European Embedded Control Institute

Graduate School on Control - Spring 2010

The Behavioral Approach to Modeling and Control

Lecture \mathbf{X}
ENERGY FLOW in SYSTEMS

How is energy transferred from the environment to a system?

How is energy transferred between systems?
Are energy transfer and interconnection related?

How are passive systems synthesized?
Motivation
KVL, KCL, IUM, and KFL
Building blocks
Energy transfer
Ports
Circuit synthesis
The inerter
Motion energy

Open systems

Environment

Systems are 'open', they interact with their environment.

How is energy transferred from the environment to a system?

Interconnected systems interact.
How is energy transferred between systems?
Are energy transfer and interconnection related?

Systems with terminals

Electrical circuit

At each terminal:

a potential (!) and a current (counted >0 into the circuit),
\leadsto behavior $\mathscr{B} \subseteq\left(\mathbb{R}^{N} \times \mathbb{R}^{N}\right)^{\mathbb{R}}$.
$\left(V_{1}, V_{2}, \ldots, V_{N}, I_{1}, I_{2}, \ldots, I_{N}\right) \in \mathscr{B}$ means:
this potential/current trajectory is compatible with the circuit architecture and its element values.

Electrical circuit

At each terminal:

a potential (!) and a current (counted >0 into the circuit),

$$
\leadsto \text { behavior } \mathscr{B} \subseteq\left(\mathbb{R}^{N} \times \mathbb{R}^{N}\right)^{\mathbb{R}}
$$

$\left(V_{1}, V_{2}, \ldots, V_{N}, I_{1}, I_{2}, \ldots, I_{N}\right) \in \mathscr{B}$ means:
this potential/current trajectory is compatible with the circuit architecture and its element values.

Early sources:

Brockway McMillan

KVL and KCL

terminals

Kirchhoff's voltage law (KVL):

$$
\begin{aligned}
& \llbracket\left(V_{1}, V_{2}, \ldots, V_{N}, I_{1}, I_{2}, \ldots, I_{N}\right) \in \mathscr{B} \text { and } \alpha: \mathbb{R} \rightarrow \mathbb{R} \rrbracket \\
& \quad \Rightarrow \llbracket\left(V_{1}+\alpha, V_{2}+\alpha, \ldots, V_{N}+\alpha, I_{1}, I_{2}, \ldots, I_{N}\right) \in \mathscr{B} \rrbracket .
\end{aligned}
$$

Equivalently, the behavioral equations contain the V_{i} 's only through the potential differences $V_{i}-V_{j}$.

KVL and KCL

terminals

Kirchhoff's voltage law (KVL):

$$
\begin{aligned}
& \llbracket\left(V_{1}, V_{2}, \ldots, V_{N}, I_{1}, I_{2}, \ldots, I_{N}\right) \in \mathscr{B} \text { and } \alpha: \mathbb{R} \rightarrow \mathbb{R} \rrbracket \\
& \quad \Rightarrow \llbracket\left(V_{1}+\alpha, V_{2}+\alpha, \ldots, V_{N}+\alpha, I_{1}, I_{2}, \ldots, I_{N}\right) \in \mathscr{B} \rrbracket .
\end{aligned}
$$

Kirchhoff's current law (KCL):

$$
\llbracket\left(V_{1}, V_{2}, \ldots, V_{N}, I_{1}, I_{2}, \ldots, I_{N}\right) \in \mathscr{B} \rrbracket \Rightarrow \llbracket I_{1}+I_{2}+\cdots+I_{N}=0 \rrbracket .
$$

Circuit properties

An \mathbf{N}-terminal circuit is said to be
\llbracket linear $\rrbracket: \Leftrightarrow \llbracket \mathscr{B} \subseteq\left(\mathbb{R}^{N} \times \mathbb{R}^{N}\right)^{\mathbb{R}}$ is linear \rrbracket
\llbracket time-invariant $\rrbracket: \Leftrightarrow \llbracket \sigma^{t} \mathscr{B}=\mathscr{B}$, with σ^{t} the t-shift \rrbracket
【a linear time-invariant differential system (LTIDS) 】

$$
: \Leftrightarrow \llbracket \cdots \rrbracket
$$

Circuit properties

An \mathbf{N}-terminal circuit is said to be
\llbracket linear $\rrbracket: \Leftrightarrow \llbracket \mathscr{B} \subseteq\left(\mathbb{R}^{N} \times \mathbb{R}^{N}\right)^{\mathbb{R}}$ is linear \rrbracket
\llbracket time-invariant $\rrbracket: \Leftrightarrow \llbracket \sigma^{t} \mathscr{B}=\mathscr{B}$, with σ^{t} the t-shift \rrbracket
【a linear time-invariant differential system (LTIDS) 】

$$
: \Leftrightarrow \llbracket \cdots \rrbracket
$$

\llbracket reciprocal $\rrbracket \Leftrightarrow \llbracket \cdots \rrbracket$
[passive $\rrbracket: \Leftrightarrow \llbracket \cdots \rrbracket$

Mechanical device

At each terminal: a position and a force.
\leadsto position/force trajectories $(q, F) \in \mathscr{B} \subseteq\left(\left(\mathbb{R}^{\bullet}\right)^{2 N}\right)^{\mathbb{R}}$.
More generally, a position, force, angle, and torque.

