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Theme

First-principles models invariably contain latent (auxiliary)
variables in addition to the (manifest) variables the model
aims at.

In this lecture we study the emergence of latent variables and
their elimination for LTIDSs.
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Outline

◮ The emergence of latent variables in physical models
◮ Springs in series and in parallel
◮ A mechanical systems
◮ An RLC circuit

◮ The elimination theorem

◮ Modeling of RLC circuits using MNA (modified nodal
analysis)
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Springs in series and in parallel
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Interconnected springs
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FF

!! Model the relation betweenL and F !!
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Interconnected springs

L

FF
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FF

!! Model the relation betweenL and F !!

Typical force/length characteristic for a simple spring.

0

L∗

L

L

F

F

F

– p. 5/68



Springs in series

L

FF

L1

F1F1

L2

F2 F2

Model for (L,F) (assume that for the individual springs
the length is a function of the force):

L1 = ρ1(F1), L2 = ρ2(F2),

F = F1 = F2, L = L1 +L2.

(L,F): ‘manifest’ , (L1,F1,L2,F2): ‘latent’ variables.
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Springs in series

L

FF

L1

F1F1

L2

F2 F2

Model for (L,F) (assume that for the individual springs
the length is a function of the force):

L1 = ρ1(F1), L2 = ρ2(F2),

F = F1 = F2, L = L1 +L2.

(L,F): ‘manifest’ , (L1,F1,L2,F2): ‘latent’ variables.

After elimination of the latent variables: L = ρ1(F)+ρ2(F) .
Latent variables are easily eliminated in this case.
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Springs in series

L

FF

L1

F1F1

L2

F2 F2

Model for (L,F) (assume that for the individual springs
the length is a function of the force):

L1 = ρ1(F1), L2 = ρ2(F2),

F = F1 = F2, L = L1 +L2.

(L,F): ‘manifest’ , (L1,F1,L2,F2): ‘latent’ variables.

After elimination of the latent variables: L = ρ1(F)+ρ2(F) .
Latent variables are easily eliminated in this case.

Linear springs: L1 = L∗
1 +ρ1F1,L2 = L∗

2 +ρ2F2,

; L = L∗
1 +L∗

2 +(ρ1 +ρ2)F.
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Springs in parallel

L

FF

L1

F1F1

L2

F2 F2

Model for (L,F) (assume that for the individual springs
the length is a function of the force):

L1 = ρ(F1), L2 = ρ(F2),

F = F1 +F2, L = L1 = L2.

(L,F): ‘manifest’ , (L1,F1,L2,F2): ‘latent’ variables.
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Springs in parallel

L

FF

L1

F1F1

L2

F2 F2

Model for (L,F) (assume that for the individual springs
the length is a function of the force):

L1 = ρ(F1), L2 = ρ(F2),

F = F1 +F2, L = L1 = L2.

(L,F): ‘manifest’ , (L1,F1,L2,F2): ‘latent’ variables.
After elimination of the latent variables:

B = {(L,F) | ∃ α : L = ρ1(α) = ρ2(F −α)} .

Latent variables are not easily eliminated in this case.
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Springs in parallel

L

FF

L1

F1F1

L2

F2 F2

Model for (L,F) (assume that for the individual springs
the length is a function of the force):

L1 = ρ(F1), L2 = ρ(F2),

F = F1 +F2, L = L1 = L2.

(L,F): ‘manifest’ , (L1,F1,L2,F2): ‘latent’ variables.
After elimination of the latent variables:

B = {(L,F) | ∃ α : L = ρ1(α) = ρ2(F −α)} .

Latent variables are not easily eliminated in this case.
Linear springs: L1 = L∗

1 +ρ1F1,L2 = L∗
2 +ρ2F2,

; L = ρ2
ρ1+ρ2

L∗
1 + ρ1

ρ1+ρ2
L∗

2 + ρ1ρ2
ρ1+ρ2

F.
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What springs teach us

◮ First principles models invariably contain latent
variables, in addition the manifest variables the model
aims at.

◮ It may be impossible to eliminate latent variables, even
for simple models.

◮ Be careful about claiming what variable ‘causes’ what.
For a simple spring we may think of the force as causing
the length, but this situation is already not robust under
parallel connection of two such springs.
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What springs teach us

◮ First principles models invariably contain latent
variables, in addition the manifest variables the model
aims at.

◮ It may be impossible to eliminate latent variables, even
for simple models.

◮ Be careful about claiming what variable ‘causes’ what.
For a simple spring we may think of the force as causing
the length, but this situation is already not robust under
parallel connection of two such springs.

We now illustrate the emergence and elimination of latent
variables for a dynamical system.
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A mass-spring system
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Two masses connected by a spring

∆ + equilibrium length

mass1 mass2spring

!! Model the behavior of ∆!!
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Two masses connected by a spring

∆ + equilibrium length

mass1 mass2spring

!! Model the behavior of ∆!!

