
OPEN DYNAMICAL
SYSTEMS:

Basic concepts and examples

Chaire Francqui, Lecture I, May 5, 2004

– p.1/25



THEMES

Mathematical models, the behavior

Dynamical systems

Examples

Linear differential systems � 3 basic theorems:

1. Characterization as submodules and Structure of kernel
representations

2. Elimination theorem

3. Input/output representability
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Generalities

What is a model? As a mathematical concept.

What is a dynamical system?

What is the role of differential equations in thinking about
dynamical models?

This way we arrive at the

Definition

A mathematical model is a subset of a universum of
outcomes,

is called the behavior of the model.
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Generalities

Intuition

We have a ‘phenomenon’ that produces ‘outcomes’ (‘events’).
We wish to model the outcomes that can occur.

Before we model the phenomenon:
the outcomes are in a set, which we call the universum.

After we model the phenomenon:
the outcomes are declared (thought, believed)
to belong to the behavior of the model,
a subset of the universum.

This subset is what we call the mathematical model.

This way we arrive at the

Definition

A mathematical model is a subset of a universum of
outcomes,

is called the behavior of the model.
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Generalities

This way we arrive at the

Definition

A mathematical model is a subset of a universum of
outcomes,

�
is called the behavior of the model.
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Features

Generality, applicability

shows the role of model equations� notion of equivalent models� notion of more powerful model

Structure, symmetries

...
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In these lectures, we will only consider deterministic models.

Stochastic models: there is a map (the ’probability’)

with a ‘ -algebra’ of subsets of .

Fuzzy models: there is a map (the ‘membership function’)
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In these lectures, we will only consider deterministic models.

Stochastic models: there is a map

�

(the ’probability’)

��� ���	� 
 �
with a ‘ �-algebra’ of subsets of .� 
 ��� ‘the degree of certainty (belief, plausibility,

relative frequency) that outcomes are in ’;�� the degree of validity of as a model.

Fuzzy models: there is a map (the ‘membership function’)
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with a ‘ �-algebra’ of subsets of .

Fuzzy models: there is a map � (the ‘membership function’)
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� 
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In these lectures, we will only consider deterministic models.

Stochastic models: there is a map

�

(the ’probability’)

��� ���	� 
 �
with a ‘ �-algebra’ of subsets of .

Determinism: � �� � ��� � ���� �� ��  
.

Fuzzy models: there is a map � (the ‘membership function’)

�� ���	� 
 �

Determinism: � is ‘crisp’:!#" $%& 
 � ��� � �	� 
  � � � ' ( 
 � 
  � � � � � � ) � 
�� � � 
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Dynamical systems

In dynamics, the outcomes are functions of time �
EVENTSSYSTEM

time

Which event trajectories are possible?

Definition

A dynamical system =

with , the time-axis (= the relevant time instances),
, the signal space

(= where the variables take on their values),

the behavior (= the admissible trajectories).
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Dynamical systems

Definition

A dynamical system =

* � � 
+ � � �
with

+ ,

, the time-axis (= the relevant time instances),
, the signal space

(= where the variables take on their values),-

the behavior (= the admissible trajectories).
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Dynamical systems

Definition

A dynamical system =

* � � 
+ � � �
with

+ ,

, the time-axis (= the relevant time instances),
, the signal space

(= where the variables take on their values),-

the behavior (= the admissible trajectories).
signal space

time

Totality of ‘legal’ trajectories =: the behavior
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Dynamical systems

Definition

A dynamical system =

* � � 
+ � � �
with

+ ,

, the time-axis (= the relevant time instances),
, the signal space

(= where the variables take on their values),-

the behavior (= the admissible trajectories).

For a trajectory (‘an event’) . � + � we thus have:

. �

: the model allows the trajectory .�. / �

: the model forbids the trajectory . �
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Dynamical systems

Definition

A dynamical system =

* � � 
+ � � �
with

+ ,

, the time-axis (= the relevant time instances),
, the signal space

(= where the variables take on their values),-

the behavior (= the admissible trajectories).

Usually,+ � ,

, or

���	� 0 � , etc. (in continuous-time systems),
or

1� or

2
, etc. (in discrete-time systems).
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Dynamical systems

Definition

A dynamical system =

* � � 
+ � � �
with

+ ,

, the time-axis (= the relevant time instances),
, the signal space

(= where the variables take on their values),-

the behavior (= the admissible trajectories).

Usually, ,3

(in lumped systems),
a function space

(in distributed systems, time a distinguished variable),
a finite set (in DES)’ etc.
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Dynamical systems

Definition

A dynamical system =

* � � 
+ � � �
with

+ ,

, the time-axis (= the relevant time instances),
, the signal space

(= where the variables take on their values),-

the behavior (= the admissible trajectories).

