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We collect a few facts about polynomials and rational functns that come
in useful in some of the exercises.

Dividing with rest
Fora,be R[¢],b+#0, there existd,r € R[] with degr ee(r) < degr ee(b)
or r =0, such that

a=bd-+r.
The proof is easy.

gcd and Icm

Let a,b € R[&]. The greatest common divisoof a,b (denotedgcd(a,b)) is
the monic polynomial of largest degree that is a factor of bdt aand b. The
least common multipleof a,b (denotedl cm(a, b)) is
the monic polynomial of smallest degree that has

both aand b as a factor. Va

If gcd(a,b) =1, thenaand b are said to becoprime & <5
y
SNt

The Bézout identity

Let a,b € R[¢]. Thenaandb are coprime -
if and only if there exist x,y € R[] such that
ey

ax -+ by = 1. (B'ezout |dent|ty) Etienne Bezout (1730-1783)

Proof: The (if) part is easy. The fnly if) part can be shown as follows.
Assume thata and b are coprime. Let/ € R [£]| be the monic polynomial of
least degree that can be written asx+ by with x,y € R [¢]. We need to prove
that ¢ = 1. Division with rest givesa= ¢d+r with degr ee(r) < degr ee(¥),
orr=0. Let/=af+bn. Thenr =a(l-{d)—bnd. Hencer can also
be written as ax+ by. Sincer cannot be nonzero and havedegr ee(r) <
degr ee(¥), we conclude thatr = 0. Hence/ divides a. Similarly, it follows
that ¢ divides b. Hence, sincea and b are coprime, ¢ = 1. This yields the
Bézout identity.



The Hankel matrix

Let g € R(&) be strictly proper. Consider its ‘Laurent series’ expansion

g1 Q2 On
g(f) E 62 En
The Hankel matrix associated withg is defined as
(01 @ 1 On
02 03 On On+1
T _ : : : :
9 On-1 On On-3 Q-2 -
On Ont1 - O2n—2 O2n-1 -

Matrices (infinite as well as finite) which have the same entds parallel to
the ‘reverse’ diagonal are calledHankel matrices In a picture,

)
Hankel ~» &0
\VERY:

Hermann Hankel (1939-1873)

Matrices (infinite as well as finite) which have the same entas parallel to
the diagonal are calledToeplitz matricesIn a picture,

R
& O
Toeplitz ~ | *

L3O
S RcRoX 3
SRR
>

| ] Otto Toeplitz (1881-1940)
The rank of an infinite matrix is defined as the supremum of the dimensio
of its nonsingular submatrices. The following result detemines the rank of
H(g) in terms of the degree of the denominator of.
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rank(H(g)) is finite and equal to the degree of the polynomiah of
lowest degree such thagg is polynomial.

Proof: Let r =r ank(H(g)) and n = the degree of the polynomial € R[]

of lowest degree such thaag is polynomial. Denote the columns oH(g) by

Hqy,Ho, ... Hy, . ...

(i) Assume thatag is polynomial with a € R [¢] of degreen. Write a(&)g(¢&)

In terms of its powers of §. Sinceag is polynomial, the non-positive pow-
ers have zero coefficients. This implies that thél, . is a linear combina-
tion of Hy,Ho, ... Hy. By the Hankel structure of H(g) this implies that the
H,.x is a linear combination of H{,H»,... ,H, for all k =1,2,.... Hence
r =rank(H(g)) =rank([H; Hz --- Hy]) <n.

(i) From the Hankel structure of H(g), it follows that if Hy,1 is a lin-

ear combination of Hi,Hp, ..., Hg, then Hy ./ is also a linear combination
of Hy,Hyp,...,Hy for all ¥’ =2 3,.... Therefore r = r ank(H(g)) implies
that r = rank([Hy Hz --- Hy]) and that H,1 is a linear combination
of Hi,Ho,... ,H,. By this linear dependence, there existg,a,...,ar € R
such thatagH1 +aiHo + - - - +a,—1Hy + Hy11 = 0. Now conclude that(ag +

a1 +---+a,_1ET 14 &7)g(&) is polynomial. Thereforen < r.



Exercise 1: Linear models

The mathematical model R*, %) is said to be
[linear | < [£ is a linear subspace oRR™].
1. Prove that a linear behavior admits a representation

Rw =0, Re R**",

Call this representation a kernel representation of%, and a minimal one
if, among all kernel representations of#, r owmdi nensi on(R) is as small
as possible.

