Lecture 4a

Wednesday 04-02-2009
09.00-10.30

Rational symbols

Lecturer: Jan C. Willems

- Behaviors defined by rational symbols
- Norm preserving representations
- The gap between LITDSs
- Model reduction without stability or i/o partition

Introduction

Theme

In system theory, it is customary to think of dynamical models in terms of inputs and outputs, viz.

often with transfer functions $\quad y=F(s) u$
F a matrix of rational transfer functions.

Theme

$$
y=F(s) u
$$

In the present lecture, we will

- for good physical and system theoretic reasons, not use an input/output partition
\leadsto system variables $w=\left[\begin{array}{l}u \\ y\end{array}\right]$
- interpret F, not in terms of Laplace transforms, but in terms of differential equations.

Important for pedagogical reasons, among other things.

Reminder

LTIDSs: $\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}, \mathscr{B}\right)$ where

- $\mathbb{T}=\mathbb{R}$ 'time'
- $\mathbb{W}=\mathbb{R}^{W} \quad$ 'signal space'
- and 'behavior' $\mathscr{B}=$ the set of solutions of a system of
linear constant coefficient ODEs
$\mathscr{B}=$ the $\mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right)$-solutions of

$$
R_{0} w+R_{1} \frac{d}{d t} w+\cdots+R_{\mathrm{L}} \frac{d^{\mathrm{L}}}{d t^{\mathrm{L}}} w=0, \quad R_{0}, R_{1}, \ldots \text { matrices }
$$

Polynomial matrix notation $\leadsto R\left(\frac{d}{d t}\right) w=0$

$$
R \in \mathbb{R}[\xi]^{\bullet \times \mathrm{w}}, \quad R(\xi)=R_{0}+R_{1} \xi+\cdots+R_{\mathrm{L}} \xi^{\mathrm{L}}
$$

Representations of LTIDSs

Behaviors of LTIDSs allow many useful representations

- As the set of solutions of $R\left(\frac{d}{d t}\right) w=0 \quad R \in \mathbb{R}[\xi]^{\bullet \times \mathrm{w}}$
- With input/output partition
- Input/state/output representation
\exists matrices A, B, C, D such that
\mathscr{B} consists of all $w^{\prime} s$ generated by

$$
\frac{d}{d t} x=A x+B u, y=C x+D u \quad w \cong\left[\begin{array}{l}
u \\
y
\end{array}\right]
$$

- with rational symbols \leadsto this lecture

Rational symbols

ODEs with rational symbols

Defining what a solution is for ODEs such as

$$
R\left(\frac{d}{d t}\right) w=0 \text { or } \frac{d}{d t} x=A x+B u, y=C x+D u, w=\left[\begin{array}{l}
u \\
y
\end{array}\right]
$$

poses no difficulties worth mentioning, but rational functions \leadsto Laplace transforms with domains of convergence, etc.

ODEs with rational symbols

Let $G \in \mathbb{R}(\xi)^{\bullet \times \mathrm{w}}$, and consider the 'differential equation'

$$
G\left(\frac{d}{d t}\right) w=0 \quad G \text { is called the associated symbol }
$$

What do we mean by its solutions, i.e. by the behavior?

ODEs with rational symbols

Let $G \in \mathbb{R}(\xi)^{\bullet \times \text { w }}$, and consider the 'differential equation'

$$
G\left(\frac{d}{d t}\right) w=0 \quad G \text { is called the associated symbol }
$$

What do we mean by its solutions, i.e. by the behavior?

Recall:

$\llbracket M$ left prime (over $\mathbb{R}[\xi]$) \rrbracket

$$
: \Leftrightarrow \llbracket \llbracket M=F M^{\prime} \rrbracket \Rightarrow \llbracket F \text { unimodular } \rrbracket \rrbracket
$$

$\Leftrightarrow \quad \exists H$ such that $M H=I$.
In the scalar case, $M=\left[\begin{array}{llll}m_{1} & m_{2} & \cdots & m_{\mathrm{n}}\end{array}\right]$, this means: $m_{1}, m_{2}, \cdots, m_{\mathrm{n}}$ have no common root.

ODEs with rational symbols

Let $G \in \mathbb{R}(\xi)^{\bullet \times \text { w }}$, and consider the 'differential equation'

$$
G\left(\frac{d}{d t}\right) w=0 \quad G \text { is called the associated symbol }
$$

What do we mean by its solutions, i.e. by the behavior?

Let (P, Q) be a left coprime polynomial factorization of G i.e., $P, Q \in \mathbb{R}[\xi]^{\bullet \bullet \bullet}, \operatorname{det}(P) \neq 0, G=P^{-1} Q,[P: Q]$ left prime.

In scalar case, this means P and Q have no common roots.

ODEs with rational symbols

Let $G \in \mathbb{R}(\xi)^{\bullet \times \text { w }}$, and consider the 'differential equation'

$$
G\left(\frac{d}{d t}\right) w=0 \quad G \text { is called the associated symbol }
$$

What do we mean by its solutions, i.e. by the behavior?
Let (P, Q) be a left coprime polynomial factorization of G

$$
\llbracket G\left(\frac{d}{d t}\right) w=0 \rrbracket \Leftrightarrow \llbracket P^{-1} Q\left(\frac{d}{d t}\right) w=0 \rrbracket: \Leftrightarrow \llbracket Q\left(\frac{d}{d t}\right) w=0 \rrbracket
$$

By definition therefore, the behavior of $G\left(\frac{d}{d t}\right) w=0$ is equal to the behavior of $Q\left(\frac{d}{d t}\right) w=0$.

