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Preamble

We collect a few facts about polynomials and rational functions that come
in useful in some of the exercises.

Dividing with rest

For a,b ∈R [ξ ] ,b 6= 0, there existd,r ∈ R [ξ ] with degree(r) < degree(b)
or r = 0, such that

a = bd + r.

The proof is easy.

gcd and lcm

Let a,b ∈ R [ξ ]. The greatest common divisorof a,b (denotedgcd(a,b)) is
the monic polynomial of largest degree that is a factor of both a and b. The
least common multipleof a,b (denotedlcm(a,b)) is
the monic polynomial of smallest degree that has
both a and b as a factor.

If gcd(a,b) = 1, then a and b are said to becoprime.

The Bézout identity

Let a,b ∈ R [ξ ]. Then a and b are coprime
if and only if there exist x,y ∈ R [ξ ] such that

ax+by = 1. (Bézout identity) Étienne Bézout (1730-1783)

Proof: The (if ) part is easy. The (only if) part can be shown as follows.
Assume thata and b are coprime. Let ℓ ∈ R [ξ ] be the monic polynomial of
least degree that can be written asax+by with x,y∈R [ξ ]. We need to prove
that ℓ = 1. Division with rest givesa = ℓd+r with degree(r) <degree(ℓ),
or r = 0. Let ℓ = aζ + bη. Then r = a(1− ζd)− bηd. Hencer can also
be written as ax + by. Sincer cannot be nonzero and havedegree(r) <

degree(ℓ), we conclude thatr = 0. Henceℓ divides a. Similarly, it follows
that ℓ divides b. Hence, sincea and b are coprime, ℓ = 1. This yields the
Bézout identity.
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The Hankel matrix

Let g ∈ R(ξ ) be strictly proper. Consider its ‘Laurent series’ expansion

g(ξ ) =
g1

ξ
+

g2

ξ 2 + · · ·+
gn
ξ n

+ · · · .

The Hankel matrix associated withg is defined as

H(g) :=



















g1 g2 · · · gn−1 gn · · ·
g2 g3 · · · gn gn+1 · · ·
... ... ... ... ... ...

gn−1 gn · · · g2n−3 g2n−2 · · ·

gn gn+1 · · · g2n−2 g2n−1 · · ·
... ... ... ... ... ...



















.

Matrices (infinite as well as finite) which have the same entries parallel to
the ‘reverse’ diagonal are calledHankel matrices. In a picture,

Hankel ;



















· · · ♣ ♥ ♦ ♠ ·· ·
· · ♣ ♥ ♦ ♠ · · · ·

· ♣ ♥ ♦ ♠ · · · · ·
♣ ♥ ♦ ♠ · · · · · ·

♥ ♦ ♠ · · · · · · ·
... ... ... ... ... ... ... ... ...



















.

Hermann Hankel (1939-1873)

Matrices (infinite as well as finite) which have the same entries parallel to
the diagonal are calledToeplitz matrices. In a picture,

Otto Toeplitz (1881-1940)

Toeplitz ;



















♥ ♦ ♠ · · · · · · ·
♣ ♥ ♦ ♠ · · · · · ·

· ♣ ♥ ♦ ♠ · · · · ·
· · ♣ ♥ ♦ ♠ · · · ·

· · · ♣ ♥ ♦ ♠ ·· ·
... ... ... ... . .. ... . .. ...



















.

The rank of an infinite matrix is defined as the supremum of the dimension
of its nonsingular submatrices. The following result determines the rank of
H(g) in terms of the degree of the denominator ofg.
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rank(H(g)) is finite and equal to the degree of the polynomiala of
lowest degree such thatag is polynomial.

Proof: Let r = rank(H(g)) and n = the degree of the polynomiala ∈ R [ξ ]

of lowest degree such thatag is polynomial. Denote the columns ofH(g) by
H1,H2, . . . ,Hk, . . . .

