Lecture 3

Tuesday 03-02-2008
14.00-17.30

Linear Time-Invariant Systems, Part 2

Lecturer: Paolo Rapisarda

1. Part I:

- Inputs and outputs;
- Autonomous behaviors;
- Input-output representations.

2. Part II:

- Controllability;
- Image representations;
- Complementability and decomposition of behaviors;
- Observability.

Inputs and outputs

Recall that $P\left(\frac{d}{d t}\right): \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{W}}\right) \rightarrow \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{g}}\right)$ is surjective \Leftrightarrow $P(\xi)$ has full row rank as a polynomial matrix

Recall that $P\left(\frac{d}{d t}\right): \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right) \rightarrow \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{g}}\right)$ is surjective \Leftrightarrow $P(\xi)$ has full row rank as a polynomial matrix

Recall that $P\left(\frac{d}{d t}\right): \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right) \rightarrow \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{g}}\right)$ is injective \Leftrightarrow all nonzero invariant polynomials of P are unity.

Equivalently: $P(\lambda)$ has full column rank for all $\lambda \in \mathbb{C}$

Reprise: surjectivity and injectivity of differential operators

Recall that $P\left(\frac{d}{d t}\right): \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right) \rightarrow \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{g}}\right)$ is surjective \Leftrightarrow $P(\xi)$ has full row rank as a polynomial matrix

Recall that $P\left(\frac{d}{d t}\right): \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{W}}\right) \rightarrow \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{g}}\right)$ is injective \Leftrightarrow all nonzero invariant polynomials of P are unity.

Equivalently: $P(\lambda)$ has full column rank for all $\lambda \in \mathbb{C}$

Equivalently, P admits a left inverse on $\mathscr{C}^{\infty}(\mathbb{R})$:

$$
P=U\left[\begin{array}{c}
I_{\mathrm{m}} \\
0
\end{array}\right] V \Longrightarrow V^{-1}\left[\begin{array}{ll}
I_{\mathrm{m}} & 0
\end{array}\right] U^{-1} \text { is left inverse }
$$

Free variables

Given $\mathscr{B} \in \mathscr{L}^{\mathrm{w}}$ and $I:=\left\{i_{1}, \ldots, i_{\mathrm{k}}\right\} \subseteq\{1, \ldots, \mathrm{w}\}$, let

$$
\begin{aligned}
\Pi_{I} \mathscr{B}:=\quad & \left\{\left(\hat{w}_{i_{1}}, \ldots, \hat{w}_{i_{\mathrm{k}}}\right) \in \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{k}}\right) \mid \exists w \in \mathscr{B}\right. \\
& \text { s.t. } \left.w=\left(w_{1}, \ldots, \hat{w}_{i_{1}}, \ldots, \hat{w}_{i_{\mathrm{k}}}, \ldots, w_{\mathrm{w}}\right)\right\}
\end{aligned}
$$

projection of \mathscr{B} onto variables $w_{i_{j}}, j=1, \ldots, \mathrm{k}$

Free variables

Given $\mathscr{B} \in \mathscr{L}^{\mathrm{w}}$ and $I:=\left\{i_{1}, \ldots, i_{\mathrm{k}}\right\} \subseteq\{1, \ldots, \mathrm{w}\}$, let

$$
\begin{aligned}
\Pi_{I} \mathscr{B}:= & \left\{\left(w_{i_{1}}, \ldots, w_{i_{\mathrm{k}}}\right) \in \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{k}}\right) \mid \exists w \in \mathscr{B}\right. \\
& \text { s.t. } \left.w=\left(w_{1}, \ldots, w_{i_{1}}, \ldots, w_{i_{\mathrm{k}}}, \ldots, w_{\mathrm{w}}\right) \in \mathscr{B}\right\}
\end{aligned}
$$

projection of \mathscr{B} onto variables $w_{i_{j}}, j=1, \ldots, \mathrm{k}$
Variables $w_{i_{j}}, j=1, \ldots, \mathrm{k}$ are free if

$$
\Pi_{I} \mathscr{B}=\mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{k}}\right)
$$

Free variables

Example:

$$
p_{1}\left(\frac{d}{d t}\right) w_{1}+p_{2}\left(\frac{d}{d t}\right) w_{2}+p_{3}\left(\frac{d}{d t}\right) w_{3}=0
$$

Assume $p_{i} \neq 0, i=1,2,3$.
Let $I=\{1\}$; since $\left[p_{2}(\xi) \quad p_{3}(\xi)\right]$ is full row rank, for every $w_{1} \in \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R})$ there exist w_{2}, w_{3} satisfying equation.
w_{1} is free.

Free variables

Example:

$$
p_{1}\left(\frac{d}{d t}\right) w_{1}+p_{2}\left(\frac{d}{d t}\right) w_{2}+p_{3}\left(\frac{d}{d t}\right) w_{3}=0
$$

Assume $p_{i} \neq 0, i=1,2,3$.
Let $I=\{1\}$; since $\left[p_{2}(\xi) \quad p_{3}(\xi)\right]$ is full row rank, for every $w_{1} \in \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R})$ there exist w_{2}, w_{3} satisfying equation.
w_{1} is free.
$\left(w_{1}, w_{2}\right)$ (and $\left(w_{2}, w_{3}\right)$, and $\left.\left(w_{1}, w_{3}\right)\right)$ are also free.

Example: In $\frac{d}{d t} x=A x+B u$, the variable u is free.

Free variables

Example: In $\frac{d}{d t} x=A x+B u$, the variable u is free.

Behavior is

$$
\mathscr{B}=\operatorname{ker}\left[\begin{array}{ll}
\frac{d}{d t} I-A & -B
\end{array}\right] \leadsto R(\xi)=\left[\begin{array}{ll}
\xi I-A & -B
\end{array}\right]
$$

Free variables

Example: In $\frac{d}{d t} x=A x+B u$, the variable u is free.
Behavior is

$$
\mathscr{B}=\operatorname{ker}\left[\begin{array}{ll}
\frac{d}{d t} I-A & -B
\end{array}\right] \leadsto R(\xi)=\left[\begin{array}{ll}
\xi I-A & -B
\end{array}\right]
$$

$\xi I-A$ full row rank $\Longrightarrow \frac{d}{d t} I-A$ surjective $\Longrightarrow u$ is free

Free variables

Example: In $\frac{d}{d t} x=A x+B u$, the variable u is free.
Behavior is

$$
\mathscr{B}=\operatorname{ker}\left[\begin{array}{ll}
\frac{d}{d t} I-A & -B
\end{array}\right] \leadsto R(\xi)=\left[\begin{array}{ll}
\xi I-A & -B
\end{array}\right]
$$

$\xi I-A$ full row rank $\Longrightarrow \frac{d}{d t} I-A$ surjective $\Longrightarrow u$ is free

Let $I=\left\{i_{1}, \ldots, i_{\mathrm{k}}\right\} \subseteq\{1, \ldots, \mathrm{w}\}$. The variables $w_{i_{1}}, \ldots, w_{i_{\mathrm{k}}}$ form a maximally free set if
they are free; and
for every $I^{\prime}=\left\{i_{1}^{\prime}, \ldots, i_{\mathrm{k}}^{\prime}\right\} \subset\left\{1, \ldots\right.$, w such that $I \subset I^{\prime}$ it holds

$$
\Pi_{I^{\prime}} \mathscr{B} \subset \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\left|I^{\prime}\right|}\right)
$$

Maximally free sets

Let $I=\left\{i_{1}, \ldots, i_{\mathrm{k}}\right\} \subseteq\{1, \ldots, \mathrm{w}\}$. The variables $w_{i_{1}}, \ldots, w_{i_{\mathrm{k}}}$ form a maximally free set if
they are free; and
for every $I^{\prime}=\left\{i_{1}^{\prime}, \ldots, i_{\mathrm{k}}^{\prime}\right\} \subset\{1, \ldots, \mathrm{w}\}$ such that $I \subsetneq I^{\prime}$ it holds

$$
\Pi_{I^{\prime}} \mathscr{B} \subsetneq \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\left|I^{\prime}\right|}\right)
$$

Maximally free set: every variable in it is free, but any additional variable is not

Maximally free sets

Example:

$$
p_{1}\left(\frac{d}{d t}\right) w_{1}+p_{2}\left(\frac{d}{d t}\right) w_{2}+p_{3}\left(\frac{d}{d t}\right) w_{3}=0
$$

Assume $p_{i} \neq 0, i=1, \ldots, 3$.

Maximally free sets

Example:

$$
p_{1}\left(\frac{d}{d t}\right) w_{1}+p_{2}\left(\frac{d}{d t}\right) w_{2}+p_{3}\left(\frac{d}{d t}\right) w_{3}=0
$$

Assume $p_{i} \neq 0, i=1, \ldots, 3$.
w_{1} (and w_{2}, and w_{3}) is free, but not maximally so.