Mechanical properties

\mathscr{B} satisfies invariance under uniform motion (IUM) : \Leftrightarrow
$\left(q_{1}, q_{2}, \ldots, q_{N}, F_{1}, F_{2}, \ldots, F_{N}\right) \in \mathscr{B}$ and
$v: t \in \mathbb{R} \mapsto(a+b t) \in \mathbb{R}^{\bullet}$ imply

$$
\left(q_{1}+v, q_{2}+v, \ldots, q_{N}+v, F_{1}, F_{2}, \ldots, F_{N}\right) \in \mathscr{B}
$$

\sim other symmetries (rotation, Euclidean group), etc.
\mathscr{B} satisfies invariance under uniform motion (IUM) : \Leftrightarrow $\left(q_{1}, q_{2}, \ldots, q_{N}, F_{1}, F_{2}, \ldots, F_{N}\right) \in \mathscr{B}$ and $v: t \in \mathbb{R} \mapsto(a+b t) \in \mathbb{R}^{\bullet}$ imply

$$
\left(q_{1}+v, q_{2}+v, \ldots, q_{N}+v, F_{1}, F_{2}, \ldots, F_{N}\right) \in \mathscr{B}
$$

\leadsto other symmetries (rotation, Euclidean group), etc.
\mathscr{B} satisfies Kirchhoff's force law (KFL) : \Leftrightarrow

$$
\begin{aligned}
\llbracket\left(q_{1}, q_{2}, \ldots, q_{N}, F_{1}, F_{2}, \ldots, F_{N}\right) & \in \mathscr{B} \rrbracket \\
& \Rightarrow \llbracket F_{1}+F_{2}+\cdots+F_{N}=0 \rrbracket .
\end{aligned}
$$

KFL is, contrary to IUM, not a universal law.

2-terminal behavior

Consider a 2-terminal circuit. Assume that KVL and KCL hold.
\leadsto variables:
voltage $V=V_{1}-V_{2}$ across
current $I=I_{1}=-I_{2}$ into the circuit along terminal 1.

Building blocks

2-terminal electrical devices

There are 4 basic variables involved in 2-terminal circuits.
$V=$ the voltage,
$I=$ the current,
$Q=$ the charge,
$\Phi=$ the flux.

2-terminal electrical devices

There are 4 basic variables involved in 2-terminal circuits.
$V=$ the voltage,
$I=$ the current,
$Q=$ the charge,
$\Phi=$ the flux.

These variables are connected by laws and devices.

2-terminal electrical devices

There are $\mathbf{4}$ basic variables involved in 2-terminal circuits.
$V=$ the voltage,
$I=$ the current,
$Q=$ the charge,
$\Phi=$ the flux.

The current is the time-derivative of the electrical charge:

$$
\frac{d}{d t} Q=I .
$$

2-terminal electrical devices

There are 4 basic variables involved in 2-terminal circuits.
$V=$ the voltage,
$I=$ the current,
$Q=$ the charge,
$\Phi=$ the flux.

The voltage is the time-derivative of the magnetic flux:

$$
\frac{d}{d t} \Phi=V
$$

(law of Faraday-Lenz)

2-terminal electrical devices

There are 4 basic variables involved in 2-terminal circuits.
$V=$ the voltage,
$I=$ the current,
$Q=$ the charge,
$\Phi=$ the flux.

Devices that relate the current and the voltage, I and V, $R(I, V)=0$, are called resistors. For example,

(Ohmic resistor)

$$
\{V=0 \wedge I \geq 0\} \vee\{V \geq 0 \wedge I=0\}
$$

(Ideal diode)

2-terminal electrical devices

There are 4 basic variables involved in 2-terminal circuits.
$V=$ the voltage,
$I=$ the current,
$Q=$ the charge,
$\Phi=$ the flux.

Devices that relate the voltage and the electrical charge, V and $Q, C(V, Q)=0$, are called capacitors. For example,

$$
Q=C V
$$

2-terminal electrical devices

There are 4 basic variables involved in 2-terminal circuits.
$V=$ the voltage,
$I=$ the current,
$Q=$ the charge,
$\Phi=$ the flux.

