European Embedded Control Institute

Graduate School on Control — Spring 2010

The Behavioral Approach to Modeling and Control

EXERCISES- second part

Exercise 26: State and McMillan degree

We need to introduce the notion of *row-reduced matrix*. Let $r = \begin{bmatrix} r_1 & \dots & r_w \end{bmatrix} \in \mathbb{R}^{1 \times w}[\xi]$; then δ is the *degree of* r if

$$\delta = \max\{d \mid d = \deg(r_i), i = 1, \dots, \mathtt{w}\}.$$

Note that if $\delta = \deg(r)$, then $r(\xi) = \xi^{\delta} r_{hc} + r'(\xi)$, where $r_{hc} \in \mathbb{R}^{1 \times w}$ and $\deg(r') < \delta$. We call r_{hc} the *highest coefficient* of r. Given a matrix $R = \operatorname{col}(r_i)_{i=1,\ldots,p}$, we write $r_i(\xi) = \xi^{\delta_i} r_{i,hc} + r'_i(\xi)$, with $\delta_i = \deg(r_i)$ and $\deg(r') < \delta_i$, $i = 1, \ldots, p$. We call $R_{hc} := \operatorname{col}(r_{i,hc})_{i=1,\ldots,p}$ the *highest row coefficient matrix of R*. A matrix R is called *row-reduced* if its highest row coefficient matrix has full rank.

It can be shown that if R is a polynomial matrix of full row rank, then there exists a unimodular matrix U such that UR is row-reduced. Also, it can be shown that if R_1 and R_2 are row-reduced, with row-degrees arranged in e.g. ascending order, and if $R_1 = UR_2$ for some unimodular U, then the row-degrees of R_1 and R_2 are the same.

1. The matrix

$$R(\xi) = \begin{bmatrix} \xi + 1 & 2\xi + \frac{5}{2} \\ 2\xi^2 + \xi + 1 & 4\xi^2 + 3\xi \end{bmatrix}$$

is not row proper: verify it. Find a unimodular matrix U such that UR is row proper.

- 2. Prove that if *R* is row-reduced with row degrees δ_i , i = 1, ..., p, then its maximal degree $p \times p$ minor has degree equal to $\sum_{i=1}^{p} \delta_i$.
- 3. Let $\mathscr{B} = \texttt{kernel}(R)$, with *R* row-reduced. Prove that $n(\mathscr{B}) = deg(det(P))$ for every matrix *P* such that

$$\begin{bmatrix} P & -Q \end{bmatrix} \begin{bmatrix} y \\ u \end{bmatrix} = 0$$

is an input/output representation of \mathscr{B} with $P^{-1}Q$ proper.

4. Assume that *R* is row-reduced with row degrees δ_i, i = 1,..., p, and denote with Σ_R the polynomial matrix obtained stacking the results of the shift-and-cut map, i.e. Σ_R := col (σⁱ₊(R))_{i=1,...}. Prove that the subspace of ℝ^{1×w}[ξ]

$$\Xi_R = \{f \in \mathbb{R}^{1 imes \mathtt{w}}[\xi] \mid \exists \; lpha \in \mathbb{R}^{1 imes ullet} \; ext{ s.t. } f = lpha \Sigma_R \}$$

has dimension equal to $n(\mathcal{B})$.

5. Prove that if $\mathscr{B} = \texttt{kernel}(R)$ with R a row-reduced matrix, then a minimal state map for \mathscr{B} can be computed selecting the nonzero rows of

$$\Sigma_R := \operatorname{col} \left(\sigma_+^{\iota}(R) \right)_{i=1,\ldots}.$$

Exercise 27: State and state equations

1. Let $\Sigma = (\mathbb{Z}, \mathbb{R}^w, \mathbb{R}^x, \mathscr{B}_{full})$ be a discrete-time latent variable system. Assume that it is *complete*, i.e. that

 $(w,x) \in \mathscr{B}_{\text{full}} \iff (w,x) \mid_{[t_0,t_1]} \in \mathscr{B}_{\text{full}} \mid_{[t_0,t_1]} \text{ for all } -\infty < t_0 \le t_1 < \infty.$

Prove that Σ is a state system if and only if there exist $E, F, G \in \mathbb{R}^{\bullet \times \bullet}$ such that $\mathscr{B}_{\text{full}}$ can be described by $E \sigma x + F x + G w = 0$.

