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Lecture VI

CONTROLLABILITY
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Behavioral controllability, the property of being able to
choose the future of a trajectory regardless of the past, isra
Important and regularizing system property.

In this lecture we obtain

(1) various tests for controllability of LTIDSs,
(i) special system representations related to controllaibty,
(i) and generalizations, e.g. to stabilizability.
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Controllability of LTIDSs

Image representations
Autonomous LTIDSs

Stability and stabilizability

The controllable part of a behavior

The three main theorems for LTIDSs and their
discrete-time and PDE counterparts

Observability
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controllability : < concatenability of trajectories after a delay
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Controllability of LTIDSs

Theorem

The following are equivalent for # € £".
1. #is controllable.

2. LetR(&)w=0be akernel representations.
Then R(A) has the same rank for allA € C.

Hence,

» R(&)w=0is a minimal kernel representation of a
controllable LTIDS if and only if Ris left prime.

» A e Z°iscontrollable if and only if it has a kernel

representationR (&) w= 0 with Rleft prime over R[&].
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Proof in telegram-style

First prove that if U € R[&]"*" is unimodular, then 2 is
controllable if and only if U (&) % is controllable.

Consequently, we may assume tha® has a minimal kernel
representation with Rin Smith form,

R— [di ag(dy,dp, ....d,) orx(w_r)} .

1. & 2.

Observe, using the theory of autonomous systems, tha# is
controllable if and only if all the invariant polynomials
di,do,....d, of Rare equal to one.

Equivalently, if and only if 2. holds.
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» Consider the single-input/single output system

Dy—q( L)y w=|

with p,q € R[&]. This system is controllable if and only if
p and g are coprime.

The interpretation of common factors in p and g has
been a long-standing question in the field. Behavioral
controllability demystifies common factors.

We now understand that common factors correspond
exactlyto lack of controllability, nothing more, nothing

less.

In the exercises several algorithms for coprimeness of
polynomials are discussed.
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» Applying the controllability theorem and the relation
between behavioral and state controllablility discussed in

Lecture I, shows that the system m
d
aX:AXJr Bu, y=Cx+Du, w=
X

IS controllable if and only if

rank({ A—loxnA | B D —n forall A €C.

This state version of
controllability is the PBH
(Popov-Belevitch-Hautus)
test. The controllability v R S
theorem is a far-reaching pomov Boleviich  Hautus
generalization of this (1928- ) (1921-1999) (1940~ )
classical result.
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The port behavior of the RLC circuit (see Lecture V)

IS controllable unless

CRC:% and R = Rc.

This shows that lack of controllability can occur in
non-degenerate physical systems.
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More tests for controllability

Theorem

The following are equivalent for # € £".

1. #is controllable.
3. Az, theR|&]-module of annihilators of 4, is closed.

4. X has a direct summand, I.e., there exists
# e LY suchthat Bp %' =€ (R,RY).

The closure of theR [£]-submodule.# of R[&]" is defined as
MOV — fmMeR[E]Y | I meR[E], m#0,

and m e .# such thatm= rim}.
/4 is said to be closed if.# = .z closure
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Proof in telegram-style

First prove that if U € R[&]"*" is unimodular, then 2 is
controllable if and only if U (&) % is controllable.

Consequently, we may assume tha® has a minimal kernel
representation with Rin Smith form,

R— [di ag(dy,dp, ....d,) orx(w_r)} .

2. < 3.

Observe that. 4z = |R[&]d; --- R[é]d, O --- Of.

Hence .4 Is closed if and only if all the invariant polynomials
di,do,...,d,. of Rare equal to one.

Equivalently, if and only if 2. holds.
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Proof in telegram-style

Consequently, we may assume tha¥ has a minimal kernel
representation with Rin Smith form,

R= [di ag(ds,dz,...,d;) OrX(W—r)} '

3. = 4.

