Graduate School on Control - Spring 2010

The Behavioral Approach to Modeling and Control

EXERCISES- second part

We need to introduce the notion of row-reduced matrix.
Let $r=\left[\begin{array}{lll}r_{1} & \ldots & r_{\mathrm{w}}\end{array}\right] \in \mathbb{R}^{1 \times \mathrm{w}}[\xi]$; then δ is the degree of r if

$$
\delta=\max \left\{d \mid d=\operatorname{deg}\left(r_{i}\right), i=1, \ldots, \mathrm{w}\right\} .
$$

Note that if $\delta=\operatorname{deg}(r)$, then $r(\xi)=\xi^{\delta} r_{\text {hc }}+r^{\prime}(\xi)$, where $r_{\text {hc }} \in \mathbb{R}^{1 \times{ }_{w}}$ and $\operatorname{deg}\left(r^{\prime}\right)<\delta$. We call $r_{\text {hc }}$ the highest coefficient of r. Given a matrix $R=$ $\operatorname{col}\left(r_{i}\right)_{i=1, \ldots, \mathrm{p}}$, we write $r_{i}(\xi)=\xi^{\delta_{i}} r_{i, \text { hc }}+r_{i}^{\prime}(\xi)$, with $\delta_{i}=\operatorname{deg}\left(r_{i}\right)$ and $\operatorname{deg}\left(r^{\prime}\right)<$ $\delta_{i}, i=1, \ldots, \mathrm{p}$. We call $R_{\mathrm{hc}}:=\operatorname{col}\left(r_{i, \mathrm{hc}}\right)_{i=1, \ldots, \mathrm{p}}$ the highest row coefficient matrix of R. A matrix R is called row-reduced if its highest row coefficient matrix has full rank.
It can be shown that if R is a polynomial matrix of full row rank, then there exists a unimodular matrix U such that $U R$ is row-reduced. Also, it can be shown that if R_{1} and R_{2} are row-reduced, with row-degrees arranged in e.g. ascending order, and if $R_{1}=U R_{2}$ for some unimodular U, then the row-degrees of R_{1} and R_{2} are the same.

1. The matrix

$$
R(\xi)=\left[\begin{array}{cc}
\xi+1 & 2 \xi+\frac{5}{2} \\
2 \xi^{2}+\xi+1 & 4 \xi^{2}+3 \xi
\end{array}\right]
$$

is not row proper: verify it. Find a unimodular matrix U such that $U R$ is row proper.
2. Prove that if R is row-reduced with row degrees $\delta_{i}, i=1, \ldots, \mathrm{p}$, then its maximal degree $\mathrm{p} \times \mathrm{p}$ minor has degree equal to $\sum_{i=1}^{\mathrm{p}} \delta_{i}$.
3. Let $\mathscr{B}=\mathbf{k e r n e l}(R)$, with R row-reduced. Prove that $\mathrm{n}(\mathscr{B})=\operatorname{deg}(\operatorname{det}(P))$ for every matrix P such that

$$
\left[\begin{array}{ll}
P & -Q
\end{array}\right]\left[\begin{array}{l}
y \\
u
\end{array}\right]=0
$$

is an input/output representation of \mathscr{B} with $P^{-1} Q$ proper.
4. Assume that R is row-reduced with row degrees $\delta_{i}, i=1, \ldots, \mathrm{p}$, and denote with Σ_{R} the polynomial matrix obtained stacking the results of the shift-and-cut map, i.e. $\Sigma_{R}:=\operatorname{col}\left(\sigma_{+}^{i}(R)\right)_{i=1, \ldots .}$. Prove that the subspace of $\mathbb{R}^{1 \times w}[\xi]$

$$
\Xi_{R}=\left\{f \in \mathbb{R}^{1 \times w}[\xi] \mid \exists \alpha \in \mathbb{R}^{1 \times \bullet} \text { s.t. } f=\alpha \Sigma_{R}\right\}
$$

has dimension equal to $\mathrm{n}(\mathscr{B})$.
5. Prove that if $\mathscr{B}=\operatorname{kernel}(R)$ with R a row-reduced matrix, then a minimal state map for \mathscr{B} can be computed selecting the nonzero rows of

$$
\Sigma_{R}:=\operatorname{col}\left(\sigma_{+}^{i}(R)\right)_{i=1, \ldots . .}
$$

