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Theme

How are systemsinterconnected ?

How are interconnected systems modeled?

How does control fit in?
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Theme

How are systemsinterconnected ?

How are interconnected systems modeled?

How does control fit in?

We deal with very simple examples,
mainly electrical circuits and
1-dimensional mechanical systems.

Other applications: hydraulic systems
chemical systems
thermal systems, ...
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Outline

◮ Motivation

◮ Modeling by tearing, zooming, and linking

◮ An example

◮ Control as interconnection

◮ Pole assignment and stabilization
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Systems
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Features

◮ Open

◮ Interconnected

◮ Modular

◮ Dynamic

The ever-increasing computing power allows
to model such complex interconnected systemsaccurately
by tearing, zooming, and linking.

; Simulation, model based design, ...
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Open systems

System Environment

Systems are ‘open’, they interact with their environment.

In the previous lectures, we have seen that thinking of systems
in terms of their behavior captures the ‘open’ nature of
systems very well.
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Interacting systems

EnvironmentSystem 1
System 2

Environment

Interconnected systems interact.

How is interaction formalized?
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Motivation

The ever-increasing computing power allows
to model complex interconnected systemsaccurately.

Requires the right mathematical concepts

◮ for dynamical system (the behavior),

◮ for interconnection (this lecture),

◮ for interconnection architecture (this lecture).
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Classical view
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Input/output systems

outputs  inputs  System  

Oliver Heaviside
(1850-1925)

Rudy Kalman
(1930- )

Norbert Wiener
(1894-1964)
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Input/output systems

outputs  inputs  System  

Input/output thinking is inappropriate for describing the
functioning of physical systems.

A physical system is not a signal processor.

Better concept: the behavior.
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Signal flow graphs
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Signal flow graphs

Signal flow graphs areinappropriate for describing the
interaction architecture of physical systems.

A physical system is not a signal processor.

Better concept: graph with leaves.
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Interconnection

Interconnection as output-to-input assignment.

;
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Interconnection

Interconnection as output-to-input assignment.

Examples:

series

parallel feedback
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Interconnection

Interconnection as output-to-input assignment.

Output-to-input assignment isinappropriate for describing
the interconnection of physical systems.

A physical system is not a signal processor.

Better concept: variable sharing.
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Examples
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Electrical circuit

circuitcircuit
Electrical Electrical

terminals
1

2N

k

I1 I2
IN

Ik

V1

V2
VN

Vk

At each terminal:
a potential (!) and a current (counted > 0 into the circuit),

The relation between potentials of the terminals and voltages across
the terminals is discussed ielsewhere.
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Electrical circuit

circuitcircuit
Electrical Electrical

terminals
1

2N

k

I1 I2
IN

Ik

V1

V2
VN

Vk

At each terminal:
a potential (!) and a current (counted > 0 into the circuit),

; behavior B ⊆
(

R
N ×R

N
)R

.

(V1,V2, . . . ,VN , I1, I2, . . . , IN) ∈ B means:
this potential/current trajectory is compatible with
the circuit architecture and its element values.
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Mechanical device

Mechanical
system

Mechanical
system

pins
1

2N

k

F1

F2
FN

Fk

q1 q2qN

qk

At each terminal: a position and a force.

; position/force trajectories (q,F) ∈ B ⊆ ((R•)2N)R.

More generally, a position , force , angle , and torque.
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Other domains

◮ Thermal systems:

At each terminal: a temperature and a heat flow.

◮ Hydraulic systems:

At each terminal: a pressure and a mass flow.

◮ Multidomain systems:
Systems with terminals of different types,

as motors, pumps, etc.

◮ ...
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Interconnection
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Connection of terminals

System 1 System 2

By interconnecting, the terminal variables are equated.
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Connection of circuit terminals

Interconnection = connecting terminals, like soldering wires
together.

Electrical
circuit

Electrical
circuit

I1 I1
I2I2

IN−1

IN−2IN−2

IN

IkIk

I

−I
V

V

V1V1

V2V2

VN−1

VN−2VN−2

VN

VkVk

Connecting terminalsN −1 and N leads to

VN−1 = VN , IN−1 + IN = 0.