Take for %’ the system with kernel representation
R (%) w = 0, with R = |:OW—r><r I(W—I‘)X(W—I‘)i| .
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Proof in telegram-style

Consequently, we may assume tha¥ has a minimal kernel
representation with Rin Smith form,

R= [di ag(ds,dz,...,d;) OrX(W—r)} '

4. = 3.

Note that [Z® B = € (R, R¥)| <[ ANp ® N = R[E]V].
Let R (&)w = 0be a minimal kernel representation of %’

Then A4z ® Az = R[&E]" implies that the rows of FR; form a
. e e Rl
basis forR []™"". Equivalently, that | 1S unimodular.

Hence that the invariant polynomials of R are all equal to one.
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Geometric interpretation of controllability

Attach to each pointA € C of the Riemann sphere (think of
the Riemann sphere a<’), ker nel (R(A)). This associates

with each A € C a linear subspace ofC". In general, this
yields a picture shown below. Since the dimension of the
subspace attached may change, we obtain a ‘sheaf’.

ker nel (R(A))

Riemann spherg

/ Bernhard Riemann
1826-1866

—n. 13/5(



Geometric interpretation of controllability

Attach to each pointA € C of the Riemann sphere (think of
the Riemann sphere a<’), ker nel (R(A)). This associates

with each A € C a linear subspace ofC". The dimension of the
subspace is constant, that is, we obtain a ‘vector bundle’ @r
the Riemann sphere, if and only if the system is controllable

Riemann sphere

kernel (R(A)

Bernhard Riemann
1826-1866
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Representations of behavior
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Kernels, images, and projections

A model # is a subset ofZ .
There are many ways to specify a subset. For example,

» as the set of solutions of equations,
» asthe image of a map,
» as a projection.

—n. 15/5(



Kernels, images, and projections

A model # is a subset ofZ .
There are many ways to specify a subset. For example,

» as the set of solutions of equations:
f:U — o, B={we Y | f(w) =0},
» asthe image of a map:
f.e =%, B ={we 7 |3 ¢suchthat w= f(¢) },

» as a projection:
Bextended U X L,

B={wew |3l e Z suchthat (W, {) € Bextended]-
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Kernels, images, and projections

A model # is a subset ofZ .
There are many ways to specify a subset. For example,

» as solutions of equations: kernel representation
f:U — o, B={we Y | f(w) =0},

» asthe image of a map: Image representation

f:e =, B={we % |d¢suchthat w= f(¥) },

» as a projection: latent variable representation

W's ‘manifest’ variables: the variables the model aims at,
¢’'s ‘latent’ variables: auxiliary variables.
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Image

» asthe image of a map: Image representation

f.e %, B={we % |3¢suchthat w= f(¢) }.
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Controllability

and

image representations
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Images

We have seen kernels and projections of linear
constant-coefficient differential operators.
It Is time for images!

w=M($)7.
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Images

We have seen kernels and projections of linear
constant-coefficient differential operators.
It Is time for images!

w=M($)7.

Elimination theorem (see Lecture IV)=- an image is a kernel.

What is special about images ?
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The image representation theoren

Theorem

The following are equivalent for & € £".

1. Ais controllable.
5. % has a image representation

w=M (&),

Images have a nice system theoretic interpretation!
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Proof in telegram-style

1. = 5.

By controllability, the invariant polynomials of R, with

R(&)w=0a minimal kernel representation of %, are equal

to one. Therefore,R=V [Irxr Orx(w_r)} U, with U,V

unimodular. 1t follows that W:U_l(%) Orx (w—1) ¢

(1) x (w—1)

IS an iImage representation of#4. - -

5 = 1.

The extended behavior{(w,¢) | w= M (%) ¢} is controllable,

since {IWXW —M(A)| has rankw for all A € C.
This implies that the projection is controllable.
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Algorithm for controllability




Algorithm

» Startwith Re R[&]*™"
parametrizing the LTIDS R(&)w = 0.

