Lecture 7b

Friday 06-02-2008 11.00-12.30

System ldentification for
Deterministic Systems

Lecturer: Paolo Rapisarda
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Modeling from data: a language,

The Most Powerful Unfalsified Model;
Modeling discrete-time data;

The Hankel matrix;

Annihilators;

Recursive computation of the MPUM;

State models from data.
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This lecture deals withexactdata, i.e. not corrupted by noise.
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This lecture deals withexactdata, i.e. not corrupted by noise.

Problem: computing from an exact time-seriesw a lineatrr,
time-invariant model.

E.g. in discrete-time, pass from
w(0),w(1),---
to a kernel representation

Row(t) +---+Rw(t+L)=0
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This lecture deals withexactdata, i.e. not corrupted by noise.

Problem: computing from an exact time-seriesw a lineatrr,
time-invariant model.

E.g. in discrete-time, pass from
w(0),w(1),---
to a kernel representation

Row(t) +---+Rw(t+L)=0

iNO noise, no stochastics!
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Modeling from data: a language




Reminder: events, variables, universun

Physical phenomenon- ‘outcomes’, events
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Reminder: events, variables, universun

Physical phenomenon- ‘outcomes’, events

Events are described by variables
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Physical phenomenon- ‘outcomes’, events

Events are described by variables

Example: modeling a resistor

Attributes ~» (voltage, current) ~» R?
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Physical phenomenon- ‘outcomes’, events

Events are described by variables

Example: modeling a gas

Attributes ~» (pressure, temperature,volume). Ri
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Physical phenomenon- ‘outcomes’, events
Events are described by variables

Dynamical phenomena : events are maps fror time space to
variables space

The set of all such maps is the¢universum %
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Physical phenomenon- ‘outcomes’, events
Events are described by variables

Dynamical phenomena : events are maps fror time space to
variables space

The set of all such maps is the¢universum %

Example: modeling a resistor

7 ={vD)e®)"}

where (RZ)R = {f:R —R?}
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Physical phenomenon- ‘outcomes’, events
Events are described by variables

Dynamical phenomena : events are maps fror time space to
variables space

The set of all such maps is the¢universum %

Example: modeling a share value

U = {V e (R+)N}

a discrete-timephenomenon
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Every “good” scientific theory is prohibition: it forbids ce r-
tain things to happen...

K. Popper, Conjectures and Refutations: The Growth of Scientific
Knowledge Routhledge, 1963
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Every “good” scientific theory is prohibition: it forbids ce r-
tain things to happen...

K. Popper, Conjectures and Refutations: The Growth of Scientific
Knowledge Routhledge, 1963

Not all events in% are possible: physics of phenomenon must
be complied with!

A model £ iIs a subset of%/, chosen from a model class.#Z
representinga priori knowledge/assumptions
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Not all events in%/ are possible: physics of phenomenon must
be complied with!

A model £ is a subset o/, chosen from a model class.#Z
representinga priori knowledge/assumptions

Example: Ohm’s resistor

v = {(Vv,)e®)"}
M = {BCw|IReR st (V) e Z=—V =RI}
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Not all events in%/ are possible: physics of phenomenon must
be complied with!

A model £ is a subset o/, chosen from a model class.#Z
representinga priori knowledge/assumptions

Example: Linear models

% = R
# = {Linear subspaces of% }

—Dn. 6/2€



The Most Powerful
Unfalsified Model




Modeling from data: the Most Powerful Unfalsified Model

The more a model forbids, the better it is.

K. Popper, Conjectures and Refutations: The Growth of Scientific
Knowledge Routhledge, 1963
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The more a model forbids, the better it is.

K. Popper, Conjectures and Refutations: The Growth of Scientific
Knowledge Routhledge, 1963

%1 1s more powerful than %5 if #, C A>.

