European Embedded Control Institute

Graduate School on Control - Spring 2010

The Behavioral Approach to Modeling and Control

Lecture IX

DISSIPATIVE SYSTEMS

Energy exchange with the external world.

Energy storage in a system.

State and storage.

- Dissipative systems;
- Spectral factorization;
- Storage functions.

Dissipative Systems

Physical examples:

- Resistive electrical circuits;
- Mechanical systems with friction;

Dissipation inequality

Physical examples:

- Resistive electrical circuits;
- Mechanical systems with friction;

Energy supplied to system \leadsto supply rate variable F_{Σ}

Dissipation inequality

Physical examples:

- Resistive electrical circuits;
- Mechanical systems with friction;

Energy supplied to system \leadsto supply rate variable F_{Σ}

- Electrical circuits: $V^{\top} I$ with V (resp. I) vector of voltages (resp. currents)
- Mechanical systems: $F^{\top} \frac{d}{d t} x$ with F (resp. x) vector of forces (resp. displacements)

Dissipation inequality

Energy supplied to system \leadsto supply rate variable F_{Σ}

Energy stored in system \leadsto storage variable F_{S}

Dissipation inequality

Energy supplied to system \leadsto supply rate variable F_{Σ}
Energy stored in system \leadsto storage variable F_{S}

- Electrical circuits: $\frac{1}{2} C \cdot V^{2}$ for capacitor, $\frac{1}{2} L \cdot I^{2}$ for inductor
- Mechanical systems: $\frac{1}{2} K \cdot x^{2}$ for spring

Dissipation inequality

Energy supplied to system \leadsto supply rate variable F_{Σ}
Energy stored in system \leadsto storage variable F_{S}

> In a dissipative system, energy cannot be stored faster than it is supplied

Dissipation inequality

Energy supplied to system \leadsto supply rate variable F_{Σ}
Energy stored in system \leadsto storage variable F_{S}

In a dissipative system, energy cannot be stored faster than it is supplied

$$
\frac{d}{d t} F_{S} \leq F_{\Sigma}
$$

Dissipation inequality

Energy supplied to system \leadsto supply rate variable F_{Σ}
Energy stored in system \leadsto storage variable F_{S}

In a dissipative system, energy cannot be stored faster than it is supplied

$$
\frac{d}{d t} F_{S} \leq F_{\Sigma}
$$

Dissipation inequality

Dissipation equality

$$
\frac{d}{d t} F_{S} \leq F_{\Sigma}
$$

Dissipation equality

$$
\begin{gathered}
\frac{d}{d t} F_{S} \leq F_{\Sigma} \\
F_{\Delta}:=F_{\Sigma}-\frac{d}{d t} F_{S} \quad \text { dissipation rate (nonnegative) }
\end{gathered}
$$

$$
\begin{gathered}
\frac{d}{d t} F_{S} \leq F_{\Sigma} \\
F_{\Delta}:=F_{\Sigma}-\frac{d}{d t} F_{S} \quad \text { dissipation rate (nonnegative) } \\
F_{\Sigma}=F_{\Delta}+\frac{d}{d t} F_{S} \\
\text { Dissipation equality }
\end{gathered}
$$

$$
\begin{gathered}
\frac{d}{d t} F_{S} \leq F_{\Sigma} \\
F_{\Delta}:=F_{\Sigma}-\frac{d}{d t} F_{S} \quad \text { dissipation rate (nonnegative) } \\
F_{\Sigma}=F_{\Delta}+\frac{d}{d t} F_{S} \\
\text { Dissipation equality }
\end{gathered}
$$

Lossless systems: $F_{\Sigma}=\frac{d}{d t} F_{S}$

Dissipation equality

$$
\begin{gathered}
\frac{d}{d t} F_{S} \leq F_{\Sigma} \\
F_{\Delta}:=F_{\Sigma}-\frac{d}{d t} F_{S} \quad \begin{array}{c}
\text { dissipation rate (nonnegative) } \\
F_{\Sigma}=F_{\Delta}+\frac{d}{d t} F_{S} \\
\text { Dissipation equality }
\end{array} \text { }
\end{gathered}
$$

Lossless systems: $F_{\Sigma}=\frac{d}{d t} F_{S}$

Now, linear time-invariant finite-dimensional systems, with quadratic supply rates