(i) Assume thatag is polynomial with a ∈ R [ξ ] of degreen. Write a(ξ )g(ξ )
in terms of its powers ofξ . Sinceag is polynomial, the non-positive pow-
ers have zero coefficients. This implies that theHn+1 is a linear combina-
tion of H1,H2, . . . ,Hn. By the Hankel structure of H(g) this implies that the
Hn+k is a linear combination of H1,H2, . . . ,Hn for all k = 1,2, . . .. Hence
r = rank(H(g)) = rank(

[

H1 H2 · · · Hn

]

) ≤ n.
(ii) From the Hankel structure of H(g), it follows that if Hk+1 is a lin-
ear combination of H1,H2, . . . ,Hk, then Hk+k′ is also a linear combination
of H1,H2, . . . ,Hk for all k′ = 2,3, . . .. Therefore r = rank(H(g)) implies
that r = rank(

[

H1 H2 · · · Hk

]

) and that Hr+1 is a linear combination
of H1,H2, . . . ,Hr. By this linear dependence, there exista0,a1, . . . ,ar ∈ R

such that a0H1 + a1H2 + · · ·+ ar−1Hr + Hr+1 = 0. Now conclude that(a0 +
a1ξ + · · ·+ar−1ξ r−1+ξ r)g(ξ ) is polynomial. Thereforen≤ r.
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Exercise 1: Linear models

The mathematical model (Rn,B) is said to be

[[ linear ]] :⇔ [[B is a linear subspace ofRn]].

1. Prove that a linear behavior admits a representation

Rw = 0, R ∈ R
•×n.

Call this representation a kernel representation ofB, and a minimal one
if, among all kernel representations ofB, rowdimension(R) is as small
as possible.

2. Prove thatRw = 0 is minimal if and only if R has full row rank.

3. How are theR’s corresponding to minimal kernel representations ofB
related?

4. Define what you mean by an image representation.
Prove its existence.
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Exercise 2: Codes

As mentioned in Lecture I, our concepts of ‘universum’ and ‘behavior’
have block codes as an interesting example.

An important class of block codes are subsets ofGF(2), that is B ⊆ {0,1}n;
n is called the ‘length’ of the block code. As an example, taken = 5, and

B = {00000,10110,01011,11101}.

1. How many words are there inU and in B ?

2. Is B linear?

In coding applications it is important, for error detection and correction,
that code words are as far away from each other as possible. The separa-
tion between two code words can be measured by the ‘Hamming distance’,
defined by

d(w1w2 · · ·wn,w
′
1w′

2 · · ·w
′
n)

= the number of indicesk such thatwk 6= w′
k.

The Hamming distance of a code is defined as the minimum of the distances
between unequal code words.

3. Compute the Hamming distance ofB.

4. Prove that this code can correct one error, in the sense that if the code-
word is transmitted and received with at most one error, thenthis error
can be corrected.

5. Prove that this code can detect up to two errors, in the sense that if
the codeword is transmitted and received with at most two errors, then
this can be detected.
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Exercise 3: Parity check

Consider the DES withU = {0,1}32 and

B =

{

a1a2 · · ·a31a32 | ak ∈ {0,1} and a32
modulo 2

= ∑31
k=1ak

}

,

the set of 32-bit strings with a parity check as last bit.

1. In what sense is this a linear model?

2. Give a kernel representation of this behavior.

3. Give an image representation of this behavior.

4. Call e = ∑32
k=1ak the syndrome associated with this 32-bit string,

and explain howe can be used for error detection.
How many errors can this code detect?
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Exercise 4: Symmetry

A transformation group on a setA is a set of maps that form a subgroup of
the group of bijections onA. In other words, there is a groupG and a map
T from G to the bijections onA, such that for all g,g1,g2 ∈ G , there holds

1. T1 = idA (idA denotes the identity map onA),

2. Tg−1 = T−1
g ,

3. Tg1g2 = Tg2 ◦Tg1 (◦ denotes map composition).

Let TG be a transformation group onU . The mathematical model(U ,B)

is said to be symmetric with respect toTG if

Tg(B) = B for all g ∈ G .

1. Identify an obvious symmetry for the 32-bit strings with aparity check
discussed in Exercise 3.

2. Formalize time-invariance as a symmetry.

3. Identify a few symmetries for the gravitational attraction of two bod-
ies,U = R

3×R
3×R

3;

B =

{

(~q1,~q2,~F) ∈ R
3×R

3×R
3 | ~F = M1M2

(~q2−~q1)

|~q1−~q2|3

}

. Extend the def-

~q1 ~q2

~F −~FM1 M2

inition of B by including M1,M2, so that exchanging the masses also
becomes a symmetry.

