Lecture 4a

Wednesday 04-02-2009 09.00-10.30

Rational symbols

Lecturer: Jan C. Willems
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Behaviors defined by rational symbols

Norm preserving representations

The gap between LITDSs

Model reduction without stability or i/o partition
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Introduction
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In system theory, it is customary to think of dynamical modes
In terms of inputs and outputs, viz.

often with transfer functions y=F(s)u

outputs

F a matrix of rational transfer functions.
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y=F(s)u

In the present lecture, we will

» for good physical and system theoretic reasons,

not use an input/output partition o
u

y

~» system variables w =

» Interpret F, notin terms of Laplace transforms,
but in terms of differential equations.

Important for pedagogical reasons, among other things.
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LTIDSs: (R,RY,#) where
® T=R ‘time’
o W=R" ‘signal space’
# and ‘behavior’ % = the set of solutions of a system of

linear constant coefficient ODES
%A =the ¢ (R,R")-solutions of

L

d .
Row + Rld W+ - - —I—RLEW:O, Ro,R1,... matrices

Polynomial matrix notation ~ R(&)w=0

ReER[E]™, RE)=Ry+Rié+ - +R.E"
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Behaviors of LTIDSs allow many useful representations
» As the set of solutions o R(%) w=0 ReRI[E]*

» With input/output partition
» |nput/state/output representation

4 matrices A, B,C, D such that
9 consists of allw's generated by

u
y

dx=Ax+Bu, y=Cx+Du w=

» with rational symbols ~» this lecture



Rational symbols
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Defining what a solution is for ODEs such as

d d u
R<a>w_0 or ax_AXJrBu,y_CerDu,W_ v

poses no difficulties worth mentioning, but rational functions
~+» Laplace transforms with domains of convergence, etc.
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Let Ge R (&)*™", and consider the ‘differential equation’

G(&)w=0 Gis called the associate(symbol

What do we mean by its solutions, I1.e. by the behavior?
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Let Ge R (&)*™", and consider the ‘differential equation’

G(&)w=0 Gis called the associate(symbol

What do we mean by its solutions, I1.e. by the behavior?

Recall:

[M left prime (over R[¢]) |
< [ [M =FM’] = [F unimodular ] |
&  dHsuchthatMH = 1.

In the scalar caseM =[m m, --- my], this means:
My, My, -- -, m, have no common root.
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Let Ge R (&)*™", and consider the ‘differential equation’

G(&)w=0 Gis called the associate(symbol

What do we mean by its solutions, I1.e. by the behavior?

Let (P,Q) be a left coprime polynomial factorization of G

i.e.,PQcR[E]***,detP) £ 0,G =P 1Q,[P: Q] left prime.

In scalar case, this mean® and Q have no common roots.
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Let Ge R (&)*™", and consider the ‘differential equation’

G(&)w=0 Gis called the associate(symbol

What do we mean by its solutions, I1.e. by the behavior?

Let (P,Q) be a left coprime polynomial factorization of G

6(Sw=0] & [PQ(Tw=0]: [Q($)w=0]

By definition therefore, the behavior of G(&)w = 0is equal
to the behavior of Q(&)w = 0.
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G(Sw=0] & [P1Q(3w=0]: [Q(%)w=0]

By definition therefore, the behavior of G($)w = 0iis equal
to the behavior of Q(&)w = 0.

Justification:

1. G proper. G(&) =C(1€ —A)~1B+ D controllable
realization. Consider the output nulling inputs:

%X:AX—I— Bw, O0=Cx+Dw

This set ofw's are exactly those that satisfyG (&) w = 0.

Analogous for $x = Ax-+Bw,0=Cx+D ($)w, DeR[E]**".
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G(Sw=0] & [P1Q(3w=0]: [Q(%)w=0]

By definition therefore, the behavior of G($)w = 0iis equal
to the behavior of Q(&)w = 0.

Justification:

2. Considery = G(s)w. View G(s) as a transfer f'n.
Take your favorite definition of input/output pairs.

Output nulling inputs exactly those that satisfyG (&) w = 0.

3. ...
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G(Sw=0] & [P1Q(3w=0]: [Q(%)w=0]

By definition therefore, the behavior of G($)w = 0iis equal
to the behavior of Q(&)w = 0.

Note! With this def., we can deal with transfer functions,

y:F(%)u, .e. {F(%) 5 _@ :Q

with F a matrix of rational functions, and
completely avoid Laplace transforms, domains
of convergence, and such cumbersome, but
largely irrelevant, mathematical traps.
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Caveats
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Consider
y="F (§)u

We now know what it means that(u,y) € ” (R,R*®) satisfies
this ‘ODE".

Given u, dsolutiony, but not unique, unlessF is polynomial
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do not commute.

