Lecture 3

Tuesday 03-02-2008

14.00-17.30

Linear Time-Invariant Systems, Part 2

Lecturer: Paolo Rapisarda

- 1. Part I:
 - Inputs and outputs;
 - Autonomous behaviors;
 - Input-output representations.
- 2. Part II:
 - Controllability;
 - Image representations;
 - Complementability and decomposition of behaviors;
 - Observability.

Inputs and outputs

Recall that $P\left(\frac{d}{dt}\right) : \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R}^{W}) \to \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R}^{g})$ is surjective $\Leftrightarrow P(\xi)$ has full row rank as a polynomial matrix

Recall that $P\left(\frac{d}{dt}\right) : \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R}^{W}) \to \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R}^{g})$ is surjective $\Leftrightarrow P(\xi)$ has full row rank as a polynomial matrix

Recall that $P\left(\frac{d}{dt}\right) : \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R}^{w}) \to \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R}^{g})$ is injective \Leftrightarrow all nonzero invariant polynomials of *P* are unity.

Equivalently: $P(\lambda)$ has full column rank for all $\lambda \in \mathbb{C}$

Recall that $P\left(\frac{d}{dt}\right) : \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R}^{W}) \to \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R}^{g})$ is surjective $\Leftrightarrow P(\xi)$ has full row rank as a polynomial matrix

Recall that $P\left(\frac{d}{dt}\right) : \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R}^{w}) \to \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R}^{g})$ is injective \Leftrightarrow all nonzero invariant polynomials of *P* are unity.

Equivalently: $P(\lambda)$ has full column rank for all $\lambda \in \mathbb{C}$

Equivalently, *P* admits a left inverse on $\mathscr{C}^{\infty}(\mathbb{R})$:

$$P = U \begin{bmatrix} I_{\rm m} \\ 0 \end{bmatrix} V \Longrightarrow V^{-1} \begin{bmatrix} I_{\rm m} & 0 \end{bmatrix} U^{-1}$$
 is left inverse

Given $\mathscr{B} \in \mathscr{L}^{w}$ and $I := \{i_1, \ldots, i_k\} \subseteq \{1, \ldots, w\}$, let

$$\Pi_{I}\mathscr{B} := \{ (\hat{w}_{i_{1}}, \dots, \hat{w}_{i_{k}}) \in \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R}^{k}) \mid \exists w \in \mathscr{B} \\ \mathbf{s.t.} \ w = (w_{1}, \dots, \hat{w}_{i_{1}}, \dots, \hat{w}_{i_{k}}, \dots, w_{w}) \}$$

projection of \mathscr{B} **onto variables** w_{i_j} , $j = 1, \ldots, k$

Given $\mathscr{B} \in \mathscr{L}^{w}$ and $I := \{i_1, \ldots, i_k\} \subseteq \{1, \ldots, w\}$, let

$$\Pi_{I}\mathscr{B} := \{ (w_{i_{1}}, \dots, w_{i_{k}}) \in \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R}^{k}) \mid \exists w \in \mathscr{B} \\ \mathbf{s.t.} \ w = (w_{1}, \dots, w_{i_{1}}, \dots, w_{i_{k}}, \dots, w_{w}) \in \mathscr{B} \}$$

projection of \mathscr{B} **onto variables** w_{i_j} , $j = 1, \ldots, k$

Variables w_{i_j} , $j = 1, \ldots, k$ are free if

 $\Pi_I \mathscr{B} = \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R}^k)$

$$p_1\left(\frac{d}{dt}\right)w_1 + p_2\left(\frac{d}{dt}\right)w_2 + p_3\left(\frac{d}{dt}\right)w_3 = 0$$

Assume $p_i \neq 0$, i = 1, 2, 3.

Let $I = \{1\}$; since $\begin{bmatrix} p_2(\xi) & p_3(\xi) \end{bmatrix}$ is full row rank, for every $w_1 \in \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R})$ there exist w_2, w_3 satisfying equation.

 w_1 is free.

$$p_1\left(\frac{d}{dt}\right)w_1 + p_2\left(\frac{d}{dt}\right)w_2 + p_3\left(\frac{d}{dt}\right)w_3 = 0$$

Assume $p_i \neq 0$, i = 1, 2, 3.

Let $I = \{1\}$; since $\begin{bmatrix} p_2(\xi) & p_3(\xi) \end{bmatrix}$ is full row rank, for every $w_1 \in \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R})$ there exist w_2, w_3 satisfying equation.

 w_1 is free. (w_1, w_2) (and (w_2, w_3) , and (w_1, w_3)) are also free.