1. Let $\Sigma=\left(\mathbb{Z}, \mathbb{R}^{\mathrm{w}}, \mathbb{R}^{\mathrm{x}}, \mathscr{B}_{\text {full }}\right)$ be a discrete-time latent variable system. Assume that it is complete, i.e. that

$$
\left.\left.(w, x) \in \mathscr{B}_{\text {full }} \Longleftrightarrow(w, x)\right|_{\left[t_{0}, t_{1}\right]} \in \mathscr{B}_{\text {full }}\right|_{\left[t_{0}, t_{1}\right]} \text { for all }-\infty<t_{0} \leq t_{1}<\infty .
$$

Prove that Σ is a state system if and only if there exist $E, F, G \in \mathbb{R}^{\bullet \times} \cdot$ such that $\mathscr{B}_{\text {full }}$ can be described by $E \sigma x+F x+G w=0$.
(Hint: For the "only if" part, define

$$
\mathscr{V}:=\left\{\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right] \left\lvert\, \exists(x, w) \in \mathscr{B}_{\text {full }} \mathbf{s . t} \mathbf{t .}\left[\begin{array}{l}
x(1) \\
x(0) \\
w(0)
\end{array}\right]=\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]\right.\right\}
$$

Prove that \mathscr{V} is a linear space.
The "if" part can be proved by induction, using the state property and the completeness of \mathscr{B}.)
2. Consider the behavior described in kernel form by the equation

$$
p\left(\frac{d}{d t}\right) y=q\left(\frac{d}{d t}\right) u
$$

where $p(\xi)=p_{0}+\ldots+p_{n} \xi^{n}, q(\xi)=q_{0}+\ldots+q_{n} \xi^{n}$. Write the polynomial matrix $X \in \mathbb{R}^{n \times 2}[\xi]$ obtained by applying the shift-and-cut map to the matrix $[p(\xi)-q(\xi)]$. Is $X(\xi)$ obtained in this way a minimal state map? Explain.
3. Verify that the matrices A, B, C, and D corresponding to this state map are

$$
\begin{aligned}
A & =\left[\begin{array}{cccccc}
1 & 0 & 0 & \ldots & 0 & -\frac{p_{n-1}}{p_{n}} \\
0 & 1 & 0 & \ldots & 0 & -\frac{p_{n-2}}{p_{n}} \\
\vdots & \ddots & \ddots & \ddots & \ldots & \vdots \\
0 & 0 & 0 & \ldots & 0 & -\frac{p_{1}}{p_{n}} \\
0 & 0 & 0 & \ldots & 1 & -\frac{p_{0}}{p_{n}}
\end{array}\right] \quad B=\left[\begin{array}{c}
q_{n-1}-\frac{p_{n-1} q_{n}}{p_{n} q_{n}} \\
q_{n-2}-\frac{p_{n-2} q_{n}}{p_{n}} \\
\vdots \\
q_{1}-\frac{p_{1} q_{n}}{p_{n}} \\
q_{0}-\frac{p_{0} q_{n}}{p_{n}}
\end{array}\right] \\
C & =\left[\begin{array}{llllll}
0 & 0 & 0 & \ldots & 0 & \frac{1}{p_{n}}
\end{array}\right] \quad D=\frac{q_{n}}{p_{n}}
\end{aligned}
$$

4. Let $\frac{q(\xi)}{p(\xi)}=h_{0}+h_{1} \xi^{-1}+\ldots+h_{n} \xi^{-n}+\ldots$ be the power series expansion at infinity of the rational function $\frac{q(\xi)}{p(\xi)}$. The numbers $h_{i}, i=0, \ldots$, are called the Markov parameters of the "transfer function" $\frac{q(\xi)}{p(\xi)}$. Define the polynomial matrix

$$
X(\xi):=\left[\begin{array}{cc}
1 & h_{0} \\
\xi & h_{1}+h_{0} \xi \\
\vdots & \vdots \\
\xi^{n-1} & h_{n-1}+h_{n-2} \xi+\ldots+h_{0} \xi^{n-1}
\end{array}\right]
$$

Prove that this matrix induces a state map for the system.
5. Find the matrices A, B, C, D corresponding to the state map X.