Technical notes

QDFs

$$
\begin{gathered}
Q_{\Phi}(w):=\left[\begin{array}{lll}
w^{\top} & \frac{d w}{d}^{\top} & \ldots
\end{array}\right]\left[\begin{array}{ccc}
\Phi_{0,0} & \Phi_{0,1} & \ldots \\
\Phi_{1,0} & \Phi_{1,1} & \ldots \\
\vdots & \vdots & \ldots \\
\Phi_{k, 0} & \Phi_{k, 1} & \ldots \\
\vdots & \vdots & \ldots
\end{array}\right]\left[\begin{array}{c}
w \\
\frac{d w}{d t} \\
\vdots
\end{array}\right] \\
=\sum_{k, \ell=0}^{L}\left(\frac{d^{k} w}{d t^{k}}\right)^{\top} \Phi_{k, \ell}\left(\frac{d^{\ell} w}{d t^{\ell}}\right)
\end{gathered}
$$

QDFs

$$
\begin{gathered}
Q_{\Phi}(w):=\left[\begin{array}{lll}
w^{\top} & \frac{d w}{d t}^{\top} & \ldots
\end{array}\right]\left[\begin{array}{ccc}
\Phi_{0,0} & \Phi_{0,1} & \cdots \\
\Phi_{1,0} & \Phi_{1,1} & \cdots \\
\vdots & \vdots & \cdots \\
\Phi_{k, 0} & \Phi_{k, 1} & \cdots \\
\vdots & \vdots & \cdots
\end{array}\right]\left[\begin{array}{c}
w \\
\frac{d w}{d t} \\
\vdots
\end{array}\right] \\
=\sum_{k, \ell=0}^{L}\left(\frac{d^{k} w}{d t^{k}}\right)^{\top} \Phi_{k, \ell}\left(\frac{d^{\ell} w}{d t^{\ell}}\right) \\
\sum_{k, \ell=0}^{L} \zeta^{k} \Phi_{k, \ell} \eta^{\ell}
\end{gathered}
$$

Setting the stage

LTI systems
\title{ supply, dissipation, storage are quadratic functionals of the system variables and their derivatives }

Dissipation equality:

$$
Q_{\Phi}(w)=Q_{\Delta}(w)+\frac{d}{d t} Q_{\Psi}(w)
$$

where $w \in \mathscr{B}$

Setting the stage

LTI systems

supply, dissipation, storage are quadratic functionals of the system variables and their derivatives

Dissipation equality:

$$
Q_{\Phi}(w)=Q_{\Delta}(w)+\frac{d}{d t} Q_{\Psi}(w)
$$

where $w \in \mathscr{B}$
...equalities along \mathscr{B} are cumbersome to work with...

Setting the stage

Controllable system

$w=M\left(\frac{d}{d t}\right) \ell \leadsto M(\xi)$
Power ('supply rate')
$Q_{\Phi} \leadsto \Phi(\zeta, \eta)$

Setting the stage

Controllable system

$$
w=M\left(\frac{d}{d t}\right) \ell \leadsto M(\xi) \quad Q_{\Phi} \leadsto \Phi(\zeta, \eta)
$$

$$
\begin{gathered}
Q_{\Phi}(w)=Q_{\Phi}\left(M\left(\frac{d}{d t}\right) \ell\right) \\
\Phi^{\prime}(\zeta, \eta):=M(\zeta)^{\top} \Phi(\zeta, \eta) M(\eta)
\end{gathered}
$$

$Q_{\Phi^{\prime}}$ acts on free variable ℓ, i.e. \mathscr{C}^{∞}

Example

Mass-spring-damper system $m \frac{d^{2} q}{d t^{2}}+c \frac{d}{d t} q+k q-F=0$; then

$$
R(\xi)=\left[\begin{array}{ll}
m \xi^{2}+c \xi+k & -1
\end{array}\right], M(\xi)=\left[\begin{array}{c}
1 \\
m \xi^{2}+c \xi+k
\end{array}\right]
$$

Example

Mass-spring-damper system $m \frac{d^{2} q}{d t^{2}}+c \frac{d}{d t} q+k q-F=0$; then

$$
R(\xi)=\left[\begin{array}{ll}
m \xi^{2}+c \xi+k & -1
\end{array}\right], M(\xi)=\left[\begin{array}{c}
1 \\
m \xi^{2}+c \xi+k
\end{array}\right]
$$