Fewer possible outcomes, more discriminating model, bette
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%1 1s more powerful than % if #, C A>.
Fewer possible outcomes, more discriminating model, bette

Given measurementsD C %, model #Z is unfalsified by D if

DC %
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%1 1s more powerful than % if #, C A>.
Fewer possible outcomes, more discriminating model, bette
Given measurementsD C %, model #Z is unfalsified by D if

DC %

Given D and .7, # i1s Most Powerful Unfalsified Model if
» A e . (l.e. admissible);
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%1 1s more powerful than % if #, C A>.
Fewer possible outcomes, more discriminating model, bette
Given measurementsD C %, model #Z is unfalsified by D if

DC %

Given D and .7, # i1s Most Powerful Unfalsified Model if
> ABcMH:
» D C % (l.e. unfalsified);
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%1 1s more powerful than % if #, C A>.
Fewer possible outcomes, more discriminating model, bette
Given measurementsD C %, model #Z is unfalsified by D if

DC %

Given D and .7, % is Most Powerful Unfalsified Model if
> RBeH,

» DCZ:

> B ec.#,DC B — %A (i.e. most powerful).
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%1 1s more powerful than % if #, C A>.
Fewer possible outcomes, more discriminating model, bette

Given measurementsD C %, model #Z is unfalsified by D if

DC %

Given D and .7, % is Most Powerful Unfalsified Model if
> BeH;

» DC%Z;

> B ec.#,DC B — %A (i.e. most powerful).

Existence? Unigueness? Representations? Algorithms‘?
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Graphically

MPUM

Unfalsified

Falsified

OBSERVED DATA
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Example Consider

Y = R"
# = Linear subspaces ofR"

Given measurements
D= {W].)'” 7Wk}

MPUM is
span{w; |[i=1,--- k}

the intersection of all subspaces containing=£ unfalsified by)
data.
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Theorem: Assume that.Z satisfies
» The Intersection property I.e.

//’c/z:>< M @) c M
Be M’

» ForeachD € 2% there exists% ¢ .# such thatD C 4.

Then for eachD there exists aunique MPUM £*, namely

# = () X
HBe M, DCA
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The following are instances in which the intersection propgy
holds:

> 4 =27 whatever? is:
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The following are instances in which the intersection propgy
holds:

> 4 =27 whatever? is:

» U =R .# ={V|Vislinear subspace of% };
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The following are instances in which the intersection propgy
holds:

» =27 whatever% is:
» U =R .# ={V |V islinear subspace of7 };

» % topological vector space, and model class is
A ={V |V is closed linear subspace o/ }.
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Dynamical modeling from data




Problem: givenw-dimensional time series

W= {W(0),w(1), -}

find LTI complete behavior % containing w.

Universum % = (R¥)*. Model class.# = .£".
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Problem: givenw-dimensional time series

W= {W(0),w(1), -}

find LTI complete behavior % containing w.

Universum % = (R¥)*. Model class.# = .£".
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Problem: givenw-dimensional time series

W= {W(0),w(1), -}

find LTI complete behavior % containing w.

Universum % = (R¥)*. Model class.# = .£".

¥ satisfies the intersection property: MPUM exists.
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Problem: givenw-dimensional time series

W= {W(0),w(1), -}

find LTI complete behavior % containing w.

Universum % = (R¥)*. Model class.Z = .. MPUM %*?
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Problem: givenw-dimensional time series
w = {w(0),w(1),- -

find LTI complete behavior % containing w.

Universum % = (R¥)*. Model class.Z = .. MPUM %*?

Any unfalsified model is shift-invariant: must contain
-}
-}
-}

W

ow

oW

{W(O),W(l),--
)’..
)’..

(1), w(
W(2),w(

2
3

}
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Problem: givenw-dimensional time series

W= {W(0),w(1), -}

find LTI complete behavior % containing w.

Universum % = (R¥)*. Model class.Z = .. MPUM %*?

Intersection of all linear unfalsified models yields

closure

#* = (span{w,ow, o°w, - -- })
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Problem: givenw-dimensional time series

w = {w(0),w(1),---}

find LTI complete behavior % containing w.