ODEs with rational symbols

$$
\llbracket G\left(\frac{d}{d t}\right) w=0 \rrbracket \Leftrightarrow \llbracket P^{-1} Q\left(\frac{d}{d t}\right) w=0 \rrbracket: \Leftrightarrow \llbracket Q\left(\frac{d}{d t}\right) w=0 \rrbracket
$$

By definition therefore, the behavior of $G\left(\frac{d}{d t}\right) w=0$ is equal to the behavior of $Q\left(\frac{d}{d t}\right) w=0$.

Justification:

1. G proper. $G(\xi)=C(I \xi-A)^{-1} B+D$ controllable realization. Consider the output nulling inputs:

$$
\frac{d}{d t} x=A x+B w, \quad 0=C x+D w
$$

This set of w 's are exactly those that satisfy $G\left(\frac{d}{d t}\right) w=0$.
Analogous for $\frac{d}{d t} x=A x+B w, 0=C x+D\left(\frac{d}{d t}\right) w, \quad D \in \mathbb{R}[\xi]^{\bullet \bullet \bullet}$.

ODEs with rational symbols

$$
\llbracket G\left(\frac{d}{d t}\right) w=0 \rrbracket \Leftrightarrow \llbracket P^{-1} Q\left(\frac{d}{d t}\right) w=0 \rrbracket: \Leftrightarrow \llbracket Q\left(\frac{d}{d t}\right) w=0 \rrbracket
$$

By definition therefore, the behavior of $G\left(\frac{d}{d t}\right) w=0$ is equal to the behavior of $Q\left(\frac{d}{d t}\right) w=0$.

Justification:

2. Consider $y=G(s) w$. View $G(s)$ as a transfer f'n. Take your favorite definition of input/output pairs.

Output nulling inputs exactly those that satisfy $G\left(\frac{d}{d t}\right) w=0$.
3. ...

ODEs with rational symbols

$$
\llbracket G\left(\frac{d}{d t}\right) w=0 \rrbracket \Leftrightarrow \llbracket P^{-1} Q\left(\frac{d}{d t}\right) w=0 \rrbracket: \Leftrightarrow \llbracket Q\left(\frac{d}{d t}\right) w=0 \rrbracket
$$

By definition therefore, the behavior of $G\left(\frac{d}{d t}\right) w=0$ is equal to the behavior of $Q\left(\frac{d}{d t}\right) w=0$.
Note! With this def., we can deal with transfer functions,

$$
y=F\left(\frac{d}{d t}\right) u \text {, i.e. }\left[F\left(\frac{d}{d t}\right) \vdots-I\right]\left[\begin{array}{l}
u \\
y
\end{array}\right]=0
$$

with F a matrix of rational functions, and completely avoid Laplace transforms, domains of convergence, and such cumbersome, but largely irrelevant, mathematical traps.

Caveats

Consider

$$
y=F\left(\frac{d}{d t}\right) u
$$

We now know what it means that $(u, y) \in \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\bullet}\right)$ satisfies this 'ODE'.

Given u, \exists solution y, but not unique, unless F is polynomial

$G_{1}\left(\frac{d}{d t}\right)$ and $G_{2}\left(\frac{d}{d t}\right)$ do not commute

$$
G_{1}(s)=\frac{1}{s} \text { and } G_{2}(s)=s
$$

do not commute.

$$
\begin{aligned}
& y=\frac{1}{\frac{d}{d t}} v, \quad v=\frac{d}{d t} u \Rightarrow y(t)=u(t)+\text { constant } \\
& y=\frac{d}{d t} v, \quad v=\frac{1}{\frac{d}{d t}} u \Rightarrow y(t)=u(t)
\end{aligned}
$$

Representations

Stable representations

Linear time-invariant differential systems $\Sigma=\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}, \mathscr{B}\right)$. $\mathscr{B}=\operatorname{kernel}\left(R\left(\frac{d}{d t}\right)\right)$ for some $R \in \mathbb{R}[\xi]^{\bullet \times \mathrm{w}}$ by definition .

But we may as well take the representation $G\left(\frac{d}{d t}\right) w=0$ for some $G \in \mathbb{R}(\xi)^{\bullet \times \mathrm{w}}$ as the def. of a LTIDS behavior.

Stable representations

Linear time-invariant differential systems $\Sigma=\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}, \mathscr{B}\right)$. $\mathscr{B}=\operatorname{kernel}\left(R\left(\frac{d}{d t}\right)\right)$ for some $R \in \mathbb{R}[\xi]^{\bullet \times \mathrm{w}}$ by definition .