View as interconnection of 3 systems.

mass1 mass2spring
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Behavioral equations

Now interconnect:

F1 F2F ′
1 F ′

2

q′
1 q′

2 q2q1

∆ + L∗

m1 m2ρ

Constitutive equations:

m1
d2

dt2q1 = F1, m2
d2

dt2q2 = F2, q′1−q′2 = L∗−ρF ′
1, F ′

1 = F ′
2,

with m1 and m2 the masses,ρ the elasticity coefficient of the
spring, and L∗ is equilibrium length.
Assume that the spring operates in its linear regime.
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Behavioral equations

Now interconnect:

F1 F2F ′
1 F ′

2

q′
1 q′

2 q2q1

∆ + L∗

m1 m2ρ

Constitutive equations:

m1
d2

dt2q1 = F1, m2
d2

dt2q2 = F2, q′1−q′2 = L∗−ρF ′
1, F ′

1 = F ′
2,

Interconnection equations:
F1 = F ′

1, F2 +F ′
2 = 0, q1 = q′1 q2 = q′2.
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Behavioral equations

Now interconnect:

F1 F2F ′
1 F ′

2

q′
1 q′

2 q2q1

∆ + L∗

m1 m2ρ

Constitutive equations:

m1
d2

dt2q1 = F1, m2
d2

dt2q2 = F2, q′1−q′2 = L∗−ρF ′
1, F ′

1 = F ′
2,

Interconnection equations:
F1 = F ′

1, F2 +F ′
2 = 0, q1 = q′1 q2 = q′2.

Manifest variable:
∆ = q1−q2−L∗.
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Manifest behavior

F1 F2F ′
1 F ′

2

q′
1 q′

2 q2q1

∆ + L∗

m1 m2ρ

After elimination of the latent variables
F1,F2,F ′

1,F
′
2,q1,q2,q′1,q

′
2, the following equation is obtained for

the manifest variable∆

m1m2

m1 +m2

d2

dt2∆ +
1
ρ

∆ = 0.
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An RLC circuit
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RLC circuit
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Model the port behavior of this circuit!

– p. 14/68



RLC circuit
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Model the port behavior of this circuit!

Manifest variables: V , the port voltage, andI, the port
current.

T = R,W = R2, w =

[

V
I

]

.
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Choice of latent variables

To model this circuit, we use nodal analysis.
Associate a digraph with the circuit:

��

��

R
L

C

C

LR

�
�
�
�

��

+

–

V

I

;
e

4

f

b

c
1

32

a

d
��
��
��
��

��
��
��
��

��

�
�
�
�

Latent variables: potentials of vertices, currents in edges:

(E1,E2,E3,E4),(Ia, Ib, Ic, Id, Ie, I f ).
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Behavioral equations

KCL: vertex 1: Ia + Ic + Id = 0,

vertex 2: Ic + Ie = 0,

vertex 3: Id + I f = 0,

vertex 4: Ib + Ie + I f = 0.
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Behavioral equations

KCL: vertex 1: Ia + Ic + Id = 0,

vertex 2: Ic + Ie = 0,

vertex 3: Id + I f = 0,

vertex 4: Ib + Ie + I f = 0.

Constitutive
equations:

edge c: E2−E1 = RCIc,

edge d: E3−E1 = L
d
dt

Id,

edge e: C
d
dt

(E2−E4) = Ie,

edge f: E3−E4 = RLI f .
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Behavioral equations

KCL: vertex 1: Ia + Ic + Id = 0,

vertex 2: Ic + Ie = 0,

vertex 3: Id + I f = 0,

vertex 4: Ib + Ie + I f = 0.

Constitutive
equations:

edge c: E2−E1 = RCIc,

edge d: E3−E1 = L
d
dt

Id,

edge e: C
d
dt

(E2−E4) = Ie,

edge f: E3−E4 = RLI f .

Manifest
variables:

port voltage: V = E1−E4,

port current: I = Ia.
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Behavioral equations

In total, 10 latent variables: (E1,E2,E3,E4, Ia, Ib, Ic, Id, Ie, I f ),

2 manifest variables: (V, I),

and 10 equations.
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Behavioral equations

In total, 10 latent variables: (E1,E2,E3,E4, Ia, Ib, Ic, Id, Ie, I f ),

2 manifest variables: (V, I),

and 10 equations.

Which equations govern(V, I) ?

A straightforward calculation (left as an exercise) leads to the
following answer.
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The port behavior

The port behavior is described by the following ODE:

Case 1: CRC 6= L
RL

(

RC

RL
+

(

1+
RC

RL

)

CRC
d
dt

+CRC
L

RL

d2

dt2

)

V

=

(

1+CRC
d
dt

)(

1+
L

RL

d
dt

)

RC I

Case 2: CRC = L
RL

(

RC

RL
+CRC

d
dt

)

V =

(

1+CRC
d
dt

)

RC I
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The port behavior

◮ The behavioral equations after elimination tellexactly
what the port behavior is.
There are no hidden assumptions.

◮ Next, we prove that complete elimination of the latent
variables is always possible in the class of linear constant
coefficient differential equations.

It is a theorem!
The RLC circuit illustrates this in a particular example.

