Lecture 7b

Friday 06-02-2008

11.00-12.30

System Identification for Deterministic Systems

Lecturer: Paolo Rapisarda

- Modeling from data: a language;
- The Most Powerful Unfalsified Model;
- Modeling discrete-time data;
- ► The Hankel matrix;
- Annihilators;
- Recursive computation of the MPUM;
- State models from data.

This lecture deals with exact data, i.e. not corrupted by noise.

This lecture deals with exact data, i.e. not corrupted by noise.

Problem: computing from an exact time-series *w* **a linear, time-invariant model.**

E.g. in discrete-time, pass from

 $w(0), w(1), \cdots$

to a kernel representation

$$R_0w(t) + \dots + R_Lw(t+L) = 0$$

This lecture deals with exact data, i.e. not corrupted by noise.

Problem: computing from an exact time-series *w* **a linear, time-invariant model.**

E.g. in discrete-time, pass from

 $w(0), w(1), \cdots$

to a kernel representation

$$R_0w(t) + \cdots + R_Lw(t+L) = 0$$

¡No noise, no stochastics!

Modeling from data: a language

Physical phenomenon \sim **· · outcomes', events**

Events are described by variables

Events are described by variables

Example: modeling a resistor

Attributes \rightsquigarrow (voltage, current) $\rightsquigarrow \mathbb{R}^2$

Events are described by variables

Example: modeling a gas

Attributes \rightsquigarrow (pressure, temperature, volume) $\rightsquigarrow \mathbb{R}^3_+$

Events are described by variables

Dynamical phenomena : events are maps from time space to variables space

The set of all such maps is the **universum** \mathcal{U}

Events are described by variables

Dynamical phenomena : events are maps from time space to variables space

The set of all such maps is the **universum** \mathcal{U}

Example: modeling a resistor

$$\mathscr{U} = \left\{ (V, I) \in \left(\mathbb{R}^2 \right)^{\mathbb{R}} \right\}$$

where $(\mathbb{R}^2)^{\mathbb{R}} := \{f : \mathbb{R} \to \mathbb{R}^2\}$

Events are described by variables

Dynamical phenomena : events are maps from time space to variables space

The set of all such maps is the **universum** \mathcal{U}

Example: modeling a share value

$$\mathscr{U} = \left\{ V \in \left(\mathbb{R}_+ \right)^{\mathbb{N}} \right\}$$

a discrete-time phenomenon

Every "good" scientific theory is prohibition: it forbids certain things to happen...

K. Popper, Conjectures and Refutations: The Growth of Scientific Knowledge, Routhledge, 1963

Every "good" scientific theory is prohibition: it forbids certain things to happen...

K. Popper, Conjectures and Refutations: The Growth of Scientific Knowledge, Routhledge, 1963

Not all events in \mathscr{U} are possible: physics of phenomenon must be complied with!

A **model** \mathscr{B} is a subset of \mathscr{U} , chosen from a **model class** \mathscr{M} representing *a priori* knowledge/assumptions

Not all events in \mathscr{U} are possible: physics of phenomenon must be complied with!

A **model** \mathscr{B} is a subset of \mathscr{U} , chosen from a **model class** \mathscr{M} representing *a priori* knowledge/assumptions

Example: Ohm's resistor

$$\mathscr{U} = \left\{ (V,I) \in \left(\mathbb{R}^2 \right)^{\mathbb{R}} \right\}$$
$$\mathscr{M} = \left\{ \mathscr{B} \subset \mathscr{U} \mid \exists R \in \mathbb{R}_+ \text{ s.t. } (V,I) \in \mathscr{B} \Longrightarrow V = R I \right\}$$

Not all events in \mathscr{U} are possible: physics of phenomenon must be complied with!

A **model** \mathscr{B} is a subset of \mathscr{U} , chosen from a **model class** \mathscr{M} representing *a priori* knowledge/assumptions

Example: Linear models

$$\mathcal{U} = \mathbb{R}^{\mathbb{W}}$$

$$\mathcal{M} = \{ \text{Linear subspaces of } \mathcal{U} \}$$

The Most Powerful Unfalsified Model

The more a model forbids, the better it is.

K. Popper, Conjectures and Refutations: The Growth of Scientific Knowledge, Routhledge, 1963

The more a model forbids, the better it is.

K. Popper, Conjectures and Refutations: The Growth of Scientific Knowledge, Routhledge, 1963

 \mathscr{B}_1 is more powerful than \mathscr{B}_2 if $\mathscr{B}_1 \subset \mathscr{B}_2$.

Fewer possible outcomes, more discriminating model, better!

\mathscr{B}_1 is more powerful than \mathscr{B}_2 if $\mathscr{B}_1 \subset \mathscr{B}_2$.

Fewer possible outcomes, more discriminating model, better!

Given measurements $D \subseteq \mathcal{U}$, model \mathscr{B} is unfalsified by D if

 $D\subseteq \mathscr{B}$

\mathscr{B}_1 is more powerful than \mathscr{B}_2 if $\mathscr{B}_1 \subset \mathscr{B}_2$.

Fewer possible outcomes, more discriminating model, better!

Given measurements $D \subseteq \mathcal{U}$, model \mathcal{B} is unfalsified by D if $D \subseteq \mathcal{B}$

Given *D* and *M*, *B* is Most Powerful Unfalsified Model if $\mathcal{B} \in \mathcal{M}$ (i.e. admissible);

\mathscr{B}_1 is more powerful than \mathscr{B}_2 if $\mathscr{B}_1 \subset \mathscr{B}_2$.

