European Embedded Control Institute

Graduate School on Control - Spring 2010

The Behavioral Approach to Modeling and Control

Lecture VIII

SYSTEM INTERCONNECTION

How are systems interconnected?

How are interconnected systems modeled?

How does control fit in?

How are systems interconnected?

How are interconnected systems modeled?

How does control fit in?

We deal with very simple examples, mainly electrical circuits and 1-dimensional mechanical systems.

Other applications: hydraulic systems chemical systems thermal systems, ...

Outline

MotivationModeling by tearing, zooming, and linkingAn example
Control as interconnection
Pole assignment and stabilization

Systems

Open
Interconnected
Modular
Dynamic

The ever-increasing computing power allows to model such complex interconnected systems accurately by tearing, zooming, and linking.
$~ \quad$ Simulation, model based design, ...

Environment

Systems are 'open', they interact with their environment.

In the previous lectures, we have seen that thinking of systems in terms of their behavior captures the 'open' nature of systems very well.

Interconnected systems interact.

How is interaction formalized?

Motivation

The ever-increasing computing power allows to model complex interconnected systems accurately.

Requires the right mathematical concepts

- for dynamical system (the behavior),
- for interconnection (this lecture),
- for interconnection architecture (this lecture).

Classical view

Input/output systems

Oliver Heaviside (1850-1925)

Input/output systems

Input/output thinking is inappropriate for describing the functioning of physical systems.

A physical system is not a signal processor.

Better concept: the behavior.

Signal flow graphs

Signal flow graphs

Signal flow graphs are inappropriate for describing the interaction architecture of physical systems.

A physical system is not a signal processor.

Better concept: graph with leaves.

Interconnection

Interconnection as output-to-input assignment.

Interconnection

Interconnection as output-to-input assignment.

Examples:

Interconnection

Interconnection as output-to-input assignment.

Output-to-input assignment is inappropriate for describing the interconnection of physical systems.

A physical system is not a signal processor.

Better concept: variable sharing.

Examples

Electrical circuit

At each terminal:

a potential (!) and a current (counted >0 into the circuit),

The relation between potentials of the terminals and voltages across the terminals is discussed ielsewhere.

Electrical circuit

At each terminal:

a potential (!) and a current (counted >0 into the circuit), \leadsto behavior $\mathscr{B} \subseteq\left(\mathbb{R}^{N} \times \mathbb{R}^{N}\right)^{\mathbb{R}}$.
$\left(V_{1}, V_{2}, \ldots, V_{N}, I_{1}, I_{2}, \ldots, I_{N}\right) \in \mathscr{B}$ means:
this potential/current trajectory is compatible with the circuit architecture and its element values.

Mechanical device

At each terminal: a position and a force.
\leadsto position/force trajectories $(q, F) \in \mathscr{B} \subseteq\left(\left(\mathbb{R}^{\bullet}\right)^{2 N}\right)^{\mathbb{R}}$.
More generally, a position, force, angle, and torque.

Thermal systems:
At each terminal: a temperature and a heat flow.

Hydraulic systems:
At each terminal: a pressure and a mass flow.

Multidomain systems:
Systems with terminals of different types, as motors, pumps, etc.

Interconnection

Connection of terminals

By interconnecting, the terminal variables are equated.

Connection of circuit terminals

Interconnection = connecting terminals, like soldering wires together.

Connecting terminals $N-1$ and N leads to

$$
V_{N-1}=V_{N}, \quad I_{N-1}+I_{N}=0
$$

After interconnection the terminals share the variables V_{N-1}, V_{N}, and I_{N-1}, I_{N} (up to a sign).