4. Explain in what sense Maxwell’s equations are symmetric with respect
to space translation and rotation.
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Exercise 5: Memoryless systems

The dynamical system(T,W,B) is said to be memoryless :⇔

[[w1,w2 ∈ B and t ′ ∈ T]] ⇒ [[w1∧t ′ w2 ∈ B]],

where w1∧t ′ w2, the concatenation ofw1 and w2 at t ′, is defined as

(w1∧t ′ w2)(t) =

{

w1(t) for t < t ′,

w2(t) for t ≥ t ′.

1. Which of the following physical devices discussed in Lecture I define
memoryless systems?

◮ The gas law.

◮ A resistor, an inductor, a capacitor.

◮ The gravitational attraction of two bodies, Kepler’s laws,Newton’s
second law.

Consider a simple spring.

L

L

L∗

F1

F = ν(L)

F2

Consider a real variable, E, the energy stored in the spring, related toL
by

E(L) =
∫ L

L∗
ν(σ)dσ ,

with −F1 = F2 = F = ν(L) the spring characteristic andL∗ the equilibrium
length (corresponding toF = 0).

2. ConsiderF,L,E as functions of time. Prove that d
dt E = F d

dt L.
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3. Prove that the spring viewed in terms of the variables(F,L) defines a
memoryless system, but that in terms of the variables(F,L,E) it does
not define a memoryless system.

Energy and power considerations can hence bring in dynamics, even
in an otherwise memoryless system.
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Exercise 6: Two-body problem

The motion of a pointmass in a force field is governed by

M
d2

dt2~q = ~F(~q),

with M the mass of the body,~q the position, and ~F : R3 → R3 the force
field. Studying the resulting motions of the pointmass is called the ‘one-
body problem’.

Consider the motion of two bodies, under mutual attraction.

~q1
~q2

~F1 ~F2M1 M2

Newton’s second law yields the equations of motion

M1
d2

dt2~q1 = ~F1, M2
d2

dt2~q2 = ~F2. (♦)

According to Newton’s third law,

~F1+~F2 =~0. (♠)

The problem is to obtain an explicit description of the trajectories~q1 : R →

R3,~q2 : R → R3 that are possible. This is the so-called ‘two-body problem’,
which, in contrast to the three-body orn-body problem, can be reduced to
one-body problems.

1. Define the ‘barycenter’ of the two bodies

~R =
M1~q1+M2~q2

M1+M2
. (♣)

Eliminate ~q1,~q2,~F1,~F2 from (♦, ♠, ♣) and show that the behavior of~R

is governed by d2

dt2
~R = 0.
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2. Consider the difference vector of the bodies

~∆ =~q1−~q2. (♥)

Assume that~F1 is a function of (~q1,~q2) only through ~∆ (makes perfect
sense physically). Eliminate~q1,~q2,~F2 from (♦,♠,♥) and prove that the

behavior of (~∆,~F1) is governed by µ
d2

dt2
~∆ = ~F1, with µ =

M1M2

M1+M2
; µ

is called the ‘reduced mass’. Prove that the motion of~∆ is that of one
body with massµ under the force field ~F1(~∆). Hence after solving two
one-body problems, we obtain(~q1,~q2) by

~q1 = ~R+
M2

M1+M2

~∆, ~q2 = ~R+
M1

M1+M2

~∆.

3. Often ~F1 is a central force, that is, it is of the form~F1 = F(||~∆||)
~∆
||~∆||

.

A special case is ‘Kepler’s problem’, withF(||~∆||) = −
1

||~∆||2
(with suit-

able units). This yields
d2

dt2
~∆+

1

||~∆||2
= 0 (⋆)

as the equation for~∆. It can be shown that the orbits satisfying K1, K2,
K3 (with suitably chosen constants) are solutions. Actually Newton
derived (⋆) from K1, K2, K3.

Isaac Newton (1643-1727)

Hypotheses 
 non

 fingo

Do K1, K2, K3 give all the solutions to (⋆)? Argue from physical in-
sight, do not attempt to answer using mathematical arguments.
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Exercise 7: The MPUM

Assume that the set of system trajectoriesD = {w̃1, w̃2, . . . , w̃n},

with w̃k : T → W, for k = 1,2, . . . ,n, is observed. The following is a version
of the (deterministic) system identification problem.

Find the behavior of the dynamical systemΣ = (T,W,B)

that produced these observations.

Call B [[unfalsified by D]] :⇔ [[D ⊆ B]].

Call [[B1 more powerful than B2]] :⇔ [[B1 ⊂ B2]].
The more a model forbids, the better it is.
According to Popper, this is against common belief.