Fewer possible outcomes, more discriminating model, better!

Given measurements $D \subseteq \mathcal{U}$, model \mathcal{B} is unfalsified by D if $D \subseteq \mathcal{B}$

Given D and \mathcal{M} , \mathcal{B} is Most Powerful Unfalsified Model if

$$\blacktriangleright \quad \mathcal{B} \in \mathcal{M};$$

$$D \subseteq \mathscr{B}$$
 (i.e. unfalsified);

\mathscr{B}_1 is more powerful than \mathscr{B}_2 if $\mathscr{B}_1 \subset \mathscr{B}_2$.

Fewer possible outcomes, more discriminating model, better!

Given measurements $D \subseteq \mathcal{U}$, model \mathcal{B} is unfalsified by D if $D \subseteq \mathcal{B}$

Given *D* and \mathcal{M} , \mathcal{B} is Most Powerful Unfalsified Model if $\mathcal{B} \in \mathcal{M}$;

 $\blacktriangleright D \subseteq \mathscr{B};$

 $\blacktriangleright \mathscr{B}' \in \mathscr{M}, D \subset \mathscr{B}' \Longrightarrow \mathscr{B} \subset \mathscr{B}' \text{ (i.e. most powerful).}$

\mathscr{B}_1 is more powerful than \mathscr{B}_2 if $\mathscr{B}_1 \subset \mathscr{B}_2$.

Fewer possible outcomes, more discriminating model, better!

Given measurements $D \subseteq \mathcal{U}$, model \mathcal{B} is unfalsified by D if $D \subseteq \mathcal{B}$

Given D and \mathcal{M} , \mathcal{B} is Most Powerful Unfalsified Model if

 $\blacktriangleright \quad \mathscr{B} \in \mathscr{M};$

 $\blacktriangleright \quad D \subseteq \mathscr{B};$

 $\blacktriangleright \mathscr{B}' \in \mathscr{M}, D \subset \mathscr{B}' \Longrightarrow \mathscr{B} \subset \mathscr{B}' \text{ (i.e. most powerful).}$

Existence? Uniqueness? Representations? Algorithms?

Example: Consider

$$\mathscr{U} = \mathbb{R}^n$$

 $\mathscr{M} =$ Linear subspaces of \mathbb{R}^n

Given measurements

$$D = \{w_1, \cdots, w_k\}$$

MPUM is

span
$$\{w_i \mid i = 1, \cdots, k\}$$

the intersection of all subspaces containing (\equiv unfalsified by) data.

The intersection property

Theorem: Assume that *M* satisfies

The intersection property i.e.

$$\mathscr{M}' \subset \mathscr{M} \Longrightarrow \left(\bigcap_{\mathscr{B} \in \mathscr{M}'} \mathscr{B}\right) \in \mathscr{M}$$

For each $D \in 2^{\mathscr{U}}$ there exists $\mathscr{B} \in \mathscr{M}$ such that $D \subseteq \mathscr{B}$. Then for each D there exists a unique MPUM \mathscr{B}^* , namely

$$\mathscr{B}^* := igcap_{\mathscr{B} \in \mathscr{M}, \ D \subseteq \mathscr{B}} \mathscr{B}$$

The following are instances in which the intersection property holds:

$$\blacktriangleright \quad \mathscr{M} = 2^{\mathscr{U}}, \text{ whatever } \mathscr{U} \text{ is;}$$

The following are instances in which the intersection property holds:

$$\blacktriangleright \quad \mathcal{M} = 2^{\mathcal{U}}, \text{ whatever } \mathcal{U} \text{ is;}$$

$$\blacktriangleright \quad \mathscr{U} = \mathbb{R}^{n}, \, \mathscr{M} = \{V \mid V \text{ is linear subspace of } \mathscr{U}\};$$

The following are instances in which the intersection property holds:

$$\blacktriangleright \quad \mathscr{M} = 2^{\mathscr{U}}, \text{ whatever } \mathscr{U} \text{ is;}$$

>
$$\mathscr{U} = \mathbb{R}^n$$
, $\mathscr{M} = \{V \mid V \text{ is linear subspace of } \mathscr{U}\};$

 $\mathscr{U} \text{ topological vector space, and model class is } \\ \mathscr{M} = \{ V \mid V \text{ is closed linear subspace of } \mathscr{U} \}.$

Dynamical modeling from data

Problem: given w-dimensional time series $w := \{w(0), w(1), \dots\}$

find LTI complete behavior *B* **containing** *w*.

Universum
$$\mathscr{U} = (\mathbb{R}^{w})^{\mathbb{R}}$$
. Model class $\mathscr{M} = \mathscr{L}^{w}$.

Problem: given w-dimensional time series $w := \{w(0), w(1), \dots\}$

find LTI complete behavior *B* **containing** *w*.

Universum
$$\mathscr{U} = (\mathbb{R}^{w})^{\mathbb{R}}$$
. Model class $\mathscr{M} = \mathscr{L}^{w}$.

Problem: given w-dimensional time series $w := \{w(0), w(1), \dots\}$

find LTI complete behavior \mathcal{B} containing w.

Universum
$$\mathscr{U} = (\mathbb{R}^{w})^{\mathbb{R}}$$
. Model class $\mathscr{M} = \mathscr{L}^{w}$.