◮ The different cases show that elimination is not a trivial
matter. The order of the differential equation may
chance with the element values, etc.
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Representations of behaviors
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Kernels and projections

A model B is a subset of a universumU .
There are many ways to specify a subset. For example,

◮ as the set of solutions of equations,

◮ as a projection.
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Kernels and projections

A model B is a subset of a universumU .
There are many ways to specify a subset. For example,

◮ as the set of solutions of equations:

f : U →•, B = {w ∈ U | f (w) = 0},

◮ as a projection:
Bextended⊆ U ×L ,

B = {w ∈ U | ∃ ℓ ∈ L such that (w, ℓ) ∈ Bextended}.
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Kernels and projections

A model B is a subset of a universumU .
There are many ways to specify a subset. For example,

◮ as solutions of equations: kernel representation

f : U →•, B = {w ∈ U | f (w) = 0},

◮ as a projection: latent variable representation

B = {w ∈ U | ∃ ℓ ∈ L such that (w, ℓ) ∈ Bextended},

w’s ‘manifest’ variables: the variables the model aims at,
ℓ’s ‘latent’ variables: auxiliary variables.
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Projection

◮ as a projection: latent variable representation

B = {w ∈ U | ∃ ℓ ∈ L such that (w, ℓ) ∈ Bextended},

U

L

B

Bextended

projection
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The elimination theorem

– p. 23/68



Elimination problem

Assume that the (equations specifying the) extended behavior
Bextendedhas a certain structure.

Does the manifest behaviorB retain this structure?
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Elimination problem

Assume that the (equations specifying the) extended behavior
Bextendedhas a certain structure.

Does the manifest behaviorB retain this structure?

‘Structure’: linearity, open, closed, (semi-)algebraic variety,
polyhedron, solution set of ODEs, behavior of LTIDS, ...
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Elimination problem

Assume that the (equations specifying the) extended behavior
Bextendedhas a certain structure.

Does the manifest behaviorB retain this structure?

‘Structure’: linearity, open, closed, (semi-)algebraic variety,
polyhedron, solution set of ODEs, behavior of LTIDS, ...

We have illustrated the emergence of latent variables,
and their elimination in a few examples.
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Examples

◮ Bextendedopen⇒ B open.
Bextendedclosed; B closed.
Bextendedalgebraic variety ; B algebraic variety.
Bextendedsemi-algebraic⇒ B semi-algebraic.
Bextendedpolyhedron⇒ B polyhedron.
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Examples

◮ Bextendedopen⇒ B open.
Bextendedclosed; B closed.
Bextendedalgebraic variety ; B algebraic variety.
Bextendedsemi-algebraic⇒ B semi-algebraic.
Bextendedpolyhedron⇒ B polyhedron.

◮ Bextendedlinear ⇒ B linear.
Bextendedtime-invariant ⇒ B time-invariant.
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Examples

◮ Bextendedopen⇒ B open.
Bextendedclosed; B closed.
Bextendedalgebraic variety ; B algebraic variety.
Bextendedsemi-algebraic⇒ B semi-algebraic.
Bextendedpolyhedron⇒ B polyhedron.

◮ Bextendedlinear ⇒ B linear.
Bextendedtime-invariant ⇒ B time-invariant.

◮ Bextendeddifferential ⇒ B differential ?

◮ BextendedLTIDS ⇒ B LTIDS ?
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Projection

Consider the dynamical systemΣ = (T,W1×W2,B).

Define the projection Σ1 = (T,W1,B1) with

B1 = {w1 : T → W1 | ∃ w2 : T → W2 such that (w1,w2) ∈ B}.

In the LTIDS case,B ∈ L w1+w2, B ⊆ C ∞ (R,Rw1+w2) .

Therefore, B1 ⊆ C ∞ (R,Rw1).
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Projection

Consider the dynamical systemΣ = (T,W1×W2,B).

Define the projection Σ1 = (T,W1,B1) with

B1 = {w1 : T → W1 | ∃ w2 : T → W2 such that (w1,w2) ∈ B}.

In the LTIDS case,B ∈ L w1+w2, B ⊆ C ∞ (R,Rw1+w2) .

Therefore, B1 ⊆ C ∞ (R,Rw1).

The question which we consider is if, whenΣ is a LTIDS,
Σ1 is also a LTIDS. In other words,

[[B ∈ L w1+w2]] ⇒ [[B1 ∈ L w1]]?
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In a picture

Rw1

Rw2

C ∞ (R,Rw1)

C ∞ (R,Rw1+w2)

B

B1

projection

[[B ∈ L w1+w2]] ⇒ [[B1 ∈ L w1]]?
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Elimination theorem

Theorem

L • is closed under projection, that is,

[[B ∈ L w1+w2]] ⇒ [[B1 ∈ L w1]].
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Elimination theorem

Theorem

L • is closed under projection, that is,

[[B ∈ L w1+w2]] ⇒ [[B1 ∈ L w1]].

With
R1

(

d
dt

)

w1 = R2

(

d
dt

)

w2

a kernel representation ofB, and

R

(

d
dt

)

w1 = 0

a kernel representation ofB1, we think of this theorem as
‘elimination’ of the variablesw2 from the equations.
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Proof in telegram-style

◮ Let R1
(

d
dt

)

w1 = R2
(

d
dt

)

w2 be a kernel representation of
B.

◮ Note that it can be assumed, without loss of generality,
that R2 is in Smith form,

R2 =

[

R′
2

R′′
2

]

=

[

diag(d1,d2, . . . ,dr) 0r×(n2−r)

0(n1−r)×r 0(n1−r)×(n2−r)

]

,

with d1,d2, , . . . ,dr 6= 0.
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Proof in telegram-style

◮ Let R1
(

d
dt

)

w1 = R2
(

d
dt

)

w2 be a kernel representation of
B.