Devices that relate the current and the magnetic flux, I and Φ, $L(I, \Phi)=0$, are called inductors. For example,

$$
\Phi=L I
$$

2-terminal electrical devices

There are 4 basic variables involved in 2-terminal circuits.
$V=$ the voltage,
$I=$ the current,
$Q=$ the charge,
$\Phi=$ the flux.

Resistors, capacitors, and inductors are the classical 2-terminal circuit elements.

Are there devices that relate Q and Φ ?

Devices that relate the electrical charge and the magnetic flux, Q and $\Phi, M(Q, \Phi)=0$, are called memristors .

The missing element: the memristor

Devices that relate the electrical charge and the magnetic flux, Q and $\Phi, M(Q, \Phi)=0$, are called memristors .

The existence of this device was postulated by Chua in 1971. In 2009, it was manufactured by HP.

Leon Chua (1936-)

The missing element: the memristor

Devices that relate the electrical charge and the magnetic flux, Q and $\Phi, M(Q, \Phi)=0$, are called memristors .

$$
\begin{array}{r}
\Phi=\widehat{M}(Q) \quad \begin{array}{r}
\leadsto V=R(Q) I, \quad R=\widehat{M}^{\prime}, \\
\text { a charge-controlled resistor },
\end{array} \\
Q=\widehat{\widehat{M}}(Q) \quad \begin{array}{r}
\quad \\
\text { a flux-controlled resistor } .
\end{array}
\end{array}
$$

' denotes derivative.

Terminal behavior

resistor

$$
R(V, I)=0
$$

capacitor

$$
C(V, Q)=0, \quad \frac{d}{d t} Q=I
$$

inductor
$L(I, \Phi)=0, \frac{d}{d t} \Phi=V$,
memristor $\quad M(Q, \Phi)=0, \frac{d}{d t} Q=I, \frac{d}{d t} \Phi=V$.
Q and Φ are latent variables that cannot be eliminated in the nonlinear case.

Terminal behavior

Linear case : resistor

$$
V=R I, \quad \text { or } \quad I=G I
$$

capacitor $\quad C \frac{d}{d t} V=I$,
inductor

$$
L \frac{d}{d t} I=V
$$

memristor $\quad V=R I, \quad$ or $I=G I$.
Note that a linear memristor is a resistor.
It is a device that is useful only in the nonlinear case.

The classical electrical elements

Linear 2-terminal circuit elements

Resistor

$$
V_{1}-V_{2}=R I_{1} \quad I_{1}+I_{2}=0
$$

$R=$ 'resistance'
Satisfies KVL and KCL.

Linear 2-terminal circuit elements

Capacitor

$$
C \frac{d}{d t}\left(V_{1}-V_{2}\right)=I_{1} \quad I_{1}+I_{2}=0
$$

$C=$ 'capacitance'
Satisfies KVL and KCL.

Linear 2-terminal circuit elements

Inductor

$$
L \frac{d}{d t} I_{1}=V_{1}-V_{2} \quad I_{1}+I_{2}=0
$$

$L=$ 'inductance'
Satisfies KVL and KCL.

Examples of 4-terminal circuit elements

Transformer

$$
V_{1}-V_{2}=n\left(V_{3}-V_{4}\right),-n I_{1}=I_{3} \quad I_{1}+I_{2}=0, I_{3}+I_{4}=0
$$

$n=$ 'turns ratio'
Satisfies KVL and KCL.

Examples of 4-terminal circuit elements

Gyrator

$$
V_{1}-V_{2}=g I_{3}, V_{3}-V_{4}=-g I_{1} \quad I_{1}+I_{2}=0, I_{3}+I_{4}=0
$$

$g=$ 'gyrator resistance'
Satisfies KVL and KCL.

Example of a 3-terminal circuit element

pnp transistor

$$
I_{e}=f_{e}\left(V_{e}-V_{b}, V_{c}-V_{b}\right), I_{c}=f_{c}\left(V_{e}-V_{b}, V_{c}-V_{b}\right), \quad I_{e}+I_{c}+I_{b}=0 .
$$

Satisfies KVL and KCL.

Example of an n-terminal circuit element

Connector

$$
V_{1}=V_{2}=\cdots=V_{n}, \quad I_{1}+I_{2}+\cdots+I_{n}=0
$$

Satisfies KVL and KCL.

Linear mechanical building blocks

$\underline{\text { Spring }}$

$$
F_{1}+F_{2}=0, \quad K\left(q_{1}-q_{2}\right)=F_{1}
$$

IUM and KFL

Linear mechanical building blocks

Damper

$$
F_{1}+F_{2}=0, \quad D \frac{d}{d t}\left(q_{1}-q_{2}\right)=F_{1}
$$

IUM and KFL

Linear mechanical building blocks

Mass

Interconnection

Connection of circuit terminals

Interconnection = connecting terminals, like soldering wires together.