2. Prove thatRw = 0 is minimal if and only if R has full row rank.

3. How are theR's corresponding to minimal kernel representations of#
related?

4. Define what you mean by an image representation.
Prove its existence.



Exercise 2: Codes

As mentioned in Lecture I, our concepts of ‘universum’ and ‘behavior’
have block codes as an interesting example.

An important class of block codes are subsets @F (2), thatis # C {0,1}";
n is called the ‘length’ of the block code. As an example, take = 5, and

2% ={0000010110010111110%.
1. How many words are there inZ and in £ ?
2. Is A linear?

In coding applications it is important, for error detection and correction,
that code words are as far away from each other as possible. Ehsepara-
tion between two code words can be measured by thélamming distancég

defined by

d(W1W2' . 'Wn7V\/1V\/2' . V\/n>
= the number of indicesk such thatw, # Wi,.

The Hamming distance of a code is defined as the minimum of thastances
between unequal code words.

3. Compute the Hamming distance of%.

4. Prove that this code can correct one error, in the sense th# the code-
word is transmitted and received with at most one error, thenthis error
can be corrected.

5. Prove that this code can detect up to two errors, in the semsthat if
the codeword is transmitted and received with at most two erors, then
this can be detected.



Exercise 3: Parity check

Consider the DES with% = {0,1}*? and

nmodul 0 2 _31
= k—1% }v

B = {alaz- --ag1832 | & € {0,1} and ag>

the set of 32-bit strings with a parity check as last bit.
1. In what sense is this a linear model?
2. Give a kernel representation of this behavior.
3. Give an image representation of this behavior.

4. Calle= y32, a, the syndrome associated with this 32-bit string,
and explain howe can be used for error detection.
How many errors can this code detect?



Exercise 4: Symmetry

A transformation group on a setAis a set of maps that form a subgroup of
the group of bijections onA. In other words, there is a group¥ and a map
T from ¥ to the bijections onA, such that for all g,g1,9» € ¢, there holds

1. Ty =i da (i da denotes the identity map onA),
_T-1

2. Tg—l = Tg :

3. Tgig, = Tg, © Tg, (o denotes map composition).

Let T4 be a transformation group on % . The mathematical model(% , %)
Is said to be symmetric with respect toTy if

Tg(#)=2% forallge¥.

1. Identify an obvious symmetry for the 32-bit strings with aparity check
discussed in Exercise 3.

2. Formalize time-invariance as a symmetry.

3. Identify a few symmetries for the gravitational attraction of two bod-
ies, % = R3x R3 x R3;

B = {(ql,qz,lf) e R3xR3xR3 | F = M1M> %} . Extend the def-
1—Y2

inition of % by including M1, M>, so that exchanging the masses also
becomes a symmetry.

4. Explain in what sense Maxwell’'s equations are symmetric ith respect
to space translation and rotation.



Exercise 5: Memoryless system

The dynamical system(T, W, %) is said to be memoryless :<
[wi,w> € % and t' e T] = w1 Ay Wo € A,
where w; Ay Wo, the concatenation ofw; and w, att’, is defined as

wy(t) fort<t/,
wyo(t) fort >t

(W]_ AN Wz) (t) = {

1. Which of the following physical devices discussed in Legte | define
memoryless systems?

» The gas law.

» A resistor, an inductor, a capacitor.

» The gravitational attraction of two bodies, Kepler’'s laws, Newton’s
second law.

Consider a simple spring.

TS
L)

=

Consider a real variable, E, the energy stored in the spring, related toL
by
L
E(L) :/ v(o)do,

with —F; =F =F =v(L) the spring characteristic andL* the equilibrium
length (corresponding toF = 0).

2. ConsiderF, L, E as functions of time. Prove that3E = F 4L



3. Prove that the spring viewed in terms of the variableqF,L) defines a
memoryless system, but that in terms of the variable$F,L,E) it does

not define a memoryless system.
Energy and power considerations can hence bring in dynami¢sven
In an otherwise memoryless system.

10



Exercise 6: Two-body problem

The motion of a pointmass in a force field is governed by
d? _
with M the mass of the body,g the position, and F : R® — R3 the force

field. Studying the resulting motions of the pointmass is cé&d the ‘one-
body problem’.

