European Embedded Control Institute

Graduate School on Control — Spring 2010

The Behavioral Approach to Modeling and Control

Lecture IX

- Energy exchange with the external world.
- **Energy storage in a system.**
- **State and storage.**

- Dissipative systems;
- Spectral factorization;
- **Storage functions.**

Dissipative Systems

Physical examples:

- Resistive electrical circuits;
- Mechanical systems with friction;
- **9** ...

Physical examples:

- Resistive electrical circuits;
- Mechanical systems with friction;
- **...**

Energy supplied to system \sim **supply rate variable** F_{Σ}

Physical examples:

- Resistive electrical circuits;
- Mechanical systems with friction;
- **_** ...

Energy supplied to system \sim **supply rate variable** F_{Σ}

- Electrical circuits: $V^{\top}I$ with V (resp. I) vector of voltages (resp. currents)
- Mechanical systems: $F^{\top} \frac{d}{dt} x$ with *F* (resp. *x*) vector of forces (resp. displacements)

Energy stored in system \rightarrow **storage variable** F_S

Energy stored in system \rightarrow **storage variable** F_S

- **Solution** Electrical circuits: $\frac{1}{2}C \cdot V^2$ for capacitor, $\frac{1}{2}L \cdot I^2$ for inductor
- **•** Mechanical systems: $\frac{1}{2}K \cdot x^2$ for spring

Energy stored in system \rightarrow **storage variable** F_S

In a dissipative system, energy cannot be stored faster than it is supplied

Energy stored in system \rightarrow **storage variable** F_S

In a dissipative system, energy cannot be stored faster than it is supplied

$$\frac{d}{dt}F_S \le F_\Sigma$$

Energy stored in system \rightarrow **storage variable** F_S

In a dissipative system, energy cannot be stored faster than it is supplied

$$\frac{d}{dt}F_S \leq F_{\Sigma}$$

Dissipation inequality

 $\frac{d}{dt}F_S \le F_{\Sigma}$

$$\frac{d}{dt}F_S \le F_\Sigma$$

$$F_{\Delta} := F_{\Sigma} - \frac{d}{dt}F_S$$
 dissipation rate (nonnegative)

$$\frac{d}{dt}F_S \le F_\Sigma$$

$$F_{\Delta} := F_{\Sigma} - \frac{d}{dt}F_S$$
 dissipation rate (nonnegative)

$$F_{\Sigma} = F_{\Delta} + \frac{d}{dt}F_S$$

Dissipation equality

$$\frac{d}{dt}F_S \le F_\Sigma$$

$$F_{\Delta} := F_{\Sigma} - \frac{d}{dt}F_S$$
 dissipation rate (nonnegative)

$$F_{\Sigma} = F_{\Delta} + \frac{d}{dt}F_S$$

Dissipation equality

Lossless systems: $F_{\Sigma} = \frac{d}{dt}F_S$

$$\frac{d}{dt}F_S \le F_\Sigma$$

$$F_{\Delta} := F_{\Sigma} - \frac{d}{dt}F_S$$
 dissipation rate (nonnegative)

$$F_{\Sigma} = F_{\Delta} + \frac{d}{dt}F_S$$

Dissipation equality

Lossless systems:
$$F_{\Sigma} = \frac{d}{dt}F_S$$

Now, linear time-invariant finite-dimensional systems, with quadratic supply rates

Technical notes

$$Q_{\Phi}(w) := \begin{bmatrix} w^{\top} & \frac{dw}{dt}^{\top} & \dots \end{bmatrix} \begin{bmatrix} \Phi_{0,0} & \Phi_{0,1} & \dots \\ \Phi_{1,0} & \Phi_{1,1} & \dots \\ \vdots & \vdots & \dots \\ \Phi_{k,0} & \Phi_{k,1} & \dots \\ \vdots & \vdots & \dots \end{bmatrix} \begin{bmatrix} w \\ \frac{dw}{dt} \\ \vdots \end{bmatrix}$$
$$= \sum_{k,\ell=0}^{L} \left(\frac{d^{k}w}{dt^{k}} \right)^{\top} \Phi_{k,\ell} \left(\frac{d^{\ell}w}{dt^{\ell}} \right)$$