Connecting terminals $N-1$ and N leads to

$$
V_{N-1}=V_{N}, \quad I_{N-1}+I_{N}=0
$$

After interconnection the terminals share the variables V_{N-1}, V_{N}, and I_{N-1}, I_{N} (up to a sign).

Connection of circuit terminals

Connecting terminals $N-1$ and N leads to

$$
V_{N-1}=V_{N}, \quad I_{N-1}+I_{N}=0
$$

The interconnected circuit has $N-2$ terminals. Its behavior $=$

$$
\mathscr{B}^{\prime}=\left\{\left(V_{1}, I_{1}, V_{2}, I_{2}, \ldots, V_{N-2}, I_{N-2}\right): \mathbb{R} \rightarrow \mathbb{R}^{2(N-2)} \mid \exists V, I\right.
$$

such that $\left.\left(V_{1}, I_{1}, V_{2}, I_{2}, \ldots, V_{N-2}, I_{N-2}, V, I, V,-I\right) \in \mathscr{B}\right\}$.
$\llbracket \mathscr{B}$ satisfies KVL $\rrbracket \Rightarrow \llbracket$ so does $\mathscr{B}^{\prime} \rrbracket$
$\llbracket \mathscr{B}$ satisfies KCL $\rrbracket \Rightarrow \llbracket$ so does $\mathscr{B}^{\prime} \rrbracket$
$\llbracket \mathscr{B}$ linear $\rrbracket \Rightarrow \llbracket \mathscr{B}^{\prime}$ linear \rrbracket

An interconnection of resistors, inductors, capacitors, connectors, transformers, gyrators, transistors, etc. has a terminal behavior that satisfies KVL and KCL.

Connection of mechanical terminals

Interconnection = connecting terminals, like screwing pins together.

Connecting terminals $N-1$ and N leads to

$$
q_{N-1}=q_{N}, \quad F_{N-1}+F_{N}=0 .
$$

After interconnection the terminals share the variables q_{N-1}, q_{N}, and F_{N-1}, F_{N} (up to a sign).

Connection of mechanical terminals

Connecting terminals $N-1$ and N leads to

$$
q_{N-1}=q_{N}, \quad F_{N-1}+F_{N}=0
$$

The interconnected circuit has $N-2$ terminals. Its behavior $=$

$$
\mathscr{B}^{\prime}=\left\{\left(q_{1}, F_{1}, q_{2}, F_{2}, \ldots, q_{N-2}, F_{N-2}\right): \mathbb{R} \rightarrow \mathbb{R}^{2(N-2)} \mid \exists q, F\right.
$$

such that $\left.\left(q_{1}, F_{1}, q_{2}, F_{2}, \ldots, q_{N-2}, F_{N-2}, q, F, q,-F\right) \in \mathscr{B}\right\}$.
$\llbracket \mathscr{B}$ satisfies IUM $\rrbracket \Rightarrow \llbracket$ so does $\mathscr{B}^{\prime} \rrbracket$
$\llbracket \mathscr{B}$ satisfies KVL $\rrbracket \Rightarrow \llbracket$ so does $\mathscr{B}^{\prime} \rrbracket$
$\llbracket \mathscr{B}$ linear $\rrbracket \Rightarrow \llbracket \mathscr{B}^{\prime}$ linear \rrbracket

An interconnection of springs, dampers, and masses satisfies IUM.
An interconnection of springs and dampers satisfies KFL.

Energy transfer

Energy

Energy := a physical quantity transformable into heat.

Energy

Energy := a physical quantity transformable into heat.

For example capacitor \rightarrow resistor \rightarrow heat. Energy on capacitor $=\frac{1}{2} C V^{2}$

Energy as an extensive quantity

Our intuition has been built to think of energy as an extensive quantity, meaning that it is additive

$$
E_{\text {total }}=E_{1}+E_{2}
$$

Energy as an extensive quantity

Our intuition has been built to think of energy as an extensive quantity,

that flows in and out and between systems along the interconnected interfaces (terminals).

Energy as an extensive quantity

Our intuition has been built to think of energy as an extensive quantity, that flows in and out and between systems along the interconnected terminals).

Some methodologies for modeling interconnected systems, as bond-graph modeling and port-Hamiltonian systems, are based on this thinking.

Henry Paynter

Arjan van der Schaft

Energy as an extensive quantity

Our intuition has been built to think of energy as an extensive quantity, that flows in and out and between systems along the interconnected terminals).
'Power is the universal currency of physical systems'
'In physical systems, the interaction between subsystems is always related to an exchange of energy'
P.J. Gawthrop and G.P. Bevan, Bond-graph modeling, IEEE Control Systems Magazine, vol. 27, pp. 2445, 2007.