G1(s) = - and Gy(s) =s

y—lvv du =
_F7 - —
& dt
d 1

V:Fu —

y: ava

dt

y(t) = u(t) + constant

y(t) =u(t)
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Representations
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Linear time-invariant differential systems % = (R,R", £).
% = kernel(R($)) for someRe R[&]**" by definition .

But we may as well take the representatiorG () w = 0 for
someG c R(&)**" as the def. of a LTIDS behavior.

—n. 13/



Linear time-invariant differential systems % = (R,R", £).
% = kernel(R($)) for someRe R[&]**" by definition .

But we may as well take the representatiorG () w = 0 for

someG c R(&)**" as the def. of a LTIDS behavior.

R: all poles at, we can takeG with no poles ate, or more
generally with all poles in some non-empty set - symmetric
w.r.t. R. In particular (many variations on this theme):

Theorem: Every linear time-invariant differential systems has
a representation

G (&) w=0
with G € R (&)**" strictly proper stable rational .

Proof: Take G(s) = >n, suitableA € R,n € N.
— (stA)
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Controllability and stabilizability

A 1S said to be controllable &
Vwi,Wo e A, 4T >0andw e £ such that ...
W M/"'\

e\

0 time




Controllability and stabilizability

A 1S said to be controllable &

A 1S sald to be stabilizable &

VYwe A, 3w € £ such that ...

%\ >555:iffcwe

(asymptotic) stability in the sense o Lyapunov
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What properties on G imply that the system with rational
representation

G(&)w=0 GeR(E)™™™

has any of these properties?

Under what conditions on G doesG (%) w = 0 define a
controllable or a stabilizable system?
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What properties on G imply that the system with rational
representation

G(&)w=0 GeR(E)™™™

has any of these properties?

Under what conditions on G doesG (%) w = 0 define a
controllable or a stabilizable system?

Can a rational representation be used to put one of these
properties in evidence?
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Theorem: The LTIDS
G(&)w=0 GeR(E)™™™
Is controllable if and only if

G(A) has the same rankvA € C

Interpret carefully in cases like

G(s) = ,G(s) =

nwlik o

'S
0

nwik v
G
VR
NC2S
|

1



Theorem: The LTIDS
G(&)w=0 GeR(&)*

Is controllable if and only if

G(A) has the same rankvA € C

Theorem: The LTIDS
G(&)w=0 GeR(&)™™

IS stabilizable if and only if

G(A) has the same rankvA € C with Realpart(A) >0
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Rational image representations

Theorem: A LTIDS is controllable if and only if its behavior
allows an image representation

w=M(&)¢ MeR(E)"

For example,

/
y=F(—)u ~ W= —
(dt) y F(%)E

Systems defined by transfer functions are controllable

Transfer functions can only deal with controllable system:s
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Theorem: ALTIDS is controllable if and only if its behavior
allows an image representation

w=M($)/ MeR(E)"

Theorem: ALTIDS is stabilizableif and only if its behavior
allows a kernel representation

R($)w=0

with Re R(&)*"" left prime
over the ring of (proper) stable rationals
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LTIDSs are definedin terms of polynomial symbols
R(&)w=0 ReR[E]*

(behavior .= the €* (R,R") solutions) but can also be
represented by rational | symbols

G(&)w=0 GeR(&)*
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LTIDSs are definedin terms of polynomial symbols

R(&)w=0 Re R[E]**"

(behavior Z:=the ¥~ (R, R¥) solutions) but can also be
represented by rational | symbols

G(&)w=0 G e R(&)**"
Behavior := the set of solutions of
Q(L)w=0 QeR[E]*

whereG=P1Q, PQecRI[&]***, PandQ left coprime



LTIDSs are definedin terms of polynomial symbols
R(&)w=0 Re R[E]*

(behavior .= the €* (R,R") solutions) but can also be
represented by rational | symbols

G(&)w=0 Ge R(&)*

This added flexibility ~» better adapted to certain applications
e.g. (series, parallel, ...) interconnections
e.g. distance between systems
e.g. behavioral model reduction
e.g. parametrization of the set of stabilizing controllers
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One of the main applications where rational representatios
are used is for the
KucCera-Youla parametrization of stabilizing controllers

cfr. the book by Vidyasagar

| System
Synthesis
A Faclorization Approach

$\

Vladimir Ku Cera Dante Youla

B J
K
. Ll 1
= e 1
[y -
N ot |
i
i 1}
i
i

M. Vidysagar
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Norm-preserving representations
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Let %4 be the behavior of a controllable LTIDS.