Universum % = (R¥)*. Model class.Z = .. MPUM %*?

Intersection of all linear unfalsified models yields

closure

#* = (span{w,ow, o°w, - -- })

¢ What about representations?
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The Hankel matrix




MPUM is subspace spanned by rows of

w(0)  w(l) w(t")
w(1) wi2) - w(t"+1)
w(2) w(3) w(t"” 4 2)
T (W) = : : : :
wt')  wit'+1) - wt'+t"-1)
wit'+1) wit'+2) -~ w(t'+t")
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MPUM is subspace spanned by rows of

w0 w(l) w(t") _
w(1) w(2) w(t” +1)
w(2) w(3) w(t” 4 2)
T (W) i= : : : :
wt')  wit'+1) - wt'+t"-1)
wit'+1) wit'+2) -~ wt' +t")

Constant along the block-antidiagonal: Hankel structure
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Let R(&) =Ro+Ryé +-- -+ R E- e RO¥V[€&].
Then R(o)w=0~»

w(0) w(1) w(t")
w(l) w(2) w(t” +1)
[Ro R --- R O } W(2) W3 Wt +2) —0

Each row of {Ro RR -+ R O } IS an annihilator
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Let R(&) =Ro+Ryé +-- -+ R E- e RO¥V[€&].
Then R(o)w=0~»

w(0) w(l) w(t")

w(l) w(2) w(t” +1)
Ro R RO w2) w(3) - wit’+2) ...| 9
Each row of {Ro Rt -+ R O } IS an annihilator

Kernel representation of MPUM = left kernel of 77 (w)
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Let R(&) =Ro+Ryé +-- -+ R E- e RO¥V[€&].
ThenR(o)w =0~

W(0) w(1) wit”) -
w(l) w(2) w(t” +1)
Ro R RO w2) w(3) - wit’+2) ...| 9
Each row of {Ro Rt -+ R O } IS an annihilator

Kernel representation of MPUM = left kernel of 77 (w)

Infinite dimensional problem? Not quite!
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Annihilators




Module structure of annihilators

Left kernel of JZ’(w) is closed under addition (a subspace!)...
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Left kernel of J#(w) is closed under addition (a subspace!)...

...and closed under shifting :

ro g ---

e

=

S = =
- N N N
N - (@)
N——" N—r" N—"
s S
N N N
w N -
N——" N——" N—r"

W(t//)
w(t” +1)
w(t” +2)
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Left kernel of J#(w) is closed under addition (a subspace!)...

...and closed under shifting :

0 fro rp ---

e

=

g = =
N B o
g = =
@ N B

W(t//)
w(t” +1)
w(t” +2)
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Left kernel of J#(w) is closed under addition (a subspace!)...

...and closed under shifting :

w(0) w(1) w(t")
w(l) w(2) w(t” 4+ 1)

O ro r;i --- r. 0 --.. —0
w(2) w(3) w(t” 4+ 2)

Associate polynomials with left kernel vectors:

[ro ri --- r. 0O ...}f\»r(E)::ro—|—r15—|—---—|—r|_€L

Thenr(&),ér(&),--- also represent left annihilators of 77 (w)
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Left kernel of J#(w) is closed under addition (a subspace!)...

...and closed under shifting :

0 fro rp ---

e

=

g = =
N B o
g = =
@ N B

W(t//)
w(t” +1)
w(t” +2)
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Denote the set of annihilators of 57 (w) with

N (AW)) = {ro+r1&+--+rn&" e RVV[E]
to f1 -ty O - € leftkemel £ (w)}

Then .4 (27 (w)) is a submodule ofR™¥[&] , and consequently

it is finitely generated : there existbasis elements
a1(&),---,ap(&) € R>V[&] such that for everyb € 4 (57 (w))

301(8),---,9p(&) € R[E] s.t. b(€ ZQ
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Denote the set of annihilators of 57 (w) with