1. Let Q_{Φ} be a QDF associated with the two-variable polynomial matrix $\Phi \in \mathbb{R}^{\bullet} \cdot \bullet[\zeta, \eta]$. Prove that the derivative of Q_{Φ} is associated with the polynomial matrix $(\zeta+\eta) \Phi(\zeta, \eta)$.
2. Let $\Phi \in \mathbb{R}[\zeta, \eta]$ (scalar!), and let $\mathscr{B}=$ kernel $r\left(\frac{d}{d t}\right)$. Prove that $Q_{\Phi}(w)=$ 0 for all $w \in \mathscr{B}$ if and only if there exists $f \in \mathbb{R}[\zeta, \eta]$ such that

$$
\Phi(\zeta, \eta)=r(\zeta) f(\zeta, \eta)+f(\eta, \zeta) r(\eta)
$$

(Hint: Assume w.l.o.g. that r is monic. Rewrite every term $\frac{d^{k} w}{d t^{k}} \Phi_{k, \ell} \frac{d^{\ell} w}{d t^{\ell}}$ of $Q_{\Phi}(w)$ with $k, \ell \geq \operatorname{deg}(r)$ in terms of derivatives of order less than or equal to $\mathrm{deg}(r)-1$. Call the result of these operations $Q_{\Phi^{\prime}}$. Note that $Q_{\Phi^{\prime}}(w)=Q_{\Phi}(w)$ for all $w \in \mathscr{B}$, with only terms involving derivatives of order $\leq \operatorname{deg} r-1$. Now you need to prove that $\Phi^{\prime}(\zeta, \eta)=0$ (the twovariable zero polynomial); consider what happens at $t=0$ when $Q_{\Phi^{\prime}}$ is applied to a $w \in \mathscr{B} \ldots$..)
This result can easily extended to the multivariable case using the Smith form, obtaining the characterization discussed during the lecture.
3. Let $\Phi \in \mathbb{R}[\zeta, \eta]$ (scalar!), and let $\mathscr{B}=$ kernel $r\left(\frac{d}{d t}\right)$. Prove that $Q_{\Phi}(w) \geq$ 0 for all $w \in \mathscr{B}$ if and only if there exist $f \in \mathbb{R}[\xi], g \in \mathbb{R}[\zeta, \eta]$ such that

$$
\begin{equation*}
\Phi(\zeta, \eta)=f(\zeta) f(\eta)+r(\zeta) g(\zeta, \eta)+g(\eta, \zeta) r(\eta) \tag{1}
\end{equation*}
$$

(Hint: Follow the hint of Question 2.)
This result can easily extended to the multivariable case using the Smith form, obtaining the characterization discussed during the lecture.
4. Let $\Phi \in \mathbb{R}[\zeta, \eta]$ (scalar!), and let $\mathscr{B}=$ kernel $r\left(\frac{d}{d t}\right)$. Prove that $Q_{\Phi}(w)>$ 0 for all $w \in \mathscr{B}$ if and only if there exists $f \in \mathbb{R}[\xi], g \in \mathbb{R}[\zeta, \eta]$ such that (1) holds, and moreover $G C D(f, r)=1$.

This result can easily extended to the multivariable case using the Smith form, obtaining the characterization discussed during the lecture.