Then it allows a rational symbol based image representation

WMD) with MeR(E) & M(—&)TM(E) = |

dt
i.e., |€|\§2(R,R.) = HWH?%(R,RW) ‘norm preserving image repr.
o0 1 [+
2 1 SN2 ey
[ IwPdi= o [ i) 2de
1 T ) ~ . 2 o 1 T A . 2 L e 2
o | Mo Pdo=" [ [liiw)]Fdo= [ i)

Note: M cannot be polynomial, it must be rational
Obviously M must be proper. Can also make it stable.
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Let %4 be the behavior of a controllable LTIDS.

Then it allows a rational symbol based image representation

W:M(%)é with M € R(E)™° & M(—&)TM(&) =

ldea of proof: Start with obs. polynomial im. representation

d
W_M(&>K

Factor MT(—&)M(&) =FT(=&)F (&)
Now take rational symbol based image representation

d
=MF 1 =
W (dt)é
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Distance between systems
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Motivation

What is a good, computable, definition for the distance
between two (LTID) systems?

Basic issue underlying model simplification, robustnessje
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Motivation

What is a good, computable, definition for the distance
between two (LTID) systems?

Basic issue underlying model simplification, robustnessje

# Approximate a system by a simpler one.

# |[f a system has a particular property (e.g., stabilized by a
controller), will this also hold for close-by systems?

# Does a sequence of systems converge?

What is meant
by ‘approximate’, by ‘close-by’, by ‘converge’?
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The gap



In the behavioral theory, we identify a dynamical system wih
Its behavior, that is, a set of trajectories. For LTIDSs, wih a

subspaceZ C ¢* (R,R").

Distance between systems
= distance between linear subspaces.
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2,22 C

Distance between linear subspaces &"

R*, linear subspaces

H
d (A, D5 = max min ||X; — Xo
(41, 22) X1 €2 %1 ||=1 Xo€ $2|| |
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Distance between linear subspaces &"

1, C R linear subspaces

d(L1,. L) = max({ﬁ(zl,gz),?(gz,zl)})

0< d(ﬁl,cﬁ,ﬂz) <1
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A, C R linear subspaces
P, L projection onto .2

S, S matrices, columns orthonormal basis for#, %
Note: $S],SS, orthogonal projectors

d(A1,%) = ||Pg—Pgl ‘' gap ’, ‘aperture’
= [|ISIS] -S|
= min ||5—3SU||
matricesU
= min [l — U]

U suchthat UZ=%
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A, C R linear subspaces
P, L projection onto .2

S, S matrices, columns orthonormal basis for#, %
Note: $S],SS, orthogonal projectors

d(A1,%) = ||Pg—Pgl ‘' gap ’, ‘aperture’
= [|ISIS] -S|
= min ||5—3SU||
matricesU
= min I =U]|

U suchthat UZ=%

Therefore, d(21, %) =SS —SS || <||SS— S
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Distance between LTIDSSs



min — I nf ,max— sup, etc., readily generalized to linear
subspaces of Hilbert space, ...... and to LTIDSs.

Which subspace of which Hilbert space should we associate
with a LTIDS with behavior £ C € (R,R")?
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min — I nf ,max— sup, etc., readily generalized to linear
subspaces of Hilbert space, ...... and to LTIDSs.

Which subspace of which Hilbert space should we associate
with a LTIDS with behavior £ C € (R,R")?

For LTIDS, behaviors % — (2N % (R,R¥))osUre

Defines al <+ 1 relation between controllable systems and
‘certain’ closed subspaces of#, (R, R¥).
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Define the distance between two controllable behaviors as
d(H1, $B>) .= gap(($1N L2 (R, RW))C'OSUVG, (%N 2L (R, IR%W)C'OS“re))

We consider only the %-trajectories for measuring distance.

Henceforth, keep notation% for (ZnN.% (R, R¥))cosure
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Define the distance between two controllable behaviors as
d(H1, $B>) .= gap(($1N L2 (R, RW))C'OSUVG, (%B2N 2L (R, IR{W)C'OS“re))

We consider only the %-trajectories for measuring distance.

YWy € %1, IWs € B, such that||wi —Ws|| < gap(%1, Bo)||wh|

and vice-versa. Small gap=- the models are ‘close’.

# How to compute the gap?
# Model reduce according to the gap!
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Let %4 be the behavior of a controllable LTIDS.

Then it allows a rational symbol based image representation

W:M(%)E with M € R(E)™° & M(—&)TM(&) =

l.e.,

|€|\f§/ﬂ2(R Re) = HWHiﬂZ(R ey NOrM preserving image repr.

P11 — M1, %> — Mo, both norm preserving & stable, then
gap(Z1, Z2) = ||Mi(iw)Mi(—iw)" —Ma(iw)Ma(—iw)"[| 2,

< [[M1(iw) = M2(iw)| |z,
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Model reduction
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There is an elegant theory for reducing the state space
dimension of stable LTI input/output systems.