◮ Note that it can be assumed, without loss of generality,
that R2 is in Smith form,

R2 =

[

R′
2

R′′
2

]

=

[

diag(d1,d2, . . . ,dr) 0r×(n2−r)

0(n1−r)×r 0(n1−r)×(n2−r)

]

,

with d1,d2, , . . . ,dr 6= 0.

◮ Observe thatR′
2

(

d
dt

)

is a surjective operator (see
Proposition 4 of the section on differential operators).
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Proof in telegram-style

◮ Let R1
(

d
dt

)

w1 = R2
(

d
dt

)

w2 be a kernel representation of
B.

◮ Note that it can be assumed, without loss of generality,
that R2 is in Smith form,

R2 =

[

R′
2

R′′
2

]

=

[

diag(d1,d2, . . . ,dr) 0r×(n2−r)

0(n1−r)×r 0(n1−r)×(n2−r)

]

,

with d1,d2, , . . . ,dr 6= 0.

◮ Observe thatR′
2

(

d
dt

)

is a surjective operator (see
Proposition 4 of the section on differential operators).

◮ Partition R1 =

[

R′
1

R′′
1

]

conformably to R2 =

[

R′
2

R′′
2

]

.

Then R′′
1

(

d
dt

)

w1 = 0 is a kernel representation ofB1.
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Applications of the elimination theorem

◮ Elimination of state variables (x) in input/state/output
systems:

d
dt

x = Ax+Bu,y = Cx+Du, ; P

(

d
dt

)

y = Q

(

d
dt

)

u.

◮ Elimination of nuisance variables (x) in DAEs:

E
d
dt

x = Ax+Bw ; R

(

d
dt

)

w = 0.
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Applications of the elimination theorem

◮ Elimination of state variables (x) in input/state/output
systems:

d
dt

x = Ax+Bu,y = Cx+Du, ; P

(

d
dt

)

y = Q

(

d
dt

)

u.

◮ Elimination of nuisance variables (x) in DAEs:

E
d
dt

x = Ax+Bw ; R

(

d
dt

)

w = 0.

◮ Elimination of latent variables (ℓ):

R

(

d
dt

)

w = M

(

d
dt

)

ℓ ; R′

(

d
dt

)

w = 0.
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Applications of the elimination theorem

◮ Elimination of state variables (x) in input/state/output
systems:

d
dt

x = Ax+Bu,y = Cx+Du, ; P

(

d
dt

)

y = Q

(

d
dt

)

u.

◮ Elimination of nuisance variables (x) in DAEs:

E
d
dt

x = Ax+Bw ; R

(

d
dt

)

w = 0.

◮ Elimination of latent variables (ℓ):

R

(

d
dt

)

w = M

(

d
dt

)

ℓ ; R′

(

d
dt

)

w = 0.

◮ L • is closed under

intersection, addition (see Exercise III.3), and projection .
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Applications of the elimination theorem

For the RLC circuit, KCL, the constitutive equations, and the
manifest variable assignment: all linear constant-coefficient
differential equations — most of them algebraic equations
(zero-th order), but linear constant-coefficient differential
equations nevertheless.

Elimination theorem ⇒ the latent variables (the potentials of
the vertices and the currents in the edges) can be completely
eliminated. ⇒ the port behavior is described by linear
constant-coefficient differential equations.

Since there are 2 real port variables, there could be 0, 1, or 2
differential equations that govern the port behavior. We
derived that the behavior is described byone the differential
equation. To prove that there is exactly one for a minimal
kernel representation for the port behavior requires use ofthe
passivity properties of the circuit elements.
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Elimination algorithm
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Algorithm

◮ Start with (R1,R2) ∈ R [ξ ]•×•,
parametrizing the LTIDS R1

(

d
dt

)

w1 = R2
(

d
dt

)

w2.

Problem: computeR′
1 ∈ R [ξ ]•×•,

parametrizing the projected LTIDS R′
1

(

d
dt

)

w1 = 0,

with w2 eliminated.
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Algorithm

◮ Start with (R1,R2) ∈ R [ξ ]•×•,

Problem: computeR′
1 ∈ R [ξ ]•×•,

◮ The set

{ f ∈ R [ξ ]1×rowdimension(R2) | f R2 = 0}

is called theleft syzygy of R2.
It is obviously an R [ξ ]-module.

Compute a basis for the left syzygy ofR2. Let F be a
matrix whose rows form a basis for this syzygy.
Computing such a basis is a standard problem in
computer algebra.
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Algorithm

◮ Start with (R1,R2) ∈ R [ξ ]•×•,

Problem: computeR′
1 ∈ R [ξ ]•×•,

◮ Compute a basis for the left syzygy ofR2. Let F be a
matrix whose rows form a basis for this syzygy.
Computing such a basis is a standard problem in
computer algebra.

◮ R′
1 = FR1.
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Modeling RLC circuits
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Notions from graph theory
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Graphs

A graph is one of the most useful notions from mathematics,
with applications in almost every applied area.

It is instructive to think of a graph as a set of points, called
vertices, and lines, callededges, connecting pairs of points.
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The formal definition is a follows.
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Graphs

A graph G is defined as

G = (V,E, f )

with V the finite set of vertices, E the finite set of edges,

f the incidence map;
f maps each elemente ∈ E into an
unordered pair f (e) = [v1,v2] with v1,v2 ∈ V.