Connection of circuit terminals

Connecting terminals $N-1$ and N leads to

$$
V_{N-1}=V_{N}, \quad I_{N-1}+I_{N}=0
$$

The interconnected circuit has $N-2$ terminals. Its behavior $=$

$$
\mathscr{B}^{\prime}=\left\{\left(V_{1}, I_{1}, V_{2}, I_{2}, \ldots, V_{N-2}, I_{N-2}\right): \mathbb{R} \rightarrow \mathbb{R}^{2(N-2)} \mid \exists V, I\right.
$$

such that $\left.\left(V_{1}, I_{1}, V_{2}, I_{2}, \ldots, V_{N-2}, I_{N-2}, V, I, V,-I\right) \in \mathscr{B}\right\}$.

Interconnection of circuits

$$
V_{N}=V_{N^{\prime}} \quad \text { and } \quad I_{N}+I_{N^{\prime}}=0
$$

Behavior after interconnection:
$\mathscr{B}_{1} \sqcap \mathscr{B}_{2}$
$:=\left\{\left(V_{1}, \ldots, V_{N-1}, V_{1^{\prime}}, \ldots, V_{N^{\prime}-1}, I_{1}, \ldots, I_{N-1}, I_{1^{\prime}}, \ldots, I_{N^{\prime}-1}\right) \mid\right.$
$\exists V, I$ such that

$$
\begin{aligned}
& \left(V_{1}, \ldots, V_{N-1}, V, I_{1}, \ldots, I_{N-1}, I I\right) \in \mathscr{B}_{1} \text { and } \\
& \left.\left(V_{1^{\prime}}, \ldots, V_{N^{\prime}-1}, V, I_{1^{\prime}}, \ldots, I_{N^{\prime}-1},-I\right) \in \mathscr{B}_{2}\right\} .
\end{aligned}
$$

Interconnection of circuits

$~$ more terminals and more circuits connected

Connection of mechanical terminals

Interconnection = connecting terminals, like screwing pins together.

Connecting terminals $N-1$ and N leads to

$$
q_{N-1}=q_{N}, \quad F_{N-1}+F_{N}=0 .
$$

After interconnection the terminals share the variables q_{N-1}, q_{N}, and F_{N-1}, F_{N} (up to a sign).

Connection of mechanical terminals

Connecting terminals $N-1$ and N leads to

$$
q_{N-1}=q_{N}, \quad F_{N-1}+F_{N}=0
$$

The interconnected circuit has $N-2$ terminals. Its behavior $=$

$$
\mathscr{B}^{\prime}=\left\{\left(q_{1}, F_{1}, q_{2}, F_{2}, \ldots, q_{N-2}, F_{N-2}\right): \mathbb{R} \rightarrow \mathbb{R}^{2(N-2)} \mid \exists q, F\right.
$$

such that $\left.\left(q_{1}, F_{1}, q_{2}, F_{2}, \ldots, q_{N-2}, F_{N-2}, q, F, q,-F\right) \in \mathscr{B}\right\}$.

Interconnection of mechanical systems

$$
q_{N}=q_{N^{\prime}} \quad \text { and } \quad F_{N}+F_{N^{\prime}}=0
$$

Other terminal types

Thermal systems:
At each terminal: a temperature and a heat flow.

$$
T_{N}=T_{N^{\prime}} \quad \text { and } \quad Q_{N}+Q_{N^{\prime}}=0
$$

Hydraulic systems:
At each terminal: a pressure and a mass flow.

$$
p_{N}=p_{N^{\prime}} \quad \text { and } \quad f_{N}+f_{N^{\prime}}=0
$$

Sharing variables

$$
\begin{array}{ccc}
V_{N}=V_{N^{\prime}} \quad \text { and } \quad I_{N}+I_{N^{\prime}}=0 \\
q_{N}=q_{N^{\prime}} \quad \text { and } \quad F_{N}+F_{N^{\prime}}=0 \\
T_{N}=T_{N^{\prime}} \quad \text { and } \quad Q_{N}+Q_{N^{\prime}}=0 \\
p_{N}=p_{N^{\prime}} \quad \text { and } \quad f_{N}+f_{N^{\prime}}=0 \\
& \vdots &
\end{array}
$$

Interconnection means variable sharing.