Emphasis:+ � ,�� ,3�� solutions of system of linear constant coefficient
ODE’s, or difference eqn’s, or PDE’s.

– p.6/25



More structure

*� 
+ � � �
is said to be
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More structure

*� 
+ � � �
is said to be linear

if is a vector space, and a linear subspace of

-

.
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More structure

*� 
+ � � �
is said to be time-invariant

if

+ � ,� ,�4 � 1� or

1 4 and if satisfies

� 5 for all

6 � + �

� 5 denotes the shift, � 587 
 6 9 � � � 7 
 6 9;: 6 �

.
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More structure

*� 
+ � � �
is said to be differential

if

+ � ,� or

,�4 , etc., and if is the solution set of a (system of)
ODE’s.

a difference system if, etc.
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More structure

*� 
+ � � �
is said to be symmetric

w.r.t. the transformation group

�<>= � ? � @  
on

-

if

+= � for all ? � @

.

Examples:

1. time-invariance, time-reversibility

2. permutation symmetry, rotation symmetry, translation
symmetry, Euclidean symmetry,

3. etc., etc.
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A series of examples
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Planetary motion

Let’s put Kepler and Newton in this setting.
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Planetary motion

Let’s put Kepler and Newton in this setting.

Planet ???

How does it move?
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Kepler’s laws

Johannes Kepler (1571-1630)

SUN

PLANET

Kepler’s first law:

Ellipse, sun in focus

This obviously defines a dynamical system

all that satisfy Kepler’s 3 laws.

Nice example of a dynamical model ‘without equations’.

Is it a differential system?

This question turned out to be of revolutionary importance...
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Kepler’s laws

Johannes Kepler (1571-1630) D
C

B

A

Kepler’s second law:

= areas in = times

This obviously defines a dynamical system

all that satisfy Kepler’s 3 laws.

Nice example of a dynamical model ‘without equations’.

Is it a differential system?

This question turned out to be of revolutionary importance...
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Kepler’s laws

Johannes Kepler (1571-1630)

34 months

1 year

Kepler’s third law:

(period)

A

= (diameter)

B

This obviously defines a dynamical system

all that satisfy Kepler’s 3 laws.

Nice example of a dynamical model ‘without equations’.

Is it a differential system?

This question turned out to be of revolutionary importance...
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The state of the planet

What determines the orbit uniquely?

SUN

PLANET
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The state of the planet

What determines the orbit uniquely?

SUN

PLANET

The position?
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The state of the planet

What determines the orbit uniquely?

SUN

PLANET

The position and the direction of motion?
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The state of the planet

 position velocity

The state = position and velocity
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The equation of the planet

Consequence:
acceleration = function of position and velocityC AC 6 A . 
 6 �� D 
 . 
 6 �� CC 6 . 
 6 � �

via calculus and calculation

This defines the dynamical system

all that satisfy this differential eq’n.
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Consequence:
acceleration = function of position and velocityC AC 6 A . 
 6 �� D 
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� via calculus and calculation
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This defines the dynamical system
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The equation of the planet

� via calculus and calculation

C EC 6 E FHG I 
PJ LM N) . 
 6 � ) E O
This defines the dynamical system

*� 
+ � � �

+ � ,�� , B�� all . � , , B
that satisfy this differential eq’n.
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The equation of the planet

� via calculus and calculation

C EC 6 E FHG I 
PJ LM N) . 
 6 � ) E O
This defines the dynamical system

*� 
+ � � �

+ � ,�� , B�� all . � , , B
that satisfy this differential eq’n.

Is it really equivalent to K.1, K.2, K.3 ?
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Kepler’s laws

K.1, K.2, & K.3

Hypotheses 
 non

 fingo
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Kepler’s laws

K.1, K.2, & K.3

C EC 6 E FHG I 
PJ LM N) . 
 6 � ) E O

Hypotheses 
 non

 fingo

O C EC 6 E
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More examples

FlowsCC 6 � 
 6 �� 7 
 � 
 6 � ��

� all state trajectories.

Input / output systems

(time),
(input output signal spaces),

all input / output pairs.
Thermodynamics

Thermodynamics is the only theory of a general nature of
which I am convinced that it will never be overthrown.

Albert Einstein

The law that entropy always increases – the second law of
thermodynamics – holds, I think, the supreme position
among the laws of nature.

