE’s

What of this generalizes to PDE’s?

T = R", the set of independent variables, often n = 4,
W = RRY, the set of dependent variables,

% — sol’ns of a linear constant coefficient system of PDE’s.

Let R € R**¥[&y, -+ , &), and consider

R(ggrs " s 5g)w = 0. (%)

Define the associated behavior

B = {w € €°(R*,R") | (*) holds }.

Notation for n-D linear differential systems:
(R*,R",B) € £, orB € £r.
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Examples: Maxwell’s eq’ns, diffusion eq’n, wave eg’n, . ..

4
&,
I

|
o

. o -
VXFE = ——B
ot "’
Vv-B = o0,
. 12 8 =
?’VxB = —j4 —
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Examples: Maxwell’s eq’ns, diffusion eq’n, wave eg’n, . ..

— 1
V-E = —p,
€0
— 8—»
VXFE = ——B
at "’
vVv.-B = o0,
- 1 - 0 =
2 .
c“’V X B = — —F.
€03+3t

T = R x R3 (time and space) n = 4,

w = (Ea B, 3, P)

(electric field, magnetic field, current density, charge density),
W=R3? X R3 x R3 x R,w = 10,

'8 — set of solutions to these PDE'’s.

Note: 10 variables, 8 equations! =  free variables.
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SUBMODULE THEOREM

R € R**®[&1,++ ¢ , &y] defines B = ker(R(aiml, cee aiwn)),
but not vice-versa.

(¢ 3 ‘intrinsic’ characterization of 25 € £ 77
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SUBMODULE THEOREM

R € R**®[&1,++ ¢ , &y] defines B = ker(R(aiml, cee %)),
but not vice-versa.

(¢ 3 ‘intrinsic’ characterization of 25 € £ 77

Is there a mathematical ‘object’ that characterizes a3 € £°7

Define the annihilators of 5 € £ by

N :={n € R¥[€1,- -+, &] | nT(agla”' 731%)% = 0}.

Proposition: Ity isaR[&1, -+ - , &,] sub-module of

RW[Sla "t 7£n]°

—p.22/29



SUBMODULE THEOREM

Ny :={n € RY[&1, -+ , &) | nT(azla'” ' Dy )% = 0}.

Let < R' > denote the submodule of R¥ (&1, -+ , &) spanned
by the transposes of the rows of . Obviously

< RT >g mker(R(ai )) BUt indeed:

" an

)y =< R" >

mker(R(%, e

) an
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SUBMODULE THEOREM

Ny = {n € R¥[€1,++ ,&] | nT (52, , 52)B = 0}.

)y =< R" >

Mier(R(52

" an

Associate with the submodule It of R [£1, - - - , &,] the system

19
= {w € EX(RRY) [ nT (o e -
L1 Ln

Again, every sub-module of R" (£, - - - , &,] is finitely generated
(but number of generators may be > w), 5 € L.
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SUBMODULE THEOREM

Ny := {n € RY[&1,- -+ , & | nT(alwla'” aalmn)% = 0}.

mker(R(%,.. o yy =< R" >

) an

Associate with the submodule It of R [£1, - - - , &,] the system

9 d
B ={we cRR) |n'(—,: -, —)w=0Vn € M}
82131 3(1311

Again, every sub-module of R" (£, - - - , &,] is finitely generated
(but number of generators may be > w), 5 € L.

1:1
Theorem 1: | £¥ +— submodules of R¥[£7, - - , &y]
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ELIMINATION THEOREM

The fundamental principle, and hence the elimination theorem
generalize to PDE’s!

—_ —

Which PDE’s describe (p, E/, 7) in Maxwell’s equations ?

Eliminate B from Maxwell’s equations ~~»

V-E = — P

—_

O -
Vv.E V.1
&‘oat + J

|
o

82E+ 2V><V><}_77'+3_"
“09¢2 0 at’
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R(52-, 5o )w =0

Y Oxy

is called a kernel representation of the associated °5 € .
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R(a%l""

O Yw = 0

Y Oxy

is called a kernel representation of the associated °5 € .

Another representation: image representation

‘Elimination’ thm

o
w:M(a_wl7...

0

> Ox,

L.

= im(M(5—
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0 0
R(a_ml,... ’awn)w — 0

is called a kernel representation of the associated °5 € .

Another representation: image representation

fw:M(aiwla'” ’an)e

‘Elimination’ thm =  im(M(52-,- -+, 52-)) € £7 !

Which linear diff. systems admit an image representation???
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0 0
R(a_ml,... ’awn)w — 0

is called a kernel representation of the associated °5 € .

Another representation: image representation

’w:M(alwlv'” 93wn)£

‘Elimination’ thm =  im(M(52-,- -+, 52-)) € £7 !
Which linear diff. systems admit an image representation???

B € £ admits an image representation iff it is ‘controllable’.

—p.24/29



CONTROLLABILITY of PDE’s

Controllability def’n in pictures:

A%

O,

O-

w1, W € 5.
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CONTROLLABILITY of PDE’s

w € *B ‘patches’ wi,wo € *B.

=

\
\
\
\

\
\

\
N/

\

*\

L
\
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CONTROLLABILITY of PDE’s

w E€B ‘patches’ w1, wa € B,

D

/

///// //
// A\
AN\

- AN
> M

&

Controllability :<= ‘patch-ability’.
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Are Maxwell’s equations controllable ?
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Are Maxwell’s equations controllable ?

The following equations in the scalar potential ¢ : R x R? — R

and the vector potential A:RXR — R3, generate exactly the
solutions to Maxwell’s equations:

— 8 s
E = —A-V
oy ®,
B = VXJ,
] = ¢ 8—2X e0c?V2A 4+ €0c®?V(V - A) + ¢ 2qu
J = 052 0 0 05¢ ’
o -
= —e0—V-:-A—¢eoV3.
P €05 eo Vg

Proves controllability.
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Are Maxwell’s equations controllable ?

The following equations in the scalar potential ¢ : R x R? — R

and the vector potential A:R xRS — R3, generate exactly the
solutions to Maxwell’s equations:

— 8 —
E = —A-V
oy ®,
B = ng,
] = € 8—2K e0c?V2A + e0c?V(V - A) +¢ Equ
J = 08t2 0 0 Oat )
0 -
= —eg0—V-A—goV3¢p.
P €05 eo Vg

Proves controllability. Illlustrates the interesting connection

controllability < d potential!
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OBSERVABILITY

Observability of the image representation

M ( 9 9 )¢
w p— ———— e o o

3:131 ’ ’ awn

is defined as: ¢ can be deduced from w,

i.e., M(aiwl, cen, aiwn should be injective.
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OBSERVABILITY

Observability of the image representation

9, o0
w=M(—,---, )£
3331 awn
is defined as: ¢ can be deduced from w,
. 0 0 . . .
i.e., M(a—wl, *++ 5 4-) should be injective.

Not all controllable systems admit an observable image repr’ion.
Forn = 1, they do. Forn > 1, exceptionally so.
The latent variable in an image repr’ion may be ‘hidden’.
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OBSERVABILITY

Observability of the image representation

9, o0
w=M(—,---, )£
3331 awn
is defined as: ¢ can be deduced from w,
. 0 0 . . .
i.e., M(a—wl, *++ 5 4-) should be injective.

Not all controllable systems admit an observable image repr’ion.

Forn = 1, they do. Forn > 1, exceptionally so.
The latent variable in an image repr’ion may be ‘hidden’.

Example: Maxwell’s equations do not allow a potential
representation that is observable.
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End of the Lecture I
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