European Embedded Control Institute

Graduate School on Control — Spring 2010

The Behavioral Approach to Modeling and Control

Lecture Xl

DETERMINISTIC IDENTIFICATION
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‘Modeling is forbidding’ ~» Most Powerful Unfalsified
Model.

Modeling from data = computing annihilators of Hankel
matrix.
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vV v v v Vv Y

Modeling from data: a language,

The Most Powerful Unfalsified Model;
Modeling discrete-time data;

The Hankel matrix;

Annihilators;

Recursive computation of the MPUM.
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This lecture deals withexactdata, i.e. not corrupted by noise.
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This lecture deals withexactdata, i.e. not corrupted by noise.

Problem: computing from an exact time-seriesw a lineatrr,
time-invariant model.

E.g. in discrete-time, pass from
w(0),w(1),---
to a kernel representation

Row(t) +---+Rw(t+L)=0
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This lecture deals withexactdata, i.e. not corrupted by noise.

Problem: computing from an exact time-seriesw a lineatrr,
time-invariant model.

E.g. in discrete-time, pass from
w(0),w(1),---
to a kernel representation

Row(t) +---+Rw(t+L)=0

iNO noise, no stochastics!
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Modeling from data: a language




Reminder: events, variables, universun

Physical phenomenon- ‘outcomes’, events
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Reminder: events, variables, universun

Physical phenomenon- ‘outcomes’, events

Events are described by variables
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Reminder: events, variables, universun

Physical phenomenon- ‘outcomes’, events

Events are described by variables

Example: modeling a resistor

Attributes ~» (voltage, current) ~» R?
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Reminder: events, variables, universun

Physical phenomenon- ‘outcomes’, events

Events are described by variables

Example: modeling a gas

: 3
Attributes ~ (pressure, temperature,volumej- R2
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Reminder: events, variables, universun

Physical phenomenon- ‘outcomes’, events
Events are described by variables

Dynamical phenomena : events are maps fror time space to
variables space

The set of all such maps is the¢universum %
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Reminder: events, variables, universun

Physical phenomenon- ‘outcomes’, events
Events are described by variables

Dynamical phenomena : events are maps fror time space to
variables space

The set of all such maps is the¢universum %

Example: modeling a resistor

7 ={vD)e®)"}

where (RZ)R = {f:R —R?}

—D. 6/2¢€



Reminder: events, variables, universun

Physical phenomenon- ‘outcomes’, events
Events are described by variables

Dynamical phenomena : events are maps fror time space to
variables space

The set of all such maps is the¢universum %

Example: modeling a share value

U = {V e (R+)N}

a discrete-timephenomenon
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Every “good” scientific theory is prohibition: it forbids ce r-
tain things to happen...

K. Popper, Conjectures and Refutations: The Growth of Scientific
Knowledge Routhledge, 1963
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Every “good” scientific theory is prohibition: it forbids ce r-
tain things to happen...

K. Popper, Conjectures and Refutations: The Growth of Scientific
Knowledge Routhledge, 1963

Not all events in% are possible: physics of phenomenon must
be complied with!

A model £ iIs a subset of%/, chosen from a model class.#Z
representinga priori knowledge/assumptions
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Not all events in%/ are possible: physics of phenomenon must
be complied with!

A model £ is a subset o/, chosen from a model class.#Z
representinga priori knowledge/assumptions

Example: Ohm’s resistor

v = {(Vv,)e®)"}
M = {BCw|IReR st (V) e Z=—V =RI}
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Not all events in%/ are possible: physics of phenomenon must
be complied with!

A model £ is a subset o/, chosen from a model class.#Z
representinga priori knowledge/assumptions

Example: Linear models

% = R
# = {Linear subspaces of% }
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The Most Powerful
Unfalsified Model




Modeling from data: the Most Powerful Unfalsified Model

The more a model forbids, the better it is.

K. Popper, Conjectures and Refutations: The Growth of Scientific
Knowledge Routhledge, 1963
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Modeling from data: the Most Powerful Unfalsified Model

The more a model forbids, the better it is.

K. Popper, Conjectures and Refutations: The Growth of Scientific
Knowledge Routhledge, 1963

%1 1s more powerful than %5 if #, C A>.