Maximally free sets

Example:

$$
p_{1}\left(\frac{d}{d t}\right) w_{1}+p_{2}\left(\frac{d}{d t}\right) w_{2}+p_{3}\left(\frac{d}{d t}\right) w_{3}=0
$$

Assume $p_{i} \neq 0, i=1, \ldots, 3$.
w_{1} (and w_{2}, and w_{3}) is free, but not maximally so.
$\left\{w_{1}, w_{2}\right\}$ (and $\left\{w_{2}, w_{3}\right\}$, and $\left\{w_{1}, w_{3}\right\}$) are maximally free.

Maximally free sets

Example:

$$
p_{1}\left(\frac{d}{d t}\right) w_{1}+p_{2}\left(\frac{d}{d t}\right) w_{2}+p_{3}\left(\frac{d}{d t}\right) w_{3}=0
$$

Assume $p_{i} \neq 0, i=1, \ldots, 3$.
w_{1} (and w_{2}, and w_{3}) is free, but not maximally so.
$\left\{w_{1}, w_{2}\right\}$ (and $\left\{w_{2}, w_{3}\right\}$, and $\left\{w_{1}, w_{3}\right\}$) are maximally free.
Maximally free sets are nonunique!

Inputs and outputs

Theorem: Let $\mathscr{B} \in \mathscr{L}^{\text {w }}$. Assume (if necessary, after permutation of the variables) w partitioned as

$$
w=\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right]
$$

with w_{1} maximally free. Then w_{1} are inputs and w_{2} outputs.

Inputs and outputs

Theorem: Let $\mathscr{B} \in \mathscr{L}^{\text {w }}$. Assume (if necessary, after permutation of the variables) w partitioned as

$$
w=\left[\begin{array}{l}
w_{1} \\
w_{2}
\end{array}\right]
$$

with w_{1} maximally free. Then w_{1} are inputs and w_{2} outputs.
Example: for $p_{1}\left(\frac{d}{d t}\right) w_{1}+p_{2}\left(\frac{d}{d t}\right) w_{2}+p_{3}\left(\frac{d}{d t}\right) w_{3}=0$ and assuming $p_{i} \neq 0$ for $i=1,2,3$, we can choose

- $\left\{w_{1}, w_{2}\right\}$ or
- $\left\{w_{2}, w_{3}\right\}$ or
- $\left\{w_{1}, w_{3}\right\}$
as inputs.

```
Remarks
```

Nonunicity of i/o partition is not an issue.

Remarks

Nonunicity of i/o partition is not an issue. Consider (linear) resistors:

$$
\mathscr{B}=\{(V, I) \mid V=R \cdot I\}
$$

Is it voltage- or current-controlled? Consider

Remarks

Nonunicity of i/o partition is not an issue.
'Causality' an issue? What about

$$
w_{1}=\frac{d}{d t} w_{2} ?
$$

Don't w_{1} and w_{2} 'happen' at the same time?

Remarks

Nonunicity of i/o partition is not an issue.
'Causality' an issue? What about

$$
w_{1}=\frac{d}{d t} w_{2} ?
$$

Don't w_{1} and w_{2} 'happen' at the same time?
'Smoothness', meaning

$$
\begin{aligned}
(u, y) \in \mathscr{B} & \text { and } \quad u k \text {-times differentiable } \\
& \Longrightarrow \quad y k \text {-times differentiable }
\end{aligned}
$$

if and only if $P^{-1} Q$ is proper. Strict properness \Leftrightarrow

$$
\begin{aligned}
(u, y) \in \mathscr{B} & \text { and } \\
& u k \text {-times differentiable } \\
& \Longrightarrow y(k+1) \text {-times differentiable }
\end{aligned}
$$

Causality in discrete-time systems

Consider a linear $\mathscr{B} \subset\left(\mathbb{R}^{\mathrm{w}_{1}+\mathrm{w}_{2}}\right)^{\mathbb{Z}}$. Let $\mathscr{B}_{1}=\Pi_{\mathrm{w}_{1}} \mathscr{B}$.
w_{2} does not anticipate $w_{1} \Leftrightarrow$

$$
w_{1} \in \mathscr{B}_{1} \quad \text { and } \quad w_{1 \mid \mathbb{Z}_{-}}=0
$$

$\Longrightarrow \quad$ exists w_{2}^{\prime} s.t. $w_{2 \mid \mathbb{Z}_{-}}=0$ and $\left(w_{1}, w_{2}\right) \in \mathscr{B}$

Causality in discrete-time systems

Consider a linear $\mathscr{B} \subset\left(\mathbb{R}^{\mathrm{w}_{1}+\mathrm{w}_{2}}\right)^{\mathbb{Z}}$. Let $\mathscr{B}_{1}=\Pi_{\mathrm{w}_{1}} \mathscr{B}$.
w_{2} does not anticipate $w_{1} \Leftrightarrow$

$$
\begin{array}{rll}
w_{1} \in \mathscr{B}_{1} & \text { and } & w_{1 \mid \mathbb{Z}_{-}}=0 \\
& \Longrightarrow \quad \text { exists } w_{2}^{\prime} \text { s.t. } w_{2 \mid \mathbb{Z}_{-}}=0 \text { and }\left(w_{1}, w_{2}\right) \in \mathscr{B}
\end{array}
$$

Theorem: Assume w_{2} is output and w_{1} is input, and let

$$
P(\sigma) w_{2}=Q(\sigma) w_{1}
$$

be an i/o representation of \mathscr{B}. Then w_{2} does not anticipate w_{1} $\Leftrightarrow P^{-1} Q$ is proper.

Input-output representations

Input-output representations

Theorem: Consider

$$
\mathscr{B}=\left\{(u, y) \left\lvert\, P\left(\frac{d}{d t}\right) y=Q\left(\frac{d}{d t}\right) u\right.\right\}
$$

with P square and nonsingular. Then y is output and u is input.

Input-output representations

Theorem: Consider

$$
\mathscr{B}=\left\{(u, y) \left\lvert\, P\left(\frac{d}{d t}\right) y=Q\left(\frac{d}{d t}\right) u\right.\right\}
$$

with P square and nonsingular. Then y is output and u is input.

Surjectivity of $P\left(\frac{d}{d t}\right) \Longrightarrow u$ is free.

Input-output representations

Theorem: Consider

$$
\mathscr{B}=\left\{(u, y) \left\lvert\, P\left(\frac{d}{d t}\right) y=Q\left(\frac{d}{d t}\right) u\right.\right\}
$$

with P square and nonsingular. Then y is output and u is input.

Surjectivity of $P\left(\frac{d}{d t}\right) \Longrightarrow u$ is free.
u maximally free: add one component of y to those of u, resulting set satisfies differential equation \Longrightarrow it is not free.

Input-output representations

Theorem: Let $\mathscr{B} \in \mathscr{L}^{w}$. There exists (possibly after permuting components) a partition of $w=(u, y)$ and $P \in \mathbb{R}^{\mathrm{y} \times \mathrm{y}}[\xi]$ nonsingular, $Q \in \mathbb{R}^{\mathrm{y} \times \mathrm{u}}[\xi]$ such that

$$
\mathscr{B}=\left\{(u, y) \left\lvert\, P\left(\frac{d}{d t}\right) y=Q\left(\frac{d}{d t}\right) u\right.\right\}
$$

The partition can be chosen so that $P^{-1} Q$ is proper.

Input-output representations

Theorem: Let $\mathscr{B} \in \mathscr{L}^{w}$. There exists (possibly after permuting components) a partition of $w=(u, y)$ and $P \in \mathbb{R}^{\mathrm{y} \times \mathrm{y}}[\xi]$ nonsingular, $Q \in \mathbb{R}^{\mathrm{y} \times \mathrm{u}}[\xi]$ such that

$$
\mathscr{B}=\left\{(u, y) \left\lvert\, P\left(\frac{d}{d t}\right) y=Q\left(\frac{d}{d t}\right) u\right.\right\}
$$

The partition can be chosen so that $P^{-1} Q$ is proper.
Proof: Use minimal kernel representation $\mathscr{B}=\operatorname{ker} R\left(\frac{d}{d t}\right)$. R of full row rank \Longrightarrow exists nonsingular submatrix P.
For $P^{-1} Q$ proper, select P to be a maximal determinantal degree (nonsingular) submatrix of R.

Example

¿What is an 'input', and what an 'output' in this case?

Example

¿What is an 'input', and what an 'output' in this case?

Any selection of a 2×2 nonsingular submatrix of R yields output variables- the rest is inputs

Example

¿What is an 'input', and what an 'output' in this case?
Any selection of a 2×2 nonsingular submatrix of R yields output variables- the rest is inputs

$$
R(\xi)=\left[\begin{array}{ccc}
m_{1} \xi^{2}+c_{1} \xi+k_{1} & -c_{1} \xi-k_{1} & -1 \\
-c_{1} \xi-k_{1} & m_{2} \xi^{2}+\left(c_{1}+c_{2}\right) \xi+k_{1}+k_{2} & 0
\end{array}\right]
$$

Example

¿What is an 'input', and what an 'output' in this case?