Power $F \frac{d}{d t} q$ can be written as $Q_{\Sigma}(w)$, with

$$
\Sigma(\zeta, \eta)=\frac{1}{2}\left[\begin{array}{ll}
0 & \zeta \\
\eta & 0
\end{array}\right]
$$

Example

Mass-spring-damper system $m \frac{d^{2} q}{d t^{2}}+c \frac{d}{d t} q+k q-F=0$; then

$$
R(\xi)=\left[\begin{array}{ll}
m \xi^{2}+c \xi+k & -1
\end{array}\right], M(\xi)=\left[\begin{array}{c}
1 \\
m \xi^{2}+c \xi+k
\end{array}\right]
$$

Power $F \frac{d}{d t} q$ can be written as $Q_{\Sigma}(w)$, with

$$
\Sigma(\zeta, \eta)=\frac{1}{2}\left[\begin{array}{ll}
0 & \zeta \\
\eta & 0
\end{array}\right]
$$

Since $F=m \frac{d^{2} q}{d t^{2}}+c \frac{d}{d t} q+k q$, can rewrite $Q_{\Sigma}(w)$ as $Q_{\Sigma^{\prime}}(q)$, with

$$
\Sigma(\zeta, \eta)=\left[\begin{array}{ll}
1 & m \zeta^{2}+c \zeta+k
\end{array}\right] \frac{1}{2}\left[\begin{array}{ll}
0 & \zeta \\
\eta & 0
\end{array}\right]\left[\begin{array}{c}
1 \\
m \eta^{2}+c \eta+k
\end{array}\right]
$$

Frequency-domain characterization

 of dissipativityWhen is a system dissipative?

Dissipation equality:

$$
Q_{\Phi}=\frac{d}{d t} Q_{\Psi}+Q_{\Delta}
$$

Dissipation equality:

$$
Q_{\Phi}=\frac{d}{d t} Q_{\Psi}+Q_{\Delta}
$$

Integrate along compact-support trajectory:

$$
\int_{-\infty}^{+\infty} Q_{\Phi}(w) d t=\left.Q_{\Psi}(w)\right|_{-\infty} ^{+\infty}+\int_{-\infty}^{+\infty} Q_{\Delta}(w) d t
$$

Dissipation equality:

$$
Q_{\Phi}=\frac{d}{d t} Q_{\Psi}+Q_{\Delta}
$$

Integrate along compact-support trajectory:

$$
\int_{-\infty}^{+\infty} Q_{\Phi}(w) d t=\underbrace{\left.Q_{\Psi}(w)\right|_{-\infty} ^{+\infty}}_{=0}+\int_{-\infty}^{+\infty} \underbrace{Q_{\Delta}(w)}_{\geq 0} d t
$$

Dissipation equality:

$$
\begin{aligned}
& Q_{\Phi}=\frac{d}{d t} Q_{\Psi}+Q_{\Delta} \\
& \int_{-\infty}^{+\infty} Q_{\Phi}(w) d t \geq 0
\end{aligned}
$$

for all compact-support trajectories $w \in \mathscr{B}$

When is a system dissipative?

$$
\int_{-\infty}^{+\infty} Q_{\Phi}(w) d t \geq 0
$$

for all compact-support trajectories $w \in \mathscr{B}$
If $w=M\left(\frac{d}{d t}\right) \ell$, equivalent to

$$
Q_{\Phi^{\prime}}(\ell) \geq 0 \text { for all } \ell \in \mathscr{C}^{\infty}
$$

with $\Phi^{\prime}(\zeta, \eta)=M(\zeta)^{\top} \Phi(\zeta, \eta) M(\eta)$

When is a system dissipative?

$$
\int_{-\infty}^{+\infty} Q_{\Phi}(w) d t \geq 0
$$

for all compact-support trajectories $w \in \mathscr{B}$

If $w=M\left(\frac{d}{d t}\right) \ell$, equivalent to

$$
Q_{\Phi^{\prime}}(\ell) \geq 0 \text { for all } \ell \in \mathscr{C}^{\infty}
$$

with $\Phi^{\prime}(\zeta, \eta)=M(\zeta)^{\top} \Phi(\zeta, \eta) M(\eta)$
Fourier transformation leads to

$$
\Phi^{\prime}(-i \omega, i \omega)=M(-i \omega)^{\top} \Phi(-i \omega, i \omega) M(i \omega) \geq 0
$$

for all $\omega \in \mathbb{R}$
¡A frequency-domain inequality!

