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Exercise 26: State and McMillan degree

We need to introduce the notion of row-reduced matrix.
Letr=[r; ... ry| € RI*¥[&]; then § is the degree of r if

0 =max{d | d =deg(r;),i=1,...,u}.

Note that if § = deg(r), then (&) = E%rye + 7/ (€), where rpe € R7¥ and
deg(r') < 6. We call ry. the highest coefficient of r. Given a matrix R =
col(ri)i=1...ps We write r;(E) = E%r, . +ri(&), with §; = deg(r;) and deg(r') <
0, i=1,...,p. We call Ry := col(rjnc)i—1,.. p the highest row coefficient
matrix of R. A matrix R is called row-reduced if its highest row coefficient
matrix has full rank.

It can be shown that if R is a polynomial matrix of full row rank, then there
exists a unimodular matrix U such that UR is row-reduced. Also, it can
be shown that if R; and R, are row-reduced, with row-degrees arranged
in e.g. ascending order, and if R; = UR; for some unimodular U, then the
row-degrees of R; and R, are the same.

1. The matrix 5 | 25 5
+ + 35
REI= e e r agd13e

is not row proper: verify it. Find a unimodular matrix U such that UR
is row proper.

2. Prove that if R is row-reduced with row degrees 0;, i = 1,...,p, then its
maximal degree p X p minor has degree equal to Zle O

3. Let # =kernel(R), with R row-reduced. Prove that n(%) = deg(det(P))
for every matrix P such that

"ol

is an input/output representation of % with P~!Q proper.



4. Assume that R is row-reduced with row degrees 6;,, i = 1,...,p, and de-
note with X the polynomial matrix obtained stacking the results of the
shift-and-cut map, i.e. £ := col (¢ (R)),_, . Prove that the subspace

of R<¥[¢]

i=1,

Er={f e R[] | Ta e R**s.t. f = aZp}
has dimension equal to n(%).

5. Prove that if # = kernel(R) with R a row-reduced matrix, then a min-
imal state map for % can be computed selecting the nonzero rows of

g :=col (6 (R))

i=1,.."



Exercise 27: State and state equations |

1. Let X = (Z,RY,R*, &y1) be a discrete-time latent variable system. As-

sume that it is complete, i.e. that
(w,x) € Brul < (W,X) ‘[to,ll]e PBran |[t0,t1] for all —oo <1y <1t <oo.

Prove that ¥ is a state system if and only if there exist £, F,G € R***
such that %y, can be described by Ecx+ Fx+ Gw = 0.

(Hint: For the ‘“‘only if”’ part, define

a x(1) a
Vi=¢ | b||30w)€Brns. t. | x(0) | =| b
c w(0) c

Prove that 7 is a linear space.

The *if”’ part can be proved by induction, using the state property and
the completeness of %4.)

2. Consider the behavior described in kernel form by the equation

()=o)

where p(§) =po+...+pu&™ q(&E) = qo+ ... + g,E". Write the polyno-
mial matrix X € R"*?[£] obtained by applying the shift-and-cut map
to the matrix [p(&) —q(&)]. Is X(&) obtained in this way a minimal
state map? Explain.

3. Verify that the matrices A, B, C, and D corresponding to this state map

are
(1 0 0 ... 0 —E=t] (g1 — 2102
0 0 _I% Qn—Z_I%
A = DU B= :
00 0 0 -o g1 — B
00 0 1 & qo — P

C = 000...0% p_n
Pn



4. Let % =hy+mE 1 +...+h,E"+ ... be the power series expansion

at infinity of the rational function %. The numbers 4, i =0,..., are

called the Markov parameters of the ‘“transfer function” %. Define

the polynomial matrix

1 ho

x(E):=| © it hos

&M i+ e 2b 4 RS
Prove that this matrix induces a state map for the system.

5. Find the matrices A, B, C, D corresponding to the state map X.



Exercise 28: Properties of QDFs!|

1. Let Qg be a QDF associated with the two-variable polynomial matrix
® € R***[{,n]. Prove that the derivative of Q¢ is associated with the
polynomial matrix (§ +1n)®({,n).

2. Let ® € R[{,n] (scalar!), and let # = kernel r <%> . Prove that Q¢ (w) =
0 for all w € # if and only if there exists / € R[{, ] such that

®(C,n) =r(C)f(C.n)+f(,E)r(n).
d'w

(Hint: Assume w.l.o.g. that r is monic. Rewrite every term ‘%@MW
of Qo (w) with k,¢ > deg(r) in terms of derivatives of order less than or
equal to deg (r) — 1. Call the result of these operations Q4. Note that
Qe (W) = Qp(w) for all w € Z, with only terms involving derivatives of
order < deg r— 1. Now you need to prove that ®'({,n) = 0 (the two-
variable zero polynomial); consider what happens at 1 = 0 when Qg is
applied toaw € 4...)

This result can easily extended to the multivariable case using the Smith
form, obtaining the characterization discussed during the lecture.