 $\mathscr{L}^{\scriptscriptstyle \mathrm{W}}$ satisfies the intersection property: MPUM exists.

Problem: given w-dimensional time series $w := \{w(0), w(1), \dots \}$

find LTI complete behavior *B* **containing** *w*.

Universum $\mathscr{U} = (\mathbb{R}^{w})^{\mathbb{R}}$. Model class $\mathscr{M} = \mathscr{L}^{w}$. MPUM \mathscr{B}^{*} ?
Time-series modeling

Problem: given w-dimensional time series $w := \{w(0), w(1), \dots\}$

find LTI complete behavior *B* **containing** *w***.**

Universum $\mathscr{U} = (\mathbb{R}^{w})^{\mathbb{R}}$. Model class $\mathscr{M} = \mathscr{L}^{w}$. MPUM \mathscr{B}^{*} ?

Any unfalsified model is shift-invariant: must contain

$$w = \{w(0), w(1), \dots\}$$

$$\sigma w = \{w(1), w(2), \dots\}$$

$$\sigma^2 w = \{w(2), w(3), \dots\}$$

Time-series modeling

Problem: given w-dimensional time series $w := \{w(0), w(1), \dots\}$

find LTI complete behavior *B* **containing** *w***.**

Universum $\mathscr{U} = (\mathbb{R}^{w})^{\mathbb{R}}$. Model class $\mathscr{M} = \mathscr{L}^{w}$. MPUM \mathscr{B}^{*} ?

Intersection of all linear unfalsified models yields

$$\mathscr{B}^* = (\operatorname{span} \{w, \sigma w, \sigma^2 w, \cdots\})^{\operatorname{closure}}$$

Time-series modeling

Problem: given w-dimensional time series $w := \{w(0), w(1), \dots\}$

find LTI complete behavior *B* **containing** *w***.**

Universum $\mathscr{U} = (\mathbb{R}^{w})^{\mathbb{R}}$. Model class $\mathscr{M} = \mathscr{L}^{w}$. MPUM \mathscr{B}^{*} ?

Intersection of all linear unfalsified models yields

$$\mathscr{B}^* = ($$
span $\{w, \sigma w, \sigma^2 w, \cdots\})^{$ closure}

¿What about representations?

The Hankel matrix

MPUM is subspace spanned by rows of

$$\mathscr{H}(w) := \begin{bmatrix} w(0) & w(1) & \cdots & w(t'') & \cdots \\ w(1) & w(2) & \cdots & w(t''+1) & \cdots \\ w(2) & w(3) & \cdots & w(t''+2) & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ w(t') & w(t'+1) & \cdots & w(t'+t''-1) & \cdots \\ w(t'+1) & w(t'+2) & \cdots & w(t'+t'') & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

MPUM is subspace spanned by rows of

$$\mathscr{H}(w) := \begin{bmatrix} w(0) & w(1) & \cdots & w(t'') & \cdots \\ w(1) & w(2) & \cdots & w(t''+1) & \cdots \\ w(2) & w(3) & \cdots & w(t''+2) & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ w(t') & w(t'+1) & \cdots & w(t'+t''-1) & \cdots \\ w(t'+1) & w(t'+2) & \cdots & w(t'+t'') & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

Constant along the block-antidiagonal: Hankel structure

The left kernel of $\mathscr{H}(w)$

Let
$$R(\xi) = R_0 + R_1 \xi + \dots + R_L \xi^L \in \mathbb{R}^{\bullet \times w}[\xi].$$

Then $R(\sigma)w = 0 \rightsquigarrow$

$$\begin{bmatrix} R_0 & R_1 & \cdots & R_L & 0 & \cdots \end{bmatrix} \begin{bmatrix} w(0) & w(1) & \cdots & w(t'') & \cdots \\ w(1) & w(2) & \cdots & w(t''+1) & \cdots \\ w(2) & w(3) & \cdots & w(t''+2) & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix} = 0$$

Each row of $\begin{bmatrix} R_0 & R_1 & \cdots & R_L & 0 & \cdots \end{bmatrix}$ is an **annihilator**

The left kernel of $\mathscr{H}(w)$

Let $R(\xi) = R_0 + R_1 \xi + \dots + R_L \xi^L \in \mathbb{R}^{\bullet \times w}[\xi]$. Then $R(\sigma)w = 0 \rightsquigarrow$

$$\begin{bmatrix} R_0 & R_1 & \cdots & R_L & 0 & \cdots \end{bmatrix} \begin{bmatrix} w(0) & w(1) & \cdots & w(t'') & \cdots \\ w(1) & w(2) & \cdots & w(t''+1) & \cdots \\ w(2) & w(3) & \cdots & w(t''+2) & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix} = 0$$

Each row of $\begin{bmatrix} R_0 & R_1 & \cdots & R_L & 0 & \cdots \end{bmatrix}$ is an **annihilator**

Kernel representation of MPUM \equiv **left kernel of** $\mathscr{H}(w)$

The left kernel of $\mathscr{H}(w)$

Let $R(\xi) = R_0 + R_1 \xi + \dots + R_L \xi^L \in \mathbb{R}^{\bullet \times w}[\xi]$. Then $R(\sigma)w = 0 \rightsquigarrow$

$$\begin{bmatrix} R_0 & R_1 & \cdots & R_L & 0 & \cdots \end{bmatrix} \begin{bmatrix} w(0) & w(1) & \cdots & w(t'') & \cdots \\ w(1) & w(2) & \cdots & w(t''+1) & \cdots \\ w(2) & w(3) & \cdots & w(t''+2) & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix} = 0$$

Each row of $\begin{bmatrix} R_0 & R_1 & \cdots & R_L & 0 & \cdots \end{bmatrix}$ is an **annihilator**

Kernel representation of MPUM \equiv **left kernel of** $\mathscr{H}(w)$

Infinite dimensional problem? Not quite!