M

Consider the motion of two bodies, under mutual attraction.

Newton’s second law yields the equations of motion

d? -
Ml@ﬁl = Fy, Mo—=0o = Fo. (<)

According to Newton'’s third law,
Fi+F=0. (W)

The problem is to obtain an explicit description of the trajectoriesq; : R —
R3.dy : R — R3 that are possible. This is the so-called ‘two-body probleny’
which, in contrast to the three-body orn-body problem, can be reduced to
one-body problems.

1. Define the ‘barycenter’ of the two bodies

M101 + Moo
MM, ()

Eliminate 61,dp, F1,F> from (¢, &, &) and show that the behavior ofR
is governed by g—;ﬁ: 0.

R—
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2. Consider the difference vector of the bodies

A=y — 0. ()

Assume thatF; is a function of (G1,d2) only through A (makes perfect
sense physically). Eliminate;, do, F> from (<>, #, ©) and prove that the

MiMs
M1+ Mz’ H
is called the ‘reduced mass’. Prove that the motion o\ is that of one
body with massu under the force field F;(A). Hence after solving two
one-body problems, we obtaindy,dz) by

2
behavior of (A, Fy) is governed by ud—A: Fi, with p =
dt?

— M2 — — Ml —
=R+ A, t =R+ A.
01 ML Mo o7 M1 Mo
= . o = 2 A
3. Often Fy is a central force, that is, it is of the formFy = F(||A| |)m.
: : : = 1 : :
A special case is ‘Kepler’s problem’, withF (||A]]) = — e (with suit-
able units). This yields 5
i1 o (%)
dt= " |14)12

as the equation forA. It can be shown that the orbits satisfying K1, K2,
K3 (with suitably chosen constants) are solutions. Actuayl Newton
derived (x) from K1, K2, K3.

Isaac Newton (1643-1727)

Do K1, K2, K3 give all the solutions to &)? Argue from physical in-
sight, do not attempt to answer using mathematical argumerst.

12



Exercise 7: The MPUM

Assume that the set of system trajectorie® = {Wy,Wp, ..., Wy},
with W, : T — W, for k =1,2,...,n, is observed. The following is a version
of the (deterministic) system identification problem.

Find the behavior of the dynamical syste= (T, W, %)
that produced these observations.

Call % [unfalsified by D] :< [D C 4.

Call [#1 more powerfulthan %] (< [%#1 C %2].
The more a model forbids, the better it is.
According to Popper, this is against common belief.

Karl Popper (1902-1994)

Let B be a set of behaviors, i.e., a set of subsets\of! .
Call #* [the| most powerful unfalsified model(MPUM) in B for D] :< [

B* € B,
P* is unfalsified by D,

%#* is more powerful than every other element of8 that is unfalsified
by D.]

1. Prove that whenw, : Z — R" for k = 1,2,...,n, there exists an MPUM
in the class of discrete-time LTIDSs.

2. With the result of Exercise 7, part 3, you may also prove thewhen
W € €% (R,R") for k =1,2,...,n, there exists an MPUM in_£".
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Exercise 8: PDE¢

A specification of the behavior in terms of an ODE or a PDE is ofén not
very helpful, and there exist other specifications that givenuch more in-
sight in the nature of #. For example, Kepler's laws give much more in-
sight than the associated ODE (equationx) in Exercise 6).

1. Consider the wave equation

02 02

It defines a system(R?, R, %). Prove that
B={wecE” (RZ,R> |
f_, f, € €7 (R,R) such thatw(t,x) = f_(t —x) + f(t+x)}.

Argue that this description of Z is more insightful than the PDE and
puts in evidence the wave nature of the behavior.

2. Write Maxwell’'s equations in polynomial matrix form

0 0

Specify the associated set of independent variables, of dapdent vari-
ables, thew, and the polynomial matrix R.

14



Exercise 9: The Smith form

Prove the Smith canonical form.
Proceed as follows.

1. AssumeM = 0. Prove that by pre- and postmultiplying by a permuta-
tion matrix, we may assume that the(1,1) element ofM is ## 0 and has
the least degree of all other nonzero elements oA.