If f (e) = [v1,v2], then we callv1 and v2 incident to e ∈ E.

Notation: {a,b} = the set with elementsa and b;
{a,b} = {b,a} and, if a = b, {a,b} = {a}.

(a,b) = the ordered pair of elementsa and b;
(a,b) 6= (b,a) unlessa = b.

[a,b] = the unordered pair of elementsa,b; [a,b] = [b,a].
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Example
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e1 e2

e3 e4

v1

v2 v3

v4

V = {v1,v2,v3,v4},
E = {e1,e2,e3,e4},
f : e1 7→ [v1,v2],e2 7→ [v1,v3],e3 7→ [v2,v4],e4 7→ [v3,v4].
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Incidence matrix

The edgee is called aself-loop if f (e) = [v,v].

A convenient way of specifying a graph without self-loops in
mathematical notation is by its incidence matrix.

The incidence matrix is a matrix of 0’s and 1’s
having |V| rows and |E| columns,
with (k, ℓ)-th element

= 1 if the ℓ-th edge is incident to thek-th vertex,
= 0 otherwise.

Notation: |S| = the cardinality of the setS.
If S is finite, then the cardinality = the number of elements.
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Incidence matrix

A convenient way of specifying a graph without self-loops in
mathematical notation is by its incidence matrix.

The incidence matrix is a matrix of 0’s and 1’s
having |V| rows and |E| columns,
with (k, ℓ)-th element

= 1 if the ℓ-th edge is incident to thek-th vertex,
= 0 otherwise.

For our example, the incidence matrix equals










1 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1











.
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Digraphs

A directed graph is a graph in which each edge is assigned a
direction. Think of a digraph as a set of points and lines with
arrows pointing from one edge to another.
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The formal definition is as follows.
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Digraphs

A directed graph, or digraph, G is defined as

G = (V,E, f )

with V the finite set of vertices, E the finite set of edges,

f the incidence map;
f maps each elemente ∈ E into
an orderedpair f (e) = (v1,v2) with v1,v2 ∈ V.

If f (e) = (v1,v2), then we callv1 and v2 incident to e ∈ E.
v1 is the source of e and v2 is the sink of e.
We think of e as being directed fromv1 to v2.

The edgee is called aself-loop if f (e) = (v,v).
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Example
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e1 e2

e3 e4

v1

v2 v3

v4

V = {v1,v2,v3,v4},
E = {e1,e2,e3,e4},
f : e1 7→ (v1,v2),e2 7→ (v1,v3),e3 7→ (v2,v4),e4 7→ (v3,v4).
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Incidence matrix

A convenient way of specifying a digraph without self-loopsis
by its incidence matrix.

The incidence matrix is a matrix of 0’s, +1’s, and−1’s
having |V| rows and |E| columns,
with (k, ℓ)-th element

= +1 if the k-th vertex is the source for theℓ-th edge,
= −1 if the k-th vertex is the sink for the ℓ-th edge,
= 0 otherwise.

Caveat:
Sometimes the opposite convention for+1 and−1 is used!
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Incidence matrix

A convenient way of specifying a digraph without self-loopsis
by its incidence matrix.

The incidence matrix is a matrix of 0’s, +1’s, and−1’s
having |V| rows and |E| columns,
with (k, ℓ)-th element

= +1 if the k-th vertex is the source for theℓ-th edge,
= −1 if the k-th vertex is the sink for the ℓ-th edge,
= 0 otherwise.

For our example, the incidence matrix equals










+1 +1 0 0
−1 0 +1 0
0 −1 0 +1
0 0 −1 −1











.
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Graph with leaves

A graph with leaves is like an ordinary graph except that
some of the edges are incident to only one vertex. Think of a
graph with leaves as a set of points, calledvertices, lines,

called edges, connecting pairs of points, andleaves, that
connect to one point only.
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The formal definition is a follows.
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Graph with leaves

A graph with leaves G is defined as

G = (V,E,L, fE, fL)

with V,E, and fE, the edge incidence map, defined as for
graphs,
L the finite set of edges,
fL, the edge incidence map, maps each elementℓ ∈ L into an
element fL(ℓ) ∈ V.

If fL(ℓ) = v, then we callℓ ∈ L incident to e ∈ E.
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Example
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ℓ1

ℓ2

e1 e2

e3 e4

v1

v2 v3

v4

V = {v1,v2,v3,v4},E = {e1,e2,e3,e4},L = {ℓ1, ℓ2},
fE : e1 7→ (v1,v2),e2 7→ (v1,v3),e3 7→ (v2,v4),e4 7→ (v3,v4),
fL : ℓ1 7→ v1, ℓ2 7→ v4.
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Incidence matrices

A convenient way of specifying a graph with leaves without
self-loops is by its incidence matrices.

The edge incidence matrix AE is defined as for graphs,

the leaf incidence matrix AL is a matrix of 0’s and 1’s having
|V| rows and |L| columns, with (k, ℓ)-th element

= 1 if the ℓ-th leaf is incident to thek-th vertex,
= 0 otherwise.
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Incidence matrices

A convenient way of specifying a graph with leaves without
self-loops is by its incidence matrices.