Karl Popper (1902-1994)

Let B be a set of behaviors, i.e., a set of subsets ofW T.
Call B∗ [[the most powerful unfalsified model(MPUM) in B for D]] :⇔ [[

◮ B∗ ∈ B,

◮ B∗ is unfalsified byD,

◮ B∗ is more powerful than every other element ofB that is unfalsified
by D.]]

1. Prove that whenw̃k : Z → R
w for k = 1,2, . . . ,n, there exists an MPUM

in the class of discrete-time LTIDSs.

2. With the result of Exercise 7, part 3, you may also prove that when
w̃k ∈ C ∞ (R,Rw) for k = 1,2, . . . ,n, there exists an MPUM inL w.
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Exercise 8: PDEs

A specification of the behavior in terms of an ODE or a PDE is often not
very helpful, and there exist other specifications that givemuch more in-
sight in the nature of B. For example, Kepler’s laws give much more in-
sight than the associated ODE (equation (⋆) in Exercise 6).

1. Consider the wave equation

∂ 2

∂ t2w =
∂ 2

∂x2w.

It defines a system
(

R
2,R,B

)

. Prove that

B = {w ∈ C
∞

(

R
2,R

)

|

∃ f−, f+ ∈ C
∞ (R,R) such that w(t,x) = f−(t − x)+ f+(t + x)}.

Argue that this description of B is more insightful than the PDE and
puts in evidence the wave nature of the behavior.

2. Write Maxwell’s equations in polynomial matrix form

R

(

∂
∂x1

, · · · ,
∂

∂xn

)

w = 0.

Specify the associated set of independent variables, of dependent vari-
ables, thew, and the polynomial matrix R.
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Exercise 9: The Smith form

Prove the Smith canonical form.

Proceed as follows.

1. AssumeM 6= 0. Prove that by pre- and postmultiplying by a permuta-
tion matrix, we may assume that the(1,1) element ofM is 6= 0 and has
the least degree of all other nonzero elements ofM.

2. Let M1,1 be this (1,1) element. Assume there is another nonzero ele-
ment in the first row or the first column of M. Call this elementx. Use
division with rest to define r by

x = M1,1d + r with r = 0 or degree(r) < degree(M1,1).

Prove that there exist a unimodular matrix U or V such that UM or
MV has either one more zero element in the first row or column than
M, or a (1,1) element with degree less than the degree ofM1,1.

3. Prove that in a finite number of steps this leads to a matrix of the form










M1,1 0 · · · 0
0
...
0

M′











.

4. Obtain the Smith form by induction.
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Exercise 10: Discrete-time systems

1. Prove that for T = Z, a LITDS has both a kernel representationR(σ)w =

0 and R(σ−1)w = 0 with R ∈ R [ξ ]•×•. Is this also true for T = Z+?

2. Give an example of a difference equationR(σ)w = so that the solution
set for T = Z+ is not the solution set forT = Z restricted to Z+.

3. Formulate the analogue of Proposition 1 for discrete-time systems with
T = Z and with T = Z+.

4. Consider the convolutional code discussed in Lecture I. It is a linear
time-invariant difference system. Identify the associated time-set, sig-
nal space, and polynomial matrix.
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Exercise 11: Minimal representations of LTIDSs

1. Give a formal definition of the greatest common divisor (gcd) and least
common multiple (lcm) of p1, p2, . . . , pn ∈ R [ξ ]

2. Let B1,B2 ∈ L 1 have kernel representations

p1(
d
dt

)w = 0 and p2(
d
dt

)w = 0, p1, p2 ∈ R [ξ ] .

Obtain a minimal kernel representation for B1∩B2 andB1+B2 using
the gcd and the lcm ofp1, p2.

3. Generalize to

p1(
d
dt

)w = 0, . . . , pn(
d
dt

)w = 0, p1, . . . , pn ∈ R [ξ ] .

4. Assume thatB is defined as the solution set of aninfinite number of
differential equations

Rα(
d
dt

)w = 0, α ∈ A, Rα ∈ R [ξ ]1×w ,

with A any (countably or uncountably) infinite set. Prove that there
exists a polynomial matrix R ∈ R [ξ ]•×w (hence with a finite(!) number
of rows) such thatB is specified by

R

(

d
dt

)

w = 0.
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Exercise 12: Time-reversibility

Define thetime-reverseof Σ = (R,W,B) by

reverse(Σ) = (R,W,reverse(B))

with
reverse(w)(t) := w(−t).