Tearing, zooming, and linking

Tearing

ij Model the behavior of selected variables !!

Tearing

ij Model the behavior of selected variables !!

Zooming

Zooming

Hierarchically

Proceed until subsystems ('modularity') are obtained whose model is known, from first principles, or stored in a database.

Interconnection architecture

Graph with leaves

A graph with leaves $: \Leftrightarrow$

$$
\mathscr{G}=\left(\mathbb{V}, \mathbb{E}, \mathbb{L}, f_{\mathbb{E}}, f_{\mathbb{L}}\right)
$$

\mathbb{V} a finite set of vertices,
\mathbb{E} a finite set of edges,
\mathbb{L} a finite set of leaves,
$f_{\mathbb{E}}$ the edge incidence map,
$f_{\mathbb{L}}$ the leaf incidence map.
$f_{\mathbb{E}}$ maps each element $e \in \mathbb{E}$ into an unordered pair $\left[v_{1}, v_{2}\right]$, with $v_{1}, v_{2} \in \mathbb{V}$,
$f_{\mathbb{L}}$ is a map from \mathbb{L} to \mathbb{V}, it maps each element
$\ell \in \mathbb{L}$ into an element $v \in \mathbb{V}$.

Graph with leaves

Example:

$f_{\mathrm{E}}: e_{1} \mapsto\left[v_{1}, v_{2}\right], e_{2} \mapsto\left[v_{1}, v_{3}\right], e_{3} \mapsto\left[v_{2}, v_{4}\right], e_{4} \mapsto\left[v_{3}, v_{4}\right]$. $f_{\mathrm{L}}: \ell_{1} \mapsto v_{1}, \ell_{2} \mapsto v_{4}$.

Formalization of interconnected system

An interconnected system is identified with a graph with leaves

$$
\mathscr{G}=\left(\mathbb{V}, \mathbb{E}, \mathbb{L}, f_{\mathbb{E}}, f_{\mathbb{L}}\right)
$$

The vertices \leftrightarrow subsystems
The edges \leftrightarrow connections, The leaves \leftrightarrow external terminals.

Model specification

A model is obtained as follows.
For each subsystem, specify the behavior of the variables on its terminals, i.e. on the edges and the leaves that are incident to the vertex corresponding to the subsystem.
For each connection, specify the sharing variable conditions on the connected terminals. I.e., for each edge, specify the interconnection constraints on the variables of the subsystem terminals that correspond to the edges. Specify the manifest variables.

Subsystems in the vertices.

Connections in the edges.
External terminals in the leaves.

Example

A transmission line

Consider the transmission line shown below.

The aim is to model the relation between the voltage of the source on the left and the voltage across the load on the right.

A transmission line

View the system as an interconnection of 4 subsystems.

A transmission line

View the system as an interconnection of 4 subsystems.

The interconnection architecture \sim the graph with leaves

A transmission line

A transmission line

In vertices v_{1}, v_{2}, v_{3} we have identical subsystems. We deal with them later.

In vertex v_{4} there is a resistor \sim

$$
V_{v_{4}, 1}-V_{v_{4}, 2}=R I_{v_{4}, 1}, \quad I_{v_{4}, 1}+I_{v_{4}, 2}=0
$$

A transmission line section

In each of the vertices v_{1}, v_{2}, v_{3} we have:

This system can be viewed as the interconnection of 6 subsystems:

A transmission line section

The associated interconnection architecture is

A transmission line section

The associated interconnection architecture is

Modeling the transmission line section

Subsystems: 2 resistors, 1 inductor, 1 capacitor, 2 connectors.
The inductor in vertex v_{5}, for example, \sim

$$
V_{v_{5}, 1}-V_{v_{5}, 2}=L \frac{d}{d t} I_{v_{5}, 1}, \quad I_{v_{5}, 1}+I_{v_{5}, 2}=0
$$