1. A behavior $\mathscr{B} \in \mathscr{L}^{\text {W }}$ is called oscillatory if

$$
[w \in \mathscr{B}] \Longrightarrow[w \text { is bounded on }(-\infty,+\infty)] .
$$

Prove that if \mathscr{B} is oscillatory, then it is autonomous.
2. Let $\mathscr{B}=\operatorname{ker} R\left(\frac{d}{d t}\right)$, with $R \in \mathbb{R}^{\bullet \times \mathrm{w}}[\xi]$. Prove that \mathscr{B} is oscillatory if and only if every nonzero invariant polynomial of R has distinct and purely imaginary roots.
3. Let $\mathscr{B} \in \mathscr{L}^{\mathrm{w}}$, and let $\Phi \in \mathbb{R}^{\mathrm{w} \times \mathrm{w}}[\zeta, \eta]$. We call a QDF Q_{Φ} a conserved quantity for \mathscr{B} if

$$
[w \in \mathscr{B}] \Longrightarrow\left[\frac{d}{d t} Q_{\Phi}(w)=0\right] .
$$

Prove that Q_{Φ} is a conserved quantity if and only if there exists $Y \in$ $\mathbb{R}^{w \times w}[\zeta, \eta]$ such that

$$
(\zeta+\eta) \Phi(\zeta, \eta)=R(\zeta)^{\top} Y(\zeta, \eta)+Y(\eta, \zeta)^{\top} R(\eta)
$$

4. Let $\mathscr{B} \in \mathscr{L}^{1}$ (scalar system!), and let $\mathscr{B}=$ kernel $r\left(\frac{d}{d t}\right)$. Prove that Q_{Φ} is a r-canonical conserved quantity for \mathscr{B} if and only if there exists $y \in$ $\mathbb{R}[\xi]$ (univariate!), deg $y<\operatorname{deg} r$, such that $(\zeta+\eta) \Phi(\zeta, \eta)=r(\zeta) y(\eta)+$ $y(\zeta) r(\eta)$.
5. Assume now that \mathscr{B} is oscillatory, without characteristic frequencies at zero. Use the result of Question 3 to construct a basis for the space of r-canonical conserved quantities for \mathscr{B}.
(Hint: Let $\zeta=-\xi, \eta=\xi$ in the result of Question 3. Then $r(-\xi) y(\xi)+$ $y(-\xi) r(\xi)=0$. What does this equation tell about the polynomial y ?)

Consider the mechanical system in Figure 1. The equation relating w and F

Figure 1: The mechanical system for exercise 22
is $m \frac{d^{2} w}{d t^{2}}+c \frac{d}{d t} w+k w-F=0$. Assume that all constants have value 1 (in the appropriate physical unit). The system is then described in kernel form by the matrix $R(\xi)=\left[\begin{array}{ll}\xi^{2}+\xi+1 & -1\end{array}\right]$, and in observable image form (verify this!) by $M(\xi)=\left[\begin{array}{c}1 \\ \xi^{2}+\xi+1\end{array}\right]$ (you may find working with M easier in the following).

1. Using only the calculus of quadratic differential forms (not physical insight!), write down the dissipation equality for this system, corresponding to the supply rate $Q_{\Phi}(w, F)=F \frac{d}{d t} w$.
2 Using your physical insight, write an expression for the total energy of the system. Write also the two-variable polynomial matrix corresponding to the total energy.

3 Using your physical insight, write an expression for the energy dissipated in the system. Write also the two-variable polynomial matrix corresponding to the dissipated energy.
4. Prove that for every trajectory of the system, the derivative of the total energy equals the opposite of the dissipated energy.
5. A behavior $\mathscr{B} \in \mathscr{L}^{\mathrm{w}}$ is called asymptotically stable if $\lim _{t \rightarrow \infty} w(t)=0$ for all $w \in \mathscr{B}$. Prove that if \mathscr{B} is asymptotically stable, then it is autonomous.
6. Prove the following statement: let $\mathscr{B} \in \mathscr{L}^{\mathbb{W}}$, and assume that there exists $\Psi \in \mathbb{R}^{\mathrm{w} \times w}[\zeta, \eta]$ such that
(i) $Q_{\Psi}(w) \geq 0$ for all $w \in \mathscr{B}$;
(ii) there exists $D \in \mathbb{R}^{w \times w}[\xi]$ such that

$$
\frac{d}{d t} Q_{\Psi}(w)=-\left(D\left(\frac{d}{d t}\right) w\right)^{\top} D\left(\frac{d}{d t}\right) w
$$

for all $w \in \mathscr{B}$, and $\operatorname{rank}(\operatorname{col}(D(\lambda), R(\lambda))=w$. Then \mathscr{B} is asymptoti-