Energy as an extensive quantity

In many situations, this view is correct. Mass, volume, and energy in the form of heat are extensive quantities.

Energy as an extensive quantity

In many situations, this view is correct. Mass, volume, and energy in the form of heat are extensive quantities.

However, energy is more subtle for other forms.

Motion (kinetic) energy is not additive. Same with energy due to gravitational attraction, due Coulomb forces, etc. Heat is a special, extensive, form of energy.

Energy and power are not a 'local' quantities. They involve 'action at a distance'.

Ports

Ports

Terminals $\{1,2, \ldots, p\}$ form a port $: \Leftrightarrow$
$\left(V_{1}, \ldots, V_{p}, V_{p+1}, \ldots, V_{N}, I_{1}, \ldots, I_{p}, I_{p+1}, \ldots, I_{N}\right) \in \mathscr{B}$

$$
\Rightarrow \quad I_{1}+\cdots+I_{p}=0 . \quad \text { 'port KCL'. }
$$

$(K V L \&) K C L \Rightarrow$ all terminals together form a port.

If terminals $\{1,2, \ldots, p\}$ form a port, then
power in along these terminals $=V_{1}(t) I_{1}(t)+\cdots+V_{p}(t) I_{p}(t)$,
energy in $=\int_{t_{1}}^{t_{2}}\left(V_{1}(t) I_{1}(t)+\cdots+V_{p}(t) I_{p}(t)\right) d t$.
This interpretation in terms of power and energy is not valid unless these terminals form a port !

Dissipation into heat

Justification:

Shows transformation of power into heat.

Requires port KCL!

Examples

2-terminal 1-port devices:
resistors, inductors, capacitors, transistors, memristors, gyrators, connectors, etc. any 2 -terminal circuit composed of these.

Examples

3-terminal 1-port devices:

transistors, Y^{\prime} 's, Δ 's.

Examples

4-terminal 2-port devices:

Transformers, gyrators.

Examples

Terminals $\{1,2,3,4\}$ form a port. But $\{1,2\}$ and $\{3,4\}$ do not.

Examples

Terminals $\{1,2,3,4\}$ form a port. But $\{1,2\}$ and $\{3,4\}$ do not.

Terminals $\{1,2\}$ and $\{3,4\}$ form a port.

Theorem: Consider an electrical circuit consisting of an interconnection of (linear passive) R's, L's, and C's. If every pair of terminals of the circuit graph is connected, then the only port is the one that consists of all the terminals.

Are ports common?

Corollary: Consider an electrical circuit consisting of an interconnection of (linear passive) 2-terminal 1-port impedances. If every pair of terminals of the circuit graph is connected, then
the only port is the one that consists of all the terminals.
Follows from the theorem, combined with Bott-Duffin (every
positive real impedance can be viewed as an RLC circuit).In
order to have non-trivial ports, we need
2-port building blocks like transformers in the circuit.

Independence

$$
\begin{aligned}
& \left(V_{1}, \ldots, V_{p}, V_{p+1}, \ldots, V_{N}, I_{1}, \ldots, I_{p}, I_{p+1}, \ldots, I_{N}\right) \in \mathscr{B}, \alpha: \mathbb{R} \rightarrow \mathbb{R} \\
& \Rightarrow\left(V_{1}+\alpha, \ldots, V_{p}+\alpha, V_{p+1}, \ldots, V_{N}, I_{1}, \ldots, I_{p}, I_{p+1}, \ldots, I_{N}\right) \in \mathscr{B}
\end{aligned}
$$

'port KVL'

For linear passive circuits, there holds

port KVL \Leftrightarrow port KCL.

For energy: port KCL

$$
I_{1}+I_{2}+\cdots+I_{p}=0
$$

Electrical circuit synthesis

Synthesis question

Assume that the circuit consists of an interconnection certain building blocks, say positive $R^{\prime} \mathrm{s}, L^{\prime}$'s, C^{\prime} 's, T^{\prime} 's, G^{\prime} 's, etc., or combinations of these,

which external behaviors can occur?

This was the prime theoretical electrical engineering question until 1960.

Synthesis question

LTIDS case \leadsto relation between V and I

$$
d\left(\frac{d}{d t}\right) V=n\left(\frac{d}{d t}\right) I \quad n, d \in \mathbb{R}[\xi]
$$

Which polynomial pairs (n, d) can occur?

Positive realness

Introduce the 'impedance'
 $$
Z:=\frac{n}{d}
$$

Theorem: The following are equivalent Z is realizable using (positive, linear) $R, L, \& C$'s and transformers.