Modeling the transmission line section

Subsystems: $\mathbf{2}$ resistors, 1 inductor, 1 capacitor, 2 connectors.
The inductor in vertex v_{5}, for example, \sim

$$
V_{v_{5}, 1}-V_{v_{5}, 2}=L \frac{d}{d t} I_{v_{5}, 1}, \quad I_{v_{5}, 1}+I_{v_{5}, 2}=0
$$

The connector in vertex v_{1}, for example, \leadsto

$$
V_{\ell_{1}}=V_{v_{1}, 2}=V_{v_{1}, 3}=V_{v_{1}, 4}, \quad I_{\ell_{1}}+I_{v_{1}, 2}+I_{v_{1}, 3}+I_{v_{1}, 4}=0 .
$$

For each vertex we obtain a set of equations.

Modeling the transmission line section

The connection equations for edge e_{5}, for example, \leadsto

$$
V_{v_{1}, 4}=V_{v_{5}, 1}, \quad I_{v_{1}, 4}+I_{v_{5}, 1}=0 .
$$

For each edge we obtain two such equations.

Modeling the transmission line section

For each vertex and for each edge we obtain a set of equations. The manifest variables for this subsystem are

$$
V_{\ell_{1}}, I_{\ell_{1}}, V_{\ell_{2}}, I_{\ell_{2}}, V_{\ell_{3}}, I_{\ell_{3}}, V_{\ell_{4}}, I_{\ell_{4}}
$$

The latent variables are

$$
V_{v_{1}, 1}, I_{v_{1}, 1}, \ldots, V_{v_{6}, 1}, I_{v_{6}, 1}
$$

Modeling the transmission line section

For each vertex and for each edge we obtain a set of equations. The manifest variables for this subsystem are

$$
V_{\ell_{1}}, I_{\ell_{1}}, V_{\ell_{2}}, I_{\ell_{2}}, V_{\ell_{3}}, I_{\ell_{3}}, V_{\ell_{4}}, I_{\ell_{4}}
$$

The latent variables are

$$
V_{v_{1}, 1}, I_{v_{1}, 1}, \ldots, V_{v_{6}, 1}, I_{v_{6}, 1}
$$

Eliminating the latent variables
\leadsto a LTIDS with (4) ODEs in the variables

$$
V_{\ell_{1}}, I_{\ell_{1}}, V_{\ell_{2}}, I_{\ell_{2}}, V_{\ell_{3}}, I_{\ell_{3}}, V_{\ell_{4}}, I_{\ell_{4}}
$$

Modeling the transmission line section

Denote these equations as

Note: For RLC-circuits, as is the case here, there are more efficient ways to arrive at these equations (see Lecture IV).

A transmission line

Going back to the transmission line yields the subsystem equations

$$
R\left(\frac{d}{d t}\right)\left[\left[\begin{array}{c}
V_{\ell_{1}} \\
I_{\ell_{1}} \\
V_{v_{1}, 2} \\
I_{v_{1}, 2} \\
V_{v_{1}, 3} \\
I_{v_{1}, 3} \\
V_{v_{1}, 4} \\
I_{v_{1}, 4}
\end{array}\right]\left[\begin{array}{c}
V_{v_{2}, 1} \\
I_{v_{2}, 2} \\
V_{v_{2}, 2} \\
I_{v_{2}, 2} \\
V_{v_{2}, 3} \\
I_{v_{2}, 3} \\
V_{v_{2}, 4} \\
I_{v_{2}, 4}
\end{array}\right]\left[\begin{array}{l}
V_{v_{3}, 1} \\
I_{v_{3}, 2} \\
V_{v_{3}, 2} \\
I_{v_{3}, 2} \\
V_{v_{3}, 3} \\
I_{v_{3}, 3} \\
V_{v_{3}, 4} \\
I_{v_{3}, 4}
\end{array}\right]\right]=0,
$$

$$
V_{v_{4}, 1}-V_{v_{4}, 2}=R I_{v_{4}, 1}, \quad I_{v_{4}, 1}+I_{v_{4}, 2}=0,
$$