But we may as well take the representation $G\left(\frac{d}{d t}\right) w=0$ for some $G \in \mathbb{R}(\xi)^{\bullet \times W}$ as the def. of a LTIDS behavior. R : all poles at ∞, we can take G with no poles at ∞, or more generally with all poles in some non-empty set - symmetric w.r.t. \mathbb{R}. In particular (many variations on this theme):

Theorem: Every linear time-invariant differential systems has a representation

$$
G\left(\frac{d}{d t}\right) w=0
$$

with $G \in \mathbb{R}(\xi)^{\bullet \times w}$ strictly proper stable rational.
Proof: Take $G(s)=\frac{R(s)}{(s+\lambda)^{\mathrm{n}}}$, suitable $\lambda \in \mathbb{R}, \mathrm{n} \in \mathbb{N}$.

Controllability and stabilizability

\mathscr{B} is said to be controllable $: \Leftrightarrow$

$\forall w_{1}, w_{2} \in \mathscr{B}, \exists T \geq 0$ and $w \in \mathscr{B}$ such that \ldots

Controllability and stabilizability

\mathscr{B} is said to be controllable $: \Leftrightarrow$
\mathscr{B} is said to be stabilizable $: \Leftrightarrow$
$\forall w \in \mathscr{B}, \exists w^{\prime} \in \mathscr{B}$ such that \ldots

(asymptotic) stability in the sense of Lyapunov

Rational representations

What properties on G imply that the system with rational representation

$$
G\left(\frac{d}{d t}\right) w=0 \quad G \in \mathbb{R}(\xi)^{\bullet \times \mathrm{w}}
$$

has any of these properties?
Under what conditions on G does $G\left(\frac{d}{d t}\right) w=0$ define a controllable or a stabilizable system?

Rational representations

What properties on G imply that the system with rational representation

$$
G\left(\frac{d}{d t}\right) w=0 \quad G \in \mathbb{R}(\xi)^{\bullet \times \mathrm{w}}
$$

has any of these properties?
Under what conditions on G does $G\left(\frac{d}{d t}\right) w=0$ define a controllable or a stabilizable system?

Can a rational representation be used to put one of these properties in evidence?

Tests

Theorem: The LTIDS

$$
G\left(\frac{d}{d t}\right) w=0 \quad G \in \mathbb{R}(\xi)^{\bullet \times w}
$$

is controllable if and only if

$$
G(\lambda) \text { has the same } \operatorname{rank} \forall \lambda \in \mathbb{C}
$$

Interpret carefully in cases like

$$
G(s)=\left[\begin{array}{cc}
s & 0 \\
0 & \frac{1}{s}
\end{array}\right], G(s)=\left[\begin{array}{c}
s \\
\frac{1}{s}
\end{array}\right], G(s)=\left[\begin{array}{ll}
s & \frac{1}{s}
\end{array}\right]
$$

Tests

Theorem: The LTIDS

$$
G\left(\frac{d}{d t}\right) w=0 \quad G \in \mathbb{R}(\xi)^{\bullet \times w}
$$

is controllable if and only if

$$
G(\lambda) \text { has the same rank } \forall \lambda \in \mathbb{C}
$$

Theorem: The LTIDS

$$
G\left(\frac{d}{d t}\right) w=0 \quad G \in \mathbb{R}(\xi)^{\bullet \times w}
$$

is stabilizable if and only if
$G(\lambda)$ has the same rank $\forall \lambda \in \mathbb{C}$ with \mathbb{R} ealpart $(\lambda) \geq 0$

Rational image representations

Theorem: A LTIDS is controllable if and only if its behavior allows an image representation

$$
w=M\left(\frac{d}{d t}\right) \ell \quad M \in \mathbb{R}(\xi)^{\mathrm{w} \times} \bullet
$$

For example,

$$
y=F\left(\frac{d}{d t}\right) u \quad \leadsto w=\left[\begin{array}{l}
u \\
y
\end{array}\right]=\left[\begin{array}{c}
\ell \\
F\left(\frac{d}{d t}\right) \ell
\end{array}\right]
$$

Systems defined by transfer functions are controllable

Rational image representations

Theorem: A LTIDS is controllable if and only if its behavior allows an image representation

$$
w=M\left(\frac{d}{d t}\right) \ell \quad M \in \mathbb{R}(\xi)^{\mathrm{w} \times \bullet}
$$

Theorem: A LTIDS is stabilizable if and only if its behavior allows a kernel representation

$$
R\left(\frac{d}{d t}\right) w=0
$$

with $R \in \mathbb{R}(\xi)^{\bullet \times \mathrm{w}}$ left prime over the ring of (proper) stable rationals

Raison d'être of rational representations

LTIDSs are defined in terms of polynomial symbols

$$
R\left(\frac{d}{d t}\right) w=0 \quad R \in \mathbb{R}[\xi]^{\bullet \times w}
$$

(behavior $\mathscr{B}:=$ the $\mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right)$ solutions) but can also be represented by rational symbols

$$
G\left(\frac{d}{d t}\right) w=0 \quad G \in \mathbb{R}(\xi)^{\bullet \times w}
$$

Raison d’être of rational representations

LTIDSs are defined in terms of polynomial symbols

$$
R\left(\frac{d}{d t}\right) w=0 \quad R \in \mathbb{R}[\xi]^{\bullet \times \mathrm{w}}
$$