2. Let My 1 be this (1,1) element. Assume there is another nonzero ele-
ment in the first row or the first column of M. Call this elementx. Use
division with rest to definer by

X= Mg 1d+r with r =0or degr ee(r) < degree(My1).

Prove that there exist a unimodular matrix U or V such thatUM or
MV has either one more zero element in the first row or column than
M, or a (1,1) element with degree less than the degree ™1 ;.

3. Prove that in a finite number of steps this leads to a matrix bthe form

'|\/|1’1 0 ... 0]
0
. Ml

0

4. Obtain the Smith form by induction.

15



Exercise 10: Discrete-time systerr

. Prove thatfor T =Z, a LITDS has both a kernel representationR(o)w =
Oand R(a~1)w = 0with R € R[&]**°. Is this also true for T = Z ?

. Give an example of a difference equatiofR(o)w = so that the solution
set for T = Z. is not the solution set forT = Z restricted to Z ..

. Formulate the analogue of Proposition 1 for discrete-tine systems with
T=Zandwith T=2,.

. Consider the convolutional code discussed in Lecture ltlis a linear
time-invariant difference system. Identify the associatd time-set, sig-
nal space, and polynomial matrix.

16



Exercise 11: Minimal representations of LTIDSs

. Give a formal definition of the greatest common divisor (gd) and least
common multiple (lcm) of p1, p2,..., pn € R[]

. Let #1, %, € £ have kernel representations
d d
pl(a)Wz 0 and pz(a)Wz 0, p1,p2eR[E].

Obtain a minimal kernel representation for %411 .%, and %, + %, using
the gcd and the Icm ofpy, po.

. Generalize to

d d
P1(G)W= 0o, Pa( W =0, P,....pn € RIE].

dt
. Assume thatZ is defined as the solution set of amfinite number of
differential equations

d
Ra(5)W=0, a€A Rge RI[EMY,
with A any (countably or uncountably) infinite set. Prove that thee
exists a polynomial matrixR € R [£]**" (hence with a finite(!) number

of rows) such that# is specified by

d
R<a>w_0.

17



Exercise 12: Time-reversibility

Define thetime-reverseof ~ = (R, W, %) by
reverse(X) = (R,W,reverse(%))

with
reverse(w)(t) :=w(—t).

> =(R,W, %) is said to be time-reversible if

> =reverse().
1. Prove that if R(%) w = 0 is kernel representation ofZ € ¥, then

R (—%) w = 0 is a kernel representation ofr ever se(Z).

2. Do Kepler’s laws define a time-reversible system?

3. Prove thatw+ g—tzzw: 0 defines a time-reversible system.

4. Prove that the scalar systerrp(%)w = 0is time-reversible if and only if
p € R[£] is either an even or an odd polynomial.

5. Prove that the single-input/single-output systenp(%)wl = q(%)wz IS

time-reversible if and only if p,q € R [&] are both even or both odd.

6. Prove that the controllable single-input/single-outptisystem p(%)wl =
q(%)wz is time-reversible if and only if p,q € R[] are both even.

18



Exercise 13: Elimination of latent variables in the RLC circuit

Consider the RLC circuit discussed in in the lecture on latehvariables.
I

‘ + R ]

The equations that describe this circuit are KCL, the constiutive equa-
tions, and the manifest variable assignment.
1. Eliminate I, Ip, ¢, Iqg and Vq,V2,V3, Vg, and arrive at
d

d d
CV=letCRogle,  V=Rilg+Lglr  I=letly.

Argue the correctness of these equations from first princips.

2. Next, eliminatel ¢, and obtain

d d Ld 1 L d
—V = - 4 = V=gt — e

3. Finally, distinguish two cases, eliminatde, and derive the following
differential equation governing (V,1).

» For CRC;Aﬁ,

Rc Rc d L d?
d L d

> For CRe= &, (R+CRe§)V = (1+CR)Rel.

19



Exercise 14: Series and parallel connectio

1. Use the Ezout identity to find a unimodular
pre-multiplication that brings [g] with p,qe R[]

Into Smith form.
p and g need not be coprime.

Etienne Bézout (1730-1783)

2. Consider the series connection of two single-input/sitgroutput LTIDSs,
as shown in the figure below.

series connection
u _>._>Z ._> y
Assume that the systems are governed by repectively

plgz=au  digy=n(g)z

Eliminate zto obtain a kernel representation for (u,y).