Σ = (R,W,B) is said to be time-reversible if

Σ = reverse(Σ).

1. Prove that if R
(

d
dt

)

w = 0 is kernel representation of Σ ∈ L w, then

R
(

− d
dt

)

w = 0 is a kernel representation ofreverse(Σ).

2. Do Kepler’s laws define a time-reversible system?

3. Prove thatw+ d2

dt2w = 0 defines a time-reversible system.

4. Prove that the scalar systemp( d
dt )w = 0 is time-reversible if and only if

p ∈ R [ξ ] is either an even or an odd polynomial.

5. Prove that the single-input/single-output systemp( d
dt )w1 = q( d

dt )w2 is
time-reversible if and only if p,q ∈ R [ξ ] are both even or both odd.

6. Prove that the controllable single-input/single-output systemp( d
dt )w1 =

q( d
dt )w2 is time-reversible if and only if p,q ∈ R [ξ ] are both even.
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Exercise 13: Elimination of latent variables in the RLC circuit

Consider the RLC circuit discussed in in the lecture on latent variables.

��
��
��
��

����

R
L

C

C

LR

����

��
��
��
��

+

–

V

I

The equations that describe this circuit are KCL, the constitutive equa-
tions, and the manifest variable assignment.

1. Eliminate Ia, Ib, Ic, Id and V1,V2,V3,V4, and arrive at

C
d
dt

V = Ie +CRC
d
dt

Ie, V=RLI f +L
d
dt

I f , I =Ie + I f .

Argue the correctness of these equations from first principles.

2. Next, eliminateI f , and obtain

C
d
dt

V = Ie +CRC
d
dt

Ie,
L

RL

d
dt

I + I−
1

RL
V=Ie +

L
RL

d
dt

Ie.

3. Finally, distinguish two cases, eliminateIe, and derive the following
differential equation governing (V, I).

◮ For CRC 6= L
RL

,

(

RC

RL
+

(

1+
RC

RL

)

CRC
d
dt

+CRC
L

RL

d2

dt2

)

V

=

(

1+CRC
d
dt

)(

1+
L

RL

d
dt

)

RCI.

◮ For CRC = L
RL

,
(

RC
RL

+CRC
d
dt

)

V =
(

1+CRC
d
dt

)

RCI.
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Exercise 14: Series and parallel connection

1. Use the B́ezout identity to find a unimodular

pre-multiplication that brings
[

p
q

]

with p,q ∈ R [ξ ]

into Smith form.
p and q need not be coprime.

Étienne Bézout (1730-1783)

2. Consider the series connection of two single-input/single-output LTIDSs,
as shown in the figure below.

u yz
series connection

Assume that the systems are governed by repectively

p(
d
dt

)z = q(
d
dt

)u, d(
d
dt

)y = n(
d
dt

)z.

Eliminate z to obtain a kernel representation for (u,y).

3. Repeat 2. for parallel connection.

u y
+
+

parallel connection
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Exercise 15: Properties of controllable systems

1. Prove that

[[B1,B2 ∈ L
w controllable,m(B1) = m(B2), and B1 ⊆ B2]]

⇒ [[B1 = B2]].

Prove that the above implication does not hold without the controlla-
bility assumption.

2. Let B1,B2 ∈ L 2,m(B1) = m(B2) = 1,p(B1) = p(B2) = 1
(hence both systems are single-input/single output systems).

Prove that

[[B1,B2 ∈ L
w controllable,B1 6= B2)]] ⇒ [[B1∩B2 is autonomous]].

Prove that the above implication does not hold without the controlla-
bility assumption.
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Exercise 16: Common factors

The coprimeness of polynomials has many applications
in mathematics and has been studied since the time of
Euler. Behavioral controllability proudly adds a new
application of coprimeness.

Indeed, the LTIDS described by

a

(

d
dt

)

w1 = b

(

d
dt

)

w2,

with a,b ∈ R [ξ ] is controllable (in the behavioral sense)
if and only if a and b are coprime.

Leonhard Euler (1707-1783)

There are many algorithms for checking whether two polynomials a,b ∈
R [ξ ] are coprime. Hundreds of articles has been published on thismatter.
These algorithms and their interrelations form the sort of mathematical
topic that one can easily become addicted to. While it keeps mathemati-
cians from doing mischief, it is advisable to show restraintin the pursuit
of such mathematical puzzles. This exercise indulges a bit and discusses
several algorithms for coprimeness.