Arthur Eddington

Thermodynamics
Work(Q  ,T )hh

W

terminal

(Q  ,T )cc

terminal
Cooling

Heating
terminal

Thermodynamic
Engine

First and second law:

These laws deal with ‘open’ systems.
But not with input/output systems!
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More examples

Observed flowsCC 6 � 
 6 � � 7 
� 
 6 � �RQ S 
 6 �� T 
� 
 6 � ��

� all possible output trajectories.

Note:

1. It may be impossible to express as the solutions of a
differential equation involving only S.

2. The auxiliary (latent variable) nature of � .

Input / output systems

(time),
(input output signal spaces),

all input / output pairs.
Thermodynamics

Thermodynamics is the only theory of a general nature of
which I am convinced that it will never be overthrown.

Albert Einstein

The law that entropy always increases – the second law of
thermodynamics – holds, I think, the supreme position
among the laws of nature.

Arthur Eddington

Thermodynamics
Work(Q  ,T )hh

W

terminal

(Q  ,T )cc

terminal
Cooling

Heating
terminal

Thermodynamic
Engine

First and second law:

These laws deal with ‘open’ systems.
But not with input/output systems!
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More examples

Input / output systems

7 ( 
 S 
 6 �� CC 6 S 
 6 �� C AC 6 A S 
 6 �� � � �� 6 �

� 7 A 
U 
 6 �� CC 6 U 
 6 �� C AC 6 A U 
 6 �� � � �� 6 �

+ � ,

(time),� VXW Y

(input

W

output signal spaces),� all input / output pairs.

Thermodynamics

Thermodynamics is the only theory of a general nature of
which I am convinced that it will never be overthrown.

Albert Einstein

The law that entropy always increases – the second law of
thermodynamics – holds, I think, the supreme position
among the laws of nature.

Arthur Eddington
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Work(Q  ,T )hh

W

terminal

(Q  ,T )cc

terminal
Cooling

Heating
terminal

Thermodynamic
Engine
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These laws deal with ‘open’ systems.
But not with input/output systems!
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More examples

Input / output systems

7 ( 
 S 
 6 �� CC 6 S 
 6 �� C AC 6 A S 
 6 �� � � �� 6 �

� 7 A 
U 
 6 �� CC 6 U 
 6 �� C AC 6 A U 
 6 �� � � �� 6 �

+ � ,

(time),� VXW Y

(input

W

output signal spaces),� all input / output pairs.
Of course, more is required to justify callingU ‘input’ and S ‘output’.

Not a good starting point!! Why not?

Thermodynamics

Thermodynamics is the only theory of a general nature of
which I am convinced that it will never be overthrown.

Albert Einstein

The law that entropy always increases – the second law of
thermodynamics – holds, I think, the supreme position
among the laws of nature.

Arthur Eddington

Thermodynamics
Work(Q  ,T )hh

W

terminal
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terminal
Cooling

Heating
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Thermodynamic
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More examples

Input / state / output systemsCC 6 � 
 6 �� 7 
� 
 6 �� U 
 6 �� 6 �� S 
 6 �� T 
� 
 6 �� U 
 6 �� 6 �

What do we want to call the behavior?
the


U � S� � �

’s, or the

U � S � ’s?

Is the


U � S � behavior described by a differential eq’n?

Thermodynamics

Thermodynamics is the only theory of a general nature of
which I am convinced that it will never be overthrown.

Albert Einstein

The law that entropy always increases – the second law of
thermodynamics – holds, I think, the supreme position
among the laws of nature.

Arthur Eddington

Thermodynamics
Work(Q  ,T )hh

W

terminal

(Q  ,T )cc

terminal
Cooling

Heating
terminal

Thermodynamic
Engine

First and second law:

These laws deal with ‘open’ systems.
But not with input/output systems!
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More examples

Heat diffusion

Z
[ \ Z8] ^ _

`\ Z8] ^ _
Diffusion describes the evolution of the temperature

< 
�� � 6 �

(� � ,

position,

6 � ,

time) along a uniform bar (infinitely long),
and the heat a 
�� � < �

supplied to the bar. � the PDEbb 6 < � b Ab� A < : a

+ � ,

(time),� c d 
 ,� , A �
all (temperature, heat) distributions,� all

< 
fe� 6 �� a 
fe� 6 �
-pairs that satisfy the PDE.

Note: We view
6

as a distinguished variable.

Thermodynamics

Thermodynamics is the only theory of a general nature of
which I am convinced that it will never be overthrown.

Albert Einstein

The law that entropy always increases – the second law of
thermodynamics – holds, I think, the supreme position
among the laws of nature.