3. Repeat 2. for parallel connection.

parallel connection

U y

20



Exercise 15: Properties of controllable system

. Prove that

[, %2 € £ controllable, m(#1) = m(%2), and %1 C A7
= [[%1 = %2]].

Prove that the above implication does not hold without the cotrolla-
bility assumption.

. Let %1, %, € £, m(%1) =n(%2) = 1,p(%1) =p(%2) = 1
(hence both systems are single-input/single output systesn

Prove that

[B1, P2 € £ controllable, 1 # %Bo)] = [#1N A2 is autonomouy.

Prove that the above implication does not hold without the cotrolla-
bility assumption.

21



Exercise 16: Common factors

The coprimeness of polynomials has many applications
in mathematics and has been studied since the time of
Euler. Behavioral controllability proudly adds a new
application of coprimeness.

Indeed, the LTIDS described by

agw—biw
dai )t “\dt) %

with a,b € R[£] is controllable (in the behavioral sense)
if and only if aand b are coprime.

Leonhard Euler (1707-1783)

There are many algorithms for checking whether two polynomals a,b €
R[] are coprime. Hundreds of articles has been published on thimatter.
These algorithms and their interrelations form the sort of mathematical
topic that one can easily become addicted to. While it keeps athemati-
cians from doing mischief, it is advisable to show restraintin the pursuit
of such mathematical puzzles. This exercise indulges a binhd discusses
several algorithms for coprimeness.

Let a,b € R[&]. Written out in terms of their coefficients, we have
a(f) —ag+aé +apf’+ - +ay 1&" T and"

b(E) =bo+by& + b4+ by 181+ 0™

In the present exercise, we obtain several test on the coefeats of a and
b for checking coprimeness. Assume without loss of generalithat a, # 0
andn > m.

22



1. The Euclidean algorithm

Euclides already developed an algorithm for finding
the gcd of two integers. This algorithm readily
generalizes to polynomials.

Setx; = a, X = b and obtain x, recursively
by dividing with rest

Xk = X 1d 4 Xy 2,

. Euclide (32-265 )
with degr ee (X 2) < degr ee (X 1) OF Xy = 0. painting by Rafacllo

Let x be the first time that x,» = 0. Prove that x./_1 is the gcd ofa and b.
Hencea and b are coprime if and only if x, = 1 for somex’.

2. The Sylvester resultant
Let degr ee(a) =n and degr ee(b) =m. Form the (n+m) x (n+m) matrix

7] )

(ag a1 - a1 a O
0 ap '+ 92 91 Gy 0
: B : : > M rows
0O a & a a, O
... 0 ag a a - &y
S(a,b) = bp by - b, 1 by 0O -- )
O bp -+ bpo2 by by O
e tel : Pt T > N rOwWs
O bgp by by --- by O
.. 0 bp by by - by /

S(a,b) is called theSylvester matrixand its
determinant is called theSylvester resultantf a and b.

Prove that the polynomialsa and b are coprime if
and only if the Sylvester resultant ofa and b is non-zero.

Hint : Consider the map(x,y) — ax+ by. James Sylvester (1814-1897)
View this as a map from the real polynomials with degree(X) < m and
degree(y) < nto the real polynomials with degree< n+m. The map(x,y) —
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ax+ by thus becomes a map fronR®™ to R, Prove that it is injective if
and only a and b are coprime. Now write this map in matrix notation and
obtain the Sylvester test for coprimeness.

3. The Hankel matrix

: . : b
Another test for coprimeness uses the ‘Laurent series’ expesion ofg= a €
R(&) defined by

b "
m®:§%:%+%+%+m+%+m.
Form the ‘Hankel matrix’
g1 92 - Oh-1 On
g2 O3 -+ O Ont1
H(Q)axn = | P : :
On-1 On - O2n-3 O2n—2
| 90 Ont+1 - U202 O2n-1]

Hermann Hankel (1939-1873)

Prove thata and b are coprime if and only if det er mi nant (H(g)nxn) # O.