After interconnection the terminals share the variables
VN−1,VN , and IN−1, IN (up to a sign).
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Connection of circuit terminals

Electrical
circuit

Electrical
circuit

I1 I1
I2I2

IN−1

IN−2IN−2

IN

IkIk

I

−I
V

V

V1V1

V2V2

VN−1

VN−2VN−2

VN

VkVk

Connecting terminalsN −1 and N leads to

VN−1 = VN , IN−1 + IN = 0.

The interconnected circuit hasN −2 terminals. Its behavior =

B
′ = {(V1, I1,V2, I2, . . . ,VN−2, IN−2) : R → R

2(N−2)| ∃ V, I

such that (V1, I1,V2, I2, . . . ,VN−2, IN−2, V, I,V,−I ) ∈ B}.
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Interconnection of circuits

Electrical Electrical
circuit 1 circuit 2

1′

2′

N′−1

1

2

N −1

N

N′

VN = VN′ and IN + IN′ = 0.

Behavior after interconnection:
B1⊓B2

:= {(V1, . . . ,VN−1,V1′, . . . ,VN′−1, I1, . . . , IN−1, I1′, . . . , IN′−1) |

∃ V , I such that
(

V1, . . . ,VN−1, V , I1, . . . , IN−1, I
)

∈ B1 and
(

V1′ , . . . ,VN′−1, V , I1′, . . . , IN′−1, – I
)

∈ B2}.
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Interconnection of circuits

; more terminals and more circuits connected

Electrical Electrical

Electrical

Circuit 1 Circuit 2

Circuit 3
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Connection of mechanical terminals

Interconnection = connecting terminals, like screwing pins
together.

device
Mechanical

device
Mechanical

F1

F2

FN−1

FN−2

FN

Fk

F
−F q

q1

q2

qN−1

qN−2

qN

qk

Connecting terminalsN −1 and N leads to

qN−1 = qN, FN−1 +FN = 0.

After interconnection the terminals share the variables
qN−1,qN, and FN−1,FN (up to a sign).
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Connection of mechanical terminals

device
Mechanical

device
Mechanical

F1

F2

FN−1

FN−2

FN

Fk

F
−F q

q1

q2

qN−1

qN−2

qN

qk

Connecting terminalsN −1 and N leads to

qN−1 = qN, FN−1 +FN = 0.

The interconnected circuit hasN −2 terminals. Its behavior =

B
′ = {(q1,F1,q2,F2, . . . ,qN−2,FN−2) : R → R

2(N−2)| ∃ q,F

such that (q1,F1,q2,F2, . . . ,qN−2,FN−2, q,F,q,−F ) ∈ B}.
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Interconnection of mechanical systems

1′

2′

N′−1

1

2

N −1

N

N′system 1 system 2
MechanicalMechanical

qN = qN′ and FN +FN′ = 0.
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Other terminal types

◮ Thermal systems:
At each terminal: a temperature and a heat flow.

TN = TN′ and QN +QN′ = 0.

◮ Hydraulic systems:
At each terminal: a pressure and a mass flow.

pN = pN′ and fN + fN′ = 0.

◮ ...
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Sharing variables

VN = VN′ and IN + IN′ = 0,

qN = qN′ and FN +FN′ = 0,

TN = TN′ and QN +QN′ = 0,

pN = pN′ and fN + fN′ = 0,

...

Interconnection means variable sharing.
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Tearing, zooming, and linking
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Tearing

¡¡ Model the behavior of selected variables !!
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Tearing

¡¡ Model the behavior of selected variables !!

Tear ;;;
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Zooming

Zoom ;;;
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Zooming

Hierarchically ;;;

Proceed until subsystems (‘modularity’) are obtained whose
model is known, from first principles, or stored in a database.
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Linking
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Linking

Link ;;;
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Interconnection architecture
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Graph with leaves

A graph with leaves :⇔

G = (V,E,L, fE, fL)

V a finite set ofvertices,
E a finite set ofedges,
L a finite set ofleaves,
fE the edge incidence map,
fL the leaf incidence map.

fE maps each elemente ∈ E into
an unordered pair [v1,v2], with v1,v2 ∈ V,

fL is a map from L to V, it maps each element
ℓ ∈ L into an elementv ∈ V.