Arthur Eddington

Thermodynamics
Work(Q  ,T )hh

W

terminal

(Q  ,T )cc

terminal
Cooling

Heating
terminal

Thermodynamic
Engine

First and second law:

These laws deal with ‘open’ systems.
But not with input/output systems!
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More examples

Codesg� the code alphabet, say,

g� h 3� h

a finite field,i � an index set, say,i� 
 
� e e e � j � in block codes,i� 2

or

1

in convolutional codes,c g k� the code; yields the system
*� 
 i� g� c � �

Redundancy structure, error correction possibilities, etc., are
visible in the code behavior

c
.

It is the central object of study.
The encoder and decoder can be put (temporarily) into the
background.

Thermodynamics

Thermodynamics is the only theory of a general nature of
which I am convinced that it will never be overthrown.

Albert Einstein

The law that entropy always increases – the second law of
thermodynamics – holds, I think, the supreme position
among the laws of nature.

Arthur Eddington

Thermodynamics
Work(Q  ,T )hh

W

terminal

(Q  ,T )cc

terminal
Cooling

Heating
terminal

Thermodynamic
Engine

First and second law:

These laws deal with ‘open’ systems.
But not with input/output systems!
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More examples

Example:

The following error detecting code:i� 1� g� h� � �	� 
  �� all compact support sequences . � 1 h
such that. 
 6 �� lnm o 
 6 � : l ( o 
 6qp 
 � : e e e : lsr o 
 6qp j �

for some

o� 1 h

, with lnm� l (� � � �� lsr � h

design parameters.

Thermodynamics

Thermodynamics is the only theory of a general nature of
which I am convinced that it will never be overthrown.

Albert Einstein

The law that entropy always increases – the second law of
thermodynamics – holds, I think, the supreme position
among the laws of nature.

Arthur Eddington

Thermodynamics
Work(Q  ,T )hh

W

terminal

(Q  ,T )cc

terminal
Cooling

Heating
terminal

Thermodynamic
Engine

First and second law:

These laws deal with ‘open’ systems.
But not with input/output systems!
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More examples

Formal languagesg � a (finite) alphabet,t g u � the language = all ‘legal’ ‘words’ v ( v A e e e vxw e e eg u � all finite strings with symbols from
g

.

yields the system

*� 
 2� g� t � �
Examples: All words appearing in the van Dale

All LATEX documents.

Thermodynamics

Thermodynamics is the only theory of a general nature of
which I am convinced that it will never be overthrown.

Albert Einstein

The law that entropy always increases – the second law of
thermodynamics – holds, I think, the supreme position
among the laws of nature.

Arthur Eddington

Thermodynamics
Work(Q  ,T )hh

W

terminal

(Q  ,T )cc

terminal
Cooling

Heating
terminal

Thermodynamic
Engine

First and second law:

These laws deal with ‘open’ systems.
But not with input/output systems!
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More examples

Thermodynamics
Work(Q  ,T )hh

W

terminal

(Q  ,T )cc

terminal
Cooling

Heating
terminal

Thermodynamic
Engine

time-axis:

,

Q: Variables of interest? A: y� < y� z� < z�� signal space: � ,4 W ,{4 W , 4 W ,{4 W ,

Behavior : a suitable family of trajectories.

But, there are some universal laws that restrict the ’s that are
‘thermodynamic’.

First and second law:

These laws deal with ‘open’ systems.
But not with input/output systems!
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More examples

Thermodynamics
Work(Q  ,T )hh

W

terminal

(Q  ,T )cc

terminal
Cooling

Heating
terminal

Thermodynamic
Engine

First and second law:


 y p z p � C 6� � Q 
 y< y p z< z � C 6 � �

These laws deal with ‘open’ systems.
But not with input/output systems!
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Conclusion

The framework

*� 
+ � � �
with � the ‘behavior’

is a very flexible, universal, pedagogical approach to the theory of
models in general and dynamical systems in particular!
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Linear Differential Systems
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Polynomials

, �| � � � the polynomials with real coefficients in the
‘indeterminate’

|

.

A polynomial vector is a vector of polynomials,

Addition, multiplication by polynomials (‘scalar multiplication’)
defined in the obvious way.

This makes into a ‘module’ over .

Example of a submodule: Let and
consider all elements of the form

with . This is obviously a submodule of
, called the submodule ‘generated by’ (‘the

generators’).
In we can add and multiply elements:

it is a ‘non-commutative’ ring.
So, elements could be invertible (in !).
These are an important type of square polynomial matrices:

Definition: is said to be unimodular if
such that .