(behavior $\mathscr{B}:=$ the $\mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\text {w }}\right)$ solutions) but can also be represented by rational symbols

$$
G\left(\frac{d}{d t}\right) w=0 \quad G \in \mathbb{R}(\xi)^{\bullet \times \mathrm{w}}
$$

Behavior := the set of solutions of

$$
Q\left(\frac{d}{d t}\right) w=0 \quad Q \in \mathbb{R}[\xi]^{\bullet \times w}
$$

where $G=P^{-1} Q, \quad P, Q \in \mathbb{R}[\xi]^{\bullet \bullet \bullet}, \quad P$ and Q left coprime

Raison d'être of rational representations

LTIDSs are defined in terms of polynomial symbols

$$
R\left(\frac{d}{d t}\right) w=0 \quad R \in \mathbb{R}[\xi]^{\bullet \times \mathrm{w}}
$$

(behavior $\mathscr{B}:=$ the $\mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right)$ solutions) but can also be represented by rational symbols

$$
G\left(\frac{d}{d t}\right) w=0 \quad G \in \mathbb{R}(\xi)^{\bullet \times \mathrm{w}}
$$

This added flexibility \leadsto better adapted to certain applications e.g. (series, parallel, ...) interconnections
e.g. distance between systems
e.g. behavioral model reduction
e.g. parametrization of the set of stabilizing controllers

Parametrization of stabiliving controllers

One of the main applications where rational representations are used is for the
Kučera-Youla parametrization of stabilizing controllers cfr. the book by Vidyasagar

Vladimir Kučera

Dante Youla

M. Vidyasagar

Norm-preserving representations

Norm-preserving representations

Let \mathscr{B} be the behavior of a controllable LTIDS.
Then it allows a rational symbol based image representation

$$
w=M\left(\frac{d}{d t}\right) \ell \text { with } M \in \mathbb{R}(\xi)^{\mathrm{w} \times} \bullet \& M(-\xi)^{\top} M(\xi)=I
$$

i.e., $\|\ell\|_{\mathscr{L}_{2}(\mathbb{R}, \mathbb{R} \bullet}^{2}=\|w\|_{\mathscr{L}_{2}\left(\mathbb{R}, \mathbb{R}^{w}\right)}{ }^{\bullet}$ 'norm preserving image repr.'

$$
\int_{-\infty}^{+\infty}\|w(t)\|^{2} d t=\frac{1}{2 \pi} \int_{-\infty}^{+\infty}\|\hat{w}(i \omega)\|^{2} d \omega=
$$

$$
\frac{1}{2 \pi} \int_{-\infty}^{+\infty}\|M(i \omega) \hat{\ell}(i \omega)\|^{2} d \omega=\frac{1}{2 \pi} \int_{-\infty}^{+\infty}\|\hat{\ell}(i \omega)\|^{2} d \omega=\int_{-\infty}^{+\infty}\|\ell(t)\|^{2} d t
$$

Note: M cannot be polynomial, it must be rational Obviously M must be proper. Can also make it stable.

Norm-preserving representations

Let \mathscr{B} be the behavior of a controllable LTIDS.
Then it allows a rational symbol based image representation

$$
w=M\left(\frac{d}{d t}\right) \ell \text { with } M \in \mathbb{R}(\xi)^{\mathrm{w} \times} \bullet \& M(-\xi)^{\top} M(\xi)=I
$$

Idea of proof: Start with obs. polynomial im. representation

$$
w=M\left(\frac{d}{d t}\right) \ell .
$$

Factor $M^{\top}(-\xi) M(\xi)=F^{\top}(-\xi) F(\xi)$
Now take rational symbol based image representation

$$
w=M F^{-1}\left(\frac{d}{d t}\right) \ell
$$

Distance between systems

Motivation

What is a good, computable, definition for the distance between two (LTID) systems?

Basic issue underlying model simplification, robustness, etc.

Motivation

What is a good, computable, definition for the distance between two (LTID) systems?

Basic issue underlying model simplification, robustness, etc.

- Approximate a system by a simpler one.
- If a system has a particular property (e.g., stabilized by a controller), will this also hold for close-by systems?
- Does a sequence of systems converge?

What is meant
by 'approximate', by 'close-by', by 'converge'?

The gap

Distance between linear subspaces

In the behavioral theory, we identify a dynamical system with its behavior, that is, a set of trajectories. For LTIDSs, with a subspace $\mathscr{B} \subseteq \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right)$.

Distance between systems
\cong distance between linear subspaces.

Distance between linear subspaces of \mathbb{R}^{n}

$\mathscr{L}_{1}, \mathscr{L}_{2} \subseteq \mathbb{R}^{\mathrm{n}}$, linear subspaces

$$
\vec{d}\left(\mathscr{L}_{1}, \mathscr{L}_{2}\right):=\max _{x_{1} \in \mathscr{L}_{1},\left\|x_{1}\right\|=1} \min _{x_{2} \in \mathscr{L}_{2}}\left\|x_{1}-x_{2}\right\|
$$