Any selection of a 2×2 nonsingular submatrix of R yields output variables- the rest is inputs

$$
R(\xi)=\left[\begin{array}{ccc}
m_{1} \xi^{2}+c_{1} \xi+k_{1} & -c_{1} \xi-k_{1} & -1 \\
-c_{1} \xi-k_{1} & m_{2} \xi^{2}+\left(c_{1}+c_{2}\right) \xi+k_{1}+k_{2} & 0
\end{array}\right]
$$

w_{1} and w_{2} outputs, F input; $P^{-1} Q$ strictly proper

Example

¿What is an 'input', and what an 'output' in this case?
Any selection of a 2×2 nonsingular submatrix of R yields output variables- the rest is inputs

$$
R(\xi)=\left[\begin{array}{ccc}
m_{1} \xi^{2}+c_{1} \xi+k_{1} & -c_{1} \xi-k_{1} & -1 \\
-c_{1} \xi-k_{1} & m_{2} \xi^{2}+\left(c_{1}+c_{2}\right) \xi+k_{1}+k_{2} & 0
\end{array}\right]
$$

w_{1} and F outputs, w_{2} input; $P^{-1} Q$ not proper

Example

¿What is an 'input', and what an 'output' in this case?

Any selection of a 2×2 nonsingular submatrix of R yields output variables- the rest is inputs

$$
R(\xi)=\left[\begin{array}{ccc}
m_{1} \xi^{2}+c_{1} \xi+k_{1} & -c_{1} \xi-k_{1} & -1 \\
-c_{1} \xi-k_{1} & m_{2} \xi^{2}+\left(c_{1}+c_{2}\right) \xi+k_{1}+k_{2} & 0
\end{array}\right]
$$

w_{2} and F outputs, w_{1} input; $P^{-1} Q$ proper

```
Remarks
```

Notion of transfer function, dependent on input/output partition;

```
Remarks
```

> Notion of transfer function, dependent on input/output partition;

Number of outputs fixed, output cardinality $\mathrm{p}(\mathscr{B})$;

Remarks

Notion of transfer function, dependent on input/output partition;

Number of outputs fixed, output cardinality $\mathrm{p}(\mathscr{B})$;
$\mathrm{p}(\mathscr{B})$ equals $\operatorname{rank}(R)$ for every R such that $\operatorname{ker} R\left(\frac{d}{d t}\right)=\mathscr{B}$;

Notion of transfer function, dependent on input/output partition;

Number of outputs fixed, output cardinality $\mathrm{p}(\mathscr{B})$;
$\mathrm{p}(\mathscr{B})$ equals $\operatorname{rank}(R)$ for every R such that ker $R\left(\frac{d}{d t}\right)=\mathscr{B}$;

Number of inputs fixed, input cardinality $\mathrm{m}(\mathscr{B})$;

Remarks

Notion of transfer function, dependent on input/output partition;

Number of outputs fixed, output cardinality $\mathrm{p}(\mathscr{B})$;
$\mathrm{p}(\mathscr{B})$ equals $\operatorname{rank}(R)$ for every R such that ker $R\left(\frac{d}{d t}\right)=\mathscr{B}$;

Number of inputs fixed, input cardinality $\mathrm{m}(\mathscr{B})$;
$\mathrm{m}(\mathscr{B})$ equals $\mathrm{w}(\mathscr{B})-\operatorname{rank}(R)$ for every R such that ker $R\left(\frac{d}{d t}\right)=\mathscr{B}$.

Remarks

Notion of transfer function, dependent on input/output partition;

Number of outputs fixed, output cardinality $\mathrm{p}(\mathscr{B})$;
$\mathrm{p}(\mathscr{B})$ equals $\operatorname{rank}(R)$ for every R such that ker $R\left(\frac{d}{d t}\right)=\mathscr{B}$;

Number of inputs fixed, input cardinality $\mathrm{m}(\mathscr{B})$;
$\mathrm{m}(\mathscr{B})$ equals $\mathrm{w}(\mathscr{B})-\operatorname{rank}(R)$ for every R such that ker $R\left(\frac{d}{d t}\right)=\mathscr{B}$.

In discrete-time case, there always exists a causal input-output partition!

Autonomous behaviors

```
No inputs: autonomous systems
```

Recall that \mathscr{B} is autonomous if

$$
\begin{array}{rll}
w_{1}, w_{2} \in \mathscr{B} & \text { and } & \left.w_{1}\right|_{(-\infty, 0]}=\left.w_{2}\right|_{(-\infty, 0]} \\
& \Longrightarrow & w_{1}=w_{2}
\end{array}
$$

Recall that \mathscr{B} is autonomous if

$$
\begin{array}{rll}
w_{1}, w_{2} \in \mathscr{B} & \text { and } & \left.w_{1}\right|_{(-\infty, 0]}=\left.w_{2}\right|_{(-\infty, 0]} \\
& \Longrightarrow & w_{1}=w_{2}
\end{array}
$$

Equivalent with

$\mathrm{m}(\mathscr{B})=0$ (no inputs);
there exists $R \in \mathbb{R}^{\mathrm{w} \times \mathrm{w}}[\xi]$ nonsingular such that
$\mathscr{B}=\operatorname{ker} R\left(\frac{d}{d t}\right)$

Example: a mechanical system

$$
m_{c_{1}}^{m_{1}}
$$

Example: a mechanical system

Classical mechanics:

 motion depends only on 'initial conditions'
Example: a mechanical system

$$
m_{c_{1}}^{m_{1}}
$$

$$
R(\xi)=\left[\begin{array}{cc}
m_{1} \xi^{2}+c_{1} \xi+k_{1} & -c_{1} \xi-k_{1} \\
-c_{1} \xi-k_{1} & m_{2} \xi^{2}+\left(c_{1}+c_{2}\right) \xi+k_{1}+k_{2}
\end{array}\right]
$$

R nonsingular \sim autonomous system

Example: state-space systems

Let (A, C) observable and consider

$$
\mathscr{B}:=\left\{y \in \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{y}}\right) \mid \exists x \text { s.t. } \frac{d}{d t} x=A x, y=C x\right\}
$$

Example: state-space systems

Let (A, C) observable and consider

$$
\mathscr{B}:=\left\{y \in \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{y}}\right) \mid \exists x \text { s.t. } \frac{d}{d t} x=A x, y=C x\right\}
$$

\mathscr{B} is autonomous: there are no free variables in y.

For autonomous $\mathscr{B}, \operatorname{det}(R)$ is invariant for all R such that $\mathscr{B}=\operatorname{ker} R\left(\frac{d}{d t}\right)$.

Remarks

For autonomous $\mathscr{B}, \operatorname{det}(R)$ is invariant for all R such that $\mathscr{B}=\operatorname{ker} R\left(\frac{d}{d t}\right)$.

Theorem: Let $\mathscr{B} \in \mathscr{L}^{\text {w }}$ be autonomous. Then \mathscr{B} is a finite-dimensional subspace of $\mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right)$.

For autonomous $\mathscr{B}, \operatorname{det}(R)$ is invariant for all R such that $\mathscr{B}=\operatorname{ker} R\left(\frac{d}{d t}\right)$.

Theorem: Let $\mathscr{B} \in \mathscr{L}^{\mathrm{w}}$ be autonomous. Then \mathscr{B} is a finite-dimensional subspace of $\mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{W}\right)$.
Proof: Take R s.t. $\mathscr{B}=\operatorname{ker} R\left(\frac{d}{d t}\right)$, w.l.o.g. minimal. Compute Smith form $R=U \Delta V$:

$$
R\left(\frac{d}{d t}\right) w=0 \Longleftrightarrow \Delta\left(\frac{d}{d t}\right) \underbrace{V\left(\frac{d}{d t}\right) w}_{=: w^{\prime}}=0
$$

For autonomous $\mathscr{B}, \operatorname{det}(R)$ is invariant for all R such that $\mathscr{B}=\operatorname{ker} R\left(\frac{d}{d t}\right)$.

Theorem: Let $\mathscr{B} \in \mathscr{L}^{\text {w }}$ be autonomous. Then \mathscr{B} is a finite-dimensional subspace of $\mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{W}\right)$.
Proof: Now $\Delta\left(\frac{d}{d t}\right) \underbrace{V\left(\frac{d}{d t}\right) w}_{=: w^{\prime}}=0$ implies

$$
w^{\prime}=\operatorname{col}\left(w_{i}^{\prime}\right)_{i=1, \ldots, \mathrm{~W}} \in \operatorname{ker} \Delta\left(\frac{d}{d t}\right) \Leftrightarrow w_{i}^{\prime} \in \operatorname{ker} \delta_{i}\left(\frac{d}{d t}\right)
$$

with δ_{i} the i-th invariant polynomial. Scalar case.