Hint : From the preamble, we can conclude thatand b are coprime if and
only if the first n columns of H(g) are linearly independent. Furthermore
the (n+ k)-th column of H(g) is linearly dependent on the firstn columns
for k =1,2,.... Therefore, by the Hankel structure, the (n + k)-th rows of
the matrix formed by the first n columns ofH(g) are linearly dependent on
the first n rows for k = 1,2,.... Conclude thata and b are coprime if and
only if the first n rows of the matrix formed by the first n columns of H(Q)
has rank n.

4. The Bézoutian
Form the bivariate polynomial

a(¢)b(n) —a(n)b(g)
{—n
B(a,b) is called theBézoutianof the polynomialsa and b.

Prove that B(a,b) € R[Z,n].

B(a,b)({,n) =

24



int: M(<.n)

with M € R[Z,n] is polynomial if and only if M(&,¢&) =

¢
B(a,b)({,n) can be written in matrix notation as
1 1 &
¢ n

B(a,b)(Z,n)= | {% |B(ab)| n?

_Zn—l_ _nn—l_ 1
R S

The determinant of B(a, b) is called Eienne Bezout (1730-1763)
the Bézout resultanof a and b.

Prove thatB(a,b) = B(a,b) " € R®*® and that the Bézout resultant ofa and
b is non-zero if and only ifa and b are coprime.

Hint: The following relation holds between the Hankel matrix andthe
Bézoutian

g a -+ a1 ay a a - ap.1 ay|
a a - a O a a - a 0
B(a,by=| : : i | H(Qaxa | ¢ P
a1 8 -~ 0 O a1 8 -~ 0 O
lan 0 -~ 0 O] |l a, 0 -+ 0 O]

In order to prove this, proceed as follows.

() Prove that

g(n)—9({)

B({,n)=a({) =

amn).
(i) From there, arrive at

BZ,m =Y  Gerr-1(@ld™ 4 +ad ) (an™ "+ +aon ).
k/=12,...n

(i) Conclude that

B(Z,I’]) = Z gk+€—1(anzn_k‘|‘"“|‘ak)(annn_€—|—"'—|—ag).
k¢=12..n

25



5. The MacDuffee resultant

As if four tests for coprimeness do not yet suffice, we now giva fifth one,
due to MacDuffee. Define the companion matrix of by

0 1 o --- 0 0 |
0 0 1 - 0 0
Acompanion= : : : : : :
0 0 0 0 1
&% Ly _® ., &2 &
I Ay an Ay an

Prove thata andb are coprime if and only if det er m nant (b(Acompanion)
the MacDuffee resultantof a and b, is not zero.

Hint: Assume first that the roots of a are distinct, and obtain the Mac-
Duffee test by diagonalizingAcompanion Then obtain the general case by a
continuity argument.

State and prove an analogous test with the roles @& and b reversed.
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Exercise 17: Observable image representatior

The image representationw = M (%) ¢/ is said to be observable if

M) = Ml & [ =],

1. Prove that a controllable systemZ € ¥ admits an observable image

representation.

2. Assume that the single-input/single-output system(3)wy = q($)w, is

controllable. Give an observable image representation fothis system.

27



Exercise 18: Non-anticipation

1. Consider the input/output system> = (R,R™ x RP, #) defined by

y=G (%) u with GeR(&)P" ™"

We say thaty does not anticipateuif forall (u,y) € Zandu € €°(R,R™)
such that U'(t) = u(t) for t <0, there existsy € ¥“(R,RP) such that
(U,y)e Bandy(t) =y(t) for t <O.

Prove thaty does not anticipateu (without conditions on G!).

2. Consider now the discrete-time input/output systent = (Z,R™ x RP, %)
defined by
y=G(o)u with GeR(&)P*™.

Define non-anticipation. Prove thaty does not anticipateu if and only
if Gis proper.

3. Does the moving average system
(t) = 1 S u(t +t’)
=11, 2

define a non-anticipating system?

4. For what A € R does the differential-delay system
d
—y(t)=ut+A
gy =ut+4)
define a nonanticiapting system?

28



Exercise 19: Norm-preserving representation;

The representation of this exercise uses the following ‘spéal factorization’-
like result.

Assume thatP ¢ R [§]**" satisfiesP(é) =P(—&) T and P(iw) > Ofor w € R.
Then there existsF € R[€]**" such thatP(&) =F(—&)TF(&).