$$\begin{aligned} \mathcal{Q}_{\Phi}(w) &:= \begin{bmatrix} w^{\top} & \frac{dw}{dt}^{\top} & \dots \end{bmatrix} \begin{bmatrix} \Phi_{0,0} & \Phi_{0,1} & \dots \\ \Phi_{1,0} & \Phi_{1,1} & \dots \\ \vdots & \vdots & \dots \end{bmatrix} \begin{bmatrix} w \\ \frac{dw}{dt} \\ \vdots \end{bmatrix} \\ &= \sum_{k,\ell=0}^{L} \left(\frac{d^{k}w}{dt^{k}} \right)^{\top} \Phi_{k,\ell} \left(\frac{d^{\ell}w}{dt^{\ell}} \right) \\ &\sum_{k,\ell=0}^{L} \zeta^{k} \Phi_{k,\ell} \eta^{\ell} \end{aligned}$$

 $\sim \rightarrow$

LTI systems

supply, dissipation, storage are quadratic functionals of the system variables and their derivatives

Dissipation equality:

$$Q_{\Phi}(w) = Q_{\Delta}(w) + \frac{d}{dt}Q_{\Psi}(w)$$

where $w \in \mathscr{B}$

LTI systems

 \sim

supply, dissipation, storage are quadratic functionals of the system variables and their derivatives

Dissipation equality:

$$Q_{\Phi}(w) = Q_{\Delta}(w) + \frac{d}{dt}Q_{\Psi}(w)$$

where $w \in \mathscr{B}$

...equalities along *B* are cumbersome to work with...

Controllable system

$$w = M(\frac{d}{dt})\ell \rightsquigarrow M(\xi)$$

Power ('supply rate')

$$Q_\Phi \rightsquigarrow \Phi(\zeta,\eta)$$

Controllable system

Power ('supply rate')

 $w = M(\frac{d}{dt})\ell \rightsquigarrow M(\xi) \qquad \qquad Q_{\Phi} \rightsquigarrow$

$$Q_{\Phi}
ightarrow \Phi(\zeta,\eta)$$

$$Q_{\Phi}(w) = Q_{\Phi}(M(\frac{d}{dt})\ell)$$
$$\Phi'(\zeta,\eta) := M(\zeta)^{\top} \Phi(\zeta,\eta) M(\eta)$$

 $Q_{\Phi'}$ acts on free variable ℓ , i.e. \mathscr{C}^{∞}

Mass-spring-damper system $m\frac{d^2q}{dt^2} + c\frac{d}{dt}q + kq - F = 0$; then

$$R(\xi) = \begin{bmatrix} m\xi^2 + c\xi + k & -1 \end{bmatrix}, \quad M(\xi) = \begin{bmatrix} 1 \\ m\xi^2 + c\xi + k \end{bmatrix}$$

Mass-spring-damper system $m\frac{d^2q}{dt^2} + c\frac{d}{dt}q + kq - F = 0$; then

$$R(\xi) = \begin{bmatrix} m\xi^2 + c\xi + k & -1 \end{bmatrix}, \quad M(\xi) = \begin{bmatrix} 1 \\ m\xi^2 + c\xi + k \end{bmatrix}$$

Power $F \frac{d}{dt}q$ can be written as $Q_{\Sigma}(w)$, with

$$\Sigma(\zeta,\eta) = rac{1}{2} egin{bmatrix} 0 & \zeta \ \eta & 0 \end{bmatrix}$$

Mass-spring-damper system $m\frac{d^2q}{dt^2} + c\frac{d}{dt}q + kq - F = 0$; then

$$R(\xi) = \begin{bmatrix} m\xi^2 + c\xi + k & -1 \end{bmatrix}, \quad M(\xi) = \begin{bmatrix} 1 \\ m\xi^2 + c\xi + k \end{bmatrix}$$

Power $F \frac{d}{dt} q$ can be written as $Q_{\Sigma}(w)$, with

$$\Sigma(\zeta,\eta) = \frac{1}{2} \begin{bmatrix} 0 & \zeta \\ \eta & 0 \end{bmatrix}$$

