Lecture 3

Tuesday 03-02-2008 14.00-17.30

Linear Time-Invariant
Systems, Part 2

Lecturer: Paolo Rapisarda



1. Part I
» Inputs and outputs;
» Autonomous behaviors;
» Input-output representations.

2. Part Il
» Controllability;
» Image representations;
» Complementability and decomposition of behaviors;
» Observability.
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Inputs and outputs




Reprise: surjectivity and injectivity of differential ope rators

Recall that P (&) : = (R,R") — (R, RE) is surjective <
P(¢) has full row rank as a polynomial matrix
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Recall thatP (&) : €7 (R,R¥) — €™ (R,R8) is surjective <
P(¢) has full row rank as a polynomial matrix

Recall thatP (&) : °(R,R¥) — ¥*(R,R8) is injective < all
nonzero invariant polynomials of P are unity.

Equivalently: P(A) has full column rank forall A € C
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Recall thatP (&) : €7 (R,R¥) — €™ (R,R8) is surjective <
P(¢) has full row rank as a polynomial matrix

Recall thatP (&) : °(R,R¥) — ¥*(R,R8) is injective < all
nonzero invariant polynomials of P are unity.

Equivalently: P(A) has full column rank forall A € C

Equivalently, P admits a left inverse on%*(R):

|, _ 1. .
P=U 0 V—=V 1{|m O}U lis left inverse
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Given # € Z¥ and | :={i1,...,ix} C{1,...,w}, let

Mm% = {(Wy,...,W,) € €°(R,R") | Twe B
Stw=(Wg,...,Wij,...,Wi,..., W)}

projection of 4 onto variablesw;;, ] =1,...,k
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Given # € Z¥ and | :={i1,...,ix} C{1,...,w}, let

M#B = {(Wy,....,w,) € €°(R,R*) | Iwe B
SELW=(Wp,...,Wi,...,Wi,...,W,) € A}

projection of 4 onto variablesw;;, ] =1,...,k

Variablesw;;, ] =1,..., k arefreelf

M % =%¢"(R,R")

—n. 5/47



Example:

EW+ EW+ EW—O
pldt 1p2dt 2p3dt 3=

Assumep; #0,1=1,2,3.

Let | = {1}, since [pz(f) pg(E)} Is full row rank, for every
wi € €% (R,R) there existw,, ws satisfying equation.

wi IS free.
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Example:

EW+ EW+ EW—O
pldt 1p2dt 2p3dt 3=

Assumep; #0,1=1,2,3.

Let | = {1}, since [pz(f) pg(E)} Is full row rank, for every
wi € €% (R,R) there existw,, ws satisfying equation.

wi IS free.
(w1,W>) (and (wo,ws), and (wq,ws)) are also free.
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Example: In §x = Ax-+Bu, the variable u is free.
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Example: In §x = Ax-+Bu, the variable u is free.

Behavior Is

% = ker [%|—A —B} ~ R(f):[fl—A —B}
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Example: In §x = Ax-+Bu, the variable u is free.

Behavior Is

% = ker [%|—A —B} ~ R(f):[fl—A —B}

& 1 —Afullrowrank = & | — Asurjective = uis free
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Example: In §x = Ax-+Bu, the variable u is free.

Behavior Is

% = ker [%|—A —B} ~ R(f):[fl—A —B}

& 1 —Afullrowrank = & | — Asurjective = uis free

—n. 6/472



Let | ={i1,...,Ix} C{1,...,w}. The variablesw,,...,w;, form
a maximally free setif

» they are free; and

» foreveryl’ ={i7,...,i.} C{1,...,w} such thatl C I'it
holds
Ny % c ¢°R,R")
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Let | ={i1,...,Ix} C{1,...,w}. The variablesw,,...,w;, form
a maximally free setif

» they are free; and

» foreveryl’ ={i7,...,i.} C{1,...,w} such thatl CI'it
holds
N2 C¢°(R,R"

Maximally free set: every variable in it is free, but any
additional variable is not
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Example:

EW+ EW+ EW—O
pldt 1p2dt 2p3dt 3=

Assumep; #0,i=1,...,3.
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Example:

d W1 + d Wo + d w3 =0
P1 gt ) WA P2 gt ) V2 P3 gt ) Ve =
Assumep; #0,i=1,...,3.

wy (and wo, and ws) Is free, but not maximally so.
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Example:

EW+ EW+ EW—O
pldt 1p2dt 2p3dt 3=

Assumep; #0,i=1,...,3.
wy (and wo, and ws) Is free, but not maximally so.