Figure 2: Alexandr Mikhailovich Lyapunov, 1857-1918
cally stable.
(Hint: Integrate the relation $\frac{d}{d t} Q_{\Psi}(w)=-\left(D\left(\frac{d}{d t}\right) w\right)^{\top} D\left(\frac{d}{d t}\right) w$ between 0 and T.)

Relate this result with the behavior \mathscr{B} considered in Questions 1-4, assuming that $F=0$ in Figure 1.

Consider the controllable behavior described by

$$
\mathscr{B}=\left\{(x, u) \in \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{n}+\mathrm{m}}\right) \left\lvert\, \frac{d}{d t} x=A x+B u\right.\right\} .
$$

It follows from the material illustrated in Lecture 1 of this course that \mathscr{B} controllable $\Longleftrightarrow(A, B)$ controllable. Let now $X \in \mathbb{R}^{\mathrm{n} \times \mathrm{n}}[\xi]$ and $U \in \mathbb{R}^{\mathrm{u} \times \mathrm{u}}[\xi]$ be such that

$$
\left[\begin{array}{l}
x \\
u
\end{array}\right]=\left[\begin{array}{l}
X\left(\frac{d}{d t}\right) \\
U\left(\frac{d}{d t}\right)
\end{array}\right] \ell
$$

is an observable image representation of \mathscr{B}. It can be shown that this implies $X(\xi) U(\xi)^{-1}=(\xi I-A)^{-1} B$. Now assume that \mathscr{B} is dissipative with respect to

$$
\Sigma:=\left[\begin{array}{cc}
Q & S^{\top} \\
S & R
\end{array}\right] \leadsto x^{\top} Q x+2 x^{\top} S^{\top} u+u^{\top} R u ;
$$

then the QDF

$$
\Phi(\zeta, \eta):=\left[\begin{array}{ll}
X(\zeta)^{\top} & U(\zeta)^{\top}
\end{array}\right]\left[\begin{array}{ll}
Q & S^{\top} \\
S & R
\end{array}\right]\left[\begin{array}{l}
X(\eta) \\
U(\eta)
\end{array}\right]
$$

acting on $\mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{m}}\right)$ satisfies the dissipation inequality.

1. Let $K=K^{\top} \in \mathbb{R}^{\mathrm{n} \times \mathrm{n}}$, and consider the QDF associated with the twovariable polynomial matrix $X(\zeta)^{\top} K X(\eta)$. Show that

$$
\begin{aligned}
(\zeta+\eta) X(\zeta)^{\top} K X(\eta)= & X(\zeta)^{T} A^{T} K X(\eta)+U(\zeta)^{T} B^{T} K X(\eta) \\
& +X(\zeta)^{T} K A X(\eta)+X(\zeta)^{T} K B U(\eta)
\end{aligned}
$$

(Hint: Use the fact that $\left.X(\xi) U(\xi)^{-1}=(\xi I-A)^{-1} B\right)$.
2. Consider $\Phi(\zeta, \eta)$ defined above. Show that K is such that $X(\zeta)^{\top} K X(\eta)$ induces a storage function for Q_{Φ}, if and only if the Linear Matrix Inequality

$$
\left[\begin{array}{cc}
Q-A^{\top} K-K A & -K B+S^{\top} \\
-B^{\top} K+S & R
\end{array}\right] \geq 0
$$

holds.
(Hint: Show that the map

$$
\begin{gathered}
\mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{m}} \rightarrow \mathbb{R}^{\mathrm{n}} \times \mathbb{R}^{\mathrm{m}}\right. \\
\ell \mapsto\binom{\left(X\left(\frac{d}{d t}\right) \ell\right)(0)}{\left(U\left(\frac{d}{d t}\right) \ell\right)(0)}
\end{gathered}
$$