Since $F = m \frac{d^2 q}{dt^2} + c \frac{d}{dt} q + kq$, can rewrite $Q_{\Sigma}(w)$ as $Q_{\Sigma'}(q)$, with

$$\Sigma(\zeta,\eta) = \begin{bmatrix} 1 & m\zeta^2 + c\zeta + k \end{bmatrix} \frac{1}{2} \begin{bmatrix} 0 & \zeta \\ \eta & 0 \end{bmatrix} \begin{bmatrix} 1 \\ m\eta^2 + c\eta + k \end{bmatrix}$$

- p. 10/26

Frequency-domain characterization of dissipativity

$$Q_{\Phi} = \frac{d}{dt}Q_{\Psi} + Q_{\Delta}$$

$$Q_{\Phi} = \frac{d}{dt}Q_{\Psi} + Q_{\Delta}$$

Integrate along compact-support trajectory:

$$\int_{-\infty}^{+\infty} Q_{\Phi}(w) dt = Q_{\Psi}(w) \mid_{-\infty}^{+\infty} + \int_{-\infty}^{+\infty} Q_{\Delta}(w) dt$$

$$Q_{\Phi} = \frac{d}{dt}Q_{\Psi} + Q_{\Delta}$$

Integrate along compact-support trajectory:

$$\int_{-\infty}^{+\infty} Q_{\Phi}(w) dt = \underbrace{Q_{\Psi}(w)}_{=0} |_{-\infty}^{+\infty} + \int_{-\infty}^{+\infty} \underbrace{Q_{\Delta}(w)}_{\geq 0} dt$$

$$Q_{\Phi} = \frac{d}{dt}Q_{\Psi} + Q_{\Delta}$$

$$\int_{-\infty}^{+\infty} Q_{\Phi}(w) dt \ge 0$$

for all compact-support trajectories $w \in \mathscr{B}$

When is a system dissipative?

$$\int_{-\infty}^{+\infty} Q_{\Phi}(w) dt \ge 0$$

for all compact-support trajectories $w \in \mathscr{B}$

If $w = M(\frac{d}{dt})\ell$, equivalent to

 $Q_{\Phi'}(\ell) \geq 0$ for all $\ell \in \mathscr{C}^{\infty}$

with $\Phi'(\zeta,\eta) = M(\zeta)^{\top} \Phi(\zeta,\eta) M(\eta)$

When is a system dissipative?

$$\int_{-\infty}^{+\infty} Q_{\Phi}(w) dt \ge 0$$

for all compact-support trajectories $w \in \mathscr{B}$

If $w = M(\frac{d}{dt})\ell$, equivalent to

$$Q_{\Phi'}(\ell) \geq 0$$
 for all $\ell \in \mathscr{C}^{\infty}$

with $\Phi'(\zeta,\eta) = M(\zeta)^{\top} \Phi(\zeta,\eta) M(\eta)$

Fourier transformation leads to

 $\Phi'(-i\omega,i\omega) = M(-i\omega)^{\top} \Phi(-i\omega,i\omega) M(i\omega) \ge 0$

for all $\omega \in \mathbb{R}$

A frequency-domain inequality!

We just proved:

<u>Theorem</u>: image $M(\frac{d}{dt})$ is Φ -dissipative if and only if $M(-i\omega)^{\top}\Phi(-i\omega,i\omega)M(i\omega) \ge 0$ for all $\omega \in \mathbb{R}$

Characterization of dissipativity

<u>Theorem</u>: The following conditions are equivalent:

- $\int_{-\infty}^{+\infty} Q_{\Phi}(\ell) dt \ge 0 \text{ for all } \mathscr{C}^{\infty} \text{ compact-support } \ell;$
- Q_{Φ} admits a storage function;
- Q_{Φ} admits a dissipation rate

Given Q_{Φ} , storage and dissipation are one-one:

$$\frac{d}{dt}Q_{\Psi} = Q_{\Phi} - Q_{\Delta}$$
$$(\zeta + \eta)\Psi(\zeta, \eta) = \Phi(\zeta, \eta) - \Delta(\zeta, \eta)$$

Theorem: The following conditions are equivalent:

- $\int_{-\infty}^{+\infty} Q_{\Phi}(\ell) dt \ge 0 \text{ for all } \mathscr{C}^{\infty} \text{ compact-support } \ell;$
- Q_{Φ} admits a storage function;
- Q_{Φ} admits a dissipation rate

Given Q_{Φ} , storage and dissipation are one-one:

$$\frac{d}{dt}Q_{\Psi} = Q_{\Phi} - Q_{\Delta}$$
$$(\zeta + \eta)\Psi(\zeta, \eta) = \Phi(\zeta, \eta) - \Delta(\zeta, \eta)$$

; Given Φ , how to find dissipation/storage functions?

$$(\zeta + \eta)\Psi(\zeta, \eta) + \Delta(\zeta, \eta) = \Phi(\zeta, \eta)$$

How to compute Δ and Ψ ?

$$(\zeta + \eta)\Psi(\zeta, \eta) + \Delta(\zeta, \eta) = \Phi(\zeta, \eta)$$

¿How to compute Δ and Ψ ?