{wy,wo} (and {w>, w3}, and {wz,ws}) are maximally free.
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Example:

d W1 + d Wo + d w3 =0
P1 gt ) WA P2 gt ) V2 P3 gt ) Ve =
Assumep; #0,i=1,...,3.

wy (and wo, and ws) Is free, but not maximally so.

{wy,wo} (and {w>, w3}, and {wz,ws}) are maximally free.

Maximally free sets arenonunique!
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Theorem: Let & € Y. Assume (if necessary, after
permutation of the variables) w partitioned as

with wi maximally free. Thenw; are Inputs andw, outputs .
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Theorem: Let & € Y. Assume (if necessary, after
permutation of the variables) w partitioned as

with wi maximally free. Thenw; are Inputs andw, outputs .

Example: for py ($)wa+ p2 (&) W+ ps (&) ws = 0 and
assumingp; # 0 for 1 = 1,2, 3, we can choose

>  {wg,Wo} or
> {Wp,w3} or
> {wi, Wz}
as inputs.
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» Nonunicity of i/o partition is not an issue.
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» Nonunicity of i/o partition is not an issue.
Consider (linear) resistors:

B={\V,1)|V=R-1

IS it voltage- or current-controlled? Consider
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» Nonunicity of i/o partition is not an issue.
» ‘Causality’ an issue? What about

d
Wy = aWZ?

Don’t w; and w, 'happen’ at the same time?
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Nonunicity of i/o partition is not an issue.
‘Causality’ an issue? What about

d
Wy = aWZ?

Don’t w; and w, 'happen’ at the same time?

'Smoothness’, meaning

(uy) e 4 and uk-times differentiable
—> Yy k-times differentiable

if and only if P~1Qis proper. Strict properness<

(uy) e #Z and uk-times differentiable
— Yy (k+ 1)-times differentiable
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Consider a linear % C (RW1+W2)Z. Let %, =T, %.

w»> does not anticipate w;, <

W1 € %, and Wl\Z_ =0
—>  existsw, s.t. Wp iz = 0and (Wi, wp) € &
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Consider a linear % C (RW1+W2)Z. Let %, =T, %.

w»> does not anticipate w;, <

W1 € %, and Wl\Z_ =0
—>  existsw, s.t. Wp iz = 0and (Wi, wp) € &

Theorem: Assumews is output and wy Is input, and let

P(o)w, = Q(0)wq

be an i/o representation of#. Thenw, does not anticipatew;
< P~1Qis proper.
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Input-output representations




Theorem: Consider

~{ome(@r-o(2)

with P square and nonsingular. Theny is output and u
IS Input.
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Theorem: Consider

= {one(@r-o(2)

with P square and nonsingular. Theny is output and u
IS Input.

Surjectivity of P (&) = uis free.
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Theorem: Consider

= {one(@r-o(2)

with P square and nonsingular. Theny is output and u
IS Input.

Surjectivity of P (&) = uis free.

u maximally free: add one component ofy to those ofu,
resulting set satisfies differential equation—> it is not free.
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Theorem: Let & € .. There exists (possibly after permut-
Ing components) a partition ofw = (u,y) and P € RY*Y[{]|
nonsingular, Q € RY**¢| such that

- fne(@r-a(2)

The partition can be chosen so thaP~1Q is proper.

—n. 12/42



Theorem: Let & € .. There exists (possibly after permut-
Ing components) a partition ofw = (u,y) and P € RY*Y[{]|
nonsingular, Q € RY**¢| such that

- fne(@r-a(2)

The partition can be chosen so thaP~1Q is proper.

Proof : Use minimal kernel representation% = ker R(%).
R of full row rank = exists nonsingular submatrixP.