1. Prove this factorization for the casen = 1.

2. Prove that if Z € " is controllable, then it admits an observable ‘im-

age’ representation
d
— N[ —
W ( dt) /¢

with N € R(&)¥(#)*n(#) sych that
N(=&N(E) = 1.
Proceed as follows. Start with an observable image represttion
w=M (%)E with M € R[E]"#>(#) - Then factor MT(—&)M(&) as
FT(—&)F (&) with F € R[EP*ZRP) TakeN = MF1,
3. Prove that this representation has the property that
W] 0 ) = 11€]] ),
hence the name ‘norm-preserving’ image representation.

4. Prove that such a representation exists only very exceptnally with N
polynomial. Norm-preserving representations have a numbeof appli-
cations, and require rational symbols.
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Exercise 20: The structure of.¥*

Let B, %1, %, € £*andF c R[&]*"°.

1. Prove that (%1 + %2) € £°.
2. Prove that 1N %, € L°.

3. Prove thatF (%) Be L

1
4. Prove thatF (%) Be L.

Assume, as always with thé notation, that the relevant objects have com-
patible dimensions.
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Exercise 21: Modeling a mass-spring-damper syste
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Consider the mass-spring device shown above. Assume thataperates
horizontally from equilibrium in its linear mode. The probl em is to model
the relation between the forced-, F,, and the horizontal positionsqs, 0p.

1. View this system as consisting of 5 subsystems. Define thagh with
leaves that determines the interconnection architecture.

2. Choose latent and manifest variables, and write the modelequations.

3. Write the interconnection laws.

4. Eliminate the latent variables and obtain behavioral eqations involv-
ing only the manifest variables.
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Exercise 22: Modeling a transmission line

Consider the transmission line modeling problem discusseduring Lecture
VIII.

i —" T (T
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1. View the transmission line as an interconnection of 7 sulystems as

shown below.

Determine the graph with leaves that defines the interconnéion archi-
tecture.

(T (T, il
WHAVLS

atrta
Sl 1

A

-

2. There are 3 kinds of subsystemsblue, , and cyan. Model each of
these subsystems.

3. Specify the interconnection laws.
4. Specify the manifest variables.

5. Obtain the full set of equations leading, after eliminaton of the latent
variables, to the desired differential equation that descibes the behav-

ior of (wq,wo)
d d
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Exercise 23: Characteristic polynomial assignmer

Consider the plant &2 € .Z¥. As all LTIDSs, it can be decomposed into

P = ycontrollable@ yautonomous

Let € € " be a regular controller and consider the autonomous con-
trolled system#ZN% € £".

1. Prove that for any monic it € R[] there exists such &  such that

Xong =T

if and only if X%, ,...m.siS @ factor of m. Deduce the pole placement
theorem from here.

2. Repeat the same question with the characteristic polynomal replaced
by the minimal polynomial.
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Exercise 24: Preservation of properties under interconnean

The notation is the one used in Lectures IV and V4 is the original behav-
ior, 4’ the behavior obtained after interconnection of terminals.

1. Consider the interconnection of terminals of an electrial circuit. Prove
that if 4 is linear and time-invariant, so is #4’. Prove that if 2 is a
LTIDS, so is Z’'. Prove that if 4 satisfies KVL, so doesZ’. Prove that
if 2 satisfies KCL, so does#’.

2. Consider the interconnection of terminals of a mechanidaystem. Prove
that if % satisfies IUM, so does#’.

3. Consider Newton’s second law. Prove [UM.

4. Apparently, Kepler’s laws do not satisfy IUM. Discuss whythis is and
in what sense IUM holds for Kepler’s laws.
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Exercise 25: Heat produced by a dampe

M1

i

Consider the system shown above. It consists of 2 masses, gected by a
damper. The motion is assumed to take place horizontally. Té damper is
assume to be a linear damper with damping coefficienD > 0.

Mo V2

1. Denote the positions of the pointmasses lmy, go. There are no external
forces that act on the masses. Obtain the differential equains that

govern (qs, tp).

2. Solve this differential equation with initial conditions
01(0),2(0), $01(0), $a2(0)

3. What is the power going into the damper?

4. Assume that all the energy absorbed by the damper is convied into
heat. Compute the energy absorbed on the intervgD, «) as a function
of the parametersMy, My, D, 01 (0),d2(0), 301(0), $d2(0). Note that this
energy only depends oMy, My, $0(0), $2(0).
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