(Hint: For the "only if" part, define

$$\mathscr{V} := \left\{ \begin{bmatrix} a \\ b \\ c \end{bmatrix} \mid \exists (x, w) \in \mathscr{B}_{\text{full}} \text{ s. t. } \begin{bmatrix} x(1) \\ x(0) \\ w(0) \end{bmatrix} = \begin{bmatrix} a \\ b \\ c \end{bmatrix} \right\}$$

Prove that \mathscr{V} is a linear space.

The "if" part can be proved by induction, using the state property and the completeness of \mathcal{B} .)

2. Consider the behavior described in kernel form by the equation

$$p\left(\frac{d}{dt}\right)y = q\left(\frac{d}{dt}\right)u$$

where $p(\xi) = p_0 + \ldots + p_n \xi^n$, $q(\xi) = q_0 + \ldots + q_n \xi^n$. Write the polynomial matrix $X \in \mathbb{R}^{n \times 2}[\xi]$ obtained by applying the shift-and-cut map to the matrix $[p(\xi) - q(\xi)]$. Is $X(\xi)$ obtained in this way a minimal state map? Explain.

3. Verify that the matrices *A*, *B*, *C*, and *D* corresponding to this state map are

$$A = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 & -\frac{p_{n-1}}{p_n} \\ 0 & 1 & 0 & \dots & 0 & -\frac{p_{n-2}}{p_n} \\ \vdots & \ddots & \ddots & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 0 & -\frac{p_1}{p_n} \\ 0 & 0 & 0 & \dots & 1 & -\frac{p_0}{p_n} \end{bmatrix} \qquad B = \begin{bmatrix} q_{n-1} - \frac{p_{n-1}q_n}{p_n} \\ q_{n-2} - \frac{p_{n-2}q_n}{p_n} \\ \vdots \\ q_1 - \frac{p_1q_n}{p_n} \\ q_0 - \frac{p_0q_n}{p_n} \end{bmatrix}$$
$$C = \begin{bmatrix} 0 & 0 & 0 & \dots & 0 & \frac{1}{p_n} \end{bmatrix} \qquad D = \frac{q_n}{p_n}$$

4. Let $\frac{q(\xi)}{p(\xi)} = h_0 + h_1 \xi^{-1} + \ldots + h_n \xi^{-n} + \ldots$ be the power series expansion at infinity of the rational function $\frac{q(\xi)}{p(\xi)}$. The numbers h_i , $i = 0, \ldots$, are called the *Markov parameters* of the "transfer function" $\frac{q(\xi)}{p(\xi)}$. Define the polynomial matrix

$$X(\xi) := \begin{bmatrix} 1 & h_0 \\ \xi & h_1 + h_0 \xi \\ \vdots & \vdots \\ \xi^{n-1} & h_{n-1} + h_{n-2} \xi + \ldots + h_0 \xi^{n-1} \end{bmatrix}$$

Prove that this matrix induces a state map for the system.

5. Find the matrices *A*, *B*, *C*, *D* corresponding to the state map *X*.

Exercise 28: Properties of QDFs

- 1. Let Q_{Φ} be a QDF associated with the two-variable polynomial matrix $\Phi \in \mathbb{R}^{\bullet \times \bullet}[\zeta, \eta]$. Prove that the derivative of Q_{Φ} is associated with the polynomial matrix $(\zeta + \eta)\Phi(\zeta, \eta)$.
- 2. Let $\Phi \in \mathbb{R}[\zeta, \eta]$ (scalar!), and let $\mathscr{B} = \texttt{kernel} r\left(\frac{d}{dt}\right)$. Prove that $Q_{\Phi}(w) = 0$ for all $w \in \mathscr{B}$ if and only if there exists $f \in \mathbb{R}[\zeta, \eta]$ such that

$$\Phi(\zeta,\eta) = r(\zeta)f(\zeta,\eta) + f(\eta,\zeta)r(\eta) .$$

(*Hint*: Assume w.l.o.g. that *r* is monic. Rewrite every term $\frac{d^k w}{dt^k} \Phi_{k,\ell} \frac{d^\ell w}{dt^\ell}$ of $Q_{\Phi}(w)$ with $k, \ell \ge \deg(r)$ in terms of derivatives of order less than or equal to deg (r) - 1. Call the result of these operations $Q_{\Phi'}$. Note that $Q_{\Phi'}(w) = Q_{\Phi}(w)$ for all $w \in \mathcal{B}$, with only terms involving derivatives of order $\le \deg r - 1$. Now you need to prove that $\Phi'(\zeta, \eta) = 0$ (the two-variable zero polynomial); consider what happens at t = 0 when $Q_{\Phi'}$ is applied to a $w \in \mathcal{B}$...)