For P~1Q proper, selectP to be a maximal determinantal
degree (nonsingular) submatrix ofR.
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d2W1 dW]_ dW2
/\/k\l/\ , M a2 —|—C1( at — at )—|—k1(W1—W2)—F = 0
— HO kWi @—I—C%—I—C dwp  dwy Flg+kowy = O
1 ¢ 1W1 + e dt2 2 4t 1 ot at 1 TK)W2 =

¢What is an ‘input’, and what an ‘output’ in this case?
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d2W1 dW]_ dW2
- ki(wg —wp) —F =
F N £, ™ G2 Cl( dt it >+ (W1 = We) 0
= - D kw4 @—I—C%—I—C dWZ_dW1 Fkitk)we = O

¢What is an ‘input’, and what an ‘output’ in this case?

Any selection of a2 x 2 nonsingular submatrix of Ryields
output variables- the rest is inputs
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d2W1 dW]_ dW2
_ KWy —ws) —F =
F N £, ™ G2 +C1( dt it >+ (W1 = We) 0
= ~ L d?w dws dwo,  dwg
< o, —kywy +nmp

2 —_
el +C2T+C1( el )+(k1+k2)W2 = 0

¢What is an ‘input’, and what an ‘output’ in this case?

Any selection of a2 x 2 nonsingular submatrix of Ryields
output variables- the rest is inputs

M &2+ c1é +ky —C1$ — kg -1
—Cc1& — K m252+(C1—|—C2)E—|—k1—|—k2 0

R(¢) =
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d2W1 dW]_ dW2
/\/k\l/\ , M a2 +C1 ( at — at ) + k]_(W]_ —Wz) -F = 0
= ~ L d2W dW2 dW2 dWl
< o, —kywy +nmp

2 —_
el +C2T+C1( el )+(k1+k2)W2 = 0

¢What is an ‘input’, and what an ‘output’ in this case?

Any selection of a2 x 2 nonsingular submatrix of Ryields
output variables- the rest is inputs

M &2+ c1& + kg —C1¢ — kg -1
—C1é — ki Mpé2 4 (C1+C)& +ky+ky O

R(¢) =

wy and w, outputs, F input; P~1Q strictly proper
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d2W1 dW]_ dW2
/\/k\l/\ , M a2 +C1 ( at — at ) + k]_(W]_ —W2) -F = 0
= ~ L d2W dW2 dW2 dWl
< o, —kywy +nmp

2 —_
el +C2T+C1( el )+(k1+k2)W2 = 0

¢What is an ‘input’, and what an ‘output’ in this case?

Any selection of a2 x 2 nonsingular submatrix of Ryields
output variables- the rest is inputs

M &2+ c1& + kg —c1é — kg -1
—C1é — ki Mpé2 4 (C1+C)& +ky+ky O

R(¢) =

wy and F outputs, w, input; P~1Q not proper
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d2W1 dW]_ dW2
/\/k\l/\ , M a2 +C1 ( at — at ) + k]_(W]_ —W2) -F = 0
= ~ L d2W dW2 dW2 dWl
< o, —kywy +nmp

2 —_
el +C2T+C1( el )+(k1+k2)W2 = 0

¢What is an ‘input’, and what an ‘output’ in this case?

Any selection of a2 x 2 nonsingular submatrix of Ryields
output variables- the rest is inputs

m1€2+01€+k1 —c1é& — K —1
—C1é — kg Mpé2 4 (C1+C)& +ky+ky O

R(¢) =

wy and F outputs, wy input; P~1Q proper
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» Notion of transfer function, dependent on input/output
partition;
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» Notion of transfer function, dependent on input/output
partition;

» Number of outputs fixed, output cardinality p(%);
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Notion of transfer function, dependent on input/output
partition;

Number of outputs fixed, output cardinality p(%);

p(4#) equalsr ank (R) for every R such that
ker R($) = %;
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Notion of transfer function, dependent on input/output
partition;

Number of outputs fixed, output cardinality p(%);

p(4#) equalsr ank (R) for every R such that
ker R($) = %;

Number of inputs fixed, input cardinality m(%);
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Notion of transfer function, dependent on input/output
partition;

Number of outputs fixed, output cardinality p(%);

p(4#) equalsr ank (R) for every R such that
ker R($) = %;

Number of inputs fixed, input cardinality m(%);

m(A) equalsw(Z#) —r ank(R) for every R such that
kerR($) = %.
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Notion of transfer function, dependent on input/output
partition;

Number of outputs fixed, output cardinality p(%);

p(4#) equalsr ank (R) for every R such that
ker R($) = %;

Number of inputs fixed, input cardinality m(%);

m(A) equalsw(Z#) —r ank(R) for every R such that
kerR($) = %.