Annihilators

Left kernel of $\mathscr{H}(w)$ is **closed under addition** (a subspace!)...

Left kernel of $\mathscr{H}(w)$ is **closed under addition** (a subspace!)...

...and **closed under shifting**:

$$\begin{bmatrix} r_0 & r_1 & \cdots & r_L & 0 & \cdots \end{bmatrix} \begin{bmatrix} w(0) & w(1) & \cdots & w(t'') & \cdots \\ w(1) & w(2) & \cdots & w(t''+1) & \cdots \\ w(2) & w(3) & \cdots & w(t''+2) & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix} = 0$$

Left kernel of $\mathscr{H}(w)$ is **closed under addition** (a subspace!)...

...and **closed under shifting**:

$$\begin{bmatrix} 0 & r_0 & r_1 & \cdots & r_L & 0 & \cdots \end{bmatrix} \begin{bmatrix} w(0) & w(1) & \cdots & w(t'') & \cdots \\ w(1) & w(2) & \cdots & w(t''+1) & \cdots \\ w(2) & w(3) & \cdots & w(t''+2) & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix} = 0$$

Left kernel of $\mathscr{H}(w)$ is **closed under addition** (a subspace!)...

...and **closed under shifting**:

$$\begin{bmatrix} 0 & r_0 & r_1 & \cdots & r_L & 0 & \cdots \end{bmatrix} \begin{bmatrix} w(0) & w(1) & \cdots & w(t'') & \cdots \\ w(1) & w(2) & \cdots & w(t''+1) & \cdots \\ w(2) & w(3) & \cdots & w(t''+2) & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix} = 0$$

Associate polynomials with left kernel vectors:

$$\begin{bmatrix} r_0 & r_1 & \cdots & r_L & 0 & \cdots \end{bmatrix} \rightsquigarrow r(\xi) := r_0 + r_1 \xi + \cdots + r_L \xi^L$$

Then $r(\xi), \xi r(\xi), \cdots$ also represent left annihilators of $\mathscr{H}(w)$

Left kernel of $\mathscr{H}(w)$ is **closed under addition** (a subspace!)...

...and **closed under shifting**:

$$\begin{bmatrix} 0 & r_0 & r_1 & \cdots & r_L & 0 & \cdots \end{bmatrix} \begin{bmatrix} w(0) & w(1) & \cdots & w(t'') & \cdots \\ w(1) & w(2) & \cdots & w(t''+1) & \cdots \\ w(2) & w(3) & \cdots & w(t''+2) & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \end{bmatrix} = 0$$

Denote the set of annihilators of $\mathcal{H}(w)$ with

$$\mathcal{N}(\mathscr{H}(w)) := \{r_0 + r_1\xi + \dots + r_n\xi^n \in \mathbb{R}^{1 \times w}[\xi] \mid \\ \begin{bmatrix} r_0 & r_1 & \dots & r_n & 0 & \dots \end{bmatrix} \in \text{left kernel } \mathscr{H}(w) \}$$

Then $\mathcal{N}(\mathscr{H}(w))$ is a submodule of $\mathbb{R}^{1 \times w}[\xi]$, and consequently it is finitely generated : there exist basis elements $a_1(\xi), \dots, a_p(\xi) \in \mathbb{R}^{1 \times w}[\xi]$ such that for every $b \in \mathcal{N}(\mathscr{H}(w))$ $\exists g_1(\xi), \dots, g_p(\xi) \in \mathbb{R}[\xi]$ s.t. $b(\xi) = \sum_{i=1}^p g_i(\xi) a_i(\xi)$ **Denote the** set of annihilators of $\mathcal{H}(w)$ with

$$\mathcal{N}(\mathscr{H}(w)) := \{r_0 + r_1\xi + \dots + r_n\xi^n \in \mathbb{R}^{1 \times w}[\xi] \mid \\ \begin{bmatrix} r_0 & r_1 & \dots & r_n & 0 & \dots \end{bmatrix} \in \text{left kernel } \mathscr{H}(w) \}$$

Then $\mathcal{N}(\mathscr{H}(w))$ is a submodule of $\mathbb{R}^{1 \times w}[\xi]$, and consequently it is finitely generated : there exist basis elements $a_1(\xi), \dots, a_p(\xi) \in \mathbb{R}^{1 \times w}[\xi]$ such that for every $b \in \mathcal{N}(\mathscr{H}(w))$

$$\exists g_1(\xi), \cdots, g_p(\xi) \in \mathbb{R}[\xi] \text{ s.t. } b(\xi) = \sum_{i=1}^r g_i(\xi) a_i(\xi)$$

Not quite "finite-dimensional", but "almost".

Recursive computation of the MPUM

Problem: given *w*, find matrix *R* such that ker $R(\sigma) = \mathscr{B}^*$

Problem: given *w*, find matrix *R* such that ker $R(\sigma) = \mathscr{B}^*$

Equivalent formulation:

Problem: find basis for the submodule $\mathcal{N}(\mathscr{H}(w))$

Problem: given *w*, find matrix *R* such that ker $R(\sigma) = \mathscr{B}^*$

Equivalent formulation:

Problem: find basis for the submodule $\mathcal{N}(\mathcal{H}(w))$

Basic idea: compute annihilators one by one, at each step using the previous annihilators in order to get a new one.