This result can easily extended to the multivariable case using the Smith form, obtaining the characterization discussed during the lecture.

3. Let $\Phi \in \mathbb{R}[\zeta, \eta]$ (scalar!), and let $\mathscr{B} = \texttt{kernel} r\left(\frac{d}{dt}\right)$. Prove that $Q_{\Phi}(w) \ge 0$ for all $w \in \mathscr{B}$ if and only if there exist $f \in \mathbb{R}[\xi]$, $g \in \mathbb{R}[\zeta, \eta]$ such that

$$\Phi(\zeta, \eta) = f(\zeta)f(\eta) + r(\zeta)g(\zeta, \eta) + g(\eta, \zeta)r(\eta).$$
(1)

(*Hint*: Follow the hint of Question 2.)

This result can easily extended to the multivariable case using the Smith form, obtaining the characterization discussed during the lecture.

4. Let $\Phi \in \mathbb{R}[\zeta, \eta]$ (scalar!), and let $\mathscr{B} = \texttt{kernel} r\left(\frac{d}{dt}\right)$. Prove that $Q_{\Phi}(w) > 0$ for all $w \in \mathscr{B}$ if and only if there exists $f \in \mathbb{R}[\xi]$, $g \in \mathbb{R}[\zeta, \eta]$ such that (1) holds, and moreover GCD(f, r) = 1.

This result can easily extended to the multivariable case using the Smith form, obtaining the characterization discussed during the lecture.

Exercise 29: QDFs and oscillatory systems

1. A behavior $\mathscr{B} \in \mathscr{L}^{\mathsf{w}}$ is called *oscillatory* if

 $[w \in \mathscr{B}] \Longrightarrow [w \text{ is bounded on } (-\infty, +\infty)]$.

Prove that if \mathscr{B} is oscillatory, then it is autonomous.

- 2. Let $\mathscr{B} = \ker R(\frac{d}{dt})$, with $R \in \mathbb{R}^{\bullet \times w}[\xi]$. Prove that \mathscr{B} is oscillatory if and only if every nonzero invariant polynomial of *R* has distinct and purely imaginary roots.
- 3. Let $\mathscr{B} \in \mathscr{L}^{w}$, and let $\Phi \in \mathbb{R}^{w \times w}[\zeta, \eta]$. We call a QDF Q_{Φ} a conserved quantity for \mathscr{B} if

$$[w \in \mathscr{B}] \Longrightarrow \left[\frac{d}{dt}Q_{\Phi}(w) = 0\right]$$
.

Prove that Q_{Φ} is a conserved quantity if and only if there exists $Y \in \mathbb{R}^{W \times W}[\zeta, \eta]$ such that

$$(\zeta + \eta) \Phi(\zeta, \eta) = R(\zeta)^{\top} Y(\zeta, \eta) + Y(\eta, \zeta)^{\top} R(\eta)$$

- 4. Let $\mathscr{B} \in \mathscr{L}^1$ (scalar system!), and let $\mathscr{B} = \texttt{kernel} r\left(\frac{d}{dt}\right)$. Prove that Q_{Φ} is a *r*-canonical conserved quantity for \mathscr{B} if and only if there exists $y \in \mathbb{R}[\xi]$ (univariate!), deg $y < \deg r$, such that $(\zeta + \eta)\Phi(\zeta, \eta) = r(\zeta)y(\eta) + y(\zeta)r(\eta)$.
- 5. Assume now that \mathscr{B} is oscillatory, without characteristic frequencies at zero. Use the result of Question 3 to construct a basis for the space of *r*-canonical conserved quantities for \mathscr{B} .

(*Hint*: Let $\zeta = -\xi$, $\eta = \xi$ in the result of Question 3. Then $r(-\xi)y(\xi) + y(-\xi)r(\xi) = 0$. What does this equation tell about the polynomial *y*?)