Fewer possible outcomes, more discriminating model, bette
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Modeling from data: the Most Powerful Unfalsified Model

%1 1s more powerful than % if #, C A>.
Fewer possible outcomes, more discriminating model, bette

Given measurementsD C %, model #Z is unfalsified by D if

DC %
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Modeling from data: the Most Powerful Unfalsified Model

%1 1s more powerful than % if #, C A>.
Fewer possible outcomes, more discriminating model, bette
Given measurementsD C %, model #Z is unfalsified by D if

DC %

Given D and .7, # i1s Most Powerful Unfalsified Model if
» A e . (l.e. admissible);
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Modeling from data: the Most Powerful Unfalsified Model

%1 1s more powerful than % if #, C A>.
Fewer possible outcomes, more discriminating model, bette
Given measurementsD C %, model #Z is unfalsified by D if

DC %

Given D and .7, # i1s Most Powerful Unfalsified Model if
> ABcMH:
» D C % (l.e. unfalsified);
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Modeling from data: the Most Powerful Unfalsified Model

%1 1s more powerful than % if #, C A>.
Fewer possible outcomes, more discriminating model, bette
Given measurementsD C %, model #Z is unfalsified by D if

DC %

Given D and .7, % is Most Powerful Unfalsified Model if
> BeH;

» DC%Z;

» B ec.#,DCHF — B (i.e. most powerful).
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Modeling from data: the Most Powerful Unfalsified Model

%1 1s more powerful than % if #, C A>.
Fewer possible outcomes, more discriminating model, bette

Given measurementsD C %, model #Z is unfalsified by D if

DC %

Given D and .7, % is Most Powerful Unfalsified Model if
> RBeH,

» DC%,

> B ec M, DCH — BCH.

Existence? Unigueness? Representations? Algorithms?
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Graphically

MPUM

Unfalsified

Falsified

OBSERVED DATA
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The intersection property

Example Consider

Y = R"
# = Linear subspaces ofR"

Given measurements
D= {W].)'" 7Wk}

MPUM is
span{w; |[i=1,--- k}

the intersection of all subspaces containing=£ unfalsified by)
data.
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The intersection property

Theorem: Assume that.# satisfies
» The Intersection property I.e.

//z’c/z:>< M @) c M
Be M’

» ForeachD € 2% there exists% ¢ .# such thatD C 4.

Then for eachD there exists aunique MPUM £*, namely

# = () X
HBe M, DCA
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The following are instances in which the intersection propgy
holds:

> 4 =27 whatever? is:
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The following are instances in which the intersection propgy
holds:

> 4 =27 whatever? is:

» U =R .# =1{V |V islinear subspace of/ };
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The following are instances in which the intersection propgy
holds:

» =27 whatever% is:
» U =R .# ={V |V islinear subspace of7 };

» % topological vector space, and model class is
A ={V |V is closed linear subspace o/ }.
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Dynamical modeling from data




Completeness

A discrete-time behavior % is complete if and only if
We X <— W!zmotl S %’,Z o] forall —oo <tpg<t] <o

where

(t1—to+1)w _
%Zﬂtotl ={veR | dw e Z s.t. Wiy oty = v}
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Completeness

A discrete-time behavior % is complete if and only if
We X <— W!zmotl S %’,Z o] forall —oo <tpg<t] <o

where

(t1—to+1)w _
%Zﬂ[totl ={veR | dw e Z s.t. Wiy oty = v}

What happens at+~ is of no consequence.
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Completeness

A discrete-time behavior % is L-complete if and only if

WE A <— W,Zm[ ]6“%)%[ ]forall teZ

tt+L tt+L
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Completeness

A discrete-time behavior % is L-complete if and only if

WE A <— W,Zm[ ]6“%)%[ ]forall teZ

tt+L tt+L
2 is locally specified

A L-complete <— 9% described by system
of difference equations of orderL
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Completeness

Theorem: A discrete-time behavior % is linear and complete

< itis a linear subspace of(R")? closedin the topology of
pointwise convergence.
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Completeness

Theorem: A discrete-time behavior % is linear and complete

+= itis alinear subspace of(R")% closedin the topology of
pointwise convergence.