Distance between linear subspaces of \mathbb{R}^{n}

$\mathscr{L}_{1}, \mathscr{L}_{2} \subseteq \mathbb{R}^{\mathrm{n}}$, linear subspaces

$$
\begin{gathered}
d\left(\mathscr{L}_{1}, \mathscr{L}_{2}\right):=\max \left(\left\{\vec{d}\left(\mathscr{L}_{1}, \mathscr{L}_{2}\right), \vec{d}\left(\mathscr{L}_{2}, \mathscr{L}_{1}\right)\right\}\right) \\
0 \leq d\left(\mathscr{L}_{1}, \mathscr{L}_{2}\right) \leq 1
\end{gathered}
$$

Distance between linear subspaces of \mathbb{R}^{n}

$\mathscr{L}_{1}, \mathscr{L}_{2} \subseteq \mathbb{R}^{\mathrm{n}}$, linear subspaces
$P_{\mathscr{L}} \perp$ projection onto \mathscr{L}
S_{1}, S_{2} matrices, columns orthonormal basis for $\mathscr{L}_{1}, \mathscr{L}_{2}$
Note: $S_{1} S_{1}^{\top}, S_{2} S_{2}^{\top}$ orthogonal projectors

$$
\begin{aligned}
d\left(\mathscr{L}_{1}, \mathscr{L}_{2}\right) & =\left\|P_{\mathscr{L}_{1}}-P_{\mathscr{L}_{2}}\right\| \quad \text { 'gap', 'aperture' } \\
& =\left\|S_{1} S_{1}^{\top}-S_{2} S_{2}^{\top}\right\| \\
& =\min _{\text {matrices } U}\left\|S_{1}-S_{2} U\right\| \\
& =\min _{U \text { such that } U \mathscr{L}_{1}=\mathscr{L}_{2}}\|I-U\|
\end{aligned}
$$

Distance between linear subspaces of \mathbb{R}^{n}

$\mathscr{L}_{1}, \mathscr{L}_{2} \subseteq \mathbb{R}^{\mathrm{n}}$, linear subspaces
$P_{\mathscr{L}} \perp$ projection onto \mathscr{L}
S_{1}, S_{2} matrices, columns orthonormal basis for $\mathscr{L}_{1}, \mathscr{L}_{2}$
Note: $S_{1} S_{1}^{\top}, S_{2} S_{2}^{\top}$ orthogonal projectors

$$
\begin{aligned}
d\left(\mathscr{L}_{1}, \mathscr{L}_{2}\right) & =\left\|P_{\mathscr{L}_{1}}-P_{\mathscr{L}_{2}}\right\| \quad \text { 'gap', 'aperture' } \\
& =\left\|S_{1} S_{1}^{\top}-S_{2} S_{2}^{\top}\right\| \\
& =\min _{\text {matrices } U}\left\|S_{1}-S_{2} U\right\| \\
& =\min _{U \text { such that } U \mathscr{L}_{1}=\mathscr{L}_{2}}\|I-U\|
\end{aligned}
$$

Therefore, $\quad d\left(\mathscr{L}_{1}, \mathscr{L}_{2}\right)=\left\|S_{1} S_{1}^{\top}-S_{2} S_{2}^{\top}\right\| \leq\left\|S_{1}-S_{2}\right\|$

Distance between LTIDSs

Distance between controllable behaviors

$\min \rightarrow$ inf, $\max \rightarrow$ sup, etc., readily generalized to linear subspaces of Hilbert space, and to LTIDSs.

Which subspace of which Hilbert space should we associate with a LTIDS with behavior $\mathscr{B} \subseteq \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right)$?

Distance between controllable behaviors

$\min \rightarrow$ inf, $\max \rightarrow$ sup, etc., readily generalized to linear subspaces of Hilbert space, and to LTIDSs.

Which subspace of which Hilbert space should we associate with a LTIDS with behavior $\mathscr{B} \subseteq \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{W}\right)$?

For LTIDS, behaviors $\mathscr{B} \mapsto\left(\mathscr{B} \cap \mathscr{L}_{2}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right)\right)^{\text {closure }}$
Defines a $1 \leftrightarrow 1$ relation between controllable systems and 'certain' closed subspaces of $\mathscr{L}_{2}\left(\mathbb{R}, \mathbb{R}^{w}\right)$.

Distance between controllable behaviors

Define the distance between two controllable behaviors as

$$
d\left(\mathscr{B}_{1}, \mathscr{B}_{2}\right):=\operatorname{gap}\left(\left(\mathscr{B}_{1} \cap \mathscr{L}_{2}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right)\right)^{\text {closure }},\left(\mathscr{B}_{2} \cap \mathscr{L}_{2}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right)^{\text {closure }}\right)\right)
$$

We consider only the \mathscr{L}_{2}-trajectories for measuring distance.

Henceforth, keep notation \mathscr{B} for $\left(\mathscr{B} \cap \mathscr{L}_{2}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right)\right)^{\text {closure }}$

Distance between controllable behaviors

Define the distance between two controllable behaviors as

$$
d\left(\mathscr{B}_{1}, \mathscr{B}_{2}\right):=\operatorname{gap}\left(\left(\mathscr{B}_{1} \cap \mathscr{L}_{2}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right)\right)^{\text {closure }},\left(\mathscr{B}_{2} \cap \mathscr{L}_{2}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right)^{\text {closure }}\right)\right)
$$

We consider only the \mathscr{L}_{2}-trajectories for measuring distance.
$\forall w_{1} \in \mathscr{B}_{1}, \exists w_{2} \in \mathscr{B}_{2}$ such that $\left\|w_{1}-w_{2}\right\| \leq \operatorname{gap}\left(\mathscr{B}_{1}, \mathscr{B}_{2}\right)\left\|w_{1}\right\|$
and vice-versa. \quad Small gap \Rightarrow the models are 'close'.