��
��
��
��

��

��

����
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Graph with leaves

Example:

��
��
��
��

�
�
�
�

����

�
�
�
�

ℓ1

ℓ2

v1

v2 v3

v4

e1
e2

e3 e4

fE : e1 7→ [v1,v2],e2 7→ [v1,v3],e3 7→ [v2,v4],e4 7→ [v3,v4].

fL : ℓ1 7→ v1, ℓ2 7→ v4.
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Formalization of interconnected system

An interconnected system is identified with a graph with
leaves

G = (V,E,L, fE, fL).

The vertices ↔ subsystems
The edges ↔ connections,
The leaves ↔ external terminals.
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Model specification

A model is obtained as follows.

◮ For each subsystem, specify the behavior of the variables
on its terminals, i.e. on the edges and the leaves that are
incident to the vertex corresponding to the subsystem.

◮ For each connection, specify the sharing variable
conditions on the connected terminals. I.e., for each edge,
specify the interconnection constraints on the variables
of the subsystem terminals that correspond to the edges.

◮ Specify the manifest variables.

Subsystems in the vertices.

Connections in the edges.

External terminals in the leaves.
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Example
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A transmission line

Consider the transmission line shown below.

source load

The aim is to model the relation between the voltage of the
source on the left and the voltage across the load on the right.
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A transmission line

View the system as an interconnection of 4 subsystems.
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A transmission line

View the system as an interconnection of 4 subsystems.

The interconnection architecture; the graph with leaves
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A transmission line

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��
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��
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��

ℓ1

ℓ2

e1

e2

e3

e4

e5

e6

v1 v2 v3 v4
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A transmission line
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ℓ1

ℓ2

e1

e2

e3

e4

e5

e6

v1 v2 v3 v4

In vertices v1,v2,v3 we have identical subsystems.
We deal with them later.

In vertex v4 there is a resistor;

v4,1

v4,2

Vv4,1−Vv4,2 = R Iv4,1, Iv4,1 + Iv4,2 = 0.

– p. 37/60



A transmission line section

In each of the verticesv1,v2,v3 we have:

This system can be viewed as the interconnection of 6
subsystems:
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A transmission line section

The associated interconnection architecture is
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A transmission line section

The associated interconnection architecture is
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ℓ1

ℓ2

ℓ3

ℓ4

e1

e2

e3

e4

e5 e6
v1

v2 v3

v4

v5 v6
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Modeling the transmission line section

Subsystems: 2 resistors, 1 inductor, 1 capacitor, 2 connectors.

The inductor in vertex v5, for example,;

v5,1 v5,2 Vv5,1−Vv5,2 = L
d
dt

Iv5,1, Iv5,1 + Iv5,2 = 0.
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Modeling the transmission line section

Subsystems: 2 resistors, 1 inductor, 1 capacitor, 2 connectors.

The inductor in vertex v5, for example,;

v5,1 v5,2 Vv5,1−Vv5,2 = L
d
dt

Iv5,1, Iv5,1 + Iv5,2 = 0.

The connector in vertexv1, for example,;

ℓ1

v1,2 v1,3

v1,4

Vℓ1 = Vv1,2 = Vv1,3 = Vv1,4, Iℓ1 + Iv1,2 + Iv1,3 + Iv1,4 = 0.

For each vertex we obtain a set of equations.
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Modeling the transmission line section

The connection equations for edgee5, for example,;

Vv1,4 = Vv5,1, Iv1,4 + Iv5,1 = 0.

For each edge we obtain two such equations.
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Modeling the transmission line section

For each vertex and for each edge we obtain a set of equations.
The manifest variables for this subsystem are

Vℓ1, Iℓ1,Vℓ2, Iℓ2,Vℓ3, Iℓ3,Vℓ4, Iℓ4.

The latent variables are

Vv1,1, Iv1,1, . . . ,Vv6,1, Iv6,1.
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Modeling the transmission line section

For each vertex and for each edge we obtain a set of equations.
The manifest variables for this subsystem are

Vℓ1, Iℓ1,Vℓ2, Iℓ2,Vℓ3, Iℓ3,Vℓ4, Iℓ4.

The latent variables are

Vv1,1, Iv1,1, . . . ,Vv6,1, Iv6,1.