In discrete-time case, theraalwaysexists acausal
Input-output partition!
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Autonomous behaviors




No inputs: autonomous system:

Recall that Z is autonomousif

wi,Wo € & and wj |(_oo,o]: W2 |(_oo,o]
— W1 =W2
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Recall that &£ Is autonomousif

wi,Wo € 4 and wj |(_oo,()]: W2 |(—oo,0]
— W1 =W2

Equivalent with
» m(A)=0(no inputs);

» there existsR € R"*¥|¢| nonsingular such that
% =ker R(&)

—n. 16/42



Example: a mechanical systen

d’w d d
? m 21—|—C1 W1 — —W> —|—k1(W1—W2) =0
k - dt dt dt
NN~
—D_?—kWJr @jtcgwjtc EW—EW +(ki+ko)wo, = 0
¢ 11m2dt2 2 V2Tl W2 g™ 1T K)W2 =
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d2w d d
. ? m1—21 +C1 | WL — W2 | + Ky (W — W)
/\/k\l/\ /\/\2/\§ dt dt dt
L - d>w,  d d d
5 e 7 —kawi+ Mp—p5 tCgrWotC| W e | + (kg + ko) ws

Classical mechanics:
motion depends only on ‘initial conditions’
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2
k k ? mld—vgl +C1 (Ewl—EW2>+k1(W1—W2) = 0
N dt dt dt
m AN m, /\/\/\/
— —D—? ) d2w, d d g - L
¢ ¢ - 1W1+FT\2F +C2aW2+Cl (aWZ_aW1>+( 1+ko)wy =
R(E) = mé?+ & + ke &k
—C1& —ki  MpE?4(cr1+C)& +kit+ko

R nonsingular ~» autonomous system
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Example: state-space systen

Let (A,C) observable and consider

B .={yec €’ (R,RY) | Ixs.. %x: Axy = Cx}
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Let (A,C) observable and consider

B.={ye ¢ (R,RY) | Ixs.t. %x: Ax,y = Cx}

2 Is autonomous: there are no free variables iry.
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» For autonomous#, defR) is invariant for all Rsuch that
% =kerR(&).
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» For autonomous#, defR) is invariant for all Rsuch that
% =kerR(&).

Theorem: Let & € £ be autonomous. ThenZ Is a
finite-dimensional subspace o#*(R,R").
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» For autonomous#, defR) is invariant for all Rsuch that
% =kerR(&).

Theorem: Let & € £ be autonomous. ThenZ Is a
finite-dimensional subspace o#*(R,R").

Proof: Take Rs.t. % = ker R( ), w.l.o.g. minimal.
Compute Smith form R=UAV:

d d d
N——

=:w
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» For autonomous#, defR) is invariant for all Rsuch that
% =kerR(&).

Theorem: Let & € £ be autonomous. ThenZ Is a
finite-dimensional subspace o#*(R,R").

Proof: Now A ($)V <E> w = 0 implies

dt

=W
w = col(w}); e ker A d & W e ker d
— iJ1=1,....w dt | dt

with ¢ the i-th invariant polynomial. Scalar case.
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» For autonomous#, defR) is invariant for all Rsuch that
% =kerR(&).

Theorem: Let & € £ be autonomous. ThenZ Is a
finite-dimensional subspace o#*(R,R").

Proof: Now A ($)V <E> w = 0 implies

dt

=W
w = col(w}); e ker A d & W e ker d
— iJ1=1,....w dt | dt

with ¢ the i-th invariant polynomial. Scalar case.

Set of solutions of linear differential equation is
finite-dimensional. Alsow is!
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Scalar case:

where
» nis number of distinct roots of p(&);

» Ajisi-throot of p(&);
» nj multiplicity of A;;
>

aijj € C.
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Scalar case:

where
» nis number of distinct roots of p(&);

» Ajisi-throot of p(&);
» nj multiplicity of A;;
>

aijj € C.
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Scalar case:

where
» nis number of distinct roots of p(&);

» Ajisi-throot of p(&);
» nj multiplicity of A;;
>

aijj € C.
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Scalar case:

where
» nis number of distinct roots of p(&);

» Ajisi-throot of p(&);
» N multiplicity of A;;
>

aijj € C.
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Scalar case:

where
» nis number of distinct roots of p(&);

» Ajisi-throot of p(&);
» nj multiplicity of A;;
>

aij € C.
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Scalar case:

where
» nis number of distinct roots of p(&);

» Ajisi-th root of p(&);
» nj multiplicity of A;;
» ajjcC.