The edge incidence matrix AE is defined as for graphs,

the leaf incidence matrix AL is a matrix of 0’s and 1’s having
|V| rows and |L| columns, with (k, ℓ)-th element

= 1 if the ℓ-th leaf is incident to thek-th vertex,
= 0 otherwise.

For our example, the incidence matrices equal

AE =











1 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1











, AL =











1 0
0 0
0 0
0 1











.
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Digraph with leaves

A digraph with leaves is like an ordinary graph with leaves
except that each edge and leaf is assigned a direction.
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The formal definition is a follows.
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Digraph with leaves

A digraph with leaves G is defined as

G = (V,E,L, fE, fL)

with V,E, and fE, the edge incidence map, defined as for
graphs,
fL, the edge incidence map, maps each elementℓ ∈ L into an
element fL(ℓ) ∈ V, and assigns to each leafℓ a direction,
either away from the vertex fL(ℓ), in which case the vertex is
called thesource of ℓ, or into the vertex fL(ℓ), in which case
the vertex is called thesink of ℓ.
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Example
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ℓ1

ℓ2

e1 e2

e3 e4

v1

v2 v3

v4

V = {v1,v2,v3,v4},E = {e1,e2,e3,e4},L = {ℓ1, ℓ2},
fE : e1 7→ (v1,v2),e2 7→ (v1,v3),e3 7→ (v2,v4),e4 7→ (v3,v4),
fL : ℓ1 7→ v1 (sink), ℓ2 7→ v4 (sink).
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Incidence matrices

A convenient way of specifying a digraph with leaves without
self-loops is by its incidence matrices.

The edge incidence matrix AE is defined as for digraphs,

the leaf incidence matrix AL is a matrix of 0’s, +1’s, and
−1’s, having |V| rows and |L| columns, with (k, ℓ)-th element

= +1 if the ℓ-th leaf is incident to thek-th vertex, a source,
= −1 if the ℓ-th leaf is incident to thek-th vertex, a sink,
= 0 otherwise.
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Incidence matrices

A convenient way of specifying a digraph with leaves without
self-loops is by its incidence matrices.

The edge incidence matrix AE is defined as for digraphs,

the leaf incidence matrix AL is a matrix of 0’s, +1’s, and
−1’s, having |V| rows and |L| columns, with (k, ℓ)-th element

= +1 if the ℓ-th leaf is incident to thek-th vertex, a source,
= −1 if the ℓ-th leaf is incident to thek-th vertex, a sink,
= 0 otherwise.

For our example, the incidence matrices equal

AE =











+1 +1 0 0
−1 0 +1 0
0 −1 0 +1
0 0 −1 −1











, AL =











−1 0
0 0
0 0
0 −1











.
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The interaction variables
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Circuits

We view an electrical as a device, with a finite number of
wires, calledterminals, sticking out of it. The electrical circuit
interacts with its environment through these terminals.

circuit

Electrical

terminals
1

2N

k

Modeling the electrical circuit means coming up with a
specification of this interaction.
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Circuits

We view an electrical as a device, with a finite number of
wires, calledterminals, sticking out of it. The electrical circuit
interacts with its environment through these terminals.

circuit

Electrical

terminals
1

2N

k

Modeling the electrical circuit means coming up with a
specification of this interaction.

How do we describe this interaction?
What are the interaction variables?
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Voltages and currents

circuit

Electrical

circuit

Electrical

terminals
1

2N

k

Ik1

Ik2 Vk1,k2

Vk2,k1

The natural choice is to take for the interaction variables

◮ the currents into the circuit along the terminals,

◮ the voltages across the terminals.
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Voltages and currents

circuit

Electrical

circuit

Electrical

terminals
1

2N

k

Ik1

Ik2 Vk1,k2

Vk2,k1

This leads to the following terminal variables

I1, I2, . . . , IN,

V1,1,V1,2, . . . ,V1,N ,V2,1,V2,2, . . . ,V2,N , . . . ,VN,1,VN,2, . . . ,VN,N ,

with Ik = the current flowing into the circuit along terminal k,
Vk1,k2 = the voltage between terminalk1 and k2.
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Voltages and currents

circuit

Electrical

circuit

Electrical

terminals
1

2N

k

Ik1

Ik2 Vk1,k2

Vk2,k1

As sign convention we take

Ik > 0 if along terminal k the current flows into the circuit,
Vk1,k2 > 0 if the voltage drop from terminal k1 to k2 is positive.
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The voltage/current behavior

Organizing these variables as vectors and matrices leads to

I =

















I1

I2
...

IN

















, V =

















V1,1 V1,2 · · · V1,N

V2,1 V2,2 · · · V2,N

...
... · · ·

...

VN,1 VN,2 · · · VN,N

















.

; the dynamical systemΣ =
(

R,RN ×RN×N ,BIV
)

.

(I,V ) ∈ BIV means that the trajectory of currents and
voltages(I,V ) : R → RN ×RN×N is compatible with the circuit
architecture and its element values.
The aim of circuit modeling is to specifyBIV .