3. Let ® € R[{,n] (scalar!), and let # = kernel r <%) . Prove that Q¢ (w) >
0 for all w € Z if and only if there exist f € R[E], ¢ € R[{, 1] such that

O(¢,n) =f(C)f(n)+r(8)g(C,n)+g(n,E)r(n) . (D)
(Hint: Follow the hint of Question 2. )

This result can easily extended to the multivariable case using the Smith
form, obtaining the characterization discussed during the lecture.

4. Let ® € R[{,n] (scalar!), and let # = kernel r (%) . Prove that Q¢ (w) >

0 for all w € Z if and only if there exists f € R[], g € R[{, 1] such that
(1) holds, and moreover GCD(f,r) = 1.

This result can easily extended to the multivariable case using the Smith
form, obtaining the characterization discussed during the lecture.



Exercise 29: QDFs and oscillatory systems

1. A behavior 4 € £V is called oscillatory if
[w € #B] = [w is bounded on (—oo, +)] .

Prove that if % is oscillatory, then it is autonomous.

2. Let # = ker R(%), with R € R**¥[£]. Prove that Z is oscillatory if and
only if every nonzero invariant polynomial of R has distinct and purely
imaginary roots.

3. Let Z € £, and let ® € R"*¥[{,nn]. We call a QDF Qg a conserved
quantity for % if

e ] — | £ou(n =0]

Prove that Q¢ is a conserved quantity if and only if there exists Y €
R¥*¥[{,n] such that

(C+m®(L,n)=R(E)'Y(&,n)+Y(n,8) R(n).

4. Let Z € £ (scalar system!), and let 4 = kernel r (%) . Prove that Q¢
is a r-canonical conserved quantity for & if and only if there exists y €
R[£] (univariate!), deg y < deg r, such that ({+n)®({,n)=r({)y(n)+
y(&)r(n).

5. Assume now that Z is oscillatory, without characteristic frequencies at
zero. Use the result of Question 3 to construct a basis for the space of
r-canonical conserved quantities for 4.

(Hint: Let { = —&, n =& in the result of Question 3. Then r(—&)y(&) +
y(=&)r(&) = 0. What does this equation tell about the polynomial y?)



Exercise 30: QDFs and physical systems

Consider the mechanical system in Figure 1. The equation relating w and F

w
|

k

Ay

C

Figure 1: The mechanical system for exercise 22

is m‘i%v + c%w + kw — F = 0. Assume that all constants have value 1 (in the
appropriate physical unit). The system is then described in kernel form by
the matrix R(§) = [52 +E+1 — 1] , and in observable image form (verify

this!) by M(&) = [

following).

1
E2 L E 4+ 1] (you may find working with M easier in the

1. Using only the calculus of quadratic differential forms (not physical in-
sight!), write down the dissipation equality for this system, correspond-
ing to the supply rate Qo (w,F) = F %w.

2 Using your physical insight, write an expression for the total energy of the
system. Write also the two-variable polynomial matrix corresponding
to the total energy.

3 Using your physical insight, write an expression for the energy dissipated
in the system. Write also the two-variable polynomial matrix corre-
sponding to the dissipated energy.

4. Prove that for every trajectory of the system, the derivative of the total
energy equals the opposite of the dissipated energy.

5. A behavior # € £V is called asymptotically stable if lim;,_..w(t) =0
for all w € #. Prove that if & is asymptotically stable, then it is au-
tonomous.



6. Prove the following statement: let % € ", and assume that there exists
¥ € R"¥[{,n] such that

(i) Qg(w) > 0forallw € A;
(ii) there exists D € R"*¥[&] such that

ort == (o(5)) o (5)»

for all w € %, and rank(col(D(A),R(A)) = w. Then % is asymptoti-

Figure 2: Alexandr Mikhailovich Lyapunov, 1857-1918

cally stable.

-
(Hint: Integrate the relation %qu(w) =— (D (%) w) D (%) w be-
tween O and 7'.)

Relate this result with the behavior & considered in Questions 1-4,
assuming that F = 0 in Figure 1.



Exercise 31: Dissipativity and the Algebraic Riccati Equation

Consider the controllable behavior described by
d
B = {(x,u) c €< (R,R*™) | Ex:AerBu} :

It follows from the material illustrated in Lecture 1 of this course that %
controllable <> (A, B) controllable. Let now X € R***[{] and U € R**"[]

be such that i
=L’

is an observable image representation of 4. It can be shown that this im-
plies X (E)U(E)~! = (E1—A)~'B. Now assume that % is dissipative with
respect to
_los! T TeT, . Tp,.
Y= ~x Ox+2x' S u+u Ru;
S R
then the QDF

e w8 72

acting on ¢ (R, R™) satisfies the dissipation inequality.

1. Let K = K" € R®™™, and consider the QDF associated with the two-
variable polynomial matrix X ({)"KX(n). Show that

(C+mX () 'KX(n) = X(&)"ATkX(n)+U($)"B"KX(n)
+X(8)"KAX(n) +X(£)' KBU(n)

(Hint: Use the fact that X (E)U ()~ = (E1—-A)~!B).