Let $\zeta = -\xi$, $\eta = \xi$; then $\Delta(-\xi, \xi) = \Phi(-\xi, \xi)$

 $(\zeta + \eta)\Psi(\zeta, \eta) + \Delta(\zeta, \eta) = \Phi(\zeta, \eta)$ ¿How to compute Δ and Ψ ?

Let $\zeta = -\xi$, $\eta = \xi$; then $\Delta(-\xi, \xi) = \Phi(-\xi, \xi)$

 $Q_{\Delta}(\ell) \ge 0 \ \forall \ \ell \in \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R}^{\bullet}) \Longrightarrow \exists \text{ square } D \in \mathbb{R}^{\bullet imes \bullet}[\xi] \text{ such that}$ $\Delta(\zeta, \eta) = D(\zeta)^{\top} D(\eta)$

 $(\zeta + \eta)\Psi(\zeta, \eta) + \Delta(\zeta, \eta) = \Phi(\zeta, \eta)$ *i*How to compute Δ and Ψ ? Let $\zeta = -\xi, \eta = \xi$; then $\Delta(-\xi, \xi) = \Phi(-\xi, \xi)$ $Q_{\Delta}(\ell) \ge 0 \ \forall \ \ell \in \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R}^{\bullet}) \Longrightarrow \exists$ square $D \in \mathbb{R}^{\bullet \times \bullet}[\xi]$ such that $\Delta(\zeta, \eta) = D(\zeta)^{\top} D(\eta)$

Spectral factorization: given $\Phi(-\xi,\xi)$, find square *D* s.t. $\Phi(-\xi,\xi) = D(-\xi)^{\top}D(\xi)$

$\Phi(\zeta,\eta) = 4 + 6\eta + 2\eta^2 + 6\zeta + 9\zeta\eta + 4\zeta\eta^2 + 2\zeta^2 + 4\zeta^2\eta + \eta^2\zeta^2$

$$\Phi(\zeta,\eta) = 4 + 6\eta + 2\eta^2 + 6\zeta + 9\zeta\eta + 4\zeta\eta^2 + 2\zeta^2 + 4\zeta^2\eta + \eta^2\zeta^2$$

$$\Phi(-i\omega,i\omega) = 4 + 5\omega^2 + \omega^4$$

a sum of squares, always nonnegative.

$$\Phi(\zeta,\eta) = 4 + 6\eta + 2\eta^2 + 6\zeta + 9\zeta\eta + 4\zeta\eta^2 + 2\zeta^2 + 4\zeta^2\eta + \eta^2\zeta^2$$

$$\Phi(-i\omega,i\omega) = 4 + 5\omega^2 + \omega^4$$

a sum of squares, always nonnegative. Note that

$$\Phi(-\xi,\xi) = 4 - 5\xi^2 + \xi^4 = (\xi - 2)(\xi - 1)(\xi + 1)(\xi + 2)$$

$$\Phi(\zeta,\eta) = 4 + 6\eta + 2\eta^2 + 6\zeta + 9\zeta\eta + 4\zeta\eta^2 + 2\zeta^2 + 4\zeta^2\eta + \eta^2\zeta^2$$

$$\Phi(-i\omega,i\omega) = 4 + 5\omega^2 + \omega^4$$

a sum of squares, always nonnegative. Note that

$$\Phi(-\xi,\xi) = 4 - 5\xi^2 + \xi^4 = (\xi - 2)(\xi - 1)(\xi + 1)(\xi + 2)$$

We can choose

$$\Delta(\zeta,\eta) = (\zeta+1)(\zeta-2)(\eta+1)(\eta-2)$$

$$\Phi(\zeta,\eta) = 4 + 6\eta + 2\eta^2 + 6\zeta + 9\zeta\eta + 4\zeta\eta^2 + 2\zeta^2 + 4\zeta^2\eta + \eta^2\zeta^2$$