- How to compute the gap?
- Model reduce according to the gap!

The gap and norm-preserving representations

Let \mathscr{B} be the behavior of a controllable LTIDS.
Then it allows a rational symbol based image representation

$$
w=M\left(\frac{d}{d t}\right) \ell \text { with } M \in \mathbb{R}(\xi)^{\mathrm{w} \times} \bullet \& M(-\xi)^{\top} M(\xi)=I
$$

i.e., $\|\ell\|_{\mathscr{L}_{2}(\mathbb{R}, \mathbb{R} \cdot)}^{2}=\|w\|_{\mathscr{L}_{2}\left(\mathbb{R}, \mathbb{R}^{w}\right)}^{2} \quad$ 'norm preserving image repr.'
$\mathscr{B}_{1} \mapsto M_{1}, \mathscr{B}_{2} \mapsto M_{2}$, both norm preserving \& stable, then

$$
\begin{aligned}
\operatorname{gap}\left(\mathscr{B}_{1}, \mathscr{B}_{2}\right) & =\left\|M_{1}(i \omega) M_{1}(-i \omega)^{\top}-M_{2}(i \omega) M_{2}(-i \omega)^{\top}\right\|_{\mathscr{L}_{\infty}} \\
& \leq\left\|M_{1}(i \omega)-M_{2}(i \omega)\right\|_{\mathscr{H}_{\infty}}
\end{aligned}
$$

Model reduction

Reducing the state dimension

There is an elegant theory for reducing the state space dimension of stable LTI input/output systems.

Let \mathscr{B} be described by $\frac{d}{d t} x=A x+B u, y=C x+D u$ with A Hurwitz ($: \Leftrightarrow$ eigenvalues in left half plane).

There are effective methods (balancing, AAK) with good error bounds (in terms of the \mathscr{H}_{∞} norm) for approximating \mathscr{B} by a (stable) system with a lower dimensional state space.

Reducing the state dimension

There is an elegant theory for reducing the state space dimension of stable LTI input/output systems.

Let \mathscr{B} be described by $\frac{d}{d t} x=A x+B u, y=C x+D u \quad w \cong\left[\begin{array}{l}u \\ y\end{array}\right]$ with A Hurwitz.

Balanced model reduction \Rightarrow

$$
\left\|F(i \omega)-F_{\text {reduced }}(i \omega)\right\|_{\mathscr{L}_{\infty}} \leq 2\left(\sum_{\text {neglected Hankel } \operatorname{SVs}} \sigma_{\mathrm{k}}\right)
$$

Keith Glover

Reducing the state dimension

There is an elegant theory for reducing the state space dimension of stable LTI input/output systems.

Let \mathscr{B} be described by $\frac{d}{d t} x=A x+B u, y=C x+D u$ with A Hurwitz.
$F(s)$ proper stable rational \Rightarrow reducible.
ii Extend this to situations where we do not make a distinction between inputs and outputs, and to unstable systems.

Model reduction by balancing

Start with \mathscr{B}. Take representatation

$$
w=M\left(\frac{d}{d t}\right) \ell \text { with } M \in \mathbb{R}(\xi)^{w \times \bullet} \text { norm preserving, stable }
$$

Now model reduce $w=M\left(\frac{d}{d t}\right) \ell$ (viewed as a stable input/output system) using, for example, balancing

$$
\leadsto \quad w=M_{\text {reduced }}\left(\frac{d}{d t}\right) \ell
$$

and an error bound

$$
\left\|M-M_{\text {reduced }}\right\|_{\mathscr{H}_{\infty}} \leq 2\left(\sum_{\text {neglected }} \operatorname{SVs} \text { of } M \sigma_{\mathrm{k}}\right)
$$

Behavioral error bound

Start with stable norm preserving representation of \mathscr{B}

$$
w=M\left(\frac{d}{d t}\right) \ell \quad \text { with } M \in \mathbb{R}(\xi)^{\mathrm{w} \times \bullet}
$$

Model reduce using balancing $\leadsto \quad w=M_{\text {reduced }}\left(\frac{d}{d t}\right) \ell$.
Call behavior $\mathscr{B}_{\text {reduced }}$. Error bound

$$
\begin{aligned}
\operatorname{gap}\left(\mathscr{B}, \mathscr{B}_{\text {reduced }}\right) & =\left\|M M^{\top}-M_{\text {reduced }} M_{\text {reduced }}^{\top}\right\|_{\mathscr{L}_{\infty}} \\
& \leq\left\|M-M_{\text {reduced }}\right\|_{\mathscr{H}} \\
& \leq 2\left(\sum_{\text {neglected SVs of } M} \sigma_{\mathrm{k}}\right)
\end{aligned}
$$

$\forall w \in \mathscr{B} \exists w^{\prime} \in \mathscr{B}_{\text {red }}$ such that $\left\|w-w^{\prime}\right\| \leq 2\left(\sum_{\text {neglected } \mathbf{S v s}} \sigma_{\mathrm{k}}\right)\|w\|$ and vice-versa.
$\sum_{\text {neglected }}$ SVs of M 的 small \Rightarrow good approximation in the gap.