A;j are the characteristic frequenciesof p.
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On autonomous system trajectorie:

For w > 1, resort to Smith form R=UAV:

d d d
N——
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For w > 1, resort to Smith form R=UAV:

d d d
N——

=:w

d d
W = col(wW))i=1... 4 € ker A (ﬁ) & W e ker § <&>

with & the i-th invariant polynomial. Scalar case!
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For w > 1, resort to Smith form R=UAV:

(2 uoa(g)u()v-

=:w

d d
W = col(wW))i=1... 4 € ker A (ﬁ) & W e ker § (a)

with ¢ the i-th invariant polynomial. Scalar case!
Assume for simplicity all roots of det R) are simple:

w=V (%) lV\/ — w(t) = I;o(.e/\t

with a; € C¥ such thatR(Aj)ai =0,i=1,...,n.
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» Linear combinations of polynomial exponential vector

trajectories
n N _
Z Z}aijtle/‘it
i=1]=

with aj; € C".
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» Linear combinations of polynomial exponential vector
trajectories
n N _
Z Z}aijtle/‘it
i=1j=
with aj; € C".
» Characteristic frequenciesA; are roots ofdet(R).

Together with corresponding multiplicities, they
determine % uniquely.
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P e LV Is asymptotically stable <
wWe A — Ii{n — ooW(t) =0

Note: asymptotic stability implies autonomy.
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P e LV Is asymptotically stable <
wWe A — Ii{n — ooW(t) =0

Note: asymptotic stability implies autonomy.

Theorem: % = ker R(&) is asymptotically stable
s rank(R(A)) =w(#) forall A € Cs.t. RgA) > 0.
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BB c LVIs stable &

w e % = W, IS bounded.

Note: stability implies autonomy.

Theorem: % = ker R(&) is stable<

1. rank(R(A)) =w(H) forall A € Cs.t. RgA) > 0;

2. For all we R, w(#)—rank(R(iw)) equals the
multiplicity of iw as a root ofdet(R).
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BB c LVIs stable &

w e % = W, IS bounded.

Note: stability implies autonomy.

Theorem: % = ker R(&) is stable<

1. rank(R(A)) =w(H) forall A € Cs.t. RgA) > 0;

2. For all we R, w(#)—rank(R(iw)) equals the
multiplicity of iw as a root ofdet(R).

Stability=roots in closed left half-plane, andsemisimplicity.
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End of Part |




Controllability




2% controllable < for all wy,w, € £ there existsw € % and
T > 0 such that

B W1<t) for t<O
] we(t) for t>T
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2% controllable < for all wy,w, € £ there existsw € % and
T > 0 such that

W]_(t) for t<O
Wo(t) for t>T
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2% controllable < for all wy,w, € £ there existsw € % and

T > 0 such that

time

W]_(t) for t<O
Wo(t) for t>T

W W
W /
/_-\\ ....... w time
""""" ° YT -
/ 7——‘4‘3
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2% controllable < for all wy,w, € £ there existsw € % and
T > 0 such that

W]_(t) for t<O
Wo(t) for t>T

time

/—\>‘_/“'z / \l/)“—/ﬁr"z
Past of any trajectory can be “patched up”
with future of any trajectory
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d
r(a>w_0
where0=£r € R[¢] has degreen.

Systemautonomous every solution uniquely determined by

‘Initial conditions’ %it"r"(t), 1=0,...,n—1, so no patching

possible among d= erent trajectories.