Let a,b ∈ R [ξ ]. Written out in terms of their coefficients, we have

a(ξ ) = a0+a1ξ +a2ξ 2 + · · ·+an−1ξ n−1+anξ n,

b(ξ ) = b0+b1ξ +b2ξ 2 + · · ·+bm−1ξ m−1+bmξ m.

In the present exercise, we obtain several test on the coefficients of a and
b for checking coprimeness. Assume without loss of generality that an 6= 0
and n≥ m.
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1. The Euclidean algorithm

Euclides already developed an algorithm for finding
the gcd of two integers. This algorithm readily
generalizes to polynomials.

Setx1 = a,x2 = b and obtain xk recursively
by dividing with rest

xk = xk+1d + xk+2,

with degree(xk+2) < degree(xk+1) or xk+2 = 0.
Euclides (325-265 BC)
painting by Rafaello

Let xk′ be the first time that xk′ = 0. Prove that xk′−1 is the gcd ofa and b.
Hencea and b are coprime if and only if xk′ = 1 for somek′.

2. The Sylvester resultant

Let degree(a) = n and degree(b) = m. Form the (n+m)× (n+m) matrix

S(a,b) =





































a0 a1 · · · an−1 an 0 · · ·
0 a0 · · · an−2 an−1 an 0 · · ·

. .. ... ... ... ... ... .. .
· · · 0 a0 a1 a2 · · · an 0

· · · 0 a0 a1 a2 · · · an
b0 b1 · · · bm−1 bm 0 · · ·
0 b0 · · · bm−2 bm−1 bm 0 · · ·

. .. ... ... ... ... ... .. .
· · · 0 b0 b1 b2 · · · bm 0

· · · 0 b0 b1 b2 · · · bm































































m rows



























n rows

S(a,b) is called theSylvester matrix, and its
determinant is called theSylvester resultantof a and b.

Prove that the polynomialsa and b are coprime if
and only if the Sylvester resultant ofa and b is non-zero.

James Sylvester (1814-1897)Hint : Consider the map(x,y) 7→ ax+by.
View this as a map from the real polynomials with degree(x) < m and
degree(y) < n to the real polynomials with degree< n+m. The map(x,y) 7→
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ax+by thus becomes a map fromRn+m to Rn+m. Prove that it is injective if
and only a and b are coprime. Now write this map in matrix notation and
obtain the Sylvester test for coprimeness.

3. The Hankel matrix

Another test for coprimeness uses the ‘Laurent series’ expansion ofg =
b
a
∈

R(ξ ) defined by

g(ξ ) =
b(ξ )

a(ξ )
= g0+

g1

ξ
+

g2

ξ 2 + · · ·+
gn
ξ n

+ · · · .

Form the ‘Hankel matrix’

H(g)n×n =















g1 g2 · · · gn−1 gn
g2 g3 · · · gn gn+1
... ... ... ... ...

gn−1 gn · · · g2n−3 g2n−2

gn gn+1 · · · g2n−2 g2n−1















.

Hermann Hankel (1939-1873)

Prove that a and b are coprime if and only if determinant(H(g)n×n) 6= 0.

Hint : From the preamble, we can conclude thata and b are coprime if and
only if the first n columns ofH(g) are linearly independent. Furthermore
the (n+ k)-th column of H(g) is linearly dependent on the firstn columns
for k = 1,2, . . . . Therefore, by the Hankel structure, the(n+k)-th rows of
the matrix formed by the first n columns ofH(g) are linearly dependent on
the first n rows for k = 1,2, . . . . Conclude that a and b are coprime if and
only if the first n rows of the matrix formed by the first n columns ofH(g)
has rank n.

4. The Bézoutian

Form the bivariate polynomial

B(a,b)(ζ ,η) =
a(ζ )b(η)−a(η)b(ζ )

ζ −η
.

B(a,b) is called theBézoutianof the polynomialsa and b.

Prove that B(a,b) ∈ R [ζ ,η].
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Hint :
M(ζ ,η)

ζ −η
with M ∈ R [ζ ,η] is polynomial if and only if M(ξ ,ξ ) = 0.

B(a,b)(ζ ,η) can be written in matrix notation as

B(a,b)(ζ ,η) =















1
ζ
ζ 2

...
ζ n−1















B(a,b)















1
η
η2

...
ηn−1















.