Theorem: A discrete-time behavior £ is lineatr,
time-invariant, and complete

= itis alinear, shift-invariant subspace of R*)* closedin
the topology of pointwise convergence,

<= there existsR e R**¥|¢]| such thatZ = ker nel R(0).
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Time-series modeling

Problem: givenw-dimensional time series

W= {W(0),w(1), -}

find LTI complete behavior % containing w.
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Time-series modeling

Problem: givenw-dimensional time series

W= {W(0),w(1), -}

find LTI complete behavior % containing w.

Universum % = (R¥)*. Model class.# = .£".

¥ satisfies the intersection property: MPUM exists.
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Time-series modeling

Problem: givenw-dimensional time series

W= {W(0),w(1), -}

find LTI complete behavior % containing w.

Universum % = (R¥)*. Model class.Z = .. MPUM %*?
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Time-series modeling

Problem: givenw-dimensional time series
w = {w(0),w(1),- -

find LTI complete behavior % containing w.

Universum % = (R¥)*. Model class.Z = .. MPUM %*?

Any unfalsified model is shift-invariant: must contain

W

ow

oW

{W(O)7W(1)7 T
)’..
)’..

(1), w(
W(2),w(

2
3

}

}

'}
'}
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Time-series modeling

Problem: givenw-dimensional time series

W= {W(0),w(1), -}

find LTI complete behavior % containing w.

Universum % = (R¥)*. Model class.Z = .. MPUM %*?

Intersection of all linear unfalsified models yields

closure

#* = (span{w,ow, o°w, - -- })
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Time-series modeling

Problem: givenw-dimensional time series

w = {w(0),w(1),---}

find LTI complete behavior % containing w.

Universum % = (R¥)*. Model class.Z = .. MPUM %*?

Intersection of all linear unfalsified models yields

2

W, - })closure

#* = (span{w,ow,o

¢ What about representations?
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The Hankel matrix




The Hankel matrix

MPUM is subspace spanned by rows of

w0 w(D) w(t”) _
w(1) w(2) - w(t’"+1)
w(2) w(3) w(t"” 4 2)
T (W) i= : : : :
wt')  wit'+1) - wt'+t"-1)
wit'+1) wit'+2) -~ wt' +t")
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The Hankel matrix

MPUM is subspace spanned by rows of

w(0)  w(l) w(t”)
w(1) w(2) w(t” +1)
w(2) w(3) w(t” 4 2)
(W) 1= : : : :
wt')  wit'+1) - wt'+t"-1)
wit'+1) wit'+2) -~ wt' +t")

Constant along the block-antidiagonal: Hankel structure

—n. 17/2¢



The left kernel of 77 (w)

Let R(&) =Ro+Ryé +-- -+ R E- e RO¥V[€&].
ThenR(o)w =0~

w(0) w(1) w(t")
w(l) w(2) --- wt’"+1) -
[RO Rt --- RO } w(2) w(3) - wt’+2) - =0

Each row of {Ro RR -+ R O } IS an annihilator
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The left kernel of 77 (w)

Let R(&) =Ro+Ryé +-- -+ R E- e RO¥V[€&].
ThenR(o)w =0~

W(0) w(1) wit”) -
w(l) w(2) w(t” +1)
Ro R RO w2) w(3) - wit’+2) ...| 9
Each row of {Ro Rt -+ R O } IS an annihilator

Kernel representation of MPUM = left kernel of 77 (w)
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The left kernel of 77 (w)

Let R(&) =Ro+Ryé +-- -+ R E- e RO¥V[€&].
ThenR(o)w =0~

W(0) w(1) wit”) -
w(l) w(2) w(t” +1)
Ro R RO w2) w(3) - wit’+2) ...| 9
Each row of {Ro Rt -+ R O } IS an annihilator

Kernel representation of MPUM = left kernel of 77 (w)

Infinite dimensional problem? Not quite!
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Annihilators




Module structure of annihilators

Left kernel of JZ’(w) is closed under addition (a subspace!)...
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Module structure of annihilators

Left kernel of JZ’(w) is closed under addition (a subspace!)...