Past of trajectory uniquely determines its future.
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Classical state-space system

9,
dt
y = Cx+Du

= AX+Bu
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Classical state-space system

d
—X = Ax+BU
dt +

y = Cx+Du
d
PBs = {(Wy,X)| s.t. ax:quLBu,y:CerDu}

A = {(uy)|Ixs.Lt. %X:AX—I— Bu,y = Cx+ Du}

By = {x|3F(uy)s.t. %X:AX—I— Bu,y = Cx+ Du}
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Classical state-space system

d
—X = Ax+BU
dt +

y = Cx+Du

PBs = {(Wy,X)| s.t. Ex:quLBu,y:CerDu}

dt
A = {(uy)|Ixs.Lt. %X:AX—I— Bu,y = Cx+ Du}
By = {x|3F(uy)s.t. %X:AX—I— Bu,y = Cx+ Du}

ABs controllable & %, controllable = % controllable.
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Classical state-space system

d
—X = Ax+BU
dt +

y = Cx+Du

PBs = {(Wy,X)| s.t. Ex:quLBu,y:CerDu}

dt
A = {(uy)|Ixs.Lt. %X:AX—I— Bu,y = Cx+ Du}
By = {x|3F(uy)s.t. %X:AX—I— Bu,y = Cx+ Du}

ABs controllable & %, controllable = % controllable.
If x minimal, then &£ controllable —> %< controllable.
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Classical state-space system

9,
dt
y = Cx+Du

= AX+Bu

“State point-controllability”: for all X1, € R* dx € %y and
T >0s.t.X(0) =xpand x(T) = xg.
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Classical state-space system

d
—X = Ax+BU
dt +

y = Cx+Du

“State point-controllability”: for all X1, € R* dx € %y and
T >0s.t.X(0) =xpand x(T) = xg.

If x minimal, then % controllable & %5 controllable +— %
state point-controllable.
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Algebraic characterization of controllability

Theorem: & = ker R(%) is controllable

&
rank(R(A)) is constant forallA € C
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Theorem: % = ker R($) is controllable

&
rank(R(A)) is constant for allA € C

Proof: Compute Smith form

R=U

g
V e RP*
0 ol VE €]

U (&), V (&) bijective => ker R(:%) controllable <
kerA(dﬂ)
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Theorem: % = ker R($) is controllable

&
rank(R(A)) is constant for allA € C

Proof: Compute Smith form

R=U V € RP*V[E]

N
0 0

U (&), V (&) bijective => ker R(:%) controllable <

ker A($) is.

Change variablesw~ w :=V (&) w, define
B =V (&) B=kerA(§).

—n. 27/42



Theorem: % = ker R($) is controllable

&
rank(R(A)) is constant for allA € C

Proof: Last p —r ank(R) trajectories of %’ = ker A (%) are
free, since equations ar®-w; = 0.

First r ank (R) equations are

d
3 ()=

with & I-th invariant polynomial of R.
Evidently, w/ controllable if and only if & = 1.
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Case 1:CRc # -

Rc Re d

- () (s

L d?

+CRc =

L Ld
R dt

RLW>

>Rc|

V
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Case 1:CRc # -

Re Rc d
(ﬁ + (1+ ﬁ) CRe

- () (s

¢ Is system controllable?

L d?

+CRec =

L Ld
R dt

RLW>

>Rc|

V
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Case 1:CRc # -

Re Rc L d?
(ﬁ + (1+§)CRC— CRCRLdtZ

L d
= (1+CRCE) (1 ﬁ&) Rcl

)\

K%+ (1+ %) CR:E +CRC§€2) — (1+CR:E) (1+ ﬁf) RC}

Are there common rootsamong the two polynomials?
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Case 1:CRc # -

Rc L d?
(_ " (1+§>CRC_ CRer o

L d
= (1+CRCE) (1 ﬁ&) Rcl

)\

K% - (1+ %) CR:E +CRC§€2) — (1+CR:E) (1+ ﬁf) RC}
Are there common rootsamong the two polynomials?

No — system iscontrollable
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Case 2:CR: = RLL

Re d

(1+CRc%> Rcl
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Case 2:CR: = RLL

Re d\. d
(ﬁ +CRCE)V = (1+CRCa> Rcl

¢ Is system controllable?
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Case 2:CR: = RLL

R d\., d
(ﬁ +CF~’CE)V — (1+CF~’ca> Re|

¢ Is system controllable?

B CReE —(1+CRER]

Are there common rootsamong the two polynomials?
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Case 2:CR: = RLL

R d\, d
(ﬁ +CRca>v — (1+cRca> Rel

¢ Is system controllable?
If Rc = R_ = system isnot controllable

—n. 28/4°



» Z=kerR(&), with Re R"¥[&] nonsingular, is
controllable <= Ris unimodular <—- % = {0}
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% = ker R(&), with R € R™¥[&] nonsingular, is
controllable <= Ris unimodular <—- % = {0}

Rank constancy test generalization of ‘Hautus test’ for
state-space systems.
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% = ker R(&), with R € R™¥[&] nonsingular, is
controllable <= Ris unimodular <—- % = {0}

Rank constancy test generalization of ‘Hautus test’ for
state-space systems.