Problem: |Verify if this system is controllable.
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Algorithm

» Startwith Re R[&]*™"

Problem:

» The set

IS called theright syzygy of R. It is obviously an

Verify if this system is controllable.

{f eR[¢{]" [Rf =0}

R [&]-module.

Compute a basis for the right syzygy ofR. Let F be a
matrix whose rows form a basis for this syzygy.
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Algorithm

» Startwith Re R[&]*™"

Problem:

» Compute a basis for the right syzygy ofR. Let F be a
matrix whose rows form a basis for this syzygy.

» Compute a basis for the left syzygy of. Let R be a
matrix whose rows form a basis for this syzygy.

Computing such a basis is a standard problem in

Verify if this system is controllable.

computer algebra
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Algorithm

Start with Re R[&]*""

Problem:

Compute a basis for the right syzygy ofR. Let F be a
matrix whose rows form a basis for this syzygy.

Compute a basis for the left syzygy of. Let R be a
matrix whose rows form a basis for this syzygy.

Verify if this system is controllable.

The system is controllable & (R) = (R).

Verifying this equality is a standard problem in

computer algebra.
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Autonomous LTIDSs
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autonomous = the past implies the future.

—n. 24/5(



Characterization of autonomous LTIDSs

Theorem

The following are equivalent for # € .£".

» IS autonomous.

» Aisa finite-dimensional subspace of6® (R, R").

» % has a minimal kernel representationR (&) w =0
with R square anddet er m nant (R) # 0.

» n(H) =0, equivalently, p(AB)=w(AB).
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Characterization of autonomous LTIDSs

Theorem

The following are equivalent for # € .£".
% 1s autonomous.
A is a finite-dimensional subspace of6™ (R, R").
% has a minimal kernel representationR (&) w =0

with R square anddet er m nant (R) # 0.

m (%) =0, equivalently, p (%) =w(A).

The proof follows readily from the Smith form and
Propositions 1 and 3 of the section on differential operatcs
(see Lecture Il).

—n. 25/5(



Characterization of autonomous LTIDSs

Theorem

The following are equivalent for # € .£".
% 1s autonomous.
A is a finite-dimensional subspace of6™ (R, R").
% has a minimal kernel representationR (&) w =0

with R square anddet er m nant (R) # 0.

m (%) =0, equivalently, p (%) =w(A).

With R minimal, there holds,
for w=1, di nensi on(#) =degr ee(R),
for w> 1, di nensi on(%#) = degr ee(det er m nant (R)).
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Autonomous LTIDSs

Each trajectory w of an autonomous% € .Z"¥ is a sum of
products of a polynomial and an exponential in the complex

case,
w(t) = mm(t)eMt + m(t)e? + - 4 (t)eM,

with 75, € C|&|¥ and A, € C. In the real case, it is a sum of
products of a polynomial, an exponential, and a trigonometic

function,

w(t) = i (t)eMcos (ant) + 1 (t)eM'si n(ct)
+ 15(t)eMcos (wpt) + 15 (1) si n(cpt)
+ 1 (H)eMcos (wpt) + () eMsi n(wt),

with 7, 77/ €e R[&]",Ax € R, and w; € R.
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Stability




U

=

stablility : < all trajectories go to O.
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U

=

stablility : < all trajectories go to O.

For # € £¥, there holds [ % stable] = [% autonomoug.
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Stability of LTIDSs

Theorem

The following are equivalent for # € Z".
A 1s stable.
Every exponential trajectory t— eMa, ae CY,
iIn % (complexified) has Real (A) <O.

% has a minimal kernel representationR(&)w = 0
with R Hurwitz.

A polynomial € C[€] is said to be Hurwitz if all its roots are

iIn {A € C|Real (A) <0}. PeC[&]™*"is said to be Hurwitz
If it is square and det er m nant (P) is Hurwitz.
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Stability of LTIDSs

Theorem

The following are equivalent for # € Z".
A 1s stable.
Every exponential trajectory t— eMa, ae CY,
iIn % (complexified) has Real (A) <O.