Examples

position q

$$
\text { force } F=M \frac{d^{2}}{d t^{2}} q, \quad w=\left[\begin{array}{l}
F \\
q
\end{array}\right] \cong\left[\begin{array}{c}
M \frac{d^{2}}{d t^{2}} \\
1
\end{array}\right] \ell
$$

Norm preserving, stable

$$
\left[\begin{array}{l}
F \\
q
\end{array}\right]=\left[\begin{array}{l}
\frac{M \frac{d^{2}}{d t^{2}}}{M \frac{d^{2}}{d t^{2}}+\sqrt{2 M} \frac{d}{d t}+1} \\
\frac{1}{M \frac{d^{2}}{d t^{2}}+\sqrt{2 M} \frac{d}{d t}+1}
\end{array}\right] \ell
$$

position q

$$
\text { force } \mathrm{F}=M \frac{d^{2}}{d t^{2}} q, \quad w=\left[\begin{array}{c}
F \\
q
\end{array}\right] \cong\left[\begin{array}{c}
M \frac{d^{2}}{d t^{2}} \\
1
\end{array}\right] \ell
$$

Norm preserving, stable

$$
\left[\begin{array}{l}
F \\
q
\end{array}\right]=\left[\begin{array}{l}
\frac{M \frac{d^{2}}{d t^{2}}}{M \frac{d^{2}}{d t^{2}}+\sqrt{2 M} \frac{d}{d t}+1} \\
\frac{1}{M \frac{d^{2}}{d t^{2}}+\sqrt{2 M} \frac{d}{d t}+1}
\end{array}\right] \ell
$$

$$
\text { reduced model } \quad\left[\begin{array}{l}
F \\
q
\end{array}\right]=\left[\begin{array}{c}
\frac{\sqrt{M} \frac{d}{d t}-\frac{1}{2}}{\sqrt{M} \frac{d}{d t}+\frac{1}{\sqrt{2}}} \\
\frac{\frac{1}{2}}{\sqrt{M} \frac{d}{d t}+\frac{1}{\sqrt{2}}}
\end{array}\right] \ell
$$

position q

$$
\text { force } \mathrm{F}=M \frac{d^{2}}{d t^{2}} q, \quad w=\left[\begin{array}{c}
F \\
q
\end{array}\right] \cong\left[\begin{array}{c}
M \frac{d^{2}}{d t^{2}} \\
1
\end{array}\right] \ell
$$

Norm preserving, stable

$$
\begin{aligned}
& {\left[\begin{array}{l}
F \\
q
\end{array}\right]=\left[\begin{array}{l}
\frac{M \frac{d^{2}}{d t^{2}}}{M \frac{d^{2}}{d t^{2}}+\sqrt{2 M} \frac{d}{d t}+1} \\
\frac{1}{M \frac{d^{2}}{d t^{2}}+\sqrt{2 M} \frac{d}{d t}+1}
\end{array}\right] \ell} \\
& {\left[\begin{array}{l}
F \\
q
\end{array}\right]=\left[\begin{array}{c}
\frac{\sqrt{M} \frac{d}{d t}-\frac{1}{2}}{\sqrt{M} \frac{d}{d t}+\frac{1}{\sqrt{2}}} \\
\frac{\frac{1}{2}}{\sqrt{M} \frac{d}{d t}+\frac{1}{\sqrt{2}}}
\end{array}\right]}
\end{aligned}
$$

$F=\frac{d^{2}}{d t^{2}} q$ first order approximation $F=2 \sqrt{M} \frac{d}{d t} q-q$

kernel

$$
\begin{aligned}
& \left(1+L C \frac{d^{2}}{d t^{2}}\right) V=C \frac{d}{d t} I \\
& {\left[\begin{array}{c}
I \\
V
\end{array}\right]=\left[\begin{array}{c}
1+L C \frac{d^{2}}{d t^{2}} \\
C \frac{d}{d t}
\end{array}\right]}
\end{aligned}
$$

kernel

$$
\begin{aligned}
& \left(1+L C \frac{d^{2}}{d t^{2}}\right) V=C \frac{d}{d t} I \\
& {\left[\begin{array}{c}
I \\
V
\end{array}\right]=\left[\begin{array}{c}
1+L C \frac{d^{2}}{d t^{2}} \\
C \frac{d}{d t}
\end{array}\right]}
\end{aligned}
$$

Take $L=C=1$.
stable norm-preserving

$$
\left[\begin{array}{c}
I \\
V
\end{array}\right]=\frac{1}{\frac{d^{2}}{d t^{2}}+\frac{d}{d t}+1}\left[\begin{array}{c}
\frac{d^{2}}{d t^{2}}+1 \\
\frac{d}{d t}
\end{array}\right] \ell
$$