is surjective. Then use the result proven in 2.1.)
3. Prove that the matrix $\left[\begin{array}{cc}Q-A^{T} K-K A & -K B+S^{T} \\ -B^{T} K+S & R\end{array}\right]$ has rank m .
(Hint: Denote with $H \in \mathbb{R}^{\mathrm{m} \times \mathrm{m}}[\xi]$ a semi-Hurwitz spectral factor of $\Phi(-\xi, \xi)$.
Prove that since $H(\xi)=H_{0}+H_{1} \xi+\ldots+H_{L} \xi^{L}$ is nonsingular, the coefficient matrix $\tilde{H}:=\left[\begin{array}{llll}H_{0} & H_{1} & \ldots & H_{L}\end{array}\right]$ has full row rank.)

Figure 3: Jacopo Francesco Riccati, 1676-1754
4. Prove that if $R>0$ then the algebraic Riccati equation

$$
Q-A^{\top} K-K A-\left(-K B+S^{\top}\right) R^{-1}(-B K+S)=0
$$

holds.
(Hint: Write the Schur complement of R in the matrix of the LMI.)

In Lecture XII we have dealt with discrete-time systems only. In this exercise we extend part of the results to continuous-time.

1. Let $v \in \mathbb{R}^{\mathrm{W}}$ and $\lambda \in \mathbb{R}$. Prove that the dimension of

$$
\mathscr{B}=\text { kernel } \frac{v v^{\top}}{v^{\top} v} \frac{d}{d t}-\lambda I
$$

as a subspace of $\mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{W}\right)$ equals one. Write down an expression for the general trajectory in \mathscr{B}.
2. In Lecture XII we discussed a procedure to recursively construct a representation of the MPUM for discrete-time data. We now discuss an analogous procedure for the case of continuous-time data consisting of a finite set of vector-exponential trajectories $w_{i}, i=1, \ldots, n$:

$$
\left\{w_{i}(t)=v_{i} e^{\lambda_{i} t} \mid v \in \mathbb{R}^{\mathrm{w}}, \lambda_{i} \in \mathbb{R}, i=1, \ldots, n\right\} .
$$

Define a representation for w_{1} as in Question 1, and call it R_{1}. Now define the first error trajectory as $e_{1}:=R\left(\frac{d}{d t}\right) w_{2}$. Prove that e_{1} is vectorexponential.
3. Let $E_{1}\left(\frac{d}{d t}\right)$ induce a representation for the MPUM for e_{1}. Prove that $E_{1} R_{1}$ induces a kernel representation for the data set $\left\{w_{1}, w_{2}\right\}$. Infer now a procedure to model recursively the data set $\left\{w_{i}\right\}_{i=1, \ldots, n}$.
4. Let $v \in \mathbb{R}^{2}, \lambda \in \mathbb{R}_{+}$and $\Sigma=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$. Assume that $v^{\top} \Sigma v \neq 0$. Denote with $v^{\perp} \in \mathbb{R}^{2}$ any nonzero vector such that $v^{\top} \Sigma v^{\perp}=0$. Define

$$
R(\xi):=(\xi+\bar{\lambda}) I_{2}-v\left(\frac{v^{\top} \Sigma v}{\lambda+\bar{\lambda}}\right)^{-1} v^{\top} \Sigma .
$$

Verify that kernel $R\left(\frac{d}{d t}\right)$ is the MPUM for the data set $\left\{v e^{\lambda t}, v^{\perp} e^{-\bar{\lambda} t}\right\}$.
5. Prove that there exist $r_{i} \in \mathbb{R}[\xi], i=1,2$, such that

$$
R(\xi)=\left[\begin{array}{cc}
r_{2}(-\xi) & r_{1}(-\xi) \\
r_{1}(\xi) & r_{2}(\xi)
\end{array}\right],
$$

where R is the matrix introduced in Question 4.