% has a minimal kernel representationR(&)w = 0
with R Hurwitz.

The proof follows readily from the Smith form and
Propositions 1 and 3 of the section on differential operatcs
(see Lecture Il).
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Stabilizabllity




stabilizability : < all trajectories can be steered td).
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Stabilizability of LTIDSs

The following are equivalent for # € .£".

1. ZAIs stabilizable.

2. If R($)w=0is a kernel representation of%, then

[A € C;rank(R(A)) <rank(R)] = [Real (A) > 0].

Theorem
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Proof in telegram-style

2. = 1.

First assume thatRis in Smith form. Prove that if 2. Is
satisfied, then the firstr components ofw are polynomial
exponentials, with exponentials having negative real part
while the remaining components ofw are free. Conclude
stabilizability.

1. = 2.

Conversely, If 2. is not satisfied, then there is a solution wgse
first component is an exponential with real part> 0.

This exponential cannot be steered to zero, and the system is
not stabilizable.
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Proof in telegram-style

Next, consider generaR's. The solutions are now of the form
w=U (&)w with U € R[&]"*" unimodular, and w a solution
corresponding to the Smith form of R. The arguments extend,
since polynomial exponentials are converted by (&) to

polynomial exponentials with the same exponential
coefficients.
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More on controllability
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The controllable part of a LTIDS

The controllable part of 4 € ¥, denoted by %controliable

IS defined as the largest controllable LTIDS contained in#.
That is,

1. Beontrollable€ L,
2. r@controllableg ,%’,
3. [#B € L B C A, and %’ controllable |

— [[%’ C e-%’controllablé]-
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The controllable part of a LTIDS

The controllable part of 4 € ¥, denoted by %controliable
IS defined as the largest controllable LTIDS contained in#.

Let R(&)w= 0 be a minimal kernel representation of %.
The polynomial matrix R can be factored asR=FR/, with
F e R[EPP PP and with R € R[E]P¥) (D) |eft prime:

R(A) has the same rank for allA € C. ThenR (&)w=0is a
kernel representation of Zeontroliable
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The controllable part of a LTIDS

The controllable part of 4 € ¥, denoted by %controliable
IS defined as the largest controllable LTIDS contained in#.

¢* (R,R¥(Z)
There holds DBeontrollable= HBcompact ( )7
where Zcompactdenotes the set of compact support trajectories
¢ (RR"#))

In 4, and B compact
¢~ (R,R*(#))-topology.

the closure of %compactin the

—n. 35/5(



The controllable part of a LTIDS

The controllable part of 4 € ¥, denoted by %controliable

IS defined as the largest controllable LTIDS contained in#.

Every % € ¥ admits a decomposition & = %1 ¢ Ho,
with &£, € £" controllable and %4, € " autonomous

In every such a decomposition%1 = Peontrollable
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Controllability and rational symbols

% is controllable if and only if it admits a representation

d
W_M(&>€

with M € R(&)"*°. In particular, therefore, the system

d
y=6(g)

with G € R(&)P*™, is always controllable.
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Controllability and transfer functions

Consider the input/output systems

Py (%) y1 = Q1 (%) up, P (%) yo = Qo (%) U,

with det er m nant (Py) # 0, anddet er m nant (P,) # 0.

These two systems have the same transfer function,

P, 'Q1 =P 'Qy,

If and only if they have the same controllable part.

Therefore, the transfer function determines the controllable
part of a system, but only the controllable part.
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The three theorems




The following are the three main theorems for LTIDSs.

Theorem 1. Thereexistsa 1+ 1 relation between.#"
and the R [§]-submodules ofR [&]".