When is a system dissipative?

We just proved:
Theorem: image $M\left(\frac{d}{d t}\right)$ is Φ-dissipative if and only if $M(-i \omega)^{\top} \Phi(-i \omega, i \omega) M(i \omega) \geq 0$ for all $\omega \in \mathbb{R}$

Characterization of dissipativity

Characterizations of dissipativity

Theorem: The following conditions are equivalent:

- $\int_{-\infty}^{+\infty} Q_{\Phi}(\ell) d t \geq 0$ for all \mathscr{C}^{∞} compact-support ℓ;
- Q_{Φ} admits a storage function;
- Q_{Φ} admits a dissipation rate

Given Q_{Φ}, storage and dissipation are one-one:

$$
\begin{aligned}
\frac{d}{d t} Q_{\Psi} & =Q_{\Phi}-Q_{\Delta} \\
(\zeta+\eta) \Psi(\zeta, \eta) & =\Phi(\zeta, \eta)-\Delta(\zeta, \eta)
\end{aligned}
$$

Characterizations of dissipativity

Theorem: The following conditions are equivalent:

- $\int_{-\infty}^{+\infty} Q_{\Phi}(\ell) d t \geq 0$ for all \mathscr{C}^{∞} compact-support ℓ;
- Q_{Φ} admits a storage function;
- Q_{Φ} admits a dissipation rate

Given Q_{Φ}, storage and dissipation are one-one:

$$
\begin{aligned}
\frac{d}{d t} Q_{\Psi} & =Q_{\Phi}-Q_{\Delta} \\
(\zeta+\eta) \Psi(\zeta, \eta) & =\Phi(\zeta, \eta)-\Delta(\zeta, \eta)
\end{aligned}
$$

¿Given Φ, how to find dissipation/storage functions?

Spectral factorization

Dissipation in an algebraic setting: spectral factorization

$$
\begin{gathered}
(\zeta+\eta) \Psi(\zeta, \eta)+\Delta(\zeta, \eta)=\Phi(\zeta, \eta) \\
\text { ¿How to compute } \Delta \text { and } \Psi ?
\end{gathered}
$$

Dissipation in an algebraic setting: spectral factorization

$$
\begin{gathered}
(\zeta+\eta) \Psi(\zeta, \eta)+\Delta(\zeta, \eta)=\Phi(\zeta, \eta) \\
\text { ¿How to compute } \Delta \text { and } \Psi ?
\end{gathered}
$$

$$
\text { Let } \zeta=-\xi, \eta=\xi ; \text { then } \Delta(-\xi, \xi)=\Phi(-\xi, \xi)
$$

Dissipation in an algebraic setting: spectral factorization

$$
(\zeta+\eta) \Psi(\zeta, \eta)+\Delta(\zeta, \eta)=\Phi(\zeta, \eta)
$$

¿How to compute Δ and Ψ ?

$$
\text { Let } \zeta=-\xi, \eta=\xi ; \text { then } \Delta(-\xi, \xi)=\Phi(-\xi, \xi)
$$

$$
Q_{\Delta}(\ell) \geq 0 \forall \ell \in \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\bullet}\right) \Longrightarrow \exists \text { square } D \in \mathbb{R}^{\bullet} \cdot \bullet[\xi] \text { such that }
$$

$$
\Delta(\zeta, \eta)=D(\zeta)^{\top} D(\eta)
$$

Dissipation in an algebraic setting: spectral factorization

$$
(\zeta+\eta) \Psi(\zeta, \eta)+\Delta(\zeta, \eta)=\Phi(\zeta, \eta)
$$

¿How to compute Δ and Ψ ?

$$
\text { Let } \zeta=-\xi, \eta=\xi ; \text { then } \Delta(-\xi, \xi)=\Phi(-\xi, \xi)
$$

$$
Q_{\Delta}(\ell) \geq 0 \forall \ell \in \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\bullet}\right) \Longrightarrow \exists \text { square } D \in \mathbb{R}^{\bullet} \times \bullet[\xi] \text { such that }
$$

$$
\Delta(\zeta, \eta)=D(\zeta)^{\top} D(\eta)
$$

Spectral factorization: given $\Phi(-\xi, \xi)$, find square D s.t.