This is denoted as . Easy:

Exercises:
1. Prove the Smith form. Hint: Consider a non-zero element of of
smallest degree. Assume that in the same row or column as this
element there is a second non-zero element. Now use an
elementary row or column operation (meaning: replace this second
row or column by the sum of this row or column and a polynomial
multiple of the first row or column) to create either a new zero
element, or a non-zero element of lower dgeree. Show that this
process ends in a finite number of steps, and that it ends if, up to a
permutation of rows and columns, the matrix is in Smith form.
2. Use the Smith form to prove that every submodule of is
finitely generated, and that the matrix formed by the generators as
columns can be taken to have full row rank, and hence that the
number of generators is at most .
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So, elements could be invertible (in !).
These are an important type of square polynomial matrices:

Definition: is said to be unimodular if
such that .

This is denoted as . Easy:

Exercises:
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columns can be taken to have full row rank, and hence that the
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The following result is very useful in proofs. It shows that, by pre-
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Let
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. There exist unimodular polynomial matrices� � ,r � � r� �| �

and

� � ,r � � r� �| �

such that

� � �� � ! $ % 
�� (� � A� � � �� ��� � �� � � r� '� �� � r� '� � �� � � r� '� � � � r� '� �

where �� � $� � 
 � �

, l (� l A� � � �� l� � , �| �
, and lw 4 ( is a

factor of lw for

�� 
� �� � � � �p 

.

l (� l A� � � �� �� are called the invariant factors of

�

.
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Exercises:
1. Prove the Smith form. Hint: Consider a non-zero element of

�
of

smallest degree. Assume that in the same row or column as this
element there is a second non-zero element. Now use an
elementary row or column operation (meaning: replace this second
row or column by the sum of this row or column and a polynomial
multiple of the first row or column) to create either a new zero
element, or a non-zero element of lower dgeree. Show that this
process ends in a finite number of steps, and that it ends if, up to a
permutation of rows and columns, the matrix is in Smith form.
2. Use the Smith form to prove that every submodule of

,r �| �

is
finitely generated, and that the matrix formed by the generators as
columns can be taken to have full row rank, and hence that the
number of generators is at most j.
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Linear time-invariant differential systems

We discuss the fundamentals of the theory of dynamical systems*� 
 ,� ,3� �
that are

1. linear meaning (‘superposition’)

2. time-invariant meaning

3. differential, meaning
consists of the sol’ns of a system of differential eq’ns.

In vector/matrix notation:

...
...

...
...

Yields

with
Combined with the polynomial matrix

we obtain the mercifully short notation
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Linear time-invariant differential systems

Variables: . (� . A� � � � . 3 , up to j-times differentiated, ¦
equations. �

§ ¨ª©¬« ­ ® ¯­±° © ² © ³ § ¨ª©¬« ­ ® ­­±° © ´´µ ² © ³s¶ ¶ ¶ ³ § ¨ª© « ­ ® ·­° © ´ ·´µ · ² © ¸ ¹

§ ¨K©¬« ­ ® ¯º° © ² © ³ § ¨K©¬« ­ ® ­ º° © ´´µ ² © ³s¶ ¶ ¶ ³ § ¨K© « ­ ® · º° © ´ ·´µ · ² © ¸ ¹

...
...

...§ ¨»© « ­ ® ¯¼° © ² © ³ § ¨»© « ­ ® ­ ¼° © ´´µ ² © ³s¶ ¶ ¶ ³ § ¨»© « ­ ® · ¼° © ´ ·´µ · ² © ¸ ¹

Coefficients

½w¾À¿ Á : 3 indices!Â� 
� � � �� ¦� for the Â-th differential equation,Ã � 
� � � �� Ä� for the variable . Á involved,�� 
� � � �� j� for the order

Å ÆÅ 5 Æ of differentiation.

In vector/matrix notation:

...
...

...
...

Yields

with
Combined with the polynomial matrix

we obtain the mercifully short notation
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Linear time-invariant differential systems

In vector/matrix notation:

.�
Ç

ÈÉÈÊÈÊÈË
. (. A�

... . 3
Ì

ÍÉÍÊÍÊÍÎ� ½w �
Ç

ÈÉÈÊÈÊÈË
½w (¿ ( ½w (¿ A e e e ½w (¿ 3½w A¿ ( ½w A¿ A e e e ½w A¿ 3

...
... e e e ...½wÏ ¿ ( ½wÏ ¿ A e e e ½wÏ ¿ 3

Ì
ÍÉÍÊÍÊÍÎ �

Yields

with
Combined with the polynomial matrix

we obtain the mercifully short notation
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In vector/matrix notation:
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Yields ½m . : ½ ( CC 6 . : e e e : ½r CrC 6 r .� �	�

with

½m� ½ (� e e e � ½r � ,Ï � 3 �

Combined with the polynomial matrix

we obtain the mercifully short notation
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Linear time-invariant differential systems