For autonomous $\mathscr{B}, \operatorname{det}(R)$ is invariant for all R such that $\mathscr{B}=\operatorname{ker} R\left(\frac{d}{d t}\right)$.

Theorem: Let $\mathscr{B} \in \mathscr{L}^{\mathrm{w}}$ be autonomous. Then \mathscr{B} is a finite-dimensional subspace of $\mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{W}\right)$.

Proof: Now $\Delta\left(\frac{d}{d t}\right) \underbrace{V\left(\frac{d}{d t}\right) w}_{=: w^{\prime}}=0$ implies

$$
w^{\prime}=\operatorname{col}\left(w_{i}^{\prime}\right)_{i=1, \ldots, \mathrm{w}} \in \operatorname{ker} \Delta\left(\frac{d}{d t}\right) \Leftrightarrow w_{i}^{\prime} \in \operatorname{ker} \delta_{i}\left(\frac{d}{d t}\right)
$$

with δ_{i} the i-th invariant polynomial. Scalar case. Set of solutions of linear differential equation is finite-dimensional. Also w is!

On autonomous system trajectories

Scalar case:

$$
p\left(\frac{d}{d t}\right) w=0 \Longleftrightarrow w(t)=\sum_{i=1}^{n} \sum_{j=0}^{n_{i}} \alpha_{i j} t^{j} e^{\lambda_{i} t}
$$

where

- n is number of distinct roots of $p(\xi)$;
- $\quad \lambda_{i}$ is i-th root of $p(\xi)$;
n_{i} multiplicity of $\lambda_{i} ;$
$\alpha_{i j} \in \mathbb{C}$.

On autonomous system trajectories

Scalar case:

$$
p\left(\frac{d}{d t}\right) w=0 \Longleftrightarrow w(t)=\sum_{i=1}^{n} \sum_{j=0}^{n_{i}} \alpha_{i j} t^{j} e^{\lambda_{i} t}
$$

where

- n is number of distinct roots of $p(\xi)$;
- $\quad \lambda_{i}$ is i-th root of $p(\xi)$;
n_{i} multiplicity of λ_{i};
$\alpha_{i j} \in \mathbb{C}$.

On autonomous system trajectories

Scalar case:

$$
p\left(\frac{d}{d t}\right) w=0 \Longleftrightarrow w(t)=\sum_{i=1}^{n} \sum_{j=0}^{n_{i}} \alpha_{i j} t^{j} e^{\lambda_{i} t}
$$

where

- n is number of distinct roots of $p(\xi)$;
- $\quad \lambda_{i}$ is i-th root of $p(\xi)$;
n_{i} multiplicity of $\lambda_{i} ;$
$\alpha_{i j} \in \mathbb{C}$.

On autonomous system trajectories

Scalar case:

$$
p\left(\frac{d}{d t}\right) w=0 \Longleftrightarrow w(t)=\sum_{i=1}^{n} \sum_{j=0}^{n_{i}} \alpha_{i j} t^{j} e^{\lambda_{i} t}
$$

where

- n is number of distinct roots of $p(\xi)$;
- $\quad \lambda_{i}$ is i-th root of $p(\xi)$;
- n_{i} multiplicity of λ_{i};
$\alpha_{i j} \in \mathbb{C}$.

On autonomous system trajectories

Scalar case:

$$
p\left(\frac{d}{d t}\right) w=0 \Longleftrightarrow w(t)=\sum_{i=1}^{n} \sum_{j=0}^{n_{i}} \alpha_{i j} t^{j} e^{\lambda_{i} t}
$$

where

- n is number of distinct roots of $p(\xi)$;
- $\quad \lambda_{i}$ is i-th root of $p(\xi)$;
n_{i} multiplicity of λ_{i};

$$
\alpha_{i j} \in \mathbb{C}
$$

On autonomous system trajectories

Scalar case:

$$
p\left(\frac{d}{d t}\right) w=0 \Longleftrightarrow w(t)=\sum_{i=1}^{n} \sum_{j=0}^{n_{i}} \alpha_{i j} t^{j} e^{\lambda_{i} t}
$$

where

- n is number of distinct roots of $p(\xi)$;
- $\quad \lambda_{i}$ is i-th root of $p(\xi)$;
- n_{i} multiplicity of λ_{i};
- $\quad \alpha_{i j} \in \mathbb{C}$.
λ_{i} are the characteristic frequencies of p.

On autonomous system trajectories

For $\mathrm{w}>1$, resort to Smith form $R=U \Delta V$:

$$
R\left(\frac{d}{d t}\right) w=0 \Longleftrightarrow \Delta\left(\frac{d}{d t}\right) \underbrace{V\left(\frac{d}{d t}\right) w}_{=: w^{\prime}}=0
$$

On autonomous system trajectories

For $\mathrm{w}>1$, resort to Smith form $R=U \Delta V$:

$$
R\left(\frac{d}{d t}\right) w=0 \Longleftrightarrow \Delta\left(\frac{d}{d t}\right) \underbrace{V\left(\frac{d}{d t}\right) w}_{=: w^{\prime}}=0
$$

$$
w^{\prime}=\operatorname{col}\left(w_{i}^{\prime}\right)_{i=1, \ldots, \mathrm{w}} \in \operatorname{ker} \Delta\left(\frac{d}{d t}\right) \Leftrightarrow w_{i}^{\prime} \in \operatorname{ker} \delta_{i}\left(\frac{d}{d t}\right)
$$

with δ_{i} the i-th invariant polynomial. Scalar case!

On autonomous system trajectories

For $\mathrm{w}>1$, resort to Smith form $R=U \Delta V$:

$$
\begin{gathered}
R\left(\frac{d}{d t}\right) w=0 \Longleftrightarrow \Delta\left(\frac{d}{d t}\right) \underbrace{V\left(\frac{d}{d t}\right) w}_{=: w^{\prime}}=0 \\
w^{\prime}=\operatorname{col}\left(w_{i}^{\prime}\right)_{i=1, \ldots, \mathrm{w}} \in \operatorname{ker} \Delta\left(\frac{d}{d t}\right) \Leftrightarrow w_{i}^{\prime} \in \operatorname{ker} \delta_{i}\left(\frac{d}{d t}\right)
\end{gathered}
$$

with δ_{i} the i-th invariant polynomial. Scalar case!
Assume for simplicity all roots of $\operatorname{det}(R)$ are simple:

$$
w=V\left(\frac{d}{d t}\right)^{-1} w^{\prime} \Longleftrightarrow w(t)=\sum_{i=1}^{n} \alpha_{i} e^{\lambda_{i} t}
$$

with $\alpha_{i} \in \mathbb{C}^{\mathrm{W}}$ such that $R\left(\lambda_{i}\right) \alpha_{i}=0, i=1, \ldots, n$.

Remarks

Linear combinations of polynomial exponential vector trajectories

$$
\sum_{i=1}^{n} \sum_{j=0}^{n_{i}} \alpha_{i j} t^{j} e^{\lambda_{i} t}
$$

with $\alpha_{i j} \in \mathbb{C}^{\mathrm{w}}$.

Remarks

Linear combinations of polynomial exponential vector trajectories

$$
\sum_{i=1}^{n} \sum_{j=0}^{n_{i}} \alpha_{i j} t^{j} e^{\lambda_{i} t}
$$

with $\alpha_{i j} \in \mathbb{C}^{\mathrm{w}}$.

Characteristic frequencies λ_{i} are roots of $\operatorname{det}(R)$. Together with corresponding multiplicities, they determine \mathscr{B} uniquely.
$\mathscr{B} \in \mathscr{L}^{\mathrm{w}}$ is asymptotically stable \Leftrightarrow

$$
w \in \mathscr{B} \Longrightarrow \lim _{t} \rightarrow \infty w(t)=0
$$

Note: asymptotic stability implies autonomy.

Stability

$\mathscr{B} \in \mathscr{L}^{\mathrm{w}}$ is asymptotically stable \Leftrightarrow

$$
w \in \mathscr{B} \Longrightarrow \lim _{t} \rightarrow \infty w(t)=0
$$

Note: asymptotic stability implies autonomy.
Theorem: $\mathscr{B}=\operatorname{ker} R\left(\frac{d}{d t}\right)$ is asymptotically stable $\Leftrightarrow \boldsymbol{\operatorname { r a n k }}(R(\lambda))=\mathrm{w}(\mathscr{B})$ for all $\lambda \in \mathbb{C}$ s.t. $\operatorname{Re}(\lambda) \geq 0$.
$\mathscr{B} \in \mathscr{L}^{W}$ is stable \Leftrightarrow

$$
w \in \mathscr{B} \Longrightarrow w_{\mathbb{R}_{+}} \text {is bounded. }
$$

Note: stability implies autonomy.
Theorem: $\mathscr{B}=\operatorname{ker} R\left(\frac{d}{d t}\right)$ is stable \Leftrightarrow

1. $\boldsymbol{\operatorname { r a n k }}(R(\lambda))=\mathrm{w}(\mathscr{B})$ for all $\lambda \in \mathbb{C}$ s.t. $\operatorname{Re}(\lambda)>0$;
2. For all $\omega \in \mathbb{R}, w(\mathscr{B})-\operatorname{rank}(R(i \omega))$ equals the multiplicity of $i \omega$ as a root of $\operatorname{det}(R)$.