Exercise 30: QDFs and physical systems

Consider the mechanical system in Figure 1. The equation relating w and F

Figure 1: The mechanical system for exercise 22

is $m\frac{d^2w}{dt^2} + c\frac{d}{dt}w + kw - F = 0$. Assume that all constants have value 1 (in the appropriate physical unit). The system is then described in kernel form by the matrix $R(\xi) = [\xi^2 + \xi + 1 - 1]$, and in observable image form (verify this!) by $M(\xi) = \begin{bmatrix} 1 \\ \xi^2 + \xi + 1 \end{bmatrix}$ (you may find working with M easier in the following).

- 1. Using only the calculus of quadratic differential forms (*not* physical insight!), write down the dissipation equality for this system, corresponding to the supply rate $Q_{\Phi}(w, F) = F \frac{d}{dt} w$.
- 2 Using your physical insight, write an expression for the total energy of the system. Write also the two-variable polynomial matrix corresponding to the total energy.
- **3** Using your physical insight, write an expression for the energy dissipated in the system. Write also the two-variable polynomial matrix corresponding to the dissipated energy.
- 4. Prove that for every trajectory of the system, the derivative of the total energy equals the opposite of the dissipated energy.
- 5. A behavior $\mathscr{B} \in \mathscr{L}^{w}$ is called *asymptotically stable* if $\lim_{t\to\infty} w(t) = 0$ for all $w \in \mathscr{B}$. Prove that if \mathscr{B} is asymptotically stable, then it is autonomous.

- 6. Prove the following statement: let $\mathscr{B} \in \mathscr{L}^w$, and assume that there exists $\Psi \in \mathbb{R}^{w \times w}[\zeta, \eta]$ such that
 - (i) $Q_{\Psi}(w) \ge 0$ for all $w \in \mathscr{B}$;
 - (ii) there exists $D \in \mathbb{R}^{W \times W}[\xi]$ such that

$$\frac{d}{dt}Q_{\Psi}(w) = -\left(D\left(\frac{d}{dt}\right)w\right)^{\top}D\left(\frac{d}{dt}\right)w$$

for all $w \in \mathscr{B}$, and $\operatorname{rank}(\operatorname{col}(D(\lambda), R(\lambda)) = w$. Then \mathscr{B} is asymptoti-

Figure 2: Alexandr Mikhailovich Lyapunov, 1857-1918

cally stable.

(*Hint*: Integrate the relation $\frac{d}{dt}Q_{\Psi}(w) = -\left(D\left(\frac{d}{dt}\right)w\right)^{\top}D\left(\frac{d}{dt}\right)w$ between 0 and *T*.)

Relate this result with the behavior \mathscr{B} considered in Questions 1–4, assuming that F = 0 in Figure 1.

Exercise 31: Dissipativity and the Algebraic Riccati Equation

Consider the controllable behavior described by

$$\mathscr{B} = \left\{ (x, u) \in \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R}^{n+m}) \mid \frac{d}{dt}x = Ax + Bu \right\}$$

It follows from the material illustrated in Lecture 1 of this course that \mathscr{B} controllable $\iff (A,B)$ controllable. Let now $X \in \mathbb{R}^{n \times n}[\xi]$ and $U \in \mathbb{R}^{u \times u}[\xi]$ be such that

$$\begin{bmatrix} x \\ u \end{bmatrix} = \begin{bmatrix} X(\frac{d}{dt}) \\ U(\frac{d}{dt}) \end{bmatrix} \ell$$

is an observable image representation of \mathscr{B} . It can be shown that this implies $X(\xi)U(\xi)^{-1} = (\xi I - A)^{-1}B$. Now assume that \mathscr{B} is dissipative with respect to

$$\Sigma := \begin{bmatrix} Q & S^{\top} \\ S & R \end{bmatrix} \rightsquigarrow x^{\top} Q x + 2x^{\top} S^{\top} u + u^{\top} R u ;$$

then the QDF

$$\Phi(\zeta,\eta) := egin{bmatrix} X(\zeta)^ op & U(\zeta)^ op \end{bmatrix} egin{bmatrix} Q & S^ op \ S & R \end{bmatrix} egin{bmatrix} X(\eta) \ U(\eta) \end{bmatrix}$$

acting on $\mathscr{C}^\infty(\mathbb{R},\mathbb{R}^m)$ satisfies the dissipation inequality.