$$
\Phi(-\xi, \xi)=D(-\xi)^{\top} D(\xi)
$$

Example

$$
\Phi(\zeta, \eta)=4+6 \eta+2 \eta^{2}+6 \zeta+9 \zeta \eta+4 \zeta \eta^{2}+2 \zeta^{2}+4 \zeta^{2} \eta+\eta^{2} \zeta^{2}
$$

Example

$\Phi(\zeta, \eta)=4+6 \eta+2 \eta^{2}+6 \zeta+9 \zeta \eta+4 \zeta \eta^{2}+2 \zeta^{2}+4 \zeta^{2} \eta+\eta^{2} \zeta^{2}$

Check if $\Phi(-i \omega, i \omega) \geq 0$ for all $\omega \in \mathbb{R}$:

$$
\Phi(-i \omega, i \omega)=4+5 \omega^{2}+\omega^{4}
$$

a sum of squares, always nonnegative.

Example

$\Phi(\zeta, \eta)=4+6 \eta+2 \eta^{2}+6 \zeta+9 \zeta \eta+4 \zeta \eta^{2}+2 \zeta^{2}+4 \zeta^{2} \eta+\eta^{2} \zeta^{2}$

Check if $\Phi(-i \omega, i \omega) \geq 0$ for all $\omega \in \mathbb{R}$:

$$
\Phi(-i \omega, i \omega)=4+5 \omega^{2}+\omega^{4}
$$

a sum of squares, always nonnegative.
Note that

$$
\Phi(-\xi, \xi)=4-5 \xi^{2}+\xi^{4}=(\xi-2)(\xi-1)(\xi+1)(\xi+2)
$$

Example

$\Phi(\zeta, \eta)=4+6 \eta+2 \eta^{2}+6 \zeta+9 \zeta \eta+4 \zeta \eta^{2}+2 \zeta^{2}+4 \zeta^{2} \eta+\eta^{2} \zeta^{2}$

Check if $\Phi(-i \omega, i \omega) \geq 0$ for all $\omega \in \mathbb{R}$:

$$
\Phi(-i \omega, i \omega)=4+5 \omega^{2}+\omega^{4}
$$

a sum of squares, always nonnegative.
Note that

$$
\Phi(-\xi, \xi)=4-5 \xi^{2}+\xi^{4}=(\xi-2)(\xi-1)(\xi+1)(\xi+2)
$$

We can choose

$$
\Delta(\zeta, \eta)=(\zeta+1)(\zeta-2)(\eta+1)(\eta-2)
$$

Example

$\Phi(\zeta, \eta)=4+6 \eta+2 \eta^{2}+6 \zeta+9 \zeta \eta+4 \zeta \eta^{2}+2 \zeta^{2}+4 \zeta^{2} \eta+\eta^{2} \zeta^{2}$

Check if $\Phi(-i \omega, i \omega) \geq 0$ for all $\omega \in \mathbb{R}$:

$$
\Phi(-i \omega, i \omega)=4+5 \omega^{2}+\omega^{4}
$$

a sum of squares, always nonnegative.
Note that

$$
\Phi(-\xi, \xi)=4-5 \xi^{2}+\xi^{4}=(\xi-2)(\xi-1)(\xi+1)(\xi+2)
$$

We can also choose

$$
\Delta^{\prime}(\zeta, \eta)=(\zeta+1)(\zeta+2)(\eta+1)(\eta+2)
$$

and so forth...

Spectral factorization

Spectral factorization: given $\Phi(-\xi, \xi)$, find square matrix D s.t.

$$
\Phi(-\xi, \xi)=D(-\xi)^{\top} D(\xi)
$$

Spectral factorization

Spectral factorization: given $\Phi(-\xi, \xi)$, find square matrix D s.t.

$$
\Phi(-\xi, \xi)=D(-\xi)^{\top} D(\xi)
$$

Solvable if and only if $\Phi(-i \omega, i \omega) \geq 0$ for all $\omega \in \mathbb{R}$.
¿Frequency domain condition for dissipativity!