Stability

$\mathscr{B} \in \mathscr{L}^{W}$ is stable \Leftrightarrow

$$
w \in \mathscr{B} \Longrightarrow w_{\mathbb{R}_{+}} \text {is bounded. }
$$

Note: stability implies autonomy.

$$
\begin{aligned}
& \text { Theorem: } \mathscr{B}=\operatorname{ker} R\left(\frac{d}{d t}\right) \text { is stable } \Leftrightarrow \\
& \text { 1. } \operatorname{rank}(R(\lambda))=w(\mathscr{B}) \text { for all } \lambda \in \mathbb{C} \text { s.t. } \operatorname{Re}(\lambda)>0 \text {; } \\
& \text { 2. For all } \omega \in \mathbb{R}, w(\mathscr{B})-\operatorname{rank}(R(i \omega)) \text { equals the } \\
& \text { multiplicity of } i \omega \text { as a root of } \operatorname{det}(R) \text {. }
\end{aligned}
$$

Stability=roots in closed left half-plane, and semisimplicity.

End of Part I

Controllability

Controllability

\mathscr{B} controllable \Leftrightarrow for all $w_{1}, w_{2} \in \mathscr{B}$ there exists $w \in \mathscr{B}$ and $T \geq 0$ such that

$$
w(t)=\left\{\begin{array}{lll}
w_{1}(t) & \text { for } & t<0 \\
w_{2}(t) & \text { for } & t \geq T
\end{array}\right.
$$

Controllability

\mathscr{B} controllable \Leftrightarrow for all $w_{1}, w_{2} \in \mathscr{B}$ there exists $w \in \mathscr{B}$ and $T \geq 0$ such that

$$
w(t)=\left\{\begin{array}{lll}
w_{1}(t) & \text { for } & t<0 \\
w_{2}(t) & \text { for } \quad t \geq T
\end{array}\right.
$$

Controllability

\mathscr{B} controllable \Leftrightarrow for all $w_{1}, w_{2} \in \mathscr{B}$ there exists $w \in \mathscr{B}$ and $T \geq 0$ such that

$$
w(t)=\left\{\begin{array}{lll}
w_{1}(t) & \text { for } & t<0 \\
w_{2}(t) & \text { for } & t \geq T
\end{array}\right.
$$

Controllability

\mathscr{B} controllable \Leftrightarrow for all $w_{1}, w_{2} \in \mathscr{B}$ there exists $w \in \mathscr{B}$ and $T \geq 0$ such that

$$
w(t)=\left\{\begin{array}{lll}
w_{1}(t) & \text { for } & t<0 \\
w_{2}(t) & \text { for } & t \geq T
\end{array}\right.
$$

Past of any trajectory can be "patched up" with future of any trajectory

Examples

$$
r\left(\frac{d}{d t}\right) w=0
$$

where $0 \neq r \in \mathbb{R}[\xi]$ has degree n.
System autonomous: every solution uniquely determined by 'initial conditions' $\frac{d^{i} w}{d t^{i}}(t), i=0, \ldots, n-1$, so no patching possible among $d \Leftrightarrow$ erent trajectories.

Past of trajectory uniquely determines its future.

```
Examples
```

Classical state-space system

$$
\begin{aligned}
\frac{d}{d t} x & =A x+B u \\
y & =C x+D u
\end{aligned}
$$

Classical state-space system

$$
\begin{gathered}
\frac{d}{d t} x=A x+B u \\
y=C x+D u \\
\mathscr{B}_{s}:=\left\{(u, y, x) \mid \text { s.t. } \frac{d}{d t} x=A x+B u, y=C x+D u\right\} \\
\mathscr{B}:=\left\{(u, y) \mid \exists x \text { s.t. } \frac{d}{d t} x=A x+B u, y=C x+D u\right\} \\
\mathscr{B}_{x}:=\left\{x \mid \exists(u, y) \text { s.t. } \frac{d}{d t} x=A x+B u, y=C x+D u\right\}
\end{gathered}
$$

Examples

Classical state-space system

$$
\begin{gathered}
\frac{d}{d t} x=A x+B u \\
y=C x+D u \\
\mathscr{B}_{s}:=\left\{(u, y, x) \mid \text { s.t. } \frac{d}{d t} x=A x+B u, y=C x+D u\right\} \\
\mathscr{B}:=\left\{(u, y) \mid \exists x \text { s.t. } \frac{d}{d t} x=A x+B u, y=C x+D u\right\} \\
\mathscr{B}_{x}:=\left\{x \mid \exists(u, y) \text { s.t. } \frac{d}{d t} x=A x+B u, y=C x+D u\right\}
\end{gathered}
$$

\mathscr{B}_{s} controllable $\Leftrightarrow \mathscr{B}_{x}$ controllable $\Longrightarrow \mathscr{B}$ controllable.

Examples

Classical state-space system

$$
\begin{gathered}
\frac{d}{d t} x=A x+B u \\
y=C x+D u \\
\mathscr{B}_{s}:=\left\{(u, y, x) \mid \text { s.t. } \frac{d}{d t} x=A x+B u, y=C x+D u\right\} \\
\mathscr{B}:=\left\{(u, y) \mid \exists x \text { s.t. } \frac{d}{d t} x=A x+B u, y=C x+D u\right\} \\
\mathscr{B}_{x}:=\left\{x \mid \exists(u, y) \text { s.t. } \frac{d}{d t} x=A x+B u, y=C x+D u\right\}
\end{gathered}
$$

\mathscr{B}_{s} controllable $\Leftrightarrow \mathscr{B}_{x}$ controllable $\Longrightarrow \mathscr{B}$ controllable. If x minimal, then \mathscr{B} controllable $\Longrightarrow \mathscr{B}_{s}$ controllable.

Examples

Classical state-space system

$$
\begin{aligned}
\frac{d}{d t} x & =A x+B u \\
y & =C x+D u
\end{aligned}
$$

'State point-controllability": for all $x_{1}, x_{2} \in \mathbb{R}^{\mathrm{n}} \exists x \in \mathscr{B}_{x}$ and $T \geq 0$ s.t. $x(0)=x_{0}$ and $x(T)=x_{1}$.

Examples

Classical state-space system

$$
\begin{aligned}
\frac{d}{d t} x & =A x+B u \\
y & =C x+D u
\end{aligned}
$$

"State point-controllability": for all $x_{1}, x_{2} \in \mathbb{R}^{\mathrm{n}} \exists x \in \mathscr{B}_{x}$ and $T \geq 0$ s.t. $x(0)=x_{0}$ and $x(T)=x_{1}$.

If x minimal, then \mathscr{B} controllable $\Leftrightarrow \mathscr{B}_{s}$ controllable $\Longleftrightarrow \mathscr{B}_{s}$ state point-controllable.

Theorem: $\mathscr{B}=\operatorname{ker} R\left(\frac{d}{d t}\right)$ is controllable \Leftrightarrow
$\operatorname{rank}(R(\lambda))$ is constant for all $\lambda \in \mathbb{C}$

Theorem: $\mathscr{B}=\operatorname{ker} R\left(\frac{d}{d t}\right)$ is controllable $\operatorname{rank}(R(\lambda))$ is constant for all $\lambda \in \mathbb{C}$

Proof: Compute Smith form

$$
R=U\left[\begin{array}{ll}
\Delta & 0 \\
0 & 0
\end{array}\right] V \in \mathbb{R}^{\mathrm{p} \times \mathrm{w}}[\xi]
$$

$U\left(\frac{d}{d t}\right), V\left(\frac{d}{d t}\right)$ bijective $\Longrightarrow \operatorname{ker} R\left(\frac{d}{d t}\right)$ controllable \Leftrightarrow ker $\Delta\left(\frac{d}{d t}\right)$ is.

Algebraic characterization of controllability

Theorem: $\mathscr{B}=\operatorname{ker} R\left(\frac{d}{d t}\right)$ is controllable $\operatorname{rank}(R(\lambda))$ is constant for all $\lambda \in \mathbb{C}$

Proof: Compute Smith form

$$
R=U\left[\begin{array}{cc}
\Delta & 0 \\
0 & 0
\end{array}\right] V \in \mathbb{R}^{\mathrm{p} \times \mathrm{w}}[\xi]
$$

$U\left(\frac{d}{d t}\right), V\left(\frac{d}{d t}\right)$ bijective $\Longrightarrow \operatorname{ker} R\left(\frac{d}{d t}\right)$ controllable \Leftrightarrow ker $\Delta\left(\frac{d}{d t}\right)$ is.
Change variables $w \leadsto w^{\prime}:=V\left(\frac{d}{d t}\right) w$, define $\mathscr{B}^{\prime}:=V\left(\frac{d}{d t}\right) \mathscr{B}=\operatorname{ker} \Delta\left(\frac{d}{d t}\right)$.