The subscript in BIV refers to the choice of currents and voltages as the variables
that describe the interaction. We will see other choices of terminal variables soon.
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Kirchhoff’s laws

Gustav Kirchhoff
(1824-1887)

The behaviorBIV is said to satisfy
Kirchhoff’s current law (KCL) if

[[(I,V ) ∈ BIV ]] ⇒ [[ I1 + I2 + · · ·+ IN = 0 ]],

and Kirchhoff’s voltage law (KVL) if

[[(I,V ) ∈ BIV and k1,k2, . . . ,kn ∈ {1,2, . . . ,N}]]

⇒ [[ Vk1,k2 +Vk2,k3 + · · ·+Vkn−1,kn +Vkn,k1 = 0 ]].

KCL means that the circuit stores no net charge, while KVL
means that the sum of the voltage drops across a cycle is zero.

– p. 52/68



Potentials

KVL allows to reduce the number of interaction variables
greatly by introducing potentials.
The underlying idea follows from the proposition below.

Let K ⊂ RN×N and e ∈ RN be defined as follows

K = {M ∈ R
N×N | Mk1,k2 +Mk2,k3 + · · ·+Mkn−1,kn +Mkn,k1 = 0

for all k1,k2, . . . ,kn ∈ {1,2, . . . ,N} },

e =













1
1
...
1













.
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Potentials

KVL allows to reduce the number of interaction variables
greatly by introducing potentials.
The underlying idea follows from the proposition below.

Proposition: Define the mapL : RN → RN×N by

L : P 7→ Pe⊤− eP⊤.

There holds

image(L) = K and kernel(L) = span(e) .

This proposition implies that for each M ∈ K , there exists
P ∈ RN such that

M = Pe⊤− eP⊤, i.e.,Mk,ℓ = Pk−Pℓ

and, if P RN is such a vector, so isP+αe for all α R.
– p. 53/68



Potentials

KVL allows to reduce the number of interaction variables
greatly by introducing potentials.
The underlying idea follows from the proposition below.

Assume thatBIV satisfies KVL. Then we can express
V (t) : R → RN×N asV (t) = P(t)e⊤− eP(t)⊤ for some
P : R → RN. Call Pk the potential of terminak k. The voltages
are related to the potentials by

Vk1,k2 = Pk1 −Pk2.
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Potentials

KVL allows to reduce the number of interaction variables
greatly by introducing potentials.
The underlying idea follows from the proposition below.

It follows that (assuming KVL) we can take for the interaction
variables

◮ the currents into the circuit along the terminals,

◮ the potentials of the terminals.

This leads to the dynamical systemΣ =
(

R,RN ×RN,B
)

.

(I,P) ∈ BIV means that the trajectory of currents and
potentials (I,P) : R → RN ×RN is compatible with the circuit
architecture and its element values.
The aim of circuit modeling is to specifyB.
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Electrical circuit

Summarizing, we arrive at the following alternative definition
of a circuit behavior. We use this definition in the sequel.

circuitcircuit

Electrical Electrical

terminals
1

2N

k

I1 I2
IN

Ik

V1

V2
VN

Vk

At each terminal:
a potential (!) and a current (counted > 0 into the circuit),
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Electrical circuit

Summarizing, we arrive at the following alternative definition
of a circuit behavior. We use this definition in the sequel.

circuitcircuit

Electrical Electrical

terminals
1

2N

k

I1 I2
IN

Ik

V1

V2
VN

Vk

At each terminal:
a potential (!) and a current (counted > 0 into the circuit),

; behavior B ⊆
(

RN ×RN
)R

.

(V1,V2, . . . ,VN , I1, I2, . . . , IN) ∈ B means:
this potential/current trajectory is compatible with
the circuit architecture and its element values.
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Kirchhoff’s laws

Gustav Kirchhoff
(1824-1887)

Kirchhoff’s laws now take the following form.
The behaviorB satisfies
Kirchhoff’s current law (KCL) if

[[(I,P) ∈ B]] ⇒ [[ I1 + I2 + · · ·+ IN = 0 ]],

and Kirchhoff’s voltage law (KVL) if

[[(I,P) ∈ B and α : R → R]] ⇒ [[ (I,P+αe) ∈ B ]].

KCL means that the circuit stores no net charge, while KVL
means that the potentials are defined only up to an additive
constant (that may change in time).
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Circuit specification
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Circuit architecture

We now explain how one can formally describe a circuit.

Some of the aspects of our formalization take into account
that we are only interested in describing linear passive RLC
circuits. The ideas are applicable to more general situations,
but some details have to be adapted.
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Circuit architecture

We now explain how one can formally describe a circuit.

An RLC circuit is defined through its architecture, a digraph
with leaves,

G = (V,E,L, fE, fL) .

Assume that the leaves are all sinks, in the sense that they are
incident towards a vertex.

The circuit elements (R’s, L’s, and C’s) are imbedded in the
edges, the vertices correspond to connectors, and the leaves
correspond to the terminals by which the circuit interacts
with its environment.
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Circuit architecture

We now explain how one can formally describe a circuit.

An RLC circuit is defined through its architecture, a digraph
with leaves,

G = (V,E,L, fE, fL) .