$$\Phi(-i\omega,i\omega) = 4 + 5\omega^2 + \omega^4$$

a sum of squares, always nonnegative. Note that

$$\Phi(-\xi,\xi) = 4 - 5\xi^2 + \xi^4 = (\xi - 2)(\xi - 1)(\xi + 1)(\xi + 2)$$

We can also choose

$$\Delta'(\zeta,\eta) = (\zeta+1)(\zeta+2)(\eta+1)(\eta+2)$$

and so forth...

Spectral factorization: given $\Phi(-\xi,\xi)$, find square matrix *D* s.t.

$$\Phi(-\xi,\xi) = D(-\xi)^{\top} D(\xi)$$

Spectral factorization: given $\Phi(-\xi,\xi)$, find square matrix *D* s.t.

$$\Phi(-\xi,\xi) = D(-\xi)^{\top} D(\xi)$$

Solvable if and only if $\Phi(-i\omega, i\omega) \ge 0$ for all $\omega \in \mathbb{R}$.

;Frequency domain condition for dissipativity!

Spectral factorization: given $\Phi(-\xi,\xi)$, find square matrix *D* s.t.

$$\Phi(-\xi,\xi) = D(-\xi)^{\top} D(\xi)$$

Spectral factorize $\Phi(-\xi,\xi) = D(-\xi)^{\top}D(\xi)$, define $\Delta(\zeta,\eta) := D(\zeta)^{\top}D(\eta)$

Spectral factorization: given $\Phi(-\xi,\xi)$, find square matrix *D* s.t.

$$\Phi(-\xi,\xi) = D(-\xi)^{\top} D(\xi)$$

Spectral factorize $\Phi(-\xi,\xi) = D(-\xi)^{\top}D(\xi)$, define $\Delta(\zeta,\eta) := D(\zeta)^{\top}D(\eta)$

 $\Phi(-\xi,\xi) = \Delta(-\xi,\xi) \Longrightarrow \text{ there exists } \Psi(\zeta,\eta) \text{ s.t.}$ $\Phi(\zeta,\eta) - \Delta(\zeta,\eta) = (\zeta+\eta)\Psi(\zeta,\eta)$

Then storage function is

$$\Psi(\zeta,\eta) = \frac{\Phi(\zeta,\eta) - \Delta(\zeta,\eta)}{\zeta + \eta}$$

- Many ways of spectral factorizing the same matrix ~> many dissipation functions ~> many storage functions.
- Set of storage functions is convex:

 Q_{Ψ_1}, Q_{Ψ_2} storage functions and $\alpha \in [0, 1]$

 $\implies \alpha Q_{\Psi_1} + (1 - \alpha) Q_{\Psi_2}$ is storage function

$\Phi(\zeta,\eta) = 4 + 6\eta + 2\eta^2 + 6\zeta + 9\zeta\eta + 4\zeta\eta^2 + 2\zeta^2 + 4\zeta^2\eta + \eta^2\zeta^2$

$$\Phi(\zeta,\eta) = 4 + 6\eta + 2\eta^2 + 6\zeta + 9\zeta\eta + 4\zeta\eta^2 + 2\zeta^2 + 4\zeta^2\eta + \eta^2\zeta^2$$

Since

$$\Phi(-\xi,\xi) = 4 - 5\xi^2 + \xi^4 = (\xi - 2)(\xi - 1)(\xi + 1)(\xi + 2)$$

if we choose the dissipation function

$$\Delta(\zeta,\eta) = (\zeta+1)(\zeta-2)(\eta+1)(\eta-2)$$

we obtain the storage function

$$\Psi(\zeta,\eta) = \frac{\Phi(\zeta,\eta) - \Delta(\zeta,\eta)}{\zeta+\eta} = 4 + 4\eta + 4\zeta + 5\zeta\eta$$

$$\Phi(\zeta,\eta) = 4 + 6\eta + 2\eta^2 + 6\zeta + 9\zeta\eta + 4\zeta\eta^2 + 2\zeta^2 + 4\zeta^2\eta + \eta^2\zeta^2$$