Étienne Bézout (1730-1783)The determinant of B(a,b) is called
the Bézout resultantof a and b.

Prove that B(a,b) = B(a,b)⊤ ∈ Rn×n and that the Bézout resultant ofa and
b is non-zero if and only if a and b are coprime.

Hint : The following relation holds between the Hankel matrix and the
Bézoutian

B(a,b) =















a1 a2 · · · an−1 an
a2 a3 · · · an 0
... ... ... ... ...

an−1 an · · · 0 0
an 0 · · · 0 0















H(g)n×n















a1 a2 · · · an−1 an
a2 a3 · · · an 0
... ... ... ... ...

an−1 an · · · 0 0
an 0 · · · 0 0















In order to prove this, proceed as follows.

(i) Prove that

B(ζ ,η) = a(ζ )
g(η)−g(ζ )

ζ −η
a(η).

(ii) From there, arrive at

B(ζ ,η) = ∑
k,ℓ=1,2,...,n

gk+ℓ−1(anζ n−k+ · · ·+a0ζ−k)(anηn−ℓ+ · · ·+a0η−ℓ).

(iii) Conclude that

B(ζ ,η) = ∑
k,ℓ=1,2,...,n

gk+ℓ−1(anζ n−k+ · · ·+ak)(anηn−ℓ + · · ·+aℓ).

25



5. The MacDuffee resultant

As if four tests for coprimeness do not yet suffice, we now givea fifth one,
due to MacDuffee. Define the companion matrix ofa by

Acompanion=















0 1 0 · · · 0 0
0 0 1 · · · 0 0
... ... ... ... ... ...
0 0 0 · · · 0 1

−a0
an

−a1
an

−a2
an

· · · −an−2
an

−an−1
an















Prove that a and b are coprime if and only if determinant(b(Acompanion)),
the MacDuffee resultantof a and b, is not zero.

Hint : Assume first that the roots of a are distinct, and obtain the Mac-
Duffee test by diagonalizingAcompanion. Then obtain the general case by a
continuity argument.
State and prove an analogous test with the roles ofa and b reversed.
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Exercise 17: Observable image representations

The image representationw = M
(

d
dt

)

ℓ is said to be observable if

[[M(
d
dt

)ℓ1 = M(
d
dt

)ℓ2]] ⇔ [[ℓ1 = ℓ2]].

1. Prove that a controllable systemB ∈ L w admits an observable image
representation.

2. Assume that the single-input/single-output systemp( d
dt )w1 = q( d

dt )w2 is
controllable. Give an observable image representation forthis system.
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Exercise 18: Non-anticipation

1. Consider the input/output systemΣ = (R,Rm×Rp,B) defined by

y = G

(

d
dt

)

u with G ∈ R(ξ )p×m.

We say thaty does not anticipateu if for all (u,y)∈B and u′ ∈C ∞(R,Rm)
such that u′(t) = u(t) for t ≤ 0, there existsy′ ∈ C ∞(R,Rp) such that
(u′,y′) ∈ B and y′(t) = y(t) for t ≤ 0.

Prove that y does not anticipateu (without conditions on G !).

2. Consider now the discrete-time input/output systemΣ = (Z,Rm×Rp,B)

defined by
y = G(σ)u with G ∈ R(ξ )p×m.

Define non-anticipation. Prove thaty does not anticipateu if and only
if G is proper.

3. Does the moving average system

y(t) =
1

2N +1

N

∑
t ′=−N

u(t + t ′)

define a non-anticipating system?

4. For what ∆ ∈ R does the differential-delay system

d
dt

y(t) = u(t +∆)

define a nonanticiapting system?
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Exercise 19: Norm-preserving representations

The representation of this exercise uses the following ‘spectral factorization’-
like result.

Assume thatP ∈ R [ξ ]n×n satisfiesP(ξ ) = P(−ξ )⊤ and P(iω) > 0 for ω ∈ R.
Then there existsF ∈ R [ξ ]n×n such that P(ξ ) = F(−ξ )⊤F(ξ ).

1. Prove this factorization for the casen = 1.

2. Prove that if B ∈ L w is controllable, then it admits an observable ‘im-
age’ representation

w = N

(

d
dt

)

ℓ

with N ∈ R(ξ )w(B)×m(B) such that

N(−ξ )N(ξ ) = I.