1. Let $w \in \mathscr{B}$, with $\mathscr{B} \in \mathscr{L}^{\text {w }}$. Split the Hankel matrix of the data in 'past' (blue) and 'future' (pink):

$$
\left[\begin{array}{ccccc}
\mathscr{H}_{-} \\
\mathscr{H}_{+}
\end{array}\right]=\left[\begin{array}{ccccc}
w(0) & w(1) & \cdots & w(t) & \cdots \\
\vdots & \vdots & \vdots & \vdots & \\
w(\Delta) & w(\Delta+1) & \cdots & w(t+\Delta-1) & \cdots \\
w(\Delta+1) & w(\Delta+2) & \cdots & w(t+\Delta) & \cdots \\
\vdots & \vdots & \vdots & \vdots & \\
w(2 \Delta) & w(2 \Delta+1) & \cdots & w(t+2 \Delta-1) & \cdots
\end{array}\right]
$$

where Δ is a 'large' integer. Prove that the intersection of the row spaces of past and future induces a state sequence:

$$
\text { row span }\left(\mathscr{H}_{-}\right) \cap \text { row span }\left(\mathscr{H}_{+}\right)=\left[\begin{array}{lllll}
x(\Delta+1) & x(\Delta+2) & \cdots & x(t+\Delta) & \cdots
\end{array}\right] .
$$

(Hint: Let $R(\xi)=R_{0}+R_{1} \xi+\cdots+R_{L} \xi^{L}$ induce a kernel representation of \mathscr{B}. Since Δ is 'large', we can assume $L<\Delta$. Observe that

$$
\left[\begin{array}{lllll}
R_{0} & R_{1} & \cdots & R_{L-1} & R_{L}
\end{array}\right]\left[\begin{array}{ccc}
w(\Delta-L+1) & w(\Delta-L+2) & \cdots \\
\vdots & \vdots & \vdots \\
w(\Delta) & w(\Delta+1) & \cdots \\
w(\Delta+1) & w(\Delta+2) & \cdots
\end{array}\right]=0
$$

'Shifting' we obtain also

$$
\left[\begin{array}{lllllll}
R_{0} & R_{1} & \cdots & R_{L-2} & R_{L-1} & R_{L}
\end{array}\right]\left[\begin{array}{ccc}
w(\Delta-L+2) & w(\Delta-L+3) & \cdots \\
\vdots & \vdots & \vdots \\
w(\Delta) & w(\Delta+1) & \cdots \\
w(\Delta+1) & w(\Delta+2) & \cdots \\
w(\Delta+2) & w(\Delta+3) & \cdots
\end{array}\right]=0 .
$$

Now use the notion of state map.)
The idea of intersecting past and future of the data lies at the foundation of the subspace approach to system identification.
2. Assume that a state sequence has been computed, for example following the procedure sketched in the hint for Question 1. How would you compute matrices E, F, and G corresponding to a state representation of the data-generating behavior \mathscr{B} ? If a partition of w in input and output variables is known, how would you compute the matrices A, B, C, D corresponding to an input-state-output representation of \mathscr{B} ?
3. Specialize the results of Question 1 to the case in which $\mathrm{w}=1$ and the data consists of the linear combination of two (scalar) geometric series: $w(k)=\alpha_{1} \lambda_{1}^{k}+\alpha_{2} \lambda_{2}^{k}$, with $\alpha_{1}, \alpha_{2} \neq 0$ and $\lambda_{1} \neq \lambda_{2}$. If one follows the procedure sketched in the hint, what is the state representation corresponding to this data?
4. Assume that \mathscr{B} is the behavior of a discrete-time SISO system, and that the data collected is of the form $w(k)=v_{1} \lambda_{1}^{k}+v_{2} \lambda_{2}^{k}$ for some $v_{i} \in \mathbb{R}^{2}, \lambda_{i} \in$ $\mathbb{R}, i=1,2$ with $\lambda_{1} \neq \lambda_{2}$. What does the result of intersecting the past and the future data matrices look like? What is a state representation corresponding to this data?