Spectral factorization

Spectral factorization: given $\Phi(-\xi, \xi)$, find square matrix D s.t.

$$
\Phi(-\xi, \xi)=D(-\xi)^{\top} D(\xi)
$$

Spectral factorize $\Phi(-\xi, \xi)=D(-\xi)^{\top} D(\xi)$, define

$$
\Delta(\zeta, \eta):=D(\zeta)^{\top} D(\eta)
$$

Spectral factorization

Spectral factorization: given $\Phi(-\xi, \xi)$, find square matrix D s.t.

$$
\Phi(-\xi, \xi)=D(-\xi)^{\top} D(\xi)
$$

Spectral factorize $\Phi(-\xi, \xi)=D(-\xi)^{\top} D(\xi)$, define

$$
\Delta(\zeta, \eta):=D(\zeta)^{\top} D(\eta)
$$

$$
\begin{array}{r}
\Phi(-\xi, \xi)=\Delta(-\xi, \xi) \Longrightarrow \text { there exists } \Psi(\zeta, \eta) \text { s.t. } \\
\Phi(\zeta, \eta)-\Delta(\zeta, \eta)=(\zeta+\eta) \Psi(\zeta, \eta)
\end{array}
$$

Then storage function is

$$
\Psi(\zeta, \eta)=\frac{\Phi(\zeta, \eta)-\Delta(\zeta, \eta)}{\zeta+\eta}
$$

Remarks

- Many ways of spectral factorizing the same matrix
\leadsto many dissipation functions
\leadsto many storage functions.
- Set of storage functions is convex:
$Q_{\Psi_{1}}, Q_{\Psi_{2}}$ storage functions and $\alpha \in[0,1]$
$\Longrightarrow \alpha Q_{\Psi_{1}}+(1-\alpha) Q_{\Psi_{2}}$ is storage function

Example

$$
\Phi(\zeta, \eta)=4+6 \eta+2 \eta^{2}+6 \zeta+9 \zeta \eta+4 \zeta \eta^{2}+2 \zeta^{2}+4 \zeta^{2} \eta+\eta^{2} \zeta^{2}
$$

Example

$$
\Phi(\zeta, \eta)=4+6 \eta+2 \eta^{2}+6 \zeta+9 \zeta \eta+4 \zeta \eta^{2}+2 \zeta^{2}+4 \zeta^{2} \eta+\eta^{2} \zeta^{2}
$$

Since

$$
\Phi(-\xi, \xi)=4-5 \xi^{2}+\xi^{4}=(\xi-2)(\xi-1)(\xi+1)(\xi+2)
$$

if we choose the dissipation function

$$
\Delta(\zeta, \eta)=(\zeta+1)(\zeta-2)(\eta+1)(\eta-2)
$$

we obtain the storage function

$$
\Psi(\zeta, \eta)=\frac{\Phi(\zeta, \eta)-\Delta(\zeta, \eta)}{\zeta+\eta}=4+4 \eta+4 \zeta+5 \zeta \eta
$$

Example

$$
\Phi(\zeta, \eta)=4+6 \eta+2 \eta^{2}+6 \zeta+9 \zeta \eta+4 \zeta \eta^{2}+2 \zeta^{2}+4 \zeta^{2} \eta+\eta^{2} \zeta^{2}
$$

Since also

$$
\Phi(-\xi, \xi)=4-5 \xi^{2}+\xi^{4}=(\xi-2)(\xi-1)(\xi+1)(\xi+2)
$$

if we choose the dissipation function

$$
\Delta^{\prime}(\zeta, \eta)=(\zeta+1)(\zeta+2)(\eta+1)(\eta+2)
$$

we obtain the storage function

$$
\Psi^{\prime}(\zeta, \eta)=\frac{\Phi(\zeta, \eta)-\Delta^{\prime}(\zeta, \eta)}{\zeta+\eta}=\zeta \eta
$$