Since also

$$\Phi(-\xi,\xi) = 4 - 5\xi^2 + \xi^4 = (\xi - 2)(\xi - 1)(\xi + 1)(\xi + 2)$$

if we choose the dissipation function

$$\Delta'(\zeta,\eta) = (\zeta+1)(\zeta+2)(\eta+1)(\eta+2)$$

we obtain the storage function

$$\Psi'(\zeta,\eta) = \frac{\Phi(\zeta,\eta) - \Delta'(\zeta,\eta)}{\zeta + \eta} = \zeta\eta$$

Storage functions

<u>Theorem</u>: Let $\mathscr{B} \in \mathscr{L}^{\mathbb{W}}$ be controllable and Φ dissipative. There exist storage functions $Q_{\Psi_{-}}$ and $Q_{\Psi_{+}}$ such that for any storage function Q_{Ψ} it holds

 $Q_{\Psi_-} \leq Q_{\Psi} \leq Q_{\Psi_+}$

<u>Theorem</u>: Let $\mathscr{B} \in \mathscr{L}^{\vee}$ be controllable and Φ dissipative. There exist storage functions $Q_{\Psi_{-}}$ and $Q_{\Psi_{+}}$ such that for any storage function Q_{Ψ} it holds

 $Q_{\Psi_-} \leq Q_{\Psi} \leq Q_{\Psi_+}$

 $Q_{\Psi_{-}}$ is minimal-, $Q_{\Psi_{+}}$ is maximal storage function

<u>Theorem</u>: Let $\mathscr{B} \in \mathscr{L}^{\vee}$ be controllable and Φ dissipative. There exist storage functions $Q_{\Psi_{-}}$ and $Q_{\Psi_{+}}$ such that for any storage function Q_{Ψ} it holds

 $Q_{\Psi_-} \leq Q_{\Psi} \leq Q_{\Psi_+}$

$Q_{\Psi_{-}}$ is available storage:

Maximum amount of energy extractable from system.

<u>Theorem</u>: Let $\mathscr{B} \in \mathscr{L}^{\vee}$ be controllable and Φ dissipative. There exist storage functions $Q_{\Psi_{-}}$ and $Q_{\Psi_{+}}$ such that for any storage function Q_{Ψ} it holds

 $Q_{\Psi_-} \leq Q_{\Psi} \leq Q_{\Psi_+}$

 Q_{Ψ_+} is required supply:

$$Q_{\Psi_{+}}(w)(0) = \inf_{\substack{w' \text{ s.t.} \\ w' \wedge w \in \mathscr{B}}} \left(\int_{-\infty}^{0} Q_{\Phi}(w') dt \right)$$

Minimum energy needed to produce w from t = 0

Spectral factorization and extremal storage functions

If det $\Phi(-\xi,\xi) \neq 0$ and $\Phi(-i\omega,i\omega) \geq 0$ for all $\omega \in \mathbb{R}$, there exist *H*, *A* s.t.

$$\Phi(-\xi,\xi) = H(-\xi)^{\top}H(\xi) = A(-\xi)^{\top}A(\xi)$$

where

 $det(H(\lambda)) = 0 \Longrightarrow \lambda \in \mathbb{C}^0_- \quad \text{(``semi-Hurwitz polynomial'')}$ $det(A(\lambda)) = 0 \Longrightarrow \lambda \in \mathbb{C}^0_+ \quad \text{(``semi-anti-Hurwitz polynomial'')}$

Spectral factorization and extremal storage functions

If det $\Phi(-\xi,\xi) \neq 0$ and $\Phi(-i\omega,i\omega) \geq 0$ for all $\omega \in \mathbb{R}$, there exist *H*, *A* s.t.

$$\Phi(-\xi,\xi) = H(-\xi)^{\top}H(\xi) = A(-\xi)^{\top}A(\xi)$$

where

 $det(H(\lambda)) = 0 \Longrightarrow \lambda \in \mathbb{C}_{-}^{0} \quad \text{(``semi-Hurwitz polynomial'')} \\ det(A(\lambda)) = 0 \Longrightarrow \lambda \in \mathbb{C}_{+}^{0} \quad \text{(``semi-anti-Hurwitz polynomial'')}$