...and closed under shifting :

'o I

e

=

S = =
- N N N
N - (@)
N——" N——" N—r"
s S
N N N
w N -
N——" N——" N—r"

W(t//)
w(t” +1)
w(t” +2)
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Module structure of annihilators

Left kernel of JZ’(w) is closed under addition (a subspace!)...

...and closed under shifting :

O ro np

e

=

g = =
N B o
g = =
@ N B

W(t”)
w(t” +1)
w(t” +2)
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Module structure of annihilators

Left kernel of JZ’(w) is closed under addition (a subspace!)...

...and closed under shifting :

w(0) w(1) w(t")
w(l) w(2) w(t” 4+ 1)

O ro r;i --- r. 0 --.. —0
w(2) w(3) w(t” 4+ 2)

Associate polynomials with left kernel vectors:

[ro ri --- r. 0O ...}f\»r(E)::ro—|—r15—|—---—|—r|_€L

Thenr(&),ér(&),--- also represent left annihilators of 77 (w)

—n. 20/2¢



Module structure of annihilators

Denote the set of annihilators of 57 (w) with

N (AW)) = {ro+r1&+--+rn&" e RVV[E]
to f1 -ty O - € leftkemel £ (w)}

Then .4 (27 (w)) is a submodule ofR™¥[&] , and consequently

it is finitely generated : there existbasis elements
a1(&),---,ap(&) € R>V[&] such that for everyb € 4 (57 (w))

301(8),---,9p(&) € R[E] s.t. b(€ Zg|
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Module structure of annihilators

Denote the set of annihilators of 57 (w) with

N (AW)) = {ro+r1&+--+rn&" e RVV[E]
to f1 -ty O - € leftkemel £ (w)}

Then .4 (27 (w)) is a submodule ofR™¥[&] , and consequently

it is finitely generated : there existbasis elements
a1(&),---,ap(&) € R>V[&] such that for everyb € 4 (57 (w))

301(£),-+-,9p(&) € R[¢] s.t. b(& Zg|
Not quite “finite-dimensional”, but “almost”.
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Recursive computation
of the MPUM




Recursive computation of kernel representation of MPUM

Problem: givenw, find matrix Rsuch thatker nel R(o)=%*
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Recursive computation of kernel representation of MPUM

Problem: givenw, find matrix Rsuch thatker nel R(o)= %"
Equivalent formulation:

Problem: find basis for the submodule. 4" (¢ (w))

—n. 23/2¢



Recursive computation of kernel representation of MPUM

Problem: givenw, find matrix Rsuch thatker nel R(o)=%*
Equivalent formulation:

Problem: find basis for the submodule. 4" (¢ (w))

Basic idea compute annihilators one by one, at each step
using the previous annihilators in order to get a new one.
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Recursive computation of kernel representation of MPUM

Problem: givenw, find matrix Rsuch thatker nel R(o)=%*
Equivalent formulation:

Problem: find basis for the submodule. 4" (¢ (w))

Basic idea compute annihilators one by one, at each step
using the previous annihilators in order to get a new one.

Basic technique unimodular completion of a polynomial
matrix
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Unimodular completion of a polynomial matrix

Re RP*¥[£]is left-prime if R(A) has full row rank V A € C.
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Unimodular completion of a polynomial matrix

Re RP*¥[£]is left-prime if R(A) has full row rank V A € C.

Equivalent with:
» R=FR = F is unimodular.
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Unimodular completion of a polynomial matrix

Re RP*¥[£]is left-prime if R(A) has full row rank V A € C.

Equivalent with:

» R=FR =— F is unimodular.

» Unimodular completion: 3 E € R#P)*¥[£] such that

IS unimodular.

.
E
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Unimodular completion of a polynomial matrix

Re RP*¥[£]is left-prime if R(A) has full row rank V A € C.

Equivalent with:
» R=FR = F is unimodular.

» Unimodular completion: 3 E € R#P)*¥[£] such that

.
E

IS unimodular.
Special caser = 2 leads to Bezout equation

det( ) =ri(¢)ex(s) —ra(§)en(d) =1
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Unimodular completion of a polynomial matrix

Re RP*¥[£]is left-prime if R(A) has full row rank V A € C.

Equivalent with:
» R=FR = F is unimodular.