Storage functions

Maximal and minimal storage functions

Theorem: Let $\mathscr{B} \in \mathscr{L}^{\mathrm{w}}$ be controllable and Φ dissipative. There exist storage functions $Q_{\Psi_{-}}$and $Q_{\Psi_{+}}$such that for any storage function Q_{Ψ} it holds

$$
Q_{\Psi_{-}} \leq Q_{\Psi} \leq Q_{\Psi_{+}}
$$

Maximal and minimal storage functions

Theorem: Let $\mathscr{B} \in \mathscr{L}^{\mathrm{w}}$ be controllable and Φ dissipative. There exist storage functions $Q_{\Psi_{-}}$and $Q_{\Psi_{+}}$such that for any storage function Q_{Ψ} it holds

$$
Q_{\Psi_{-}} \leq Q_{\Psi} \leq Q_{\Psi_{+}}
$$

$Q_{\Psi_{-}}$is minimal-, $Q_{\Psi_{+}}$is maximal storage function

Maximal and minimal storage functions

Theorem: Let $\mathscr{B} \in \mathscr{L}^{\text {w }}$ be controllable and Φ dissipative. There exist storage functions $Q_{\Psi_{-}}$and $Q_{\Psi_{+}}$such that for any storage function Q_{Ψ} it holds

$$
Q_{\Psi_{-}} \leq Q_{\Psi} \leq Q_{\Psi_{+}}
$$

$Q_{\Psi_{-}}$is available storage:

$$
Q_{\Psi_{-}}(w)(0)=\sup _{\substack{w^{\prime} \text { s.t. } \\ w \wedge w^{\prime} \in \mathscr{B}}}\left(-\int_{0}^{\infty} Q_{\Phi}\left(w^{\prime}\right) d t\right)
$$

Maximum amount of energy extractable from system.

Maximal and minimal storage functions

Theorem: Let $\mathscr{B} \in \mathscr{L}^{\text {w }}$ be controllable and Φ dissipative. There exist storage functions $Q_{\Psi_{-}}$and $Q_{\Psi_{+}}$such that for any storage function Q_{Ψ} it holds

$$
Q_{\Psi_{-}} \leq Q_{\Psi} \leq Q_{\Psi_{+}}
$$

$Q_{\Psi_{+}}$is required supply:

$$
Q_{\Psi_{+}}(w)(0)=\inf _{\substack{w^{\prime} \text { s.t. } \\ w^{\prime} \wedge w \in \mathscr{B}}}\left(\int_{-\infty}^{0} Q_{\Phi}\left(w^{\prime}\right) d t\right)
$$

Minimum energy needed to produce w from $t=0$

Spectral factorization and extremal storage functions

If $\operatorname{det} \Phi(-\xi, \xi) \neq 0$ and $\Phi(-i \omega, i \omega) \geq 0$ for all $\omega \in \mathbb{R}$, there exist H, A s.t.

$$
\Phi(-\xi, \xi)=H(-\xi)^{\top} H(\xi)=A(-\xi)^{\top} A(\xi)
$$

where

$$
\begin{aligned}
& \operatorname{det}(H(\lambda))=0 \Longrightarrow \lambda \in \mathbb{C}_{-}^{0} \quad \text { ("semi-Hurwitz polynomial") } \\
& \operatorname{det}(A(\lambda))=0 \Longrightarrow \lambda \in \mathbb{C}_{+}^{0} \quad \text { ("semi-anti-Hurwitz polynomial") }
\end{aligned}
$$

Spectral factorization and extremal storage functions

If $\operatorname{det} \Phi(-\xi, \xi) \neq 0$ and $\Phi(-i \omega, i \omega) \geq 0$ for all $\omega \in \mathbb{R}$, there exist H, A s.t.

$$
\Phi(-\xi, \xi)=H(-\xi)^{\top} H(\xi)=A(-\xi)^{\top} A(\xi)
$$

where

$$
\begin{aligned}
& \operatorname{det}(H(\lambda))=0 \Longrightarrow \lambda \in \mathbb{C}_{-}^{0} \quad \text { ("semi-Hurwitz polynomial") } \\
& \operatorname{det}(A(\lambda))=0 \Longrightarrow \lambda \in \mathbb{C}_{+}^{0} \quad \text { ("semi-anti-Hurwitz polynomial") }
\end{aligned}
$$

In this case,

$$
\begin{aligned}
& \Psi_{-}(\zeta, \eta)=\frac{\Phi(\zeta, \eta)-H(\zeta)^{\top} H(\eta)}{\zeta+\eta} \\
& \Psi_{+}(\zeta, \eta)=\frac{\Phi(\zeta, \eta)-A(\zeta)^{\top} A(\eta)}{\zeta+\eta}
\end{aligned}
$$

Storage functions and the state

Circuit theory folklore: state variables are associated with energy storing elements (capacitors, inductors)

Physics: potential energy in a field dependent on position (and velocity/acceleration)

Storage functions and the state

Circuit theory folklore: state variables are associated with energy storing elements (capacitors, inductors)

Physics: potential energy in a field dependent on position (and velocity/acceleration)
¿Can we give rational foundation to the intuition that "storage" is related with "memory"?