Problem: given *w*, find matrix *R* such that ker $R(\sigma) = \mathscr{B}^*$

Equivalent formulation:

Problem: find basis for the submodule $\mathcal{N}(\mathcal{H}(w))$

Basic idea: compute annihilators one by one, at each step using the previous annihilators in order to get a new one.

Basic technique: unimodular completion of a polynomial matrix

$R \in \mathbb{R}^{p \times w}[\xi]$ is left-prime if $R(\lambda)$ has full row rank $\forall \lambda \in \mathbb{C}$.

$R \in \mathbb{R}^{p \times w}[\xi]$ is left-prime if $R(\lambda)$ has full row rank $\forall \lambda \in \mathbb{C}$.

Equivalent with:

 $\blacktriangleright \quad R = FR' \Longrightarrow F \text{ is unimodular.}$

 $R \in \mathbb{R}^{p \times w}[\xi]$ is left-prime if $R(\lambda)$ has full row rank $\forall \lambda \in \mathbb{C}$.

Equivalent with:

- $\blacktriangleright \quad R = FR' \Longrightarrow F \text{ is unimodular.}$
- Unimodular completion: $\exists E \in \mathbb{R}^{(w-p) \times w}[\xi]$ such that

$$\begin{bmatrix} R \\ E \end{bmatrix}$$

is unimodular.

 $R \in \mathbb{R}^{p \times w}[\xi]$ is left-prime if $R(\lambda)$ has full row rank $\forall \lambda \in \mathbb{C}$.

Equivalent with:

- $\blacktriangleright \quad R = FR' \Longrightarrow F \text{ is unimodular.}$
- Unimodular completion: $\exists E \in \mathbb{R}^{(w-p) \times w}[\xi]$ such that

$$\begin{bmatrix} R \\ E \end{bmatrix}$$

is unimodular.

Special case w = 2 leads to **Bézout equation**

$$\det\left(\begin{bmatrix} r_1(\xi) & r_2(\xi) \\ e_1(\xi) & e_2(\xi) \end{bmatrix}\right) = r_1(\xi)e_2(\xi) - r_2(\xi)e_1(\xi) = 1$$

 $R \in \mathbb{R}^{p \times w}[\xi]$ is left-prime if $R(\lambda)$ has full row rank $\forall \lambda \in \mathbb{C}$.

Equivalent with:

- $\blacktriangleright \quad R = FR' \Longrightarrow F \text{ is unimodular.}$
- Unimodular completion: $\exists E \in \mathbb{R}^{(w-p) \times w}[\xi]$ such that

$\begin{bmatrix} R \\ E \end{bmatrix}$

is unimodular.

Completion is not unique. Algorithms to compute one available.

 $R \in \mathbb{R}^{p \times w}[\xi]$ is left-prime if $R(\lambda)$ has full row rank $\forall \lambda \in \mathbb{C}$.

Equivalent with:

- $\blacktriangleright \quad R = FR' \Longrightarrow F \text{ is unimodular.}$
- Unimodular completion: $\exists E \in \mathbb{R}^{(w-p) \times w}[\xi]$ such that

$$\begin{bmatrix} R \\ E \end{bmatrix}$$

is unimodular.

Behavioral interpretation: If $\mathscr{B} := \ker R(\sigma)$ is controllable, then there exists $\mathscr{B}' := \ker E(\sigma)$ such that

$$\mathscr{B} \oplus \mathscr{B}' = (\mathbb{R}^{\mathtt{w}})^{\mathbb{N}}$$

Let
$$r(\xi) = r_0 + r_1 \xi + \cdots + r_L \xi^n \in \mathcal{N}(\mathcal{H}(w))$$
, i.e.

$$\begin{bmatrix} r_0 & r_1 & \cdots & r_L \end{bmatrix} \begin{bmatrix} w(0) & w(1) & \cdots & w(t'') & \cdots \\ w(1) & w(2) & \cdots & w(t''+1) & \cdots \\ w(2) & w(3) & \cdots & w(t''+2) & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ w(L) & w(L+1) & \cdots & w(L+t'') & \cdots \end{bmatrix} = 0$$

Let $r(\xi) = r_0 + r_1 \xi + \cdots + r_L \xi^n \in \mathcal{N}(\mathcal{H}(w)).$

Let
$$r(\xi) = r_0 + r_1 \xi + \cdots + r_L \xi^n \in \mathcal{N}(\mathcal{H}(w)).$$

Compute a unimodular completion E_r of r.

Let
$$r(\xi) = r_0 + r_1 \xi + \cdots + r_L \xi^n \in \mathcal{N}(\mathcal{H}(w))$$
.

Compute a unimodular completion E_r of r.

Define error $e := E_r(\sigma)w$, a (w-1)-dimensional time-series.

Let
$$r(\xi) = r_0 + r_1 \xi + \cdots + r_L \xi^n \in \mathcal{N}(\mathscr{H}(w)).$$

Compute a unimodular completion E_r of r.

Define error $e := E_r(\sigma)w$, a (w-1)-dimensional time-series.