Algebraic characterization of controllability

Theorem: $\mathscr{B}=\operatorname{ker} R\left(\frac{d}{d t}\right)$ is controllable
$\operatorname{rank}(R(\lambda))$ is constant for all $\lambda \in \mathbb{C}$
Proof: Last $\mathrm{p}-\boldsymbol{\operatorname { r a n k }}(R)$ trajectories of $\mathscr{B}^{\prime}=\operatorname{ker} \Delta\left(\frac{d}{d t}\right)$ are free, since equations are $0 \cdot w_{i}^{\prime}=0$.
First $\operatorname{rank}(R)$ equations are

$$
\delta_{i}\left(\frac{d}{d t}\right) w_{i}^{\prime}=0
$$

with $\delta_{i} i$-th invariant polynomial of R.
Evidently, w_{i}^{\prime} controllable if and only if $\delta_{i}=1$.

Case 1: $C R_{C} \neq \frac{L}{R_{L}}$

$$
\begin{aligned}
\left(\frac{R_{C}}{R_{L}}\right. & \left.+\left(1+\frac{R_{C}}{R_{L}}\right) C R_{C} \frac{d}{d t}+C R_{C} \frac{L}{R_{L}} \frac{d^{2}}{d t^{2}}\right) V \\
& =\left(1+C R_{C} \frac{d}{d t}\right)\left(1+\frac{L}{R_{L}} \frac{d}{d t}\right) R_{C} I
\end{aligned}
$$

Example

Case 1: $C R_{C} \neq \frac{L}{R_{L}}$

$$
\begin{aligned}
\left(\frac{R_{C}}{R_{L}}\right. & \left.+\left(1+\frac{R_{C}}{R_{L}}\right) C R_{C} \frac{d}{d t}+C R_{C} \frac{L}{R_{L}} \frac{d^{2}}{d t^{2}}\right) V \\
& =\left(1+C R_{C} \frac{d}{d t}\right)\left(1+\frac{L}{R_{L}} \frac{d}{d t}\right) R_{C} I
\end{aligned}
$$

¿Is system controllable?

Example

Case 1: $C R_{C} \neq \frac{L}{R_{L}}$

$$
\begin{aligned}
\left(\frac{R_{C}}{R_{L}}\right. & \left.+\left(1+\frac{R_{C}}{R_{L}}\right) C R_{C} \frac{d}{d t}+C R_{C} \frac{L}{R_{L}} \frac{d^{2}}{d t^{2}}\right) V \\
& =\left(1+C R_{C} \frac{d}{d t}\right)\left(1+\frac{L}{R_{L}} \frac{d}{d t}\right) R_{C} I
\end{aligned}
$$

$\left[\left(\frac{R_{C}}{R_{L}}+\left(1+\frac{R_{C}}{R_{L}}\right) C R_{C} \xi+C R_{C} \frac{L}{R_{L}} \xi^{2}\right)-\left(1+C R_{C} \xi\right)\left(1+\frac{L}{R_{L}} \xi\right) R_{C}\right]$
Are there common roots among the two polynomials?

Example

Case 1: $C R_{C} \neq \frac{L}{R_{L}}$

$$
\begin{aligned}
\left(\frac{R_{C}}{R_{L}}\right. & \left.+\left(1+\frac{R_{C}}{R_{L}}\right) C R_{C} \frac{d}{d t}+C R_{C} \frac{L}{R_{L}} \frac{d^{2}}{d t^{2}}\right) V \\
& =\left(1+C R_{C} \frac{d}{d t}\right)\left(1+\frac{L}{R_{L}} \frac{d}{d t}\right) R_{C} I
\end{aligned}
$$

$\left[\left(\frac{R_{C}}{R_{L}}+\left(1+\frac{R_{C}}{R_{L}}\right) C R_{C} \xi+C R_{C} \frac{L}{R_{L}} \xi^{2}\right)-\left(1+C R_{C} \xi\right)\left(1+\frac{L}{R_{L}} \xi\right) R_{C}\right]$
Are there common roots among the two polynomials?
No \Longrightarrow system is controllable

Example

Case 2: $C R_{C}=\frac{L}{R_{L}}$

$$
\left(\frac{R_{C}}{R_{L}}+C R_{C} \frac{d}{d t}\right) V=\left(1+C R_{C} \frac{d}{d t}\right) R_{C} I
$$

Example

Case 2: $C R_{C}=\frac{L}{R_{L}}$

$$
\left(\frac{R_{C}}{R_{L}}+C R_{C} \frac{d}{d t}\right) V=\left(1+C R_{C} \frac{d}{d t}\right) R_{C} I
$$

¿Is system controllable?

Example

Case 2: $C R_{C}=\frac{L}{R_{L}}$

$$
\left(\frac{R_{C}}{R_{L}}+C R_{C} \frac{d}{d t}\right) V=\left(1+C R_{C} \frac{d}{d t}\right) R_{C} I
$$

¿Is system controllable?

$$
\left[\begin{array}{ll}
\frac{R_{C}}{R_{L}}+C R_{C} \xi & -\left(1+C R_{C} \xi\right) R_{C}
\end{array}\right]
$$

Are there common roots among the two polynomials?

Example

Case 2: $C R_{C}=\frac{L}{R_{L}}$

$$
\left(\frac{R_{C}}{R_{L}}+C R_{C} \frac{d}{d t}\right) V=\left(1+C R_{C} \frac{d}{d t}\right) R_{C} I
$$

¿Is system controllable?
If $R_{C}=R_{L} \Longrightarrow$ system is not controllable

Remarks

$\mathscr{B}=\operatorname{ker} R\left(\frac{d}{d t}\right)$, with $R \in \mathbb{R}^{\mathrm{w} \times \mathrm{w}}[\xi]$ nonsingular, is controllable $\Longleftrightarrow R$ is unimodular $\Longleftrightarrow \mathscr{B}=\{0\}$

Remarks

$\mathscr{B}=\operatorname{ker} R\left(\frac{d}{d t}\right)$, with $R \in \mathbb{R}^{\mathrm{w} \times \mathrm{W}}[\xi]$ nonsingular, is controllable $\Longleftrightarrow R$ is unimodular $\Longleftrightarrow \mathscr{B}=\{0\}$

Rank constancy test generalization of 'Hautus test' for state-space systems.

Remarks

$\mathscr{B}=\operatorname{ker} R\left(\frac{d}{d t}\right)$, with $R \in \mathbb{R}^{w \times{ }^{W}}[\xi]$ nonsingular, is controllable $\Longleftrightarrow R$ is unimodular $\Longleftrightarrow \mathscr{B}=\{0\}$

Rank constancy test generalization of 'Hautus test' for state-space systems.

Trajectory-, not representation -based definition as in state-space framework.

Image representations

Image representations and controllability

Theorem: There exists $M \in \mathbb{R}^{w \times \bullet}[\xi]$ such that $\mathscr{B}=\operatorname{im} M\left(\frac{d}{d t}\right) \Leftrightarrow \mathscr{B}$ is controllable.

Image representations and controllability

Theorem: There exists $M \in \mathbb{R}^{w \times \bullet}[\xi]$ such that

 $\mathscr{B}=\operatorname{im} M\left(\frac{d}{d t}\right) \Leftrightarrow \mathscr{B}$ is controllable.Only if: Full behavior is controllable, since has kernel representation induced by

$$
\left[\begin{array}{ll}
I_{\mathrm{w}} & -M(\xi)
\end{array}\right]
$$

with constant rank over \mathbb{C}.

Image representations and controllability

Theorem: There exists $M \in \mathbb{R}^{\mathrm{w} \times} \cdot[\xi]$ such that

 $\mathscr{B}=\operatorname{im} M\left(\frac{d}{d t}\right) \Leftrightarrow \mathscr{B}$ is controllable.If: Take R for minimal kernel representation of \mathscr{B}. Apply constancy of rank to conclude Smith form of R is

$$
R=U\left[\begin{array}{ll}
I_{\mathrm{p}} & 0_{\mathrm{p} \times \mathrm{m}}
\end{array}\right] V
$$

Image representations and controllability

Theorem: There exists $M \in \mathbb{R}^{w \times \bullet}[\xi]$ such that

 $\mathscr{B}=\operatorname{im} M\left(\frac{d}{d t}\right) \Leftrightarrow \mathscr{B}$ is controllable.If: Take R for minimal kernel representation of \mathscr{B}. Apply constancy of rank to conclude Smith form of R is
$R=U\left[\begin{array}{ll}I_{\mathrm{p}} & 0_{\mathrm{p} \times \mathrm{m}}\end{array}\right] V$.
Now $U\left(\frac{d}{d t}\right)\left[\begin{array}{ll}I_{\mathrm{p}} & 0_{\mathrm{p} \times \mathrm{m}}\end{array}\right] \underbrace{V\left(\frac{d}{d t}\right) w}_{=: w^{\prime}}=0 \Leftrightarrow\left[\begin{array}{ll}I_{\mathrm{p}} & 0_{\mathrm{p} \times \mathrm{m}}\end{array}\right] w^{\prime}=0 \Leftrightarrow$

$$
w^{\prime}=\left[\begin{array}{c}
c_{\mathrm{p}} \\
I_{\mathrm{m}}
\end{array}\right] \ell
$$

with $\ell \in \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{m}\right)$ free.