» Unimodular completion: 3 E € R#P)*¥[£] such that

.
E

IS unimodular.

Completion is not unique. Algorithms to compute one
available.
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Unimodular completion of a polynomial matrix

Re RP*¥[£]is left-prime if R(A) has full row rank V A € C.

Equivalent with:
» R=FR = F is unimodular.

» Unimodular completion: 3 E € R#P)*¥[£] such that

.
E

IS unimodular.

» Behavioral interpretation: If % :=kernel R(0)is
controllable, then there exists#’ .= ker nel E(o) such
that

gg@gg/ _ (RW)N
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Recursive computation of an MPUM representation

Letr(é) =ro+rié+---+r.é" e A ((w)), i.e.

w(0)  w(l) w(t")
w(l)  w(2) w(t” +1)
ro r1 - rof (W2 w3

W(t"+2) | =0

W(.L) W(L.—I—l) W(LI—I—’[”)
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Recursive computation of an MPUM representation

Letr(é) =ro+rié+---+r. "€ AN (H(W)).
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Recursive computation of an MPUM representation

Letr(é) =ro+rié+---+r. "€ AN (H(W)).

Compute a unimodular completionE; of r.
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Recursive computation of an MPUM representation

Letr(é) =ro+rié+---+r " e A ((W)).

Compute a unimodular completionE; of r.

Define error e:= E;(0)w, a (w— 1)-dimensional time-series.
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Recursive computation of an MPUM representation

Letr(é) =ro+rié+---+r " e A ((W)).

Compute a unimodular completionE; of r.
Define error e:= E;(0)w, a (w— 1)-dimensional time-series.

Compute annihilator r’(&) for the error:

e(0)  e(1) e(t”)

e(l) €2 et”"+1)
oot e ed) &t +2) | =0

L) U] L)
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Recursive computation of an MPUM representation

Letr(é) =ro+rié+---+r " e A ((W)).

Compute a unimodular completionE; of r.

Define error e:= E;(0)w, a (w— 1)-dimensional time-series.

Compute annihilator r’(&) for the error. Now
r'(0)E(o)w=r'(0)(E(og)w)=r'(0)e=0

i.e.r'(&)E; (&) is annihilator of w.
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Recursive computation of an MPUM representation

Letr(é) =ro+rié+---+r " e A ((W)).

Compute a unimodular completionE; of r.

Define error e:= E;(0)w, a (w— 1)-dimensional time-series.

Compute annihilator r’(&) for the error: r'(§)E (&) is ‘new’
annihilator of w.

Compute unimodular completion E,;» € R*=2)*¥[&] of
r'(&)E (&); define error € := E,/(0)g; find annihilator r”.
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Recursive computation of an MPUM representation

Letr(é) =ro+rié+---+r " e A ((W)).

Compute a unimodular completionE; of r.

Define error e:= E;(0)w, a (w— 1)-dimensional time-series.

Compute annihilator r’(&) for the error: r'(§)E (&) is ‘new’
annihilator of w.

Compute unimodular completion E,;» € R*=2)*¥[&] of
r'(&)E (&); define error € := E,/(0)g; find annihilator r”.

r"(E)E(&)E (&) is ‘new’ annihilator of w.
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Recursive computation of an MPUM representation

Letr(é) =ro+rié+---+r " e A ((W)).

Compute a unimodular completionE; of r.

Define error e:= E;(0)w, a (w— 1)-dimensional time-series.

Compute annihilator r’(&) for the error: r'(§)E (&) is ‘new’
annihilator of w.

Compute unimodular completion E,;» € R*=2)*¥[&] of
r'(&)E (&); define error € := E,/(0)g; find annihilator r”.

r"(E)E(&)E (&) is ‘new’ annihilator of w.

Continue until error is zero.

—n. 25/2¢



» A language for modeling
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» A language for modeling

» The most powerful unfalsified model
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» A language for modeling
» The most powerful unfalsified model

» The Hankel matrix is key
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A language for modeling
The most powerful unfalsified model
The Hankel matrix is key

Recursive computation of the MPUM
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A language for modeling from data
The most powerful unfalsified model
The Hankel matrix is key

Recursive computation of the MPUM
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