Example: In $\frac{d}{dt}x = Ax + Bu$, the variable *u* is free.

Free variables

Example: In $\frac{d}{dt}x = Ax + Bu$, the variable *u* is free.

Behavior is

$$\mathscr{B} = \ker \begin{bmatrix} \frac{d}{dt} I - A & -B \end{bmatrix} \rightsquigarrow R(\xi) = \begin{bmatrix} \xi I - A & -B \end{bmatrix}$$

Free variables

Example: In $\frac{d}{dt}x = Ax + Bu$, the variable *u* is free.

Behavior is

$$\mathscr{B} = \ker \begin{bmatrix} \frac{d}{dt} I - A & -B \end{bmatrix} \rightsquigarrow R(\xi) = \begin{bmatrix} \xi I - A & -B \end{bmatrix}$$

 $\xi I - A$ full row rank $\Longrightarrow \frac{d}{dt} I - A$ surjective $\Longrightarrow u$ is free

Free variables

Example: In $\frac{d}{dt}x = Ax + Bu$, the variable *u* is free.

Behavior is

$$\mathscr{B} = \ker \begin{bmatrix} \frac{d}{dt} I - A & -B \end{bmatrix} \rightsquigarrow R(\xi) = \begin{bmatrix} \xi I - A & -B \end{bmatrix}$$

 $\xi I - A$ full row rank $\Longrightarrow \frac{d}{dt} I - A$ surjective $\Longrightarrow u$ is free

Let $I = \{i_1, \ldots, i_k\} \subseteq \{1, \ldots, w\}$. The variables w_{i_1}, \ldots, w_{i_k} form a maximally free set if

- **b** they are free; and
- ▶ for every $I' = \{i'_1, \dots, i'_k\} \subset \{1, \dots, w\}$ such that $I \subset I'$ it holds

$$\Pi_{I'}\mathscr{B}\subset\mathscr{C}^{\infty}(\mathbb{R},\mathbb{R}^{|I'|})$$

Let $I = \{i_1, \ldots, i_k\} \subseteq \{1, \ldots, w\}$. The variables w_{i_1}, \ldots, w_{i_k} form a maximally free set if

- they are free; and
- ▶ for every $I' = \{i'_1, \dots, i'_k\} \subset \{1, \dots, w\}$ such that $I \subsetneq I'$ it holds

$$\Pi_{I'}\mathscr{B} \subsetneq \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R}^{|I'|})$$

Maximally free set: every variable in it is free, but any additional variable is not

Maximally free sets

Example:

$$p_1\left(\frac{d}{dt}\right)w_1 + p_2\left(\frac{d}{dt}\right)w_2 + p_3\left(\frac{d}{dt}\right)w_3 = 0$$

Assume $p_i \neq 0, i = 1, ..., 3$.

$$p_1\left(\frac{d}{dt}\right)w_1 + p_2\left(\frac{d}{dt}\right)w_2 + p_3\left(\frac{d}{dt}\right)w_3 = 0$$

Assume $p_i \neq 0, i = 1, ..., 3$.

w_1 (and w_2 , and w_3) is free, but not maximally so.

$$p_1\left(\frac{d}{dt}\right)w_1 + p_2\left(\frac{d}{dt}\right)w_2 + p_3\left(\frac{d}{dt}\right)w_3 = 0$$

Assume $p_i \neq 0, i = 1, ..., 3$.

w_1 (and w_2 , and w_3) is free, but not maximally so.

 $\{w_1, w_2\}$ (and $\{w_2, w_3\}$, and $\{w_1, w_3\}$) are maximally free.

$$p_1\left(\frac{d}{dt}\right)w_1 + p_2\left(\frac{d}{dt}\right)w_2 + p_3\left(\frac{d}{dt}\right)w_3 = 0$$

Assume $p_i \neq 0, i = 1, ..., 3$.

w_1 (and w_2 , and w_3) is free, but not maximally so.

 $\{w_1, w_2\}$ (and $\{w_2, w_3\}$, and $\{w_1, w_3\}$) are maximally free.

Maximally free sets are **nonunique**!

Inputs and outputs

<u>Theorem</u>: Let $\mathscr{B} \in \mathscr{L}^{\mathbb{W}}$. Assume (if necessary, after permutation of the variables) *w* partitioned as

$$w = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$$

with w_1 maximally free. Then w_1 are inputs and w_2 outputs.