Eliminating the latent variables
; a LTIDS with (4) ODEs in the variables

Vℓ1, Iℓ1,Vℓ2, Iℓ2,Vℓ3, Iℓ3,Vℓ4, Iℓ4.

– p. 41/60



Modeling the transmission line section

Denote these equations as

R
(

d
dt

)





























Vℓ1

Iℓ1

Vℓ2

Iℓ2

Vℓ3

Iℓ3

Vℓ4

Iℓ4





























= 0.

Note: For RLC-circuits, as is the case here, there are more
efficient ways to arrive at these equations (see Lecture IV).
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A transmission line

Going back to the transmission line yields the subsystem
equations

R
(

d
dt

)

























































Vℓ1

Iℓ1

Vv1,2

Iv1,2

Vv1,3

Iv1,3

Vv1,4

Iv1,4

























































Vv2,1

Iv2,2

Vv2,2

Iv2,2

Vv2,3

Iv2,3

Vv2,4

Iv2,4

























































Vv3,1

Iv3,2

Vv3,2

Iv3,2

Vv3,3

Iv3,3

Vv3,4

Iv3,4

























































= 0,

Vv4,1−Vv4,2 = R Iv4,1, Iv4,1 + Iv4,2 = 0,

– p. 43/60



A transmission line

and the interconnection equations

Vv1,3 = Vv2,1, Iv1,3 + Iv2,1 = 0,

Vv1,4 = Vv2,2, Iv1,4 + Iv2,2 = 0,

Vv2,3 = Vv3,1, Iv2,3 + Iv3,1 = 0,

Vv2,4 = Vv3,2, Iv2,4 + Iv3,2 = 0,

Vv3,3 = Vv4,1, Iv4,3 + Iv4,1 = 0,

Vv3,4 = Vv4,2, Iv3,4 + Iv4,2 = 0.
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A transmission line

and the interconnection equations

Vv1,3 = Vv2,1, Iv1,3 + Iv2,1 = 0,

Vv1,4 = Vv2,2, Iv1,4 + Iv2,2 = 0,

Vv2,3 = Vv3,1, Iv2,3 + Iv3,1 = 0,

Vv2,4 = Vv3,2, Iv2,4 + Iv3,2 = 0,

Vv3,3 = Vv4,1, Iv4,3 + Iv4,1 = 0,

Vv3,4 = Vv4,2, Iv3,4 + Iv4,2 = 0.

Finally, there is the manifest variable assignment

w1 = Vℓ1 −Vℓ2, w2 = Vv4,1−Vv4,2.
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A transmission line

After elimination of the latent variables, we obtain the desired
differential equation that describes the behavior of(w1,w2)

r1
(

d
dt

)

w1 = r2
(

d
dt

)

w2.

In practice, all these steps need to be carried out more
explicitly, faster, better, and more reliably with the help of
software and a computer toolbox.
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Input/output

versus

tearing, zooming, and linking

– p. 45/60



– p. 46/60



Control as interconnection
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Feedback control

to−be−controlled variables

control variables

Sensors
Plant

Controller
inputscontrol outputsmeasured

exogenous
inputs

to−be−controlled
outputs

Actuators
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Behavioral control

ControllerPlantto-be-controlled control
terminals terminals
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Behavioral control

ControllerPlantto-be-controlled control
terminals terminals

control = interconnection.

Plant Controller

controlled system
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A ‘quarter car’

load

road

chassis

axle

damper

wheel
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A ‘quarter car’

load

road

chassis

axle

damper

wheel

– p. 50/60



A ‘quarter car’

load

road

chassis

axle

damper

wheel

controller
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A ‘quarter car’

load

road

chassis

axle

damper

wheel

active controller

Controller

measurement

Actuator
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A ‘quarter car’

load

road

chassis

axle

damper

wheel
passive controller
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Suspension controllers in Formula 1

Nigel Mansell victorious in 1992 with an active damper
suspension.

Active dampers were banned in 1994 to break the dominance
of the Williams team.
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Suspension controllers in Formula 1

Renault successfully uses a passive ‘tuned mass damper’ in
2005/2006.