Proceed as follows. Start with an observable image representation
w = M

(

d
dt

)

ℓ with M ∈ R [ξ ]w(B)×m(B). Then factor M⊤(−ξ )M(ξ ) as

F⊤(−ξ )F(ξ ) with F ∈ R [ξ ]m(B)×m(B). Take N = MF−1.

3. Prove that this representation has the property that

||w||L2(R,Rw) = ||ℓ||L2(R,Rm),

hence the name ‘norm-preserving’ image representation.

4. Prove that such a representation exists only very exceptionally with N
polynomial. Norm-preserving representations have a number of appli-
cations, and require rational symbols.
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Exercise 20: The structure ofL •

Let B,B1,B2 ∈ L • and F ∈ R [ξ ]•×•.

1. Prove that(B1+B2) ∈ L •.

2. Prove thatB1∩B2 ∈ L •.

3. Prove thatF
(

d
dt

)

B ∈ L •.

4. Prove thatF
(

d
dt

)−1
B ∈ L •.

Assume, as always with the• notation, that the relevant objects have com-
patible dimensions.
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Exercise 21: Modeling a mass-spring-damper system

F1 F2

q1 q2

m1 m2k1 k2 k3

Consider the mass-spring device shown above. Assume that itoperates
horizontally from equilibrium in its linear mode. The probl em is to model
the relation between the forcesF1,F2, and the horizontal positionsq1,q2.

1. View this system as consisting of 5 subsystems. Define the graph with
leaves that determines the interconnection architecture.

2. Choose latent and manifest variables, and write the module equations.

3. Write the interconnection laws.

4. Eliminate the latent variables and obtain behavioral equations involv-
ing only the manifest variables.
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Exercise 22: Modeling a transmission line

Consider the transmission line modeling problem discussedduring Lecture
VIII.

source load

1. View the transmission line as an interconnection of 7 subsystems as
shown below.

Determine the graph with leaves that defines the interconnection archi-
tecture.

2. There are 3 kinds of subsystems:blue, green, and cyan. Model each of
these subsystems.

3. Specify the interconnection laws.

4. Specify the manifest variables.

5. Obtain the full set of equations leading, after elimination of the latent
variables, to the desired differential equation that describes the behav-
ior of (w1,w2)

r1

(

d
dt

)

w1 = r2

(

d
dt

)

w2.
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Exercise 23: Characteristic polynomial assignment

Consider the plantP ∈ L w. As all LTIDSs, it can be decomposed into

P = Pcontrollable⊕Pautonomous.

Let C ∈ L w be a regular controller and consider the autonomous con-
trolled systemP ∩C ∈ L w.

1. Prove that for any monicπ ∈ R [ξ ] there exists such aC such that

χP∩C = π

if and only if χPautonomous is a factor of π . Deduce the pole placement
theorem from here.

2. Repeat the same question with the characteristic polynomial replaced
by the minimal polynomial.
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Exercise 24: Preservation of properties under interconnection

The notation is the one used in Lectures IV and V.B is the original behav-
ior, B′ the behavior obtained after interconnection of terminals.

1. Consider the interconnection of terminals of an electrical circuit. Prove
that if B is linear and time-invariant, so is B′. Prove that if B is a
LTIDS, so is B′. Prove that if B satisfies KVL, so doesB′. Prove that
if B satisfies KCL, so doesB′.

2. Consider the interconnection of terminals of a mechanical system. Prove
that if B satisfies IUM, so doesB′.

3. Consider Newton’s second law. Prove IUM.

4. Apparently, Kepler’s laws do not satisfy IUM. Discuss whythis is and
in what sense IUM holds for Kepler’s laws.
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Exercise 25: Heat produced by a damper

v1 v2
M1 M2

Consider the system shown above. It consists of 2 masses, connected by a
damper. The motion is assumed to take place horizontally. The damper is
assume to be a linear damper with damping coefficientD > 0.

1. Denote the positions of the pointmasses byq1,q2. There are no external
forces that act on the masses. Obtain the differential equations that
govern (q1,q2).

2. Solve this differential equation with initial conditions
q1(0),q2(0), d

dt q1(0), d
dt q2(0)

3. What is the power going into the damper?

4. Assume that all the energy absorbed by the damper is converted into
heat. Compute the energy absorbed on the interval[0,∞) as a function
of the parametersM1,M2,D,q1(0),q2(0), d

dt q1(0), d
dt q2(0). Note that this

energy only depends onM1,M2,
d
dt q1(0), d

dt q2(0).
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