Yields ½m . : ½ ( CC 6 . : e e e : ½r CrC 6 r .� �	�
with

½m� ½ (� e e e � ½r � ,Ï � 3 �

Combined with the polynomial matrix

½ 
 | � � ½m : ½ ( | : e e e : ½r | r�

we obtain the mercifully short notation

F G I O Ð
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Other similar situations:

Difference equations on

1 4 �½ 
 � � .� � Q
Difference equations on

1 �
½ 
 �� � ' ( � .� � Q

PDE’s on

,r �
½ 
 ÑÑÓÒ � � e e e � ÑÑÓÒÕÔ � .� � Q

Differential delay systems on
, �

½ 
 ÅÅ 5� �� � ' ( � .� � Q

etc.
Execise: State and prove the appropriate version of the 3 basic
theorems for discrete-time systems, with

+ � 1

and

1 4 .
– p.19/25



The behavior of

½ 
 ÖÖ× � .� �

What do we mean by the behavior
of this system of differential equations?

When do we want to call . � , ,3

a solution?

-solutions:

is a -solution of if

1. is infinitely differentiable ( =: ), and

2. .

Weak solutions:

is a weak solution of if

1. for all and

2.

‘Pragmatic’, easy way out: soln’s! Transmits main ideas,
easier to handle, easy theory, sometimes (too) restrictive
(step-response, state property etc.).
Whence, defines the system with

Proposition: This system is linear and time-invariant.

Some other properties of :

;

and ;

Further niceties:

and ,
denotes convolution

-solutions of are dense in the set of
weak (or distributional) solutions.
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*� 
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3 theorems about

áâ

Theorem 1:

There is a one-to-one relation between
and the submodules of .

Theorem 2 (Elimination theorem):

is closed under projection.

Theorem 3 (Input / output representation):

For each there is a componenentwise partition
of the variables into inputs and outputs.
This partition is not unique, but the numbers
of input and output variables is invariant.
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Submodule theorem

½ � , � � � �| �

defines � �& � 
 ½ 
 ÅÅ 5 � � , but not vice-versa!

Obviously,

½ 
 ÅÅ 5 � .� �

and

� 
 ÅÅ 5 � ½ 
 ÅÅ 5 � .� �
define the same

behavior whenever

�

is unimodular.

¿¿

�

‘intrinsic’ characterization of

� t 3 ã ã

Is there a mathematical ‘object’ that characterizes a

Define the annihilators of by

Proposition: is a sub-module of

Denote by the set of submodules of . Associate elements
of with those of as follows:

Theorem 1:
Consequence (Structure of kernel representations):

1. Let have behavior , and have

behavior . Then if and only if

such that

2. is a minimal kernel representation (has a minimal
number of rows over all kernel representations of a given behavior)
if and only if is of full row rank.

3. Let be unimodular. Then and

have the same behavior.

4. Let be minimal. All minimal kernel representations
with the same behavior are obtained by pre-multiplying by a
unimodular polynomial matrix.
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Submodule theorem
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Submodule theorem
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Elimination theorem

Motivation: In many problems, we want to eliminate variables.

Theorem 2: It does!

is closed under projection !!

Proof: follows from the ‘fundamental principle’.
Exercise 1: Prove the eliminationn th’m, using the fund. pr.
Exercise 2: Prove the fund. pr. for const. coeff. lin. ODE’s.
Example: Consider a linear RLCTG circuit.
First principles modeling ( CE’s, KVL, & KCL)

linear constant coefficient differential equations. All of
them algebraic, only the L’s and C’s differential.
These include as variables both the external port and the internal
branch voltages and currents.
Can the port behavior be described by a system of linear constant
coefficient differential equations?
YES, because:

1. The CE’s, KVL, & KCL are all linear constant coefficient
differential equations.

2. The elimination theorem.

Row dimension of minimal kernel representation?
Interesting things can be said, using passivity! ...
It follows from all this that has very nice properties. In
particular, it is closed under:

Intersection: .

Addition: .

Projection: .
projection

Action of a linear differential operator:

.