Image representations and controllability

Theorem: There exists $M \in \mathbb{R}^{\mathrm{w} \times} \cdot[\xi]$ such that $\mathscr{B}=\operatorname{im} M\left(\frac{d}{d t}\right) \Leftrightarrow \mathscr{B}$ is controllable.

Consequently,

$$
w^{\prime}=V\left(\frac{d}{d t}\right) w=\left[\begin{array}{c}
0_{\mathrm{p}} \\
I_{\mathrm{m}}
\end{array}\right] \ell
$$

from which

$$
w=V\left(\frac{d}{d t}\right)^{-1}\left[\begin{array}{c}
0_{\mathrm{p}} \\
I_{\mathrm{m}}
\end{array}\right] \ell=: M\left(\frac{d}{d t}\right) \ell
$$

Image representations and controllability

Theorem: There exists $M \in \mathbb{R}^{w \times \bullet}[\xi]$ such that

 $\mathscr{B}=\operatorname{im} M\left(\frac{d}{d t}\right) \Leftrightarrow \mathscr{B}$ is controllable.Consequently,

$$
w^{\prime}=V\left(\frac{d}{d t}\right) w=\left[\begin{array}{c}
0_{\mathrm{p}} \\
I_{\mathrm{m}}
\end{array}\right] \ell
$$

from which

$$
w=V\left(\frac{d}{d t}\right)^{-1}\left[\begin{array}{c}
0_{\mathrm{p}} \\
I_{\mathrm{m}}
\end{array}\right] \ell=: M\left(\frac{d}{d t}\right) \ell
$$

Note also that M can be chosen with $\mathrm{m}(B)$ columns.

Complementability

 anddecomposition of behaviors

Complementability

Theorem: Let $\mathscr{B} \in \mathscr{L}^{\text {w }}$ be controllable. There exists $\mathscr{B}^{\prime} \in \mathscr{L}^{\text {w }}$ such that

$$
\mathscr{B} \oplus \mathscr{B}^{\prime}=\mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{W}\right)
$$

Complementability

Theorem: Let $\mathscr{B} \in \mathscr{L}^{\text {w }}$ be controllable. There exists $\mathscr{B}^{\prime} \in \mathscr{L}^{\text {w }}$ such that

$$
\mathscr{B} \oplus \mathscr{B}^{\prime}=\mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right)
$$

Proof: Let $\mathscr{B}=\operatorname{ker} R\left(\frac{d}{d t}\right)$ be a minimal kernel representation. \mathscr{B} controllable \Leftrightarrow Smith form of R is

$$
R=U\left[\begin{array}{ll}
I_{\mathrm{p}} & 0
\end{array}\right] V
$$

Complementability

Theorem: Let $\mathscr{B} \in \mathscr{L}^{\text {w }}$ be controllable. There exists $\mathscr{B}^{\prime} \in \mathscr{L}^{\mathrm{w}}$ such that

$$
\mathscr{B} \oplus \mathscr{B}^{\prime}=\mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{w}\right)
$$

Proof: Let $\mathscr{B}=\operatorname{ker} R\left(\frac{d}{d t}\right)$ be a minimal kernel representation. \mathscr{B} controllable \Leftrightarrow Smith form of R is

$$
R=U\left[\begin{array}{ll}
I_{\mathrm{p}} & 0
\end{array}\right] V
$$

Define

$$
R^{\prime}:=U\left[\begin{array}{ll}
0 & I_{\mathrm{w}-\mathrm{p}}
\end{array}\right] V
$$

and $\mathscr{B}^{\prime}:=\operatorname{ker} R^{\prime}\left(\frac{d}{d t}\right) . \mathscr{B}^{\prime}$ is also controllable.

Complementability

Theorem: Let $\mathscr{B} \in \mathscr{L}^{\text {w }}$ be controllable. There exists $\mathscr{B}^{\prime} \in \mathscr{L}^{\text {w }}$ such that

$$
\mathscr{B} \oplus \mathscr{B}^{\prime}=\mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}}\right)
$$

Proof: Observe that $\mathscr{B} \cap \mathscr{B}^{\prime}$ is represented in kernel form by

$$
U\left[\begin{array}{cc}
I_{\mathrm{p}} & 0 \\
0 & I_{\mathrm{w}-\mathrm{p}}
\end{array}\right] V
$$

a unimodular matrix. Consequently, $\mathscr{B} \cap \mathscr{B}^{\prime}=\{0\}$.

Complementability

Theorem: Let $\mathscr{B} \in \mathscr{L}^{\text {w }}$ be controllable. There exists $\mathscr{B}^{\prime} \in \mathscr{L}^{\mathrm{w}}$ such that

$$
\mathscr{B} \oplus \mathscr{B}^{\prime}=\mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathbf{W}}\right)
$$

Proof: Easy to see image representations of $\mathscr{B}, \mathscr{B}^{\prime}$ given by

$$
\mathscr{B}=\operatorname{im} V^{-1}\left[\begin{array}{c}
0 \\
I_{\mathrm{w}-\mathrm{p}}
\end{array}\right] \quad \mathscr{B}^{\prime}=\operatorname{im} V^{-1}\left[\begin{array}{c}
I_{\mathrm{p}} \\
0
\end{array}\right]
$$

Consequently $\mathscr{B}+\mathscr{B}^{\prime}$ represented by

$$
V^{-1}\left[\begin{array}{cc}
0 & I_{\mathrm{p}} \\
I_{\mathrm{w}-\mathrm{p}} & 0
\end{array}\right]
$$

unimodular, consequently bijective.

Decomposition of behaviors

Theorem: Let $\mathscr{B}=\operatorname{ker} R\left(\frac{d}{d t}\right)$, with $R \in \mathbb{R}^{\mathrm{p} \times \mathrm{w}}[\xi]$ full row rank. There exist $\mathscr{B}_{\text {aut }} \subseteq \mathscr{B}$ and $\mathscr{B}_{\text {contr }} \subseteq \mathscr{B}$ such that

$$
\mathscr{B}=\mathscr{B}_{\text {aut }} \oplus \mathscr{B}_{\text {contr }}
$$

with $\mathscr{B}_{\text {contr }}$ controllable and $\mathscr{B}_{\text {aut }}$ autonomous.

Decomposition of behaviors

Theorem: Let $\mathscr{B}=\operatorname{ker} R\left(\frac{d}{d t}\right)$, with $R \in \mathbb{R}^{\mathrm{p} \times \mathrm{w}}[\xi]$ full row rank. There exist $\mathscr{B}_{\text {aut }} \subseteq \mathscr{B}$ and $\mathscr{B}_{\text {contr }} \subseteq \mathscr{B}$ such that

$$
\mathscr{B}=\mathscr{B}_{\text {aut }} \oplus \mathscr{B}_{\text {contr }}
$$

with $\mathscr{B}_{\text {contr }}$ controllable and $\mathscr{B}_{\text {aut }}$ autonomous.
Proof: Write Smith form of $R=U\left[\begin{array}{ll}D & 0_{\mathrm{p} \times(\mathrm{w}-\mathrm{p})}\end{array}\right] V$, define $\mathscr{B}^{\prime}:=V\left(\frac{d}{d t}\right) \mathscr{B}$.

Decomposition of behaviors

Theorem: Let $\mathscr{B}=\operatorname{ker} R\left(\frac{d}{d t}\right)$, with $R \in \mathbb{R}^{\mathrm{p} \times \mathrm{w}}[\xi]$ full row rank. There exist $\mathscr{B}_{\text {aut }} \subseteq \mathscr{B}$ and $\mathscr{B}_{\text {contr }} \subseteq \mathscr{B}$ such that

$$
\mathscr{B}=\mathscr{B}_{\text {aut }} \oplus \mathscr{B}_{\text {contr }}
$$

with $\mathscr{B}_{\text {contr }}$ controllable and $\mathscr{B}_{\text {aut }}$ autonomous.
Proof: Write Smith form of $R=U\left[\begin{array}{ll}D & 0_{\mathrm{p} \times(\mathrm{w}-\mathrm{p})}\end{array}\right] V$, define $\mathscr{B}^{\prime}:=V\left(\frac{d}{d t}\right) \mathscr{B}$.

$$
w^{\prime} \in \mathscr{B}^{\prime} \Longleftrightarrow w^{\prime}=\left[\begin{array}{l}
w_{1}^{\prime} \\
w_{2}^{\prime}
\end{array}\right]
$$

with $w_{1}^{\prime} \in \operatorname{ker} D\left(\frac{d}{d t}\right), w_{2}^{\prime}$ free.