Banned in 2006, under the ‘movable aerodynamic devices’
clause.
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Suspension controllers in Formula 1

inerter

Kimi R äikk önen wins the 2005 Grand Prix in Spain with
McLaren’s ‘J-damper’ (see Lecture V).
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Pole placement and stabilization
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LTIDSs as controllers

We consider only ‘full control’.

Plant Controller

Controlled system

and controllers such that the controlled system is autonomous.
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LTIDSs as controllers

Consider a LTIDS P ∈ L w, the plant,
and a LTIDS C ∈ L w the controller.

[[C is called aregular controller for P]] :⇔

[[(i) p(C ) = m(P) and (ii) P ∩C is autonomous]].
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LTIDSs as controllers

Consider a LTIDS P ∈ L w, the plant,
and a LTIDS C ∈ L w the controller.

[[C is called aregular controller for P]] :⇔

[[(i) p(C ) = m(P) and (ii) P ∩C is autonomous]].

In terms of minimal kernel representations

P
(

d
dt

)

w = 0
C

(

d
dt

)

w = 0

for P and C , regularity ⇔

[

P
C

]

square and nonsingular.
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The characteristic polynomial

Let B ∈ L w be autonomous, andR
(

d
dt

)

w = 0 be a minimal
kernel representation ofB.
Assume thatdeterminant(R) is monic (otherwise change
R → αR with 0 6= α ∈ R suitably chosen).

The characteristic polynomial of B, χ
B
∈ R [ξ ], is defined as

χ
B

:= determinant(R).

Note: χ
B

is independent of theR chosen to representB.
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The characteristic polynomial

Let B ∈ L w be autonomous, andR
(

d
dt

)

w = 0 be a minimal
kernel representation ofB.
The minimal polynomial of B, µ

B
∈ R [ξ ], is defined as the

monic polynomial of least degree that annihilatesB, i.e.

µ
B

(

d
dt

)

B = 0,

[[p
B

(

d
dt

)

B = 0,0 6= p ∈ R [ξ ]]] ⇒ [[degree(p) ≥ degree(µ
B
)]].

Note: µ
B

is a factor of χ
B

.

For B described by d
dt x = Ax,w = Cx with (A,C)

observable,χ
B

and µ
B

are equal to the
characteristic and minimal polynomial of A.
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Pole placement

Theorem

Let P ∈L w be controllable. Then for all monic polynomials
π ∈ R [ξ ], there exists a regular controllerC ∈ L w such that

χ
P∩C

= π.
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Pole placement

Theorem

Let P ∈L w be controllable. Then for all monic polynomials
π ∈ R [ξ ], there exists a regular controllerC ∈ L w such that

χ
P∩C

= π.

Proof: Let P
(

d
dt

)

w = 0 be a minimal kernel representation of

P. The Smith form yields P = U
[

0p(P)×m(P) Ip(P)×p(P)

]

V,

with U and V unimodular. Take for C the systemC
(

d
dt

)

w = 0,

with C =
[

diag(π,1, . . . ,1) 0m(P)×p(P)

]

V .
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Pole placement

The above proof can be refined in numerous directions (see
Exercise IV.5).

In particular, we obtain

Theorem

Let P ∈L w be controllable. Then for all monic polynomials
ν ∈ R [ξ ], there exists a regular controllerC ∈ L w such that

µ
P∩C

= ν.
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Stabilization

and

Theorem

Let P ∈ L w be stabilizable. Then there exists a regular con-
troller C ∈ L w such that the autonomous system

P ∩C is stable.
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Recapitulation
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Summary

◮ Complex systems consist of interconnections of
subsystems.
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Summary

◮ Complex systems consist of interconnections of
subsystems.

◮ Input/output thinking and signal flow graphs provide a
very limited view of interconnected physical systems.

◮ Modeling of interconnected systems proceeds by tearing,
zooming, and linking.

◮ A graph with leaves is a useful formalization of the
interconnection architecture of an interconnected
system.

◮ Control as interconnection is an effective way of thinking
about control, with feedback control as a very useful
special case.

◮ Controllable LTIDSs allow regular controllers that
achieve an arbitrary characteristic polynomial for the
controlled system. Stabilizable LTIDSs can be stabilzed
by regular controllers.
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End of Lecture VIII
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