Assume that the leaves are all sinks, in the sense that they are
incident towards a vertex.

and its element specification. This assigns to each vertex,
either a resistance valueR ≥ 0,
or an inductance valueL > 0,
or a capacitance valueC > 0.
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Example

For the 2-terminal circuit
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Example

For the 2-terminal circuit, the circuit architecture is
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e1 e2

e3 e4

v1

v2 v3

v4
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Example

For the 2-terminal circuit, the circuit architecture is
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ℓ1

ℓ2

e1 e2

e3 e4

v1

v2 v3

v4

and the element specification is

e1 7→ resistanceRC,

e2 7→ inductanceL,

e3 7→ capacitanceC,

e4 7→ resistanceRL.
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Circuit equations
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Mathematical circuit specification

Obtain 4 matrices from the circuit description:

◮ AE, the edge incidence matrix, a |V|× |E| matrix having values+1,
−1, and 0,

◮ AL, the leaf incidence matrix, a |V|× |L| matrix, having values+1

and 0,

◮ Z, the impedance matrix, a |E|× |E| diagonal polynomial matrix with

Z(ξ )k,k =















Rk if a resistor with value Rk is in edgeek,

Lkξ if an inductor with value Lk is in edgeek,

1 otherwise,

◮ Y , the admittance matrix, a |E|× |E| diagonal polynomial matrix with

Y (ξ )k,k =







Ckξ if an capacitor with value Ck is in edgeek,

1 otherwise.
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Mathematical circuit specification

From these 4 matrices, we obtain directly the circuit equations. These
involve asmanifest variables, the terminal currents and potentials

I =

















I1

I2
...

IN

















and P =

















P1

P2

...

PN

















,

and aslatent variables, the edge currents, the edge voltages, and the vertex
potentials

IE =

















I1

I2
...

I|E|

















, VE =

















V1

V2

...

V|E|

















, and PV =

















P1

P2

...

P|V|

















.
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MNA

The circuit equations are

VE = A
⊤
E PV,

Z

(

d
dt

)

IE = Y

(

d
dt

)

VE,

AEIE +ALI = 0,

A
⊤
L PV +P = 0.
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MNA

The circuit equations are

VE = A
⊤
E PV,

Z

(

d
dt

)

IE = Y

(

d
dt

)

VE,

AEIE +ALI = 0,

A
⊤
L PV +P = 0.

The variablesVE can be eliminated immediately, leading to
the ‘modified nodal analysis’ circuit equations

Z
(

d
dt

)

IE = Y
(

d
dt

)

A⊤
E

PV,AEIE +ALI = 0,A⊤
L

PV +P = 0,

with (I,P) as manifest and(IE,PV) as latent variables.
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MNA
Equation

VE = A
⊤
E PV

relates the vertex potentials to the voltages across the edges;

Z

(

d
dt

)

IE = Y

(

d
dt

)

VE

expresses the constitutive laws of the resistors, inductors, and
capacitors in the edges;

AEIE +ALI = 0

is KCL for each of the vertices; and

A
⊤
L PV +P = 0

assigns the terminal potentials to the corresponding vertex
potentials.

– p. 63/68



ExampleFor
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we have

AE =















+1 +1 0 0

−1 0 +1 0

0 −1 0 +1

0 0 −1 −1















, AL =















−1 0

0 0

0 0

0 −1















.

Z(ξ ) =















RC 0 0 0

0 Lξ 0 0

0 0 1 0

0 0 0 RL















, Y (ξ ) =















1 0 0 0

0 1 0 0

0 0 Cξ 0

0 0 0 1















.
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Example

Leading to the MNA equations

RCIe1 = Pv1 −Pv2, L
d
dt

Ie2 = Pv1 −Pv3,

Ie1 = C
d
dt

(Pv2 −Pv4) , RLIe4 = Pv3 −Pv4;

I1 = Ie1 + Ie2, Ie2 = Ie3, Ie4 = Ie4, I2 = Ie1 + Ie2;

P1 = Pe1, P2 = Pe4.
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Example

Leading to the MNA equations

RCIe1 = Pv1 −Pv2, L
d
dt

Ie2 = Pv1 −Pv3,

Ie1 = C
d
dt

(Pv2 −Pv4) , RLIe4 = Pv3 −Pv4;

I1 = Ie1 + Ie2, Ie2 = Ie3, Ie4 = Ie4, I2 = Ie1 + Ie2;

P1 = Pe1, P2 = Pe4.

The MNA circuit equations can be set up in a straightforward
way. The manifest variables are the terminal currents and
potentials. MNA illustrates the systematic way in which
equations can be set up from first principles, with as choice of
latent variables are the vertex potentials and edge currents.
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Recapitulation
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Summary

◮ First principles models invariably contain latent
variables.

◮ It may or may not be possible to eliminate the latent
variables.
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Summary

◮ First principles models invariably contain latent
variables.

◮ It may or may not be possible to eliminate the latent
variables.

◮ The behavior of LTIDSs is closed under projection.
In LTIDSs latent variables can be completely eliminated.

◮ Elimination algorithms involve computing a set of
generators of a left syzygy.
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Summary

◮ First principles models invariably contain latent
variables.

◮ It may or may not be possible to eliminate the latent
variables.

◮ The behavior of LTIDSs is closed under projection.
In LTIDSs latent variables can be completely eliminated.

◮ Elimination algorithms involve computing a set of
generators of a left syzygy.

◮ The modeling of the terminal behavior of general RLC
circuits can be done by MNA.

◮ A crucial step in this modeling procedure is the choice of
latent variables.
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End of Lecture IV
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