10



2. Consider ®({,n) defined above. Show that K is such that X({) "KX(n)
induces a storage function for Qg, if and only if the Linear Matrix In-
equality

AT . T
O—A'K—KA KB+S]>O

~B'K+S R
holds.
(Hint: Show that the map

¢=(R,R") — R* x R"
£H<@%W@)

is surjective. Then use the result proven in 2.1.)
O—ATK—KA —KB+ST
—BTK+S R
(Hint: Denote with H € R™*"[£] a semi-Hurwitz spectral factor of ®(—&,&).

Prove that since H (§) = Hy+ H,& + ...+ H &L is nonsingular, the coef-
ficient matrix A := [Hy H, ... Hi| has full row rank.)

3. Prove that the matrix [ ] has rank m.

Figure 3: Jacopo Francesco Riccati, 1676-1754

4. Prove that if R > 0O then the algebraic Riccati equation
Q—A'K—KA—(—KB+S")R™'(—BK+5) =0

holds.
(Hint: Write the Schur complement of R in the matrix of the LMI.)

11



Exercise 32: The MPUM for exponential trajectories

In Lecture XII we have dealt with discrete-time systems only. In this exer-
cise we extend part of the results to continuous-time.

1. Let v € R¥ and A € R. Prove that the dimension of

-
w' d

A =kernel — — — Al
vivdt

as a subspace of (R, R") equals one. Write down an expression for
the general trajectory in %4.

2. In Lecture XII we discussed a procedure to recursively construct a rep-
resentation of the MPUM for discrete-time data. We now discuss an
analogous procedure for the case of continuous-time data consisting of
a finite set of vector-exponential trajectories w;, i =1,... n:

{wi(t) =vie™ |veR", L, eR,i=1,...,n}.

Define a representation for w; as in Question 1, and call it R;. Now de-
fine the first error trajectory as ¢; := R <%) w». Prove that ¢, is vector-
exponential.

3. Let £, (%) induce a representation for the MPUM for ¢;. Prove that

E|R| induces a kernel representation for the data set {w,w;}. Infer
now a procedure to model recursively the data set {w;},— ..

(1) _01] . Assume that v'Xv # 0. Denote

with v+ € R? any nonzero vector such that v' v = 0. Define

4.LetveR2,/le]R+andz:[

A
R(&):=(E+A)L—v <), EI> v'E.

Verify that kernel R

N

%) is the MPUM for the data set {ve, e 1.

12



5. Prove that there exist r; € R[E], i = 1,2, such that

[n(=8) n(-£)
R@—[n@ r2<é>]’

where R is the matrix introduced in Question 4.

13



 Exercise 33: From data to state model

1. Let w € A, with # € £". Split the Hankel matrix of the data in ‘past’

(blue) and ‘future’ (pink):
[ w(0)

w(.A)

[ﬁj " |wa+D

w(l)

W(A.-l— 1)
w(A+2)

] w(;A) WA+ 1)

w(r)

w(t—!—:A— 1)

w(t+A)
:- W(t+2:A— 1)

where A is a ‘large’ integer. Prove that the intersection of the row
spaces of past and future induces a state sequence:

row span(.7Z_ )N row span(.7;, ) = [x(A+1) x(A+2)

x(t+A)

(Hint: Let R(§) = Ry+ R & + - -- + R, EL induce a kernel representation

of A. Since A is ‘large’, we can assume L < A. Observe that

[Ro R

- R RL]

‘Shifting’ we obtain also

[Ro R

-+ R—> Ri-1 Ri]

(W(A—L+1) w(A—L+2)

W(A.-F 1)

w(A+1) w(A+2)

(W(A—L+2) w(A—L+3)

W(OA) W(A.-i- 1)

w(A+1) w(A+2)
w(A+2) w(A+3)

Now use the notion of state map. )

The idea of intersecting past and future of the data lies at the founda-
tion of the subspace approach to system identification.

14



2. Assume that a state sequence has been computed, for example following
the procedure sketched in the hint for Question 1. How would you
compute matrices £, F, and G corresponding to a state representation
of the data-generating behavior %? If a partition of w in input and
output variables is known, how would you compute the matrices A, B,
C, D corresponding to an input-state-output representation of %?

3. Specialize the results of Question 1 to the case in which w = 1 and the
data consists of the linear combination of two (scalar) geometric se-
ries: w(k) = OCM,{‘ + 062/15, with a;, 00 # 0 and A; # A,. If one follows
the procedure sketched in the hint, what is the state representation cor-
responding to this data?

4. Assume that % is the behavior of a discrete-time SISO system, and that
the data collected is of the form w(k) =v 1),{‘ + vzlé‘ for some v; e R%, A, €
R, i = 1,2 with A; # 1,. What does the result of intersecting the past
and the future data matrices look like? What is a state representation
corresponding to this data?
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