A transmission line

and the interconnection equations

$$
\begin{aligned}
& V_{v_{1}, 3}=V_{v_{2}, 1}, \quad I_{v_{1}, 3}+I_{v_{2}, 1}=0, \\
& V_{v_{1}, 4}=V_{v_{2}, 2}, \quad I_{v_{1}, 4}+I_{v_{2}, 2}=0, \\
& V_{v_{2}, 3}=V_{v_{3}, 1}, \quad I_{v_{2}, 3}+I_{v_{3}, 1}=0, \\
& V_{v_{2}, 4}=V_{v_{3}, 2}, \quad I_{v_{2}, 4}+I_{v_{3}, 2}=0, \\
& V_{v_{3}, 3}=V_{v_{4}, 1}, \quad I_{v_{4}, 3}+I_{v_{4}, 1}=0, \\
& V_{v_{3}, 4}=V_{v_{4}, 2}, \quad I_{v_{3}, 4}+I_{v_{4}, 2}=0 .
\end{aligned}
$$

A transmission line

and the interconnection equations

$$
\begin{aligned}
& V_{v_{1}, 3}=V_{v_{2}, 1}, \quad I_{v_{1}, 3}+I_{v_{2}, 1}=0, \\
& V_{v_{1}, 4}=V_{v_{2}, 2}, \quad I_{v_{1}, 4}+I_{v_{2}, 2}=0, \\
& V_{v_{2}, 3}=V_{v_{3}, 1}, \quad I_{v_{2}, 3}+I_{v_{3}, 1}=0, \\
& V_{v_{2}, 4}=V_{v_{3}, 2}, \quad I_{v_{2}, 4}+I_{v_{3}, 2}=0, \\
& V_{v_{3}, 3}=V_{v_{4}, 1}, \quad I_{v_{4}, 3}+I_{v_{4}, 1}=0, \\
& V_{v_{3}, 4}=V_{v_{4}, 2}, \quad I_{v_{3}, 4}+I_{v_{4}, 2}=0 .
\end{aligned}
$$

Finally, there is the manifest variable assignment

$$
w_{1}=V_{\ell_{1}}-V_{\ell_{2}}, \quad w_{2}=V_{v_{4}, 1}-V_{v_{4}, 2}
$$

A transmission line

After elimination of the latent variables, we obtain the desired differential equation that describes the behavior of $\left(w_{1}, w_{2}\right)$

$$
r_{1}\left(\frac{d}{d t}\right) w_{1}=r_{2}\left(\frac{d}{d t}\right) w_{2}
$$

In practice, all these steps need to be carried out more explicitly, faster, better, and more reliably with the help of software and a computer toolbox.

Input/output

versus
tearing, zooming, and linking

Control as interconnection

Feedback control

to-be-controlled variables

Behavioral control

Behavioral control

control $=$ interconnection.

controlled system

A 'quarter car'

A 'quarter car'

A 'quarter car'

A 'quarter car'

Suspension controllers in Formula 1

Nigel Mansell victorious in 1992 with an active damper suspension.

Active dampers were banned in 1994 to break the dominance of the Williams team.

Suspension controllers in Formula 1

Renault successfully uses a passive 'tuned mass damper' in 2005/2006.

Banned in 2006, under the 'movable aerodynamic devices' clause.

Suspension controllers in Formula 1

inerter

Kimi Räikkönen wins the 2005 Grand Prix in Spain with McLaren's 'J-damper' (see Lecture V).

Pole placement and stabilization

LTIDSs as controllers

We consider only 'full control'.

and controllers such that the controlled system is autonomous.