In this case,

$$\Psi_{-}(\zeta,\eta) = \frac{\Phi(\zeta,\eta) - H(\zeta)^{\top}H(\eta)}{\zeta+\eta}$$
$$\Psi_{+}(\zeta,\eta) = \frac{\Phi(\zeta,\eta) - A(\zeta)^{\top}A(\eta)}{\zeta+\eta}$$

- p. 23/26

Circuit theory folklore: state variables are associated with energy storing elements (capacitors, inductors)

Physics: potential energy in a field dependent on position (and velocity/acceleration)

Circuit theory folklore: state variables are associated with energy storing elements (capacitors, inductors)

Physics: potential energy in a field dependent on position (and velocity/acceleration)

¿Can we give rational foundation to the intuition that "storage" is related with "memory"?

Storage functions and the state

<u>Theorem</u>: Let $\Sigma = \Sigma^{\top} \in \mathbb{R}^{w \times w}$ be nonsingular. Assume that $\mathscr{B} = \text{image}(M(\frac{d}{dt}))$ is Σ -dissipative.

Let $\Psi \in \mathbb{R}^{w \times w}[\zeta, \eta]$ be a storage function, and let $X \in \mathbb{R}^{\bullet \times w}[\xi]$ be a state map for \mathscr{B} .

Then $\exists K = K^{\top} \in \mathbb{R}^{\bullet \times \bullet}$, $E = E^{\top} \in \mathbb{R}^{\bullet \times \bullet}$ such that

$$\Psi(\zeta, \eta) = X(\zeta)^{\top} K X(\eta)$$
$$\Delta(\zeta, \eta) = \begin{bmatrix} M(\zeta) \\ X(\zeta) \end{bmatrix}^{\top} E \begin{bmatrix} M(\eta) \\ X(\eta) \end{bmatrix}$$

Storage functions and the state

<u>Theorem</u>: Let $\Sigma = \Sigma^{\top} \in \mathbb{R}^{w \times w}$ be nonsingular. Assume that $\mathscr{B} = \text{image}(M(\frac{d}{dt}))$ is Σ -dissipative.

Let $\Psi \in \mathbb{R}^{w \times w}[\zeta, \eta]$ be a storage function, and let $X \in \mathbb{R}^{\bullet \times w}[\xi]$ be a state map for \mathscr{B} .

Then $\exists K = K^{\top} \in \mathbb{R}^{\bullet \times \bullet}$, $E = E^{\top} \in \mathbb{R}^{\bullet \times \bullet}$ such that

$$\Psi(\zeta, \eta) = X(\zeta)^{\top} K X(\eta)$$
$$\Delta(\zeta, \eta) = \begin{bmatrix} M(\zeta) \\ X(\zeta) \end{bmatrix}^{\top} E \begin{bmatrix} M(\eta) \\ X(\eta) \end{bmatrix}$$

;The storage function is a quadratic function of the state!

Storage functions and the state

<u>Theorem</u>: Let $\Sigma = \Sigma^{\top} \in \mathbb{R}^{w \times w}$ be nonsingular. Assume that $\mathscr{B} = \text{image}(M(\frac{d}{dt}))$ is Σ -dissipative.

Let $\Psi \in \mathbb{R}^{w \times w}[\zeta, \eta]$ be a storage function, and let $X \in \mathbb{R}^{\bullet \times w}[\xi]$ be a state map for \mathscr{B} .

Then $\exists K = K^{\top} \in \mathbb{R}^{\bullet \times \bullet}$, $E = E^{\top} \in \mathbb{R}^{\bullet \times \bullet}$ such that

$$\Psi(\zeta, \eta) = X(\zeta)^{\top} K X(\eta)$$
$$\Delta(\zeta, \eta) = \begin{bmatrix} M(\zeta) \\ X(\zeta) \end{bmatrix}^{\top} E \begin{bmatrix} M(\eta) \\ X(\eta) \end{bmatrix}$$

;The dissipation function is a quadratic function of the state and of the input!

Dissipative systems: storage and dissipation;

- Dissipative systems: storage and dissipation;
- Spectral factorization and storage functions;

- Dissipative systems: storage and dissipation;
- Spectral factorization and storage functions;
- Extremal storage functions;

- Dissipative systems: storage and dissipation;
- Spectral factorization and storage functions;
- Extremal storage functions;
- **Storage function is a function of the state.**

End of Lecture IX