Compute annihilator $r'(\xi)$ for the error:

$$\begin{bmatrix} r'_0 & r'_1 & \cdots & r'_{L'} \end{bmatrix} \begin{bmatrix} e(0) & e(1) & \cdots & e(t'') & \cdots \\ e(1) & e(2) & \cdots & e(t''+1) & \cdots \\ e(2) & e(3) & \cdots & e(t''+2) & \cdots \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ e(L') & e(L'+1) & \cdots & e(L'+t'') & \cdots \end{bmatrix} = 0$$

Let
$$r(\xi) = r_0 + r_1 \xi + \cdots + r_L \xi^n \in \mathcal{N}(\mathscr{H}(w)).$$

Compute a unimodular completion E_r of r.

Define error $e := E_r(\sigma)w$, a (w-1)-dimensional time-series.

Compute annihilator $r'(\xi)$ for the error. Now

$$r'(\sigma)E_r(\sigma)w = r'(\sigma)(E_r(\sigma)w) = r'(\sigma)e = 0$$

i.e. $r'(\xi)E_r(\xi)$ is annihilator of *w*.

Let
$$r(\xi) = r_0 + r_1 \xi + \cdots + r_L \xi^n \in \mathcal{N}(\mathcal{H}(w)).$$

Compute a unimodular completion E_r of r.

Define error $e := E_r(\sigma)w$, a (w-1)-dimensional time-series.

Compute annihilator $r'(\xi)$ for the error: $r'(\xi)E_r(\xi)$ is 'new' annihilator of *w*.

Compute unimodular completion $E_{r'} \in \mathbb{R}^{(w-2) \times w}[\xi]$ of $r'(\xi)E_r(\xi)$; define error $e' := E_{r'}(\sigma)e$; find annihilator r''.

Let
$$r(\xi) = r_0 + r_1 \xi + \cdots + r_L \xi^n \in \mathcal{N}(\mathcal{H}(w)).$$

Compute a unimodular completion E_r of r.

Define error $e := E_r(\sigma)w$, a (w-1)-dimensional time-series.

Compute annihilator $r'(\xi)$ for the error: $r'(\xi)E_r(\xi)$ is 'new' annihilator of w.

Compute unimodular completion $E_{r'} \in \mathbb{R}^{(w-2) \times w}[\xi]$ of $r'(\xi)E_r(\xi)$; define error $e' := E_{r'}(\sigma)e$; find annihilator r''.

 $r''(\xi)E_{r'}(\xi)E_r(\xi)$ is 'new' annihilator of w.
Recursive computation of an MPUM representation

Let
$$r(\xi) = r_0 + r_1 \xi + \cdots + r_L \xi^n \in \mathcal{N}(\mathcal{H}(w))$$
.

Compute a unimodular completion E_r of r.

Define error $e := E_r(\sigma)w$, a (w-1)-dimensional time-series.

Compute annihilator $r'(\xi)$ for the error: $r'(\xi)E_r(\xi)$ is 'new' annihilator of *w*.

Compute unimodular completion $E_{r'} \in \mathbb{R}^{(w-2) \times w}[\xi]$ of $r'(\xi)E_r(\xi)$; define error $e' := E_{r'}(\sigma)e$; find annihilator r''.

 $r''(\xi)E_{r'}(\xi)E_r(\xi)$ is 'new' annihilator of w.

Continue until error is zero.

From data to state model

Problem: Compute from an infinite time-series

 $w = w(0), w(1), \cdots$

a state space model $E\sigma x + Fx + Gw = 0$ of the MPUM

Problem: Compute from an infinite time-series $w = w(0), w(1). \cdots$

a state space model $E\sigma x + Fx + Gw = 0$ of the MPUM

Refinement: compute i/s/o model of MPUM

$$\sigma x = Ax + Bu$$
$$y = Cx + Du$$

Problem: Compute from an infinite time-series $w = w(0), w(1). \cdots$

a state space model $E\sigma x + Fx + Gw = 0$ of the MPUM

Classical approaches based on identifying transfer function model, and then realizing it in state space form.

Problem: Compute from an infinite time-series $w = w(0), w(1), \cdots$

a state space model $E\sigma x + Fx + Gw = 0$ of the MPUM

Classical approaches based on identifying transfer function model, and then realizing it in state space form.

Subspace identification approach: construct a state sequence

 $x(0), x(1), \cdots$

from *w* **by oblique projection of "past" onto "future" of** *w*

Lag of $\mathscr{B} \in \mathscr{L}^{w}$, denoted $L(\mathscr{B})$, is smallest integer *L* such that

$$R_0w+R_1\sigma w+\cdots+R_L\sigma^Lw=0$$

is kernel representation of \mathcal{B} .

Lag of $\mathscr{B} \in \mathscr{L}^{w}$, denoted $L(\mathscr{B})$, is smallest integer L such that

$$R_0w+R_1\sigma w+\cdots+R_L\sigma^Lw=0$$

is kernel representation of \mathcal{B} .

Any kernel representation of \mathscr{B} has degree $\leq L(\mathscr{B})$.

Lag of $\mathscr{B} \in \mathscr{L}^w$, denoted $L(\mathscr{B})$, is smallest integer L such that $R_0w + R_1\sigma w + \cdots + R_L\sigma^L w = 0$

is kernel representation of \mathcal{B} .

Any kernel representation of \mathscr{B} has degree $\leq L(\mathscr{B})$.