LC circuit

Take $L=C=1$.
stable norm-preserving

$$
\left[\begin{array}{c}
I \\
V
\end{array}\right]=\frac{1}{\frac{d^{2}}{d t^{2}}+\frac{d}{d t}+1}\left[\begin{array}{c}
\frac{d^{2}}{d t^{2}}+1 \\
\frac{d}{d t}
\end{array}\right] \ell
$$

$$
\text { reduced model order }=\mathbf{1} \quad\left[\begin{array}{c}
I \\
V
\end{array}\right]=\frac{1}{\frac{d}{d t}+\frac{1}{2}}\left[\begin{array}{c}
\frac{d}{d t} \\
\frac{1}{2}
\end{array}\right] \ell
$$

$$
\left(\frac{d^{2}}{d t^{2}}+1\right) V=\frac{d}{d t} I \quad \leadsto \quad \frac{d}{d t} V=\frac{1}{2} I
$$

LCLC circuit

kernel

$$
\left(1+5 \frac{d^{2}}{d t^{2}}+4 \frac{d^{4}}{d t^{4}}\right) V=\left(3 \frac{d}{d t}+6 \frac{d^{3}}{d t^{3}}\right) I
$$

$$
\text { image } \quad\left[\begin{array}{c}
I \\
V
\end{array}\right]=\left[\begin{array}{c}
1+5 \frac{d^{2}}{d t^{2}}+4 \frac{d^{4}}{d t^{4}} \\
3 \frac{d}{d t}+6 \frac{d^{3}}{d t^{3}}
\end{array}\right] \ell
$$

LCLC circuit

stable norm-preserving image

$$
\left[\begin{array}{c}
I \\
V
\end{array}\right]=\frac{1}{1+3 \frac{d}{d t}+5 \frac{d^{2}}{d t^{2}}+6 \frac{d^{3}}{d t^{3}}+4 \frac{d^{4}}{d t^{4}}}\left[\begin{array}{c}
1+5 \frac{d^{2}}{d t^{2}}+4 \frac{d^{4}}{d^{4}} \\
3 \frac{d}{d t}+6 \frac{d^{3}}{d t^{3}}
\end{array}\right] \ell
$$

LCLC circuit

stable norm-preserving image

$$
\left[\begin{array}{c}
I \\
V
\end{array}\right]=\frac{1}{1+3 \frac{d}{d t}+5 \frac{d^{2}}{d t^{2}}+6 \frac{d^{3}}{d t^{3}}+4 \frac{d^{4}}{d t^{4}}}\left[\begin{array}{c}
1+5 \frac{d^{2}}{d t^{2}}+4 \frac{d^{4}}{d t^{4}} \\
3 \frac{d}{d t}+6 \frac{d^{3}}{d t^{3}}
\end{array}\right] \ell
$$

red. order $=\mathbf{2}\left[\begin{array}{c}I \\ V\end{array}\right]=\frac{1}{\frac{d^{2}}{d t^{2}}+0.1861 \frac{d}{d t}+0.3298}\left[\begin{array}{c}\frac{d^{2}}{d t^{2}}+0.3298 \\ 0.1861 \frac{d}{d t}\end{array}\right] \ell$

Summary of Lecture 4a

- $G\left(\frac{d}{d t}\right) w=0$ defined in terms left-coprime factorization of rational G.
- $y=G\left(\frac{d}{d t}\right) u$ does not require Laplace transform.

The main points

- $G\left(\frac{d}{d t}\right) w=0$ defined in terms left-coprime factorization of rational G.
- $y=G\left(\frac{d}{d t}\right) u$ does not require Laplace transform.
- Controllability, stabilizability, etc. of $G\left(\frac{d}{d t}\right) w=0$ decidable from G.

The main points

- $G\left(\frac{d}{d t}\right) w=0$ defined in terms left-coprime factorization of rational G.
- $y=G\left(\frac{d}{d t}\right) u$ does not require Laplace transform.
- Controllability, stabilizability, etc. of $G\left(\frac{d}{d t}\right) w=0$ decidable from G.
- Norm preserving representation $\quad w=M\left(\frac{d}{d t}\right) \ell$ achievable with rational M.

The main points

- $G\left(\frac{d}{d t}\right) w=0$ defined in terms left-coprime factorization of rational G.
- $y=G\left(\frac{d}{d t}\right) u$ does not require Laplace transform.
- Controllability, stabilizability, etc. of $G\left(\frac{d}{d t}\right) w=0$ decidable from G.
- Norm preserving representation $\quad w=M\left(\frac{d}{d t}\right) \ell$ achievable with rational M.
- Stable norm preserving representation $w=M\left(\frac{d}{d t}\right) \ell$ leads to model reduction of unstable systems and systems without input/output partition.

The main points

- $G\left(\frac{d}{d t}\right) w=0$ defined in terms left-coprime factorization of rational G.
- $y=G\left(\frac{d}{d t}\right) u$ does not require Laplace transform.
- Controllability, stabilizability, etc. of $G\left(\frac{d}{d t}\right) w=0$ decidable from G.
- Norm preserving representation $\quad w=M\left(\frac{d}{d t}\right) \ell$ achievable with rational M.
- Stable norm preserving representation $\quad w=M\left(\frac{d}{d t}\right) \ell$ leads to model reduction of unstable systems and systems without input/output partition.
- Numerous other applications of rational symbols

End of Lecture 4a