Theorem 2 Elimination. .#* is closed under projection:

[% € L1772 = [M15 € L.
[, defines the projection onto the firstw; components.

Theorem 3 A LTIDS is controllable if and only if its
behavior is the Image of a linear constant-coefficient
differential operator.
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Discrete-time LTIDSsS

These theorems remain valid for discrete-systems.

The relevant ring for the caseT = Z isR[&, & 1.
For T=7,,itis R[¢].
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These theorems also remain valid for systems described by
linear constant-coefficient PDEs with

» therelevantring R |[¢1,&o,. .., &,
» the appropriate notion of controllability.
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n-D controllabilty

[(R*,RY, #) is controllable | ;< [V wy, W, € £, and V open
subsets01, 0o C R® with non-intersecting closuresdw € %
such that

W|01 :W1|01 and W‘Oz :W1‘02H°
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n-D controllabilty

[(R*RY %) is controllable | ;< [V wy,w, € £, and V open
subsets01, 0o C R® with non-intersecting closuresdw € %
such that

Wlo, =Wi|o, and Wwjo, = Wi|o,].

This definition is illustrated in the picture below.




Observability and detectabillity




observed w; W, to-be-deduced

observability :< w»> may be deduced fromw;.

11l Knowing the laws of the system !!!
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The observability theorem

Theorem

The following are equivalent for Z ¢ £v11v2,
B CE* (R,R"1 x R¥2),

1. wy IS observable from wj In 4.

2. % has a kernel representationRy (&) wi = R (&) wa,
with rank (Rx(A)) =wp forall A € C.

3. % has a minimal kernel representation

wo =F (&)wy, R($)wi=0.
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Proof in telegram-style

1. & 2.

[Observability] < [R (&) is injective] < [2]
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Proof in telegram-style

1. & 2.

[Observability] < [R (&) is injective] < [2]

2. & 3.

(«) is obvious. To prove(=-), observe that 2. implies thatR,

. | o . .
is of the form R, =V OZX 21 U, with V,U unimodular.
o X W

Therefore % admits the kernel representation

d d ,
5 (§ou(§)on ()0

leading to 3.
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The detectability theorem

Theorem

The following are equivalent for Z ¢ £v11v2,
B CE* (R,R"L x R¥2),

1. wy IS detectable from wq In .

2. % has a kernel representationRy ($) w1 = R (&) Wa,
with rank (Ry(A)) =wafor A € {A’ € C | Real (A") > 0}.
3. %4 has a minimal kernel representation

d d d
H (a) W2— F (a) W]_, R(a) W:|_:O7

with H Hurwitz.

The nroof i< analoaotic to that of the oh<ervabhilitvy theorem . 4=



Recapitulation
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There exists tests for verifying the controllability of a
LTIDS.

A LTIDS is controllable if and only if it allows an image
representation.
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There exists tests for verifying the controllability of a
LTIDS.

A LTIDS is controllable if and only if it allows an image
representation.

There exists tests for verifying the stabilizability of a
LTIDS.
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There exists tests for verifying the controllability of a
LTIDS.

A LTIDS is controllable if and only if it allows an image
representation.

There exists tests for verifying the stabilizability of a
LTIDS.

Every LTIDS admits a decomposition as
controllable & autonomous.
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There exists tests for verifying the controllability of a
LTIDS.

A LTIDS is controllable if and only if it allows an image
representation.

There exists tests for verifying the stabilizability of a
LTIDS.

Every LTIDS admits a decomposition as
controllable & autonomous.

The transfer function determines the controllable part
only.
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There exists tests for verifying the controllability of a
LTIDS.

A LTIDS is controllable if and only if it allows an image
representation.

There exists tests for verifying the stabilizability of a
LTIDS.

Every LTIDS admits a decomposition as
controllable & autonomous.

The transfer function determines the controllable part
only.

There exists tests for verifying the observability and the
detectability of a LTIDS.
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End of Lecture VI
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