- Z is 'positive real', i.e., $\llbracket \operatorname{Real}(\lambda)>0 \rrbracket \Rightarrow \llbracket \operatorname{Real}(Z(\lambda))>0 \rrbracket$. $\int_{-\infty}^{0} V(t) I(t) d t \geq 0 \quad \forall$ compactly supported $(V, I) \in \mathscr{B}$,

Otto Brune 1901-1982

In 1949 Raoul Bott and Richard Duffin in a joint paper dramatically improved Brune's 1931 result.

Theorem: The following are equivalent Z is realizable using (positive, linear) $R, L, \& C ' s$ without transformers.

- Z is positive real,

Raoul Bott
1923-2005

In 1949 Raoul Bott and Richard Duffin in a joint paper dramatically improved Brune's 1931 result.

Theorem: The following are equivalent Z is realizable using (positive, linear) $R, L, \& C ' s$ without transformers.

- Z is positive real,

Caveat: the n and d obtained in the Bott-Duffin synthesis are NOT coprime! \leadsto uncontrollable (V, I)-behavior.
\leadsto correct impedance, perhaps incorrect ODE.

Raoul Bott 1923-2005

Mechanical ports

The behavior

At each terminal: a position and a force .
\leadsto position/force trajectories $(q, F) \in \mathscr{B} \subseteq\left(\left(\mathbb{R}^{\bullet}\right)^{2 N}\right)^{\mathbb{R}}$.

The behavior

At each terminal: a position and a force .
\leadsto position/force trajectories $(q, F) \in \mathscr{B} \subseteq\left(\left(\mathbb{R}^{\bullet}\right)^{2 N}\right)^{\mathbb{R}}$.

What is the analogue of a port?

Port KFL

Terminals $\{1,2, \ldots, p\}$ form a (mechanical) port $: \Leftrightarrow$

$$
\left(q_{1}, \ldots, q_{p}, q_{p+1}, \ldots, q_{N}, F_{1}, \ldots, F_{p}, F_{p+1}, \ldots, F_{N}\right) \in \mathscr{B}
$$

$$
\Rightarrow \quad F_{1}+F_{2}+\cdots+F_{p}=0 . \quad \text { 'port KFL' }
$$

Power and energy

If terminals $\{1,2, \ldots, p\}$ form a port, then

$$
\text { power in }=F_{1}(t)^{\top} \frac{d}{d t} q_{1}(t)+\cdots+F_{p}(t)^{\top} \frac{d}{d t} q_{p}(t)
$$

and

$$
\text { energy in }=\int_{t_{1}}^{t_{2}}\left(F_{1}(t)^{\top} \frac{d}{d t} q_{1}(t)+\cdots+F_{p}(t)^{\top} \frac{d}{d t} q_{p}(t)\right) d t
$$

This interpretation in terms of power and energy is not valid unless these terminals form a port !

Examples

$\underline{\text { Spring }}$

$$
F_{1}+F_{2}=0, \quad K\left(q_{1}-q_{2}\right)=F_{1}
$$

IUM and KFL

Damper

Examples

$$
F_{1}+F_{2}=0, \quad D \frac{d}{d t}\left(q_{1}-q_{2}\right)=F_{1}
$$

IUM and KFL

Springs and dampers, and the interconnection of springs and dampers form ports.

Examples

Mass

$$
M \frac{d^{2}}{d t^{2}} q=F
$$

IUM but not KFL
Not a port!!!

We discuss 2 consequences of the fact that a mass is not a port.

1. The inerter
2. Kinetic energy

Mechanical synthesis

Electrical and mechanical synthesis

What mechanical impedances are realizable using passive mechanical devices (dampers, springs, and masses)?

Is it possible to use RLC synthesis to obtain mechanical synthesis?

Electrical and mechanical synthesis

Relationship between F and q

$$
\begin{gathered}
d\left(\frac{d}{d t}\right) q=n\left(\frac{d}{d t}\right) F \quad n, d \quad \text { real polynomials. } \\
Z(\xi)=\xi \frac{n(\xi)}{d(\xi)} \quad \text { positive real ??? }
\end{gathered}
$$

Naive! The mass is NOT the mechanical analogue of a capacitor.