Let % be described by $x= Ax+ Bu, y = Cx+ Du
with A Hurwitz ( < eigenvalues in left half plane).

There are effective methods (balancing, AAK) with good
error bounds (in terms of the %, norm) for approximating %4
by a (stable) system with a lower dimensional state space.
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There is an elegant theory for reducing the state space
dimension of stable LTI input/output systems.

Let % be described by $x = Ax+Bu, y=Cx+Du w =

with A Hurwitz.

Balanced model reduction=-

HF (iw) — Freduce((iw)Hgoo <?2 (Zneglected Hankel SVsUk)

Keith Glover
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There is an elegant theory for reducing the state space
dimension of stable LTI input/output systems.

Let % be described by $x= Ax+ Bu, y = Cx+ Du
with A Hurwitz.

F(s) proper stable rational = reducible.

ii Extend this to situations where we do not make a distinctin
between inputs and outputs, and to unstable systems.
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Start with . Take representatation

W= M(%)é with M eR(&)"* norm preserving, stable

Now model reducew =M (%)é (viewed as a stable
Input/output system) using, for example, balancing

d
~ W= Mreduced(a)é

and an error bound

HI\/I — Mreduced‘ |jfoo <2 (Zneglected SVs o Uk)
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Start with stable norm preserving representation of %

W:M(%)é with M € R(&)"*®

Model reduce using balancing~ W = Myequcea (5 )¢
Call behavior Z,equceq Error bound

IMM " — MieguceaM, s qucea |2

reduced

gap(‘%a %reducea

VAN

||h4'_'hﬂreduced|Lﬁﬁ£

VAN

2 (Zneglected SVs oM Jk)

VW E BIW € Hregsuch that [jw—w|| < 2(Y neglected sveTi) | |W||

and vice-versa.
> neglected Svs oM Ok SMall = good approximation in the gap.
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Examples
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position

mass M

force F

-

M

d2

t27

W =

12
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position

Norm preserving, stable

mass M

force F

M

d2

t27

W =

12
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position

mass M

force F

-

Norm preserving, stable

reduced model

d2

t27

12
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mass M

position

Norm preserving, stable

reduced model

TI
||
Z
%
2
=
I’
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__>_
+

<

kernel

Image
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__>_
+

<

TakeL =C = 1.

kernel

Image

stable norm-preserving




__>_
+

Take L

=C=1

stable norm-preserving

reduced model order =1

I

v 1

L
- L
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2 4 3
kernel (1+ 5d— + 4d—> V = (3E + 6d—> I

dt2 = dt4 dt dt3

o
image | = “iﬁﬁﬁﬂ 0

VIl Satbe
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2 4 3
kernel (1+ 5d— + 4d—> V = (3% + 6d—> I

d2

Image =

stable norm-preserving image

I
V

1

dt*

d? d4 ]
1 + 5dt2 + 4dt4

d
35t +6dt3

1459, 149

T 143d L5 168448 |

d
3dt +6dt3

d4
dt4

dts
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stable norm-preserving image

red. order = 2

d | g
\ 1+3 L5 168 +4% |

d* |
1 1+§dt2+4dt4 /
St +6dt3 i
1 & 10.3208
& 1+0.18614 1-0.3298| 0.18615

!

v 0.18=

1.77




Summary of Lecture 4a
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> G(%)W = 0 defined in terms left-coprime factorization of
rational G.

> Y= G(%)u does not require Laplace transform.
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> G(%)W = 0 defined in terms left-coprime factorization of
rational G.

y = G(&)u does not require Laplace transform.

Controllability, stabilizability, etc. of G(%)W: 0
decidable from G.
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G(%)W = 0 defined in terms left-coprime factorization of
rational G.

y = G(&)u does not require Laplace transform.

Controllability, stabilizability, etc. of G(%)W: 0
decidable from G.

Norm preserving representation w= M ()¢
achievable with rational M.
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G(%)W = 0 defined in terms left-coprime factorization of

rational G.

y= G(%)u does not require Laplace transform.
Controllability, stabilizability, etc. of G(%)W: 0
decidable from G.

Norm preserving representation w= M ()¢
achievable with rational M.

Stable norm preserving representation w = M(%)é

leads to model reduction of unstable systems and systems
without input/output partition.
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G(%)W = 0 defined in terms left-coprime factorization of
rational G.

y= G(%)u does not require Laplace transform.
Controllability, stabilizability, etc. of G(%)W: 0
decidable from G.

Norm preserving representation w= M ()¢
achievable with rational M.

Stable norm preserving representation w = M(%)é

leads to model reduction of unstable systems and systems
without input/output partition.

Numerous other applications of rational symbols

—pn. 39/



End of Lecture 4a
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