Inverse image of a linear differential operator:

.
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Elimination theorem
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Elimination theorem
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Elimination theorem

Example:

ð

The ubiquitous

ÅÅ 5 � � D� : ñ U Q S� ò� : U � .� 
�U � S � .
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�U � S � (input-output) behavior?
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� 
 CC 6 � S� 
 CC 6 � U
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�
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�& � 
 � � �� �
. Why the latter?: soon!
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Elimination theorem
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ð
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Elimination theorem
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Elimination theorem
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Elimination theorem

Example: Consider a linear RLCTG circuit.
First principles modeling (

�ø CE’s, KVL, & KCL)� linear constant coefficient differential equations. All of
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YES, because:
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Elimination theorem

There exist effective algorithms forü û�� � û�	 ÿ�� û
incorporating, if desired, minimality of

û ü 

� ÿ ÷ ø ù
.

� Computer algebra.

Start from

û � � û�	 . We want to compute

û
.

Find a set of generators � � � � 	 � ú ú ú � ��
 for the ‘left syzygy’ of the
module

� û�	 �

, i.e. for the module

� � � � �� �� ��� ���� �! " #$ � % û�	 ø ù & ú

Define ø ' � � � 	 ( ( ( � 

)

. Then

û ø % û�� .

It follows from all this that has very nice properties. In
particular, it is closed under:

Intersection: .

Addition: .

Projection: .
projection

Action of a linear differential operator:

.

Inverse image of a linear differential operator:

.
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Elimination theorem

It follows from all this that

* +

has very nice properties. In
particular, it is closed under:

Intersection:

ü � � 	 � * , ÿ ü � - 	 � * , ÿ

.

Addition:

ü � � 	 � * , ÿ ü � õ 	 � * , ÿ

.

Projection:

ü � * ,. / ,� ÿ ü0 1 . � * ,. ÿ

.0 1 . 2 ø projection

Action of a linear differential operator:ü � * ,. � 3 � � ,� 4 ,.  " # ÿ ü 3 ü 

� ÿ � * ,� ÿ

.

Inverse image of a linear differential operator:ü � * ,� � 3 � � ,� 4 ,.  " # ÿ ü 3 ü 

� ÿ ÿ65 � � * ,.

.
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I/O representation theorem

When is a system variable an input? An output?

Intuition

Our choice: the input is a free variable which, together with the
‘initial conditions’, determines the output.

These concepts (input, output) are strongly domain dependent. We
follow the usual Systems & Control setting.

Central is, of course, that the input must in some way cause the
output.
Let Then is said to be an
input/output system with the input and the output if

1. the -behavior , i.e., is free,

2. for all , the system is
autonomous,

where denotes the behavior with fixed , i.e.,

input free; output bound (det. by input + initial cond’s).
Theorem 3:

Every system admits an input/output partition.
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I/O representation theorem

In real-time signal processing and control, non-anticipation
must be an important feature.

But not in non-real-time signal processing problems, or when
the independent variable is not time.

In many problems (e.g. computing, signal processing) inputs
may have to be structured, in order for machines or algorithms
to be able to accept them.

In control, it is customary to assume that inputs are free, and
that outputs are bound (determined by the inputs and the initial
conditions). We will follow this tradition.

Often systems are non-anticipating both forward and backward
in time.

Let Then is said to be an

input/output system with the input and the output if

1. the -behavior , i.e., is free,

2. for all , the system is
autonomous,

where denotes the behavior with fixed , i.e.,

input free; output bound (det. by input + initial cond’s).
Theorem 3:

Every system admits an input/output partition.
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I/O representation theorem

7 ø ü8 � � ÿ

, with

8 ø �

or

9

, is said to be autonomous if

 ÷ � � ÷ 	 � #;:  þ � 8 # :  ÷ � ü þ < ÿ ø ÷ 	 ü þ < ÿ= þ < � þ #

 ÷ � ø ÷ 	 # ú

Autonomous:= the past implies the future.

‘Closed’ systems.

Let Then is said to be an

input/output system with the input and the output if

1. the -behavior , i.e., is free,

2. for all , the system is
autonomous,

where denotes the behavior with fixed , i.e.,

input free; output bound (det. by input + initial cond’s).
Theorem 3:

Every system admits an input/output partition.
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I/O representation theorem

Let

7 ø ü �� � ,. / ,� � ÿ � * ,. / ,� ú Then ÷ � is said to be an

input/output system with ÷ � the input and ÷ 	 the output if

1. the ÷ � -behavior � ø > ? ü �� � ,. ÿ
, i.e., ÷ � is free,

2. for all ÷ � � � , the system

7 1 .	 2 ø ü �� � ,� � 1 .	 ÿ

is
autonomous,

where

1 .	 denotes the ÷ 	 behavior with fixed ÷ � , i.e.,

1 .	 2 ø � ÷ 	 $ ü ÷ � � ÷ 	 ÿ � & ú

input

�ø free; output
�ø bound (det. by input + initial cond’s).