N (AW)) = {ro+r1&+--+rn&" e RVV[E]
to f1 -ty O - € leftkemel £ (w)}

Then .4 (27 (w)) is a submodule ofR™¥[&] , and consequently

it is finitely generated : there existbasis elements
a1(&),---,ap(&) € R>V[&] such that for everyb € 4 (57 (w))

301(£),-+-,9p(&) € R[¢] s.t. b(& Zg|
Not quite “finite-dimensional”, but “almost”.
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Recursive computation
of the MPUM




Recursive computation of kernel representation of MPUM

Problem: givenw, find matrix Rsuch thatker R(g) = #*
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Recursive computation of kernel representation of MPUM

Problem: givenw, find matrix Rsuch thatker R(g) = #*
Equivalent formulation:

Problem: find basis for the submodule_/" (77 (w))
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Problem: givenw, find matrix Rsuch thatker R(g) = #*
Equivalent formulation:

Problem: find basis for the submodule. 4" (57 (w))

Basic idea compute annihilators one by one, at each step
using the previous annihilators in order to get a new one.
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Problem: givenw, find matrix Rsuch thatker R(g) = #*
Equivalent formulation:

Problem: find basis for the submodule. 4" (57 (w))

Basic idea compute annihilators one by one, at each step
using the previous annihilators in order to get a new one.

Basic technique unimodular completion of a polynomial
matrix
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Unimodular completion of a polynomial matrix

Re RP*¥[£]is left-prime if R(A) has full row rank V A € C.
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Unimodular completion of a polynomial matrix

Re RP*¥[£]is left-prime if R(A) has full row rank V A € C.

Equivalent with:
» R=FR = F is unimodular.
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Unimodular completion of a polynomial matrix

Re RP*¥[£]is left-prime if R(A) has full row rank V A € C.

Equivalent with:

» R=FR =— F is unimodular.

» Unimodular completion: 3 E € R#P)*¥[&] such that

IS unimodular.

.
E
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Re RP*¥[£]is left-prime if R(A) has full row rank V A € C.

Equivalent with:

» R=FR =— F is unimodular.

» Unimodular completion: 3 E € R#P)*¥[£] such that

IS unimodular.

.
E

Special caser = 2 leads to Bezout equation

det(

) =ri(¢)ex(é) —ra(é)e(é) =1
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Re RP*¥[£]is left-prime if R(A) has full row rank V A € C.

Equivalent with:

» R=FR =— F is unimodular.

» Unimodular completion: 3 E € R#P)*¥[£] such that

IS unimodular.

Completion is not unique. Algorithms to compute one

avallable.

.
E
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Re RP*¥[£]is left-prime if R(A) has full row rank V A € C.

Equivalent with:
» R=FR = F is unimodular.

» Unimodular completion: 3 E € R#P)*¥[£] such that

.
E

IS unimodular.

» Behavioral interpretation: If % :=kerR(o)is
controllable, then there exists#’ .= ker E(o) such that

%@%/ — (RW)N
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Recursive computation of an MPUM representation

Letr(é) =ro+rié+---+r.é" e AN (H(w)),ie.

w(0)  w(l) w(t")
w(l)  w(2) w(t” 4+ 1)
0t n (W2 w() W(t'+2) | =0

W(IL) W(L.—I-l) W(Ll—l—t”)
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Recursive computation of an MPUM representation

Letr(é) =ro+rié+---+r. "€ AN (H(W)).
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Recursive computation of an MPUM representation

Letr(é) =ro+rié+---+r. "€ AN (H(W)).

Compute a unimodular completionE; of r.
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Recursive computation of an MPUM representation

Letr(é) =ro+rié+---+r. "€ AN (H(W)).

Compute a unimodular completionE; of r.

Define error e:= E;(0)w, a (w— 1)-dimensional time-series.
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Letr(é) =ro+rié+---+r " e A ((W)).

Compute a unimodular completionE; of r.
Define error e:=E;(0)w, a (w— 1)-dimensional time-series.