Electrical-mechanical analogies

voltage $V \leftrightarrow v$ velocity

current $I \leftrightarrow F$ force

Resistor	Damper
$\frac{1}{R}\left(V_{1}-V_{2}\right)=I_{1}, I_{1}+I_{2}=0$	$D\left(v_{1}-v_{2}\right)=F_{1}, F_{1}+F_{2}=0$
Inductor	Spring
$\frac{1}{L}\left(V_{1}-V_{2}\right)=\frac{d}{d t} I_{1}, I_{1}+I_{2}=0$	$K\left(v_{1}-v_{2}\right)=\frac{d}{d t} F_{1}, F_{1}+F_{2}=0$
Capacitor	Mass
$C \frac{d}{d t}\left(V_{1}-V_{2}\right)=I_{1}, I_{1}+I_{2}=0$	$M \frac{d}{d t} v=F$

Electrical-mechanical analogies

voltage $V \leftrightarrow v$ velocity current $I \leftrightarrow F$ force

Resistor	Damper
$\frac{1}{R}\left(V_{1}-V_{2}\right)=I_{1}, I_{1}+I_{2}=0$	$D\left(v_{1}-v_{2}\right)=F_{1}, F_{1}+F_{2}=0$
Inductor	Spring
$\frac{1}{L}\left(V_{1}-V_{2}\right)=\frac{d}{d t} I_{1}, I_{1}+I_{2}=0$	$K\left(v_{1}-v_{2}\right)=\frac{d}{d t} F_{1}, F_{1}+F_{2}=0$
Capacitor	Mass
$C \frac{d}{d t}\left(V_{1}-V_{2}\right)=I_{1}, I_{1}+I_{2}=0$	$M \frac{d}{d t} v=F$

The electrical analogue of a mass is a 'grounded' capacitor.
Electrical synthesis \nRightarrow mechanical synthesis.

The inerter

$$
B \frac{d^{2}}{d t^{2}}\left(q_{1}-q_{2}\right)=F_{1}, \quad F_{1}+F_{2}=0 \quad \text { IUM and KFL }
$$

Malcolm Smith

Electrical-mechanical analogies

```
voltage }V\leftrightarrowv\quad\mathrm{ velocity
```

current $I \leftrightarrow F$ force

Resistor	Damper
$\frac{1}{R}\left(V_{1}-V_{2}\right)=I_{1}, I_{1}+I_{2}=0$	$D\left(v_{1}-v_{2}\right)=F_{1}, F_{1}+F_{2}=0$
Inductor	Spring
$\frac{1}{L}\left(V_{1}-V_{2}\right)=\frac{d}{d t} I_{1}, I_{1}+I_{2}=0$	$K\left(v_{1}-v_{2}\right)=\frac{d}{d t} F_{1}, F_{1}+F_{2}=0$
Capacitor	Inerter
$C \frac{d}{d t}\left(V_{1}-V_{2}\right)=I_{1}, I_{1}+I_{2}=0$	$B \frac{d}{d t}\left(v_{1}-v_{2}\right)=F_{1}, F_{1}+F_{2}=0$

electrical RLC synthesis \Leftrightarrow mechanical SDI synthesis
Springs, dampers, inerters, and their interconnections

The inerter in Formula 1

Kimi Räikkönen wins the 2005 Grand Prix in Spain with McLaren's 'J-damper', i.e., Smith's inerter.

AUGUST 21, 2008

Ingenuity still brings success in Formula 1

ShareThis

For years engineers have complained that the rules of Formula 1 mean that there is little room left for innovation but Cambridge University's engineering department has just revealed that this is not the case at all.

Professor Malcolm Smith, a fellow of Gonville and Caius College, created an innovative suspension system in the late 1990s and this was patented by the university. The first details were published in 2002 in the obscure Institute of Electrical and Electronics Engineers's publication called Transactions on Automatic Control. This was spotted by the boffins at McLaren and an exclusive deal was negotiated to allow the team to use the technology in F1. The new system was first used at the Spanish GP in 2005 and Kimi Raikkonen won.

The team used the name "J Damper" to describe the unit - in an effort to confuse the opposition - but it has now been revealed that it is actually called "an inerter". This is

AUGUST 21, 2008

Ingenuity still brings success in Formula 1

ShareThis

For years engineers have complained that the rules of Formula 1 mean that there is little room left for innovation but Cambridge University's engineering department has just revealed that this is not the case at all.

Professor Malcolm Smith, a fellow of Gonville and Caius College, created an innovative suspension system in the late 1990s and this was patented by the university. The first details were published in 2002 in the obscure Institute of Electrical and Electronics Engineers's publication called Transactions on Automatic Control. This was spotted by the boffins at McLaren and an exclusive deal was negotiated to allow the team to use the technology in FI. The new system was first used at the Spanish GP in 2005 and Kimi Raikkonen won.

The team used the name "J Damper" to describe the unit - in an effort to confuse the opposition - but it has now been revealed that it is actually called "an inerter". This is

MOTION ENERGY

Back to the mass

$$
M \frac{d^{2}}{d t^{2}} q=F \Rightarrow \frac{d}{d t} \frac{1}{2} M\left\|\frac{d}{d t} q\right\|^{2}=F^{\top} \frac{d}{d t} q
$$

Since $F^{\top} v$ is not power,
is $\frac{1}{2} M\left\|\frac{d}{d t} q\right\|^{2}$ not stored (kinetic, motion) energy ???