Trajectory-, not representation-baseddefinition as in
state-space framework.
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Image representations




Image representations and controllability

Theorem: There existsM € R"**[£] such that
% =imM (&) < Zis controllable.
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Theorem: There existsM € R"**[£]| such that
% =imM (&) < Zis controllable.

Only if: Full behavior is controllable, since has kernel
representation induced by

L —M(&)]

with constant rank over C.
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Theorem: There existsM € R"**[£]| such that
% =imM (&) < Zis controllable.

|f: Take R for minimal kernel representation of #A. Apply
constancy of rank to conclude Smith form ofRis

R=U [l Opn|V
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Theorem: There existsM € R"**[£]| such that
% =imM (&) < Zis controllable.

|f: Take R for minimal kernel representation of #A. Apply
constancy of rank to conclude Smith form ofRis

R=U (I, Opun|V.

Now U (&) [Ip OPXm}V (%) w=0< {Ip Opxm} wW=0&

N——
=W

w =

with ¢ € € (R,R") free.
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Theorem: There existsM € R"**[£]| such that
% =imM (&) < Zis controllable.

Consequently,

from which
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Theorem: There existsM € R"**[£]| such that
% =imM (&) < Zis controllable.

Consequently,

from which

d
W-V(a

g

(=

d
a)f

Note also thatM can be chosen withn(B) columns.
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Complementabillity
and
decomposition of behaviors




Theorem: Let &4 € ¥V be controllable. There exists
A c £ such that

B R =€ (R,R)
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Theorem: Let &4 € ¥V be controllable. There exists
A c £ such that

B R =€ (R,R)

Proof: Let % = ker R(&) be a minimal kernel
representation. 4 controllable < Smith form of Ris

R=U [I, 0|V
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Theorem: Let &4 € ¥V be controllable. There exists
A c £ such that

B R =€ (R,R)

Proof: Let % = ker R(&) be a minimal kernel
representation. % controllable < Smith form of Ris

R=U [I, 0|V

Define
R:=U[0 I, 5|V

and ' :=ker R (&). #'is also controllable.

—n. 33/4°



Theorem: Let &4 € ¥V be controllable. There exists
A c £ such that

B R =€ (R,R)

Proof: Observe that Z N %’ is represented in kernel form by

Lo
0 lup

U V

a unimodular matrix. Consequently, N %’ = {0}.
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Theorem: Let &4 € ¥V be controllable. There exists
A c £ such that

B R =€ (R,R)

Proof: Easy to see image representations a¥, %4’ given by

0 B =imV1 p

Z=imV~1
. 0

Consequently# + %’ represented by

0,
lup O

V—l

unimodular, conseguently bijective.
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Theorem: Let % = ker R(&), with R € RP*¥[&] full
row rank. There exist o € £ and Beontr € % such
that

P = PBaut D PBeontr

with ZBeontr CONtrollable and %, autonomous.
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Theorem: Let % = ker R(&), with R € RP*¥[&] full
row rank. There exist o € £ and Beontr € % such
that

B = LBaut © Beontr
with ZBeontr CONtrollable and %, autonomous.

Proof: Write Smith form of R=U [D opx(w_pﬂv, define
B =V (&) P.
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Theorem: Let % = ker R(&), with R € RP*¥[&] full

row rank. There exist o € £ and Beontr € % such
that

B = LBaut © Beontr

with ZBeontr CONtrollable and %, autonomous.

Proof: Write Smith form of R=U [D opx(w_pﬂv, define
B =V (&) P.

WeH —=w-=

W)
W,

with w; € ker D (&), w, free.
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Theorem: Let % = ker R(&), with R € RP*¥[&] full
row rank. There exist o € £ and Beontr € % such
that

B = LBaut © Beontr
with ZBeontr CONtrollable and %, autonomous.

If D=1, = take #&,.,,= %', #,..= {0}.
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Theorem: Let % = ker R(&), with R € RP*¥[&] full
row rank. There exist o € £ and Beontr € % such
that

B = LBaut © Beontr
with ZBeontr CONtrollable and %, autonomous.