Under suitable assumptions ("persistency of excitation"), if $\Delta \geq {\tt L}(\mathscr{B})$ then left kernel of

$$\begin{bmatrix} w(0) & w(1) & \cdots & w(t'') & \cdots \\ \vdots & \vdots & \vdots & \vdots \\ w(\Delta) & w(\Delta+1) & \cdots & w(\Delta+t'') & \cdots \end{bmatrix}$$

uniquely identifies $\mathcal{N}(\mathcal{B})$ (identifiability).

Lag of $\mathscr{B} \in \mathscr{L}^w$, denoted $L(\mathscr{B})$, is smallest integer L such that $R_0w + R_1\sigma w + \cdots + R_L\sigma^L w = 0$

is kernel representation of \mathcal{B} .

Any kernel representation of \mathscr{B} has degree $\leq L(\mathscr{B})$.

Under suitable assumptions ("persistency of excitation"), if $\Delta \geq {\tt L}(\mathscr{B})$ then left kernel of

$$\begin{bmatrix} w(0) & w(1) & \cdots & w(t'') & \cdots \\ \vdots & \vdots & \vdots & \vdots \\ w(\Delta) & w(\Delta+1) & \cdots & w(\Delta+t'') & \cdots \end{bmatrix}$$

uniquely identifies $\mathcal{N}(\mathcal{B})$ (identifiability).

Subspace identification

$$\begin{bmatrix} \mathscr{H}_{-} \\ \mathscr{H}_{+} \end{bmatrix} = \begin{bmatrix} w(0) & w(1) & \cdots & w(t) & \cdots \\ \vdots & \vdots & \vdots & \vdots \\ w(\Delta) & w(\Delta+1) & \cdots & w(t+\Delta-1) & \cdots \\ w(\Delta+1) & w(\Delta+2) & \cdots & w(t+\Delta) & \cdots \\ \vdots & \vdots & \vdots & \vdots \\ w(2\Delta) & w(2\Delta+1) & \cdots & w(t+2\Delta-1) & \cdots \end{bmatrix}$$

 \mathscr{H}_{-} is 'past', \mathscr{H}_{+} is 'future' of the data.

Subspace identification

$$\begin{bmatrix} \mathscr{H}_{-} \\ \mathscr{H}_{+} \end{bmatrix} = \begin{bmatrix} w(0) & w(1) & \cdots & w(t) & \cdots \\ \vdots & \vdots & \vdots & \vdots \\ w(\Delta) & w(\Delta+1) & \cdots & w(t+\Delta-1) & \cdots \\ w(\Delta+1) & w(\Delta+2) & \cdots & w(t+\Delta) & \cdots \\ \vdots & \vdots & \vdots & \vdots \\ w(2\Delta) & w(2\Delta+1) & \cdots & w(t+2\Delta-1) & \cdots \end{bmatrix}$$

 \mathscr{H}_{-} is 'past', \mathscr{H}_{+} is 'future' of the data.

Basis for row span(\mathscr{H}_{-}) \cap row span(\mathscr{H}_{+}) induces state sequence

$$\begin{bmatrix} x(\Delta+1) & x(\Delta+2) & \cdots & x(t+\Delta) & \cdots \end{bmatrix}$$

Basis for row span(\mathscr{H}_{-}) \cap row span(\mathscr{H}_{+}) induces state sequence

$$\begin{bmatrix} x(\Delta+1) & x(\Delta+2) & \cdots & x(t+\Delta) & \cdots \end{bmatrix}$$

From state sequence and data, solve for *E*, *F*, *G* in

$$\begin{bmatrix} E & F & G \end{bmatrix} \begin{bmatrix} x(\Delta+2) & x(\Delta+3) & \cdots & x(t+\Delta+1) & \cdots \\ x(\Delta+1) & x(\Delta+2) & \cdots & x(t+\Delta) & \cdots \\ w(\Delta+1) & w(\Delta+2) & \cdots & w(t+\Delta) & \cdots \end{bmatrix} = 0$$

Basis for row span(\mathscr{H}_{-}) \cap row span(\mathscr{H}_{+}) induces state sequence

$$\begin{bmatrix} x(\Delta+1) & x(\Delta+2) & \cdots & x(t+\Delta) & \cdots \end{bmatrix}$$

From state sequence and data, solve for *E*, *F*, *G* in

$$\begin{bmatrix} E & F & G \end{bmatrix} \begin{bmatrix} x(\Delta+2) & x(\Delta+3) & \cdots & x(t+\Delta+1) & \cdots \\ x(\Delta+1) & x(\Delta+2) & \cdots & x(t+\Delta) & \cdots \\ w(\Delta+1) & w(\Delta+2) & \cdots & w(t+\Delta) & \cdots \end{bmatrix} = 0$$

Refinements using i/o partition obtaining *A*, *B*, *C*, *D*.

From data to state using annihilators

 $R(\xi) = R_0 + R_1 \xi + \cdots + R_L \xi^L$ left annihilator matrix of $\mathscr{H}(w)$.