1. Let $K = K^{\top} \in \mathbb{R}^{n \times n}$, and consider the QDF associated with the twovariable polynomial matrix $X(\zeta)^{\top} K X(\eta)$. Show that

$$(\zeta + \eta)X(\zeta)^{\top}KX(\eta) = X(\zeta)^{T}A^{T}KX(\eta) + U(\zeta)^{T}B^{T}KX(\eta) + X(\zeta)^{T}KAX(\eta) + X(\zeta)^{T}KBU(\eta)$$

(*Hint*: Use the fact that $X(\xi)U(\xi)^{-1} = (\xi I - A)^{-1}B$).

2. Consider $\Phi(\zeta, \eta)$ defined above. Show that *K* is such that $X(\zeta)^{\top}KX(\eta)$ induces a storage function for Q_{Φ} , if and only if the *Linear Matrix Inequality*

$$\begin{bmatrix} Q - A^{\top}K - KA & -KB + S^{\top} \\ -B^{\top}K + S & R \end{bmatrix} \ge 0$$

holds.

(Hint: Show that the map

$$\mathscr{C}^{\infty}(\mathbb{R},\mathbb{R}^{\mathtt{m}}) \to \mathbb{R}^{\mathtt{m}} \times \mathbb{R}^{\mathtt{m}}$$
$$\ell \mapsto \begin{pmatrix} (X(\frac{d}{dt})\ell)(0)\\ (U(\frac{d}{dt})\ell)(0) \end{pmatrix}$$

is surjective. Then use the result proven in 2.1.)

3. Prove that the matrix $\begin{bmatrix} Q - A^T K - KA & -KB + S^T \\ -B^T K + S & R \end{bmatrix}$ has rank m.

(*Hint*: Denote with $H \in \mathbb{R}^{m \times m}[\xi]$ a semi-Hurwitz spectral factor of $\Phi(-\xi, \xi)$. Prove that since $H(\xi) = H_0 + H_1\xi + \ldots + H_L\xi^L$ is nonsingular, the coefficient matrix $\tilde{H} := \begin{bmatrix} H_0 & H_1 & \ldots & H_L \end{bmatrix}$ has full row rank.)

Figure 3: Jacopo Francesco Riccati, 1676-1754

4. Prove that if R > 0 then the algebraic Riccati equation

$$Q - A^{\top}K - KA - (-KB + S^{\top})R^{-1}(-BK + S) = 0$$

holds.

(*Hint:* Write the Schur complement of *R* in the matrix of the LMI.)

Exercise 32: The MPUM for exponential trajectories

In Lecture XII we have dealt with discrete-time systems only. In this exercise we extend part of the results to continuous-time.

1. Let $v \in \mathbb{R}^w$ and $\lambda \in \mathbb{R}$. Prove that the dimension of

$$\mathscr{B} = \texttt{kernel} \; rac{vv^{+}}{v^{\top}v} rac{d}{dt} - \lambda I$$

as a subspace of $\mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R}^{w})$ equals one. Write down an expression for the general trajectory in \mathscr{B} .

2. In Lecture XII we discussed a procedure to recursively construct a representation of the MPUM for discrete-time data. We now discuss an analogous procedure for the case of continuous-time data consisting of a finite set of *vector-exponential trajectories* w_i , i = 1, ..., n:

$$\{w_i(t) = v_i e^{\lambda_i t} \mid v \in \mathbb{R}^{\mathsf{w}}, \lambda_i \in \mathbb{R}, i = 1, \dots, n\}.$$

Define a representation for w_1 as in Question 1, and call it R_1 . Now define the first error trajectory as $e_1 := R\left(\frac{d}{dt}\right) w_2$. Prove that e_1 is vector-exponential.

- 3. Let $E_1\left(\frac{d}{dt}\right)$ induce a representation for the MPUM for e_1 . Prove that E_1R_1 induces a kernel representation for the data set $\{w_1, w_2\}$. Infer now a procedure to model recursively the data set $\{w_i\}_{i=1,...,n}$.
- 4. Let $v \in \mathbb{R}^2$, $\lambda \in \mathbb{R}_+$ and $\Sigma = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$. Assume that $v^\top \Sigma v \neq 0$. Denote with $v^\perp \in \mathbb{R}^2$ any nonzero vector such that $v^\top \Sigma v^\perp = 0$. Define

$$R(\xi) := (\xi + \overline{\lambda})I_2 - v \left(\frac{v^{\top}\Sigma v}{\lambda + \overline{\lambda}}\right)^{-1} v^{\top}\Sigma.$$

Verify that kernel $R\left(\frac{d}{dt}\right)$ is the MPUM for the data set $\{ve^{\lambda t}, v^{\perp}e^{-\overline{\lambda}t}\}$.