If D # |, define

W, d

|V\/1€kerD<a>}

W, € 6% (R,R¥F) .
2

0
.
W.
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Theorem: Let % = ker R(&), with R € RP*¥[&] full
row rank. There exist o € £ and Beontr € % such
that

P = PBaut D PBeontr

with ZBeontr CONtrollable and %, autonomous.

Then transform back to w variables.

—n. 34/4;



Observability




W1 — W»o
observed  :| SYSTEM J: ™ to-be-deduced
variables variables
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W1 — W2
observed SYSTEM " to-be-deduced
variables variables

¢, Canw, be determined knowingwy
and the system dynamics?
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W1 — W2
observed SYSTEM " to-be-deduced
variables variables

¢, Canw, be determined knowingw;,
and the system dynamics?

B e L, W= (W1,W2). W iS observablefrom wj if

(W1, W5), (W1, W) € B = W5 = W,

—n. 36/4°



Algebraic characterization of observability

AssumeZ represented in kernel form as

d d
R]_ (&) W]_—I—Rz (&) W2 — O
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AssumeZ represented in kernel form as

d d
Ry <&> w1+ Ry (&) Wo =0
d d
R> (a) Wz = —Ry (a) W1

N

known

¢, Does

have a unique solutionw,?
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AssumeZ represented in kernel form as

d d

R1 (&) w1+ Ry (&) Wo =0
d d

R> (a) Wz = —Ry (a) W1

-~

known

¢, Does

have a unique solutionw,?

Ithas < R, (&) injective < Rx(A) has full column rank for
all A € C
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AN

d?w d d
mlTZl—l—Cl(—Wl__WZ)‘|‘k1(W1_W2) = 0

d dt dt
d?w: d d d
—k1W1+sz22 +CZEW2+C1 (awz — EM) +(ki+ko)w, = 0
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d?w d d
k ? m1—21+C1 —W1— —Wo | +k(wi—wp) = 0
k, 2 / dt dt dt
AN m N
L —— d2w,  d d d
cl s ¥V —k1W1+m2F+CZEW2+Cl G2 g™ +(kit+k)wp = 0

.. 1sw, observable fromw; ?
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d?w d d
e M= 1 —Wi— W, | +ki(Wi—wp) = O
AN m, M-
— —{— 2\, d d
cl o 7 —kKawp+mp——= 2 —|—02dtW2+Cl(dtW2—an> (ky + ko) = 0

.. 1sw, observable fromw; ?

¢,Can one determinens
from knowledge ofw; and the system dynamics?

:
;
NN\
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dtz +to g Fky C1 g +ka

—a %k _—mzc?Tzz (C2+c1) G — (Kt k2)
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dt2 +C1 tha G + ke
2
— g —ki —mp &y — (Co+c1) G — (ki + k2)

Is polynomial differential operator on RHS injective?

—n. 38/4°



dt2 +C1 tha G + ke
2
— g —ki —mp &y — (Co+c1) G — (ki + k2)

Is polynomial differential operator on RHS injective?

C1A + kg
—MpAZ — (Co+C1)A — (ki + ko)

has full column rank ¥V A € C (<= observability) <

—mpk? + c1Cokq — koCs £ O
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» Rank constancy test generalization of ‘Hautus test’ for
state-space systems.
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Rank constancy test generalization of ‘Hautus test’ for
state-space systems.

Trajectory-, not representationbased definition as in
state-space framework.
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Summary of
Lecture 3




» Polynomial differential operators and their properties
are key,
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» Polynomial differential operators and their properties
are key,

» Inputs: free variables;
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» Polynomial differential operators and their properties
are key,

» Inputs: free variables;

» Autonomous systems;
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Polynomial differential operators and their properties
are key,

Inputs: free variables;
Autonomous systems;

Controllability and observability: system, not
representation, properties;
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Polynomial differential operators and their properties
are key,

Inputs: free variables;
Autonomous systems;

Controllability and observability: system, not
representation, properties;

Algebraic characterizations;
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>

Polynomial differential operators and their properties
are key,

Inputs: free variables;
Autonomous systems;

Controllability and observability: system, not
representation, properties;

Algebraic characterizations;

Image representations.
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End of Lecture 3
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