Decomposition of behaviors

Theorem: Let $\mathscr{B}=\operatorname{ker} R\left(\frac{d}{d t}\right)$, with $R \in \mathbb{R}^{\mathrm{p} \times \mathrm{w}}[\xi]$ full row rank. There exist $\mathscr{B}_{\text {aut }} \subseteq \mathscr{B}$ and $\mathscr{B}_{\text {contr }} \subseteq \mathscr{B}$ such that

$$
\mathscr{B}=\mathscr{B}_{\text {aut }} \oplus \mathscr{B}_{\text {contr }}
$$

with $\mathscr{B}_{\text {contr }}$ controllable and $\mathscr{B}_{\text {aut }}$ autonomous.

$$
\text { If } D=I_{\mathrm{p}} \Longrightarrow \text { take } \mathscr{B}_{\text {contr }}^{\prime}=\mathscr{B}^{\prime}, \mathscr{B}_{\text {aut }}^{\prime}=\{0\} .
$$

Decomposition of behaviors

Theorem: Let $\mathscr{B}=\operatorname{ker} R\left(\frac{d}{d t}\right)$, with $R \in \mathbb{R}^{\mathrm{p} \times \mathrm{w}}[\xi]$ full row rank. There exist $\mathscr{B}_{\text {aut }} \subseteq \mathscr{B}$ and $\mathscr{B}_{\text {contr }} \subseteq \mathscr{B}$ such that

$$
\mathscr{B}=\mathscr{B}_{\text {aut }} \oplus \mathscr{B}_{\text {contr }}
$$

with $\mathscr{B}_{\text {contr }}$ controllable and $\mathscr{B}_{\text {aut }}$ autonomous.

$$
\begin{gathered}
\text { If } D \neq I_{\mathrm{p}} \text {, define } \\
\mathscr{B}_{\text {contr }}^{\prime}=\left\{\left[\begin{array}{c}
w_{1}^{\prime} \\
0
\end{array}\right] \left\lvert\, w_{1}^{\prime} \in \operatorname{ker} D\left(\frac{d}{d t}\right)\right.\right\} \\
\mathscr{B}_{\text {aut }}^{\prime}=\left\{\left.\left[\begin{array}{c}
0 \\
w_{2}^{\prime}
\end{array}\right] \right\rvert\, w_{2}^{\prime} \in \mathscr{C}^{\infty}\left(\mathbb{R}, \mathbb{R}^{\mathrm{w}-\mathrm{p}}\right)\right\} .
\end{gathered}
$$

Decomposition of behaviors

Theorem: Let $\mathscr{B}=\operatorname{ker} R\left(\frac{d}{d t}\right)$, with $R \in \mathbb{R}^{\mathrm{p} \times \mathrm{w}}[\xi]$ full row rank. There exist $\mathscr{B}_{\text {aut }} \subseteq \mathscr{B}$ and $\mathscr{B}_{\text {contr }} \subseteq \mathscr{B}$ such that

$$
\mathscr{B}=\mathscr{B}_{\text {aut }} \oplus \mathscr{B}_{\text {contr }}
$$

with $\mathscr{B}_{\text {contr }}$ controllable and $\mathscr{B}_{\text {aut }}$ autonomous. Then transform back to w variables.

Observability

Observability

¿Can w_{2} be determined knowing w_{1} and the system dynamics?

Observability

¿Can w_{2} be determined knowing w_{1} and the system dynamics?
$\mathscr{B} \in \mathscr{L}^{\mathrm{w}}, w=\left(w_{1}, w_{2}\right) . w_{2}$ is observable from w_{1} if

$$
\left(w_{1}, w_{2}^{\prime}\right),\left(w_{1}, w_{2}^{\prime \prime}\right) \in \mathscr{B} \Longrightarrow w_{2}^{\prime}=w_{2}^{\prime \prime}
$$

Algebraic characterization of observability

Assume \mathscr{B} represented in kernel form as

$$
R_{1}\left(\frac{d}{d t}\right) w_{1}+R_{2}\left(\frac{d}{d t}\right) w_{2}=0
$$

Assume \mathscr{B} represented in kernel form as

$$
R_{1}\left(\frac{d}{d t}\right) w_{1}+R_{2}\left(\frac{d}{d t}\right) w_{2}=0
$$

¿Does

$$
R_{2}\left(\frac{d}{d t}\right) w_{2}=\underbrace{-R_{1}\left(\frac{d}{d t}\right) w_{1}}_{\text {known }}
$$

have a unique solution w_{2} ?

Assume \mathscr{B} represented in kernel form as

$$
R_{1}\left(\frac{d}{d t}\right) w_{1}+R_{2}\left(\frac{d}{d t}\right) w_{2}=0
$$

¿Does

$$
R_{2}\left(\frac{d}{d t}\right) w_{2}=\underbrace{-R_{1}\left(\frac{d}{d t}\right) w_{1}}_{\text {known }}
$$

have a unique solution w_{2} ?
It has $\Leftrightarrow R_{2}\left(\frac{d}{d t}\right)$ injective $\Leftrightarrow R_{2}(\lambda)$ has full column rank for all $\lambda \in \mathbb{C}$

¿Is w_{2} observable from w_{1} ?

Example

¿Is w_{2} observable from w_{1} ?
¿Can one determine w_{2}
from knowledge of w_{1} and the system dynamics?

$$
\left[\begin{array}{c}
m_{1} \frac{d^{2}}{d t^{2}}+c_{1} \frac{d}{d t}+k_{1} \\
-c_{1} \frac{d}{d t}-k_{1}
\end{array}\right] w_{1}=\left[\begin{array}{c}
c_{1} \frac{d}{d t}+k_{1} \\
-m_{2} \frac{d^{2}}{d t^{2}}-\left(c_{2}+c_{1}\right) \frac{d}{d t}-\left(k_{1}+k_{2}\right)
\end{array}\right] w_{2}
$$

Example

$$
\left[\begin{array}{c}
m_{1} \frac{d^{2}}{d t^{2}}+c_{1} \frac{d}{d t}+k_{1} \\
-c_{1} \frac{d}{d t}-k_{1}
\end{array}\right] w_{1}=\left[\begin{array}{c}
c_{1} \frac{d}{d t}+k_{1} \\
-m_{2} \frac{d^{2}}{d t^{2}}-\left(c_{2}+c_{1}\right) \frac{d}{d t}-\left(k_{1}+k_{2}\right)
\end{array}\right] w_{2}
$$

Is polynomial differential operator on RHS injective?

Example

$$
\left[\begin{array}{c}
m_{1} \frac{d^{2}}{d t^{2}}+c_{1} \frac{d}{d t}+k_{1} \\
-c_{1} \frac{d}{d t}-k_{1}
\end{array}\right] w_{1}=\left[\begin{array}{c}
c_{1} \frac{d}{d t}+k_{1} \\
-m_{2} \frac{d^{2}}{d t^{2}}-\left(c_{2}+c_{1}\right) \frac{d}{d t}-\left(k_{1}+k_{2}\right)
\end{array}\right] w_{2}
$$

Is polynomial differential operator on RHS injective?

$$
\left[\begin{array}{c}
c_{1} \lambda+k_{1} \\
-m_{2} \lambda^{2}-\left(c_{2}+c_{1}\right) \lambda-\left(k_{1}+k_{2}\right)
\end{array}\right]
$$

has full column rank $\forall \lambda \in \mathbb{C}(\Longleftrightarrow$ observability $) \Leftrightarrow$

$$
-m_{2} k_{1}^{2}+c_{1} c_{2} k_{1}-k_{2} c_{2}^{2} \neq 0
$$

```
Remarks
```

Rank constancy test generalization of 'Hautus test' for state-space systems.

Remarks

Rank constancy test generalization of 'Hautus test' for state-space systems.

Trajectory-, not representation-based definition as in state-space framework.

Summary of Lecture 3

Polynomial differential operators and their properties are key;

- Polynomial differential operators and their properties are key;

Inputs: free variables;

- Polynomial differential operators and their properties are key;
- Inputs: free variables;
- Autonomous systems;

The main points

- Polynomial differential operators and their properties are key;

Inputs: free variables;
Autonomous systems;
Controllability and observability: system, not representation, properties;

The main points

- Polynomial differential operators and their properties are key;

Inputs: free variables;
Autonomous systems;
Controllability and observability: system, not representation, properties;

Algebraic characterizations;

The main points

- Polynomial differential operators and their properties are key;

Inputs: free variables;
Autonomous systems;
Controllability and observability: system, not representation, properties;

- Algebraic characterizations;
- Image representations.

End of Lecture 3