LTIDSs as controllers

Consider a LTIDS $\mathscr{P} \in \mathscr{L}^{\mathrm{w}}$, the plant, and a LTIDS $\mathscr{C} \in \mathscr{L}^{\text {w }}$ the controller.
$\llbracket \mathscr{C}$ is called a regular controller for $\mathscr{P} \rrbracket: \Leftrightarrow$

$$
\llbracket(\mathbf{i}) \mathrm{p}(\mathscr{C})=\mathrm{m}(\mathscr{P}) \quad \text { and } \quad \text { (ii) } \mathscr{P} \cap \mathscr{C} \text { is autonomous } \rrbracket \text {. }
$$

LTIDSs as controllers

Consider a LTIDS $\mathscr{P} \in \mathscr{L}^{\mathrm{w}}$, the plant, and a LTIDS $\mathscr{C} \in \mathscr{L}^{\text {w }}$ the controller.
$\llbracket \mathscr{C}$ is called a regular controller for $\mathscr{P} \rrbracket: \Leftrightarrow$

$$
\llbracket(\mathbf{i}) \mathrm{p}(\mathscr{C})=\mathrm{m}(\mathscr{P}) \quad \text { and } \quad \text { (ii) } \mathscr{P} \cap \mathscr{C} \text { is autonomous } \rrbracket \text {. }
$$

In terms of minimal kernel representations

$$
\begin{aligned}
& P\left(\frac{d}{d t}\right) w=0 \\
& C\left(\frac{d}{d t}\right) w=0
\end{aligned}
$$

for \mathscr{P} and \mathscr{C}, regularity $\Leftrightarrow\left[\begin{array}{l}P \\ C\end{array}\right]$ square and nonsingular.

The characteristic polynomial

Let $\mathscr{B} \in \mathscr{L}^{\text {w }}$ be autonomous, and $R\left(\frac{d}{d t}\right) w=0$ be a minimal kernel representation of \mathscr{B}.
Assume that determinant (R) is monic (otherwise change $R \rightarrow \alpha R$ with $0 \neq \alpha \in \mathbb{R}$ suitably chosen).

The characteristic polynomial of $\mathscr{B}, \chi_{\mathscr{B}} \in \mathbb{R}[\xi]$, is defined as

$$
\chi_{\mathscr{B}}:=\operatorname{determinant}(R)
$$

Note: $\chi_{\mathscr{B}}$ is independent of the R chosen to represent \mathscr{B}.

The characteristic polynomial

Let $\mathscr{B} \in \mathscr{L}^{\mathbb{W}}$ be autonomous, and $R\left(\frac{d}{d t}\right) w=0$ be a minimal kernel representation of \mathscr{B}.
The minimal polynomial of $\mathscr{B}, \mu_{\mathscr{B}} \in \mathbb{R}[\xi]$, is defined as the monic polynomial of least degree that annihilates \mathscr{B}, i.e.

$$
\begin{gathered}
\mu_{\mathscr{B}}\left(\frac{d}{d t}\right) \mathscr{B}=0, \\
\llbracket p_{\mathscr{B}}\left(\frac{d}{d t}\right) \mathscr{B}=0,0 \neq p \in \mathbb{R}[\xi] \rrbracket \Rightarrow \llbracket \operatorname{degree}(p) \geq \operatorname{degree}\left(\mu_{\mathscr{B}}\right) \rrbracket .
\end{gathered}
$$

Note: $\mu_{\mathscr{B}}$ is a factor of $\chi_{\mathscr{B}}$.
For \mathscr{B} described by $\frac{d}{d t} x=A x, w=C x$ with (A, C) observable, $\chi_{\mathscr{A}}$ and $\mu_{\mathscr{B}}$ are equal to the characteristic and minimal polynomial of A.