Storage functions and the state

Theorem: Let $\Sigma=\Sigma^{\top} \in \mathbb{R}^{\mathrm{w} \times \mathrm{w}}$ be nonsingular. Assume that $\mathscr{B}=$ image $\left(M\left(\frac{d}{d t}\right)\right)$ is Σ-dissipative.

Let $\Psi \in \mathbb{R}^{\mathrm{w} \times \mathrm{w}}[\zeta, \eta]$ be a storage function, and let $X \in \mathbb{R}^{\bullet \times \mathrm{w}}[\xi]$ be a state map for \mathscr{B}.

Then $\exists K=K^{\top} \in \mathbb{R}^{\bullet \times \bullet}, E=E^{\top} \in \mathbb{R}^{\bullet \bullet \bullet}$ such that

$$
\begin{gathered}
\Psi(\zeta, \eta)=X(\zeta)^{\top} K X(\eta) \\
\Delta(\zeta, \eta)=\left[\begin{array}{c}
M(\zeta) \\
X(\zeta)
\end{array}\right]^{\top} E\left[\begin{array}{c}
M(\eta) \\
X(\eta)
\end{array}\right]
\end{gathered}
$$

Storage functions and the state

Theorem: Let $\Sigma=\Sigma^{\top} \in \mathbb{R}^{w \times W}$ be nonsingular. Assume that $\mathscr{B}=$ image $\left(M\left(\frac{d}{d t}\right)\right)$ is Σ-dissipative.

Let $\Psi \in \mathbb{R}^{\mathrm{w} \times \mathrm{w}}[\zeta, \eta]$ be a storage function, and let $X \in \mathbb{R}^{\bullet \times \mathrm{w}}[\xi]$ be a state map for \mathscr{B}.

Then $\exists K=K^{\top} \in \mathbb{R}^{\bullet} \times \bullet, E=E^{\top} \in \mathbb{R}^{\bullet \times \bullet}$ such that

$$
\begin{gathered}
\Psi(\zeta, \eta)=X(\zeta)^{\top} K X(\eta) \\
\Delta(\zeta, \eta)=\left[\begin{array}{c}
M(\zeta) \\
X(\zeta)
\end{array}\right]^{\top} E\left[\begin{array}{l}
M(\eta) \\
X(\eta)
\end{array}\right]
\end{gathered}
$$

;The storage function is a quadratic function of the state!

Storage functions and the state

Theorem: Let $\Sigma=\Sigma^{\top} \in \mathbb{R}^{w \times W}$ be nonsingular. Assume that $\mathscr{B}=$ image $\left(M\left(\frac{d}{d t}\right)\right)$ is Σ-dissipative.

Let $\Psi \in \mathbb{R}^{\mathrm{w} \times \mathrm{w}}[\zeta, \eta]$ be a storage function, and let $X \in \mathbb{R}^{\bullet \times \mathrm{w}}[\xi]$ be a state map for \mathscr{B}.

Then $\exists K=K^{\top} \in \mathbb{R}^{\bullet} \times \bullet, E=E^{\top} \in \mathbb{R}^{\bullet \times \bullet}$ such that

$$
\begin{gathered}
\Psi(\zeta, \eta)=X(\zeta)^{\top} K X(\eta) \\
\Delta(\zeta, \eta)=\left[\begin{array}{c}
M(\zeta) \\
X(\zeta)
\end{array}\right]^{\top} E\left[\begin{array}{c}
M(\eta) \\
X(\eta)
\end{array}\right]
\end{gathered}
$$

iThe dissipation function
is a quadratic function of the state and of the input?

- Dissipative systems: storage and dissipation;
- Dissipative systems: storage and dissipation;
- Spectral factorization and storage functions;
- Dissipative systems: storage and dissipation;
- Spectral factorization and storage functions;
- Extremal storage functions;
- Dissipative systems: storage and dissipation;
- Spectral factorization and storage functions;
- Extremal storage functions;
- Storage function is a function of the state.

End of Lecture IX