Compute annihilator r’(&) for the error:

e(0)  e(1) e(t”)

e(l) €2 et”"+1)
oot e ed) &t +2) | =0

L) U] L)
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Letr(é) =ro+rié+---+r " e A ((W)).

Compute a unimodular completionE; of r.

Define error e:=E;(0)w, a (w— 1)-dimensional time-series.

Compute annihilator r’(&) for the error. Now
r'(o)E(o)w=r'(0)(E(o)w)=r'(c)e=0

i.e.r'(&)E; (&) is annihilator of w.

—n. 23/2¢



Letr(é) =ro+rié+---+r " e A ((W)).

Compute a unimodular completionE; of r.
Define error e:=E;(0)w, a (w— 1)-dimensional time-series.

Compute annihilator r’(&) for the error: r'(§)E (&) is ‘new’
annihilator of w.

Compute unimodular completion E,;» € R*=2)*¥[&] of
r'(&)E (&); define error € := E,/(0)g; find annihilator r”.
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Letr(é) =ro+rié+---+r " e A ((W)).

Compute a unimodular completionE; of r.
Define error e:=E;(0)w, a (w— 1)-dimensional time-series.

Compute annihilator r’(&) for the error: r'(§)E (&) is ‘new’
annihilator of w.

Compute unimodular completion E,;» € R*=2)*¥[&] of
r'(&)E (&); define error € := E,/(0)g; find annihilator r”.

r"(E)Eq (&€)E: (&) is ‘new’ annihilator of w.
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Letr(é) =ro+rié+---+r " e A ((W)).

Compute a unimodular completionE; of r.
Define error e:=E;(0)w, a (w— 1)-dimensional time-series.

Compute annihilator r’(&) for the error: r'(§)E (&) is ‘new’
annihilator of w.

Compute unimodular completion E,;» € R*=2)*¥[&] of
r'(&)E (&); define error € := E,/(0)g; find annihilator r”.

r"(E)Eq (&€)E: (&) is ‘new’ annihilator of w.

Continue until error is zero.
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From data to state model




Problem: Compute from an infinite time-series
w=w(0),w(1).---

a state space moddtox+ Fx+ Gw = 0 of the MPUM
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Problem: Compute from an infinite time-series
w=w(0),w(1).---

a state space moddtox+ Fx+ Gw = 0 of the MPUM

Refinement: compute i/s/o model of MPUM

ox = Ax-+Bu
y = Cx+Du
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Problem: Compute from an infinite time-series
w=w(0),w(1).---

a state space moddtox+ Fx+ Gw = 0 of the MPUM

Classical approaches based on identifying transfer functn
model, and then realizing it in state space form.
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Problem: Compute from an infinite time-series
w=w(0),w(1).---

a state space moddtox+ Fx+ Gw = 0 of the MPUM

Classical approaches based on identifying transfer funotin
model, and then realizing it in state space form.

Subspace identification approach construct a state sequence
X(0),x(1),--

from w by oblique projection of “past” onto “future” of w
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Lag of B € ¥, denotedL (%), is smallest integer. such that

RoW-+Riow+---+R otw=0

IS kernel representation of#.
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Lag of B € ¥, denotedL (%), is smallest integer. such that

RoW-+Riow+---+R otw=0
IS kernel representation of#.

Any kernel representation of # has degree< L(4A).
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Lag of B € ¥, denotedL (%), is smallest integer. such that
RoW-+Riow+---+R otw=0

IS kernel representation of#.

Any kernel representation of # has degree< L(4A).

Under suitable assumptions (“persistency of excitation”)if
A > L(ZA) then left kernel of

wO)  w() - w(t?)

W(.A) W(A.—I—l) W(Al—I—t”)

uniquely identifies .4 (%) (identifiability ).
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Lag of B € ¥, denotedL (%), is smallest integer. such that
RoW-+Riow+---+R otw=0

IS kernel representation of#.