Pole placement

Theorem

Let $\mathscr{P} \in \mathscr{L}^{\mathrm{w}}$ be controllable. Then for all monic polynomials $\pi \in \mathbb{R}[\xi]$, there exists a regular controller $\mathscr{C} \in \mathscr{L}^{\text {w }}$ such that

$$
\chi_{\mathscr{P} \cap \mathscr{C}}=\pi
$$

Pole placement

Theorem

Let $\mathscr{P} \in \mathscr{L}^{\mathrm{w}}$ be controllable. Then for all monic polynomials $\pi \in \mathbb{R}[\xi]$, there exists a regular controller $\mathscr{C} \in \mathscr{L}^{\text {w }}$ such that

$$
\chi_{\mathscr{P} \cap \mathscr{C}}=\pi
$$

Proof: Let $P\left(\frac{d}{d t}\right) w=0$ be a minimal kernel representation of \mathscr{P}. The Smith form yields $P=U\left[\begin{array}{ll}0_{\mathrm{p}(\mathscr{P}) \times \mathrm{m}(\mathscr{P})} & I_{\mathrm{p}(\mathscr{P}) \times \mathrm{p}(\mathscr{P})}\end{array}\right] V$, with U and V unimodular. Take for \mathscr{C} the system $C\left(\frac{d}{d t}\right) w=0$, with $C=\left[\operatorname{diag}(\pi, 1, \ldots, 1) \quad 0_{\mathrm{m}(\mathscr{P}) \times \mathrm{p}(\mathscr{P})}\right] V$.

Pole placement

The above proof can be refined in numerous directions (see Exercise IV.5).

In particular, we obtain

Theorem

Let $\mathscr{P} \in \mathscr{L}^{\mathrm{w}}$ be controllable. Then for all monic polynomials $v \in \mathbb{R}[\xi]$, there exists a regular controller $\mathscr{C} \in \mathscr{L}^{\text {w }}$ such that

$$
\mu_{\mathscr{P} \cap \mathscr{C}}=v .
$$

Stabilization

and

Theorem

Let $\mathscr{P} \in \mathscr{L}^{\mathrm{w}}$ be stabilizable. Then there exists a regular controller $\mathscr{C} \in \mathscr{L}^{\text {w }}$ such that the autonomous system

$\mathscr{P} \cap \mathscr{C}$ is stable.

Recapitulation

Complex systems consist of interconnections of subsystems.

Complex systems consist of interconnections of subsystems.

Input/output thinking and signal flow graphs provide a very limited view of interconnected physical systems.

Complex systems consist of interconnections of subsystems.

Input/output thinking and signal flow graphs provide a very limited view of interconnected physical systems.
Modeling of interconnected systems proceeds by tearing, zooming, and linking.

Summary

Complex systems consist of interconnections of subsystems.

Input/output thinking and signal flow graphs provide a very limited view of interconnected physical systems.
Modeling of interconnected systems proceeds by tearing, zooming, and linking.
A graph with leaves is a useful formalization of the interconnection architecture of an interconnected system.

Summary

Complex systems consist of interconnections of subsystems.

Input/output thinking and signal flow graphs provide a very limited view of interconnected physical systems.
Modeling of interconnected systems proceeds by tearing, zooming, and linking.
A graph with leaves is a useful formalization of the interconnection architecture of an interconnected system.
Control as interconnection is an effective way of thinking about control, with feedback control as a very useful special case.

Summary

Complex systems consist of interconnections of subsystems.
Input/output thinking and signal flow graphs provide a very limited view of interconnected physical systems.
Modeling of interconnected systems proceeds by tearing, zooming, and linking.
A graph with leaves is a useful formalization of the interconnection architecture of an interconnected system.
Control as interconnection is an effective way of thinking about control, with feedback control as a very useful special case.
Controllable LTIDSs allow regular controllers that achieve an arbitrary characteristic polynomial for the controlled system. Stabilizable LTIDSs can be stabilzed by regular controllers.

End of Lecture VIII