Kinetic energy and invariance under uniform motions

What is the kinetic energy?

Kinetic energy and invariance under uniform motions

M

What is the kinetic energy?

$$
\mathscr{E}_{\text {kinetic }}=\frac{1}{2} M\|v\|^{2}
$$

Willem 's Gravesande 1688-1742

Émilie du Châtelet 1706-1749

This expression is not invariant under uniform motion.

Motion energy

What is the motion energy?
What quantity is transformable into heat?

Motion energy

What is the motion energy?
What quantity is transformable into heat?

$$
\mathscr{E}_{\text {motion }}=\frac{1}{2} \frac{M_{1} M_{2}}{M_{1}+M_{2}}\left\|v_{1}-v_{2}\right\|^{2}
$$

Invariant under uniform motion.

Dissipation into heat

Can be justified by mounting a damper or a spring between the masses.

$$
\frac{1}{2} \frac{M_{1} M_{2}}{M_{1}+M_{2}}\left\|v_{1}-v_{2}\right\|^{2}
$$

is the heat dissipated in the damper.

Motion energy

Generalization to N masses.

$$
\mathscr{E}_{\text {motion }}=\frac{1}{4} \sum_{i, j \in\{1,2, \ldots, N\}} \frac{M_{i} M_{j}}{M_{1}+M_{2}+\cdots+M_{N}}\left\|v_{i}-v_{j}\right\|^{2}
$$

$\mathbf{K F L} \Rightarrow \quad \frac{d}{d t} \mathscr{E}_{\text {motion }}=\sum_{i \in\{1,2, \ldots, N\}} F_{i}^{\top} v_{i}$.

Motion energy

Motion energy is not an extensive quantity, it is not additive.

Total motion energy \neq sum of the parts.

Motion energy

$$
\mathscr{E}_{\text {motion }}=\frac{1}{4} \sum_{i, j \in\{1,2, \ldots, N\}} \frac{M_{i} M_{j}}{M_{1}+M_{2}+\cdots+M_{N}}\left\|v_{i}-v_{j}\right\|^{2}
$$

Distinct from the classical expression of the kinetic energy,

$$
\mathscr{E}_{\text {kinetic }}=\frac{1}{2} \sum_{i \in\{1,2, \ldots, N\}} M_{i}\left\|v_{i}\right\|^{2}
$$

Motion energy

Reconciliation: $M_{N+1}=\infty, F_{N+1}=-\left(F_{1}+F_{2}+\cdots+F_{N}\right)$,

measure velocities w.r.t. this infinite mass ('ground'), then

$$
\begin{array}{r}
\frac{1}{4} \sum_{i, j \in\{1,2, \ldots, N, N+1\}} \frac{M_{i} M_{j}}{M_{1}+M_{2}+\cdots+M_{N}+M_{N+1}}\left\|v_{i}-v_{j}\right\|^{2} \\
\longrightarrow \quad \frac{1}{2} \sum_{i \in\{1,2, \ldots, N\}} M_{i}\left\|v_{i}\right\|^{2}
\end{array}
$$

PORTS and TERMINALS

One cannot speak about
" the energy transferred from circuit 1 to circuit 2 " or "from the environment to circuit 1 ",
unless the relevant terminals form a port.
Analogously for mechanical systems, etc.

Recapitulation

Energy transfer happens via ports, hence it involves action at a distance.

Interconnection is 'local', power and energy transfer involve 'action at a distance'.

Energy transfer happens via ports, hence it involves action at a distance.

Interconnection is 'local', power and energy transfer involve 'action at a distance'.

Electrical ports : \Leftrightarrow port KCL.
Mechanical ports : \Leftrightarrow port KFL.

Summary

Energy transfer happens via ports, hence it involves action at a distance.

Interconnection is 'local', power and energy transfer involve 'action at a distance’.

Electrical ports : \Leftrightarrow port KCL.
Mechanical ports : \Leftrightarrow port KFL.
The mass is not the mechanical analogue of the capacitor. \Rightarrow the inerter.
\Rightarrow a new expression for motion energy.

Summary

Energy transfer happens via ports, hence it involves action at a distance.

Interconnection is 'local', power and energy transfer involve 'action at a distance’.
Electrical ports : \Leftrightarrow port KCL.
Mechanical ports : \Leftrightarrow port KFL.
The mass is not the mechanical analogue of the capacitor. \Rightarrow the inerter.
\Rightarrow a new expression for motion energy.
Terminals are for interconnection,
ports are for energy transfer.

End of Lecture X