Any kernel representation of # has degree< L(4A).

Under suitable assumptions (“persistency of excitation”)if
A > L(ZA) then left kernel of

wO)  w() - w(t?)

W(.A) W(A.—I—l) W(Al—I—t”)

uniquely identifies .4 (%) (identifiability ).
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Subspace identificatior

W) w1 w() '
| we) watl) o wi+Aa-1)
| (Wat+D) w2 o wtA)

- w(2d)  w(2A+1) - w(t+2A-1) |

¢ 1s‘past’, 77, Is ‘future’ of the data.
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| (WD) wa+2) W(t+A)
w(24d)  w(2A+1) - w(t+2A-1)

¢ 1s ‘past’, 77, is‘future’ of the data.
Basis for row span(z#”_) N row span(s7.) inducesstate sequence

X(A+1) X(A+2) --- X({t+A4)
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Basis for row span(zZ”_) N row span(s#.) inducesstate sequence

X(A+1) xX(A+2) --- X({t+A4)

From state sequence and datasolve forE, F, Gin

_x(A—l—Z) X(A+3) -+ X(t+A+1)
[E = G} X(D+1) X(DB+2) - Xt+d) .| =0
WA+1) wWA+2) - w(t+A) |
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Basis for row span(zZ”_) N row span(s#.) inducesstate sequence

X(A+1) xX(A+2) --- X({t+A4)

From state sequence and datasolve forE, F, Gin

_x(A—l—Z) X(A+3) -+ X(t+A+1)
[E = G} X(D+1) X(DB+2) - Xt+d) .| =0
WA+1) wWA+2) - w(t+A) |

Refinements using i/o partition obtainingA, B, C, D.
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From data to state using annihilators

R(&) = Ry+R& +--- +R_&L left annihilator matrix of .7 (w).
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R(€) = Ry+ Rié +---+R_EL left annihilator matrix of 7 (w).

Then

RO R -

R-1 R

w(A)
i W(A+1)

WA—L+1) wA—L+2)

W(A+1)
W(A+2)

yields rows in (past,future) intersection, namely

R R -

R.—1

WA-L+1) wA-—L+2)

w(A)

W(A+1)
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R(€) = Ry+ Rié +---+R_EL left annihilator matrix of 7 (w).

Then

Rb Ri -+ R1 R
w(A)

i W(A+1)

yields rows in (past,future) intersection, equivalently

[_RL} [w(AJr 1) w(A+2)

WA—L+1) wA—L+2)

W(A+1)
W(A+2)
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R(€) = Ry+ Rié +---+R_EL left annihilator matrix of 7 (w).

Then
WA—L+2) wA—L+3)
Ro Ri -~ R2 R-1 R w(A) w(A+1)
W(A+1) W(A+2)
i W(A+2) W(A+ 3)

yields rows in (past,future) intersection, namely

[Ro R, ---

W(A-L+2) wA—L+3)

w(A) wW(A+1)
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R(€) = Ry+ Rié +---+R_EL left annihilator matrix of 7 (w).

Then

WA—L+2) wA—L+3)

Ro Ri -~ Rz Ri1 RJ| w WA+ 1)
W(A+1) W(A+2)
- W(A+2) W(A+3)

yields rows in (past,future) intersection, equivalently

R R
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R(€) = Ry+ Rié +---+R_EL left annihilator matrix of 7 (w).

Proceeding in this way:

yie

R

0

-R-1 R O O

WA+1)  wA+2)

_W(A.—|— L) w(A +IL +1)

ds a (non-minimal) state sequence, namely

{MA+D X(A+2)
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R(€) = Ry+ Rié +---+R_EL left annihilator matrix of 7 (w).

Proceeding in this way:

R

0

-R-1 R O O

WA+l  wA+2)

W(A .+ L) w(A +IL +1)

yields a (non-minimal) state sequence, namely

{MA+D X(A+2)

Not surprising: state map matrix appears!
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