5. Prove that there exist $r_i \in \mathbb{R}[\xi]$, i = 1, 2, such that

$$R(\xi) = \begin{bmatrix} r_2(-\xi) & r_1(-\xi) \\ r_1(\xi) & r_2(\xi) \end{bmatrix},$$

where *R* is the matrix introduced in Question 4.

Exercise 33: From data to state model

1. Let $w \in \mathscr{B}$, with $\mathscr{B} \in \mathscr{L}^{\mathbb{W}}$. Split the Hankel matrix of the data in 'past' (blue) and 'future' (pink):

$$\begin{bmatrix} \mathscr{H}_{-} \\ \mathscr{H}_{+} \end{bmatrix} = \begin{bmatrix} w(0) & w(1) & \cdots & w(t) & \cdots \\ \vdots & \vdots & \vdots & \vdots \\ w(\Delta) & w(\Delta+1) & \cdots & w(t+\Delta-1) & \cdots \\ w(\Delta+1) & w(\Delta+2) & \cdots & w(t+\Delta) & \cdots \\ \vdots & \vdots & \vdots & \vdots \\ w(2\Delta) & w(2\Delta+1) & \cdots & w(t+2\Delta-1) & \cdots \end{bmatrix}$$

where Δ is a 'large' integer. Prove that the intersection of the row spaces of past and future induces a state sequence:

$$\mathbf{row} \operatorname{span}(\mathscr{H}_{-}) \cap \operatorname{row} \operatorname{span}(\mathscr{H}_{+}) = \begin{bmatrix} x(\Delta+1) & x(\Delta+2) & \cdots & x(t+\Delta) & \cdots \end{bmatrix}.$$

(*Hint*: Let $R(\xi) = R_0 + R_1 \xi + \cdots + R_L \xi^L$ induce a kernel representation of \mathscr{B} . Since Δ is 'large', we can assume $L < \Delta$. Observe that

$$\begin{bmatrix} R_0 & R_1 & \cdots & R_{L-1} & R_L \end{bmatrix} \begin{bmatrix} w(\Delta - L + 1) & w(\Delta - L + 2) & \cdots \\ \vdots & \vdots & \vdots \\ w(\Delta) & w(\Delta + 1) & \cdots \\ w(\Delta + 1) & w(\Delta + 2) & \cdots \end{bmatrix} = 0.$$

'Shifting' we obtain also

$$\begin{bmatrix} R_0 & R_1 & \cdots & R_{L-2} & R_{L-1} & R_L \end{bmatrix} \begin{bmatrix} w(\Delta - L + 2) & w(\Delta - L + 3) & \cdots \\ \vdots & \vdots & \vdots \\ w(\Delta) & w(\Delta + 1) & \cdots \\ w(\Delta + 1) & w(\Delta + 2) & \cdots \\ w(\Delta + 2) & w(\Delta + 3) & \cdots \end{bmatrix} = 0.$$

Now use the notion of state map.)

The idea of intersecting past and future of the data lies at the foundation of the *subspace approach* to system identification.

- 2. Assume that a state sequence has been computed, for example following the procedure sketched in the hint for Question 1. How would you compute matrices *E*, *F*, and *G* corresponding to a state representation of the data-generating behavior *B*? If a partition of *w* in input and output variables is known, how would you compute the matrices *A*, *B*, *C*, *D* corresponding to an input-state-output representation of *B*?
- 3. Specialize the results of Question 1 to the case in which w = 1 and the data consists of the linear combination of two (scalar) geometric series: $w(k) = \alpha_1 \lambda_1^k + \alpha_2 \lambda_2^k$, with $\alpha_1, \alpha_2 \neq 0$ and $\lambda_1 \neq \lambda_2$. If one follows the procedure sketched in the hint, what is the state representation corresponding to this data?
- 4. Assume that ℬ is the behavior of a discrete-time SISO system, and that the data collected is of the form w(k) = v₁λ₁^k + v₂λ₂^k for some v_i ∈ ℝ², λ_i ∈ ℝ, i = 1,2 with λ₁ ≠ λ₂. What does the result of intersecting the past and the future data matrices look like? What is a state representation corresponding to this data?