Theorem 3:

Every system admits an input/output partition.
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Let

7 ø ü �� � ,. / ,� � ÿ � * ,. / ,� ú Then ÷ � is said to be an

input/output system with ÷ � the input and ÷ 	 the output if

1. the ÷ � -behavior � ø > ? ü �� � ,. ÿ
, i.e., ÷ � is free,

2. for all ÷ � � � , the system

7 1 .	 2 ø ü �� � ,� � 1 .	 ÿ

is
autonomous,

where

1 .	 denotes the ÷ 	 behavior with fixed ÷ � , i.e.,

1 .	 2 ø � ÷ 	 $ ü ÷ � � ÷ 	 ÿ � & ú

input

�ø free; output
�ø bound (det. by input + initial cond’s).

In keeping with tradition÷ � @A � ,. � B

( C input variables),÷ 	 D A � ,� � E

( F output variables).

Theorem 3:

Every system admits an input/output partition.
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Let

7 ø ü �� � , � ÿ � * , � with

� , ø � BHG � E � I ø C õ F.
If

7 ø ü �� � BHG � E � ÿ

is an input/output system,

then we call ÷ ø ü @ � D ÿ an input/output partition of ÷ .

Theorem 3:

Every system admits an input/output partition.
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Notation for vectors and matrices of rational functions:

� ü" ÿJ � � ü" ÿ + � � ü" ÿJ . 4 J� � � ü" ÿ + 4 J � � ü" ÿ J 4 + � � ü" ÿ + 4 +

.

A rational function

K
L � � ü" ÿ

is said to be

proper if

MONP QN N ü K ÿ MONP QN N ü L ÿ
,

strictly proper if

MONP QN N ü K ÿ � MONP QN N ü L ÿ
,

and bi-proper if

MONP QN N ü K ÿ ø MONP QN N ü L ÿ
.

� vectors, matrices of (strictly) proper rational functions.

Theorem 3:

Every system admits an input/output partition.
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Proposition: Consider the kernel representation

3 ü ýýþ ÿ D ø ü ýýþ ÿ @ � ÷ ø ü @R� D ÿ ú
Then @ is free Q ST U ü 3 # ÿ ø Q ST U ü 3 ÿ �
and D is bound

3

is of full column rank,
i.e. Q ST U ü 3 ÿ ø M VXW ü D ÿ .

It defines an input/output partition if and only if

Q ST U ü 3 # ÿ ø Q ST U ü 3 ÿ ø M VXW ü D ÿ ú

If it is a minimal kernel representation, then I/O partition if and only
if

3

is square, and
MON Y ü 3 ÿZ ø ù

.

Call

ö 2 ø 35 � � � ü" ÿ E 4 B

its transfer function.

Theorem 3:

Every system admits an input/output partition.
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Theorem 3:

Every system

7 � * +

admits an input/output partition.
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Theorem 3:

Every system

7 � * +

admits an input/output partition.

even a componentwise I/O partition
:= some well-chosen components of ÷ are the inputs,

the others are the outputs�ø up to re-ordering of the variables, ÷ ø ü @ � D ÿ ,
i.e.,

ü @R� D ÿ ø 0 ÷ , with

0
a permutation matrix.

In fact,

[

a componentwise partition with

ö

proper.
If one can choose the basis, and then the partition, even with

ö

strictly proper.
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Notes:

1. For a given

� * +

, which variables are input variables, and
which are input variables, is not fixed.

THIS IS A GOOD THING!
Examples:
An Ohmic resistor

\ ø û] ûZ ø ù
may be viewed as

a current controlled or as a voltage controlled device.

Often, a transfer function is bi-proper, and then there is no reason
to prefer one input/output partition over another.

etc., etc.
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2. The number of input and the number of output variables are fixed
by

� * +

.
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Notation: Define the 3 maps I� C� F 2 * + 9 / by

I ü 7 ÿ ø I ü ÿ 2 ø the number of variables

C ü 7 ÿ ø C ü ÿ 2 ø the number of input variables

F ü 7 ÿ ø F ü ÿ 2 ø the number of output variables

In terms of the kernel representation
û ü 

� ÿ ÷ ø ù

, we have

I ü 7 ÿ ø ^_ ` M VXW ü û ÿ �C ü 7 ÿ ø ^_ ` M VXW ü û ÿba Q ST U ü û ÿ �F ü 7 ÿ ø Q ST U ü 3 ÿ
In particular, C õ F ø Iú
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End of the Lecture I
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