 $R(\xi) = R_0 + R_1 \xi + \cdots + R_L \xi^L$ left annihilator matrix of $\mathscr{H}(w)$. Then

$$\begin{bmatrix} R_0 & R_1 & \cdots & R_{L-1} & R_L \end{bmatrix} \begin{bmatrix} w(\Delta - L + 1) & w(\Delta - L + 2) & \cdots \\ \vdots & \vdots & \vdots \\ w(\Delta) & w(\Delta + 1) & \cdots \\ w(\Delta + 1) & w(\Delta + 2) & \cdots \end{bmatrix} = 0$$

yields rows in (past,future) intersection, namely

$$\begin{bmatrix} R_0 & R_1 & \cdots & R_{L-1} \end{bmatrix} \begin{bmatrix} w(\Delta - L + 1) & w(\Delta - L + 2) & \cdots \\ \vdots & \vdots & \vdots \\ w(\Delta) & w(\Delta + 1) & \cdots \end{bmatrix}$$

 $R(\xi) = R_0 + R_1 \xi + \cdots + R_L \xi^L$ left annihilator matrix of $\mathscr{H}(w)$. Then

$$\begin{bmatrix} R_0 & R_1 & \cdots & R_{L-1} & R_L \end{bmatrix} \begin{bmatrix} w(\Delta - L + 1) & w(\Delta - L + 2) & \cdots \\ \vdots & \vdots & \vdots \\ w(\Delta) & w(\Delta + 1) & \cdots \\ w(\Delta + 1) & w(\Delta + 2) & \cdots \end{bmatrix} = 0$$

yields rows in (past,future) intersection, equivalently

$$\begin{bmatrix} -R_L \end{bmatrix} \begin{bmatrix} w(\Delta+1) & w(\Delta+2) & \cdots \end{bmatrix}$$

From data to state using annihilators

 $R(\xi) = R_0 + R_1 \xi + \cdots + R_L \xi^L$ left annihilator matrix of $\mathscr{H}(w)$. Then

$$\begin{bmatrix} R_0 & R_1 & \cdots & R_{L-2} & R_{L-1} & R_L \end{bmatrix} \begin{bmatrix} w(\Delta - L + 2) & w(\Delta - L + 3) & \cdots \\ \vdots & \vdots & \vdots \\ w(\Delta) & w(\Delta + 1) & \cdots \\ w(\Delta + 1) & w(\Delta + 2) & \cdots \\ w(\Delta + 2) & w(\Delta + 3) & \cdots \end{bmatrix} = 0$$

yields rows in (past,future) intersection, namely

$$\begin{bmatrix} R_0 & R_1 & \cdots & R_{L-2} \end{bmatrix} \begin{bmatrix} w(\Delta - L + 2) & w(\Delta - L + 3) & \cdots \\ \vdots & \vdots & \vdots \\ w(\Delta) & w(\Delta + 1) & \cdots \end{bmatrix}$$

-p. 28/29

From data to state using annihilators

 $R(\xi) = R_0 + R_1 \xi + \cdots + R_L \xi^L$ left annihilator matrix of $\mathscr{H}(w)$. Then

$$\begin{bmatrix} R_0 & R_1 & \cdots & R_{L-2} & R_{L-1} & R_L \end{bmatrix} \begin{bmatrix} w(\Delta - L + 2) & w(\Delta - L + 3) & \cdots \\ \vdots & \vdots & \vdots \\ w(\Delta) & w(\Delta + 1) & \cdots \\ w(\Delta + 1) & w(\Delta + 2) & \cdots \\ w(\Delta + 2) & w(\Delta + 3) & \cdots \end{bmatrix} = 0$$

yields rows in (past,future) intersection, equivalently

$$\begin{bmatrix} -R_{L-1} & -R_L \end{bmatrix} \begin{bmatrix} w(\Delta+1) & w(\Delta+2) & \cdots \\ w(\Delta+2) & w(\Delta+3) & \cdots \end{bmatrix}$$

 $R(\xi) = R_0 + R_1 \xi + \cdots + R_L \xi^L$ left annihilator matrix of $\mathscr{H}(w)$.

Proceeding in this way:

 $\begin{bmatrix} -R_L & 0 & \cdots & 0 \\ -R_{L-1} & -R_L & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ -R_1 & -R_2 & \cdots & -R_L \end{bmatrix} \begin{bmatrix} w(\Delta+1) & w(\Delta+2) & \cdots \\ \vdots & \vdots & \vdots \\ w(\Delta+L) & w(\Delta+L+1) & \cdots \end{bmatrix}$

yields a (non-minimal) state sequence, namely

$$\begin{bmatrix} x(\Delta+1) & x(\Delta+2) & \cdots \end{bmatrix}$$

 $R(\xi) = R_0 + R_1 \xi + \cdots + R_L \xi^L$ left annihilator matrix of $\mathscr{H}(w)$.

Proceeding in this way:

$$\begin{bmatrix} -R_L & 0 & \cdots & 0 \\ -R_{L-1} & -R_L & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ -R_1 & -R_2 & \cdots & -R_L \end{bmatrix} \begin{bmatrix} w(\Delta+1) & w(\Delta+2) & \cdots \\ \vdots & \vdots & \vdots \\ w(\Delta+L) & w(\Delta+L+1) & \cdots \end{bmatrix}$$

yields a (non-minimal) state sequence, namely

$$\begin{bmatrix} x(\Delta+1) & x(\Delta+2) & \cdots \end{bmatrix}$$

Not surprising: state map matrix appears!

► A language for modeling

- ► A language for modeling
- The most powerful unfalsified model

- ► A language for modeling
- The most powerful unfalsified model
- The Hankel matrix is key

- ► A language for modeling
- The most powerful unfalsified model
- The Hankel matrix is key
- Recursive computation of the MPUM

- ► A language for modeling from data
- The most powerful unfalsified model
- **The Hankel matrix is key**
- Recursive computation of the MPUM
- State models from data: the role of annihilators