Inputs and outputs

<u>Theorem</u>: Let $\mathscr{B} \in \mathscr{L}^{w}$. Assume (if necessary, after permutation of the variables) *w* partitioned as

$$w = \begin{bmatrix} w_1 \\ w_2 \end{bmatrix}$$

with w_1 maximally free. Then w_1 are inputs and w_2 outputs.

Example: for $p_1\left(\frac{d}{dt}\right)w_1 + p_2\left(\frac{d}{dt}\right)w_2 + p_3\left(\frac{d}{dt}\right)w_3 = 0$ and assuming $p_i \neq 0$ for i = 1, 2, 3, we can choose

- $\{w_1, w_2\}$ or • $\{w_2, w_3\}$ or
- $\blacktriangleright \quad \{w_1, w_3\}$

as inputs.

Nonunicity of i/o partition is *not* **an issue.**

Nonunicity of i/o partition is *not* an issue. Consider (linear) resistors:

$$\mathscr{B} = \{ (V, I) \mid V = R \cdot I \}$$

Is it voltage- or current-controlled? Consider

- **Nonunicity of i/o partition is** *not* **an issue.**
- Causality' an issue? What about

$$w_1 = \frac{d}{dt}w_2?$$

Don't *w*₁ **and** *w*₂ **'happen' at the same time?**

- Nonunicity of i/o partition is *not* an issue.
- Causality' an issue? What about

$$w_1 = \frac{d}{dt}w_2?$$

Don't w_1 and w_2 'happen' at the same time?

- 'Smoothness', meaning
 - $(u, y) \in \mathscr{B}$ and *u k*-times differentiable $\implies y k$ -times differentiable
 - if and only if $P^{-1}Q$ is proper. Strict properness \Leftrightarrow

$$(u, y) \in \mathscr{B}$$
 and *u k*-times differentiable
 $\implies y(k+1)$ -times differentiable

Causality in discrete-time systems

Consider a linear $\mathscr{B} \subset (\mathbb{R}^{w_1+w_2})^{\mathbb{Z}}$. Let $\mathscr{B}_1 = \prod_{w_1} \mathscr{B}$.

 w_2 does not anticipate $w_1 \Leftrightarrow$

 $w_1 \in \mathscr{B}_1$ and $w_{1|\mathbb{Z}_-} = 0$ \implies exists w'_2 s.t. $w_{2|\mathbb{Z}_-} = 0$ and $(w_1, w_2) \in \mathscr{B}$ **Causality in discrete-time systems**

Consider a linear $\mathscr{B} \subset (\mathbb{R}^{w_1+w_2})^{\mathbb{Z}}$. Let $\mathscr{B}_1 = \prod_{w_1} \mathscr{B}$.

 w_2 does not anticipate $w_1 \Leftrightarrow$

$$w_1 \in \mathscr{B}_1$$
 and $w_{1|\mathbb{Z}_-} = 0$
 \implies exists w'_2 s.t. $w_{2|\mathbb{Z}_-} = 0$ and $(w_1, w_2) \in \mathscr{B}$

Theorem: Assume w_2 is output and w_1 is input, and let

$$P(\sigma)w_2 = Q(\sigma)w_1$$

be an i/o representation of \mathscr{B} . Then w_2 does not anticipate $w_1 \Leftrightarrow P^{-1}Q$ is proper.

Input-output representations

Input-output representations

Theorem: Consider

$$\mathscr{B} = \left\{ (u, y) \mid P\left(\frac{d}{dt}\right) y = Q\left(\frac{d}{dt}\right) u \right\}$$

with *P* square and nonsingular. Then *y* is output and *u* is input.

Input-output representations

<u>Theorem</u>: Consider $\mathscr{B} = \left\{ (u, y) \mid P\left(\frac{d}{dt}\right) y = Q\left(\frac{d}{dt}\right) u \right\}$ with *P* square and nonsingular. Then *y* is output and *u* is input.

Surjectivity of $P\left(\frac{d}{dt}\right) \Longrightarrow u$ is free.

<u>Theorem</u>: Consider $\mathscr{B} = \left\{ (u, y) \mid P\left(\frac{d}{dt}\right) y = Q\left(\frac{d}{dt}\right) u \right\}$ with *P* square and nonsingular. Then *y* is output and *u* is input.

Surjectivity of
$$P\left(\frac{d}{dt}\right) \Longrightarrow u$$
 is free.

u maximally free: add one component of *y* to those of *u*, resulting set satisfies differential equation \implies it is not free.

<u>Theorem</u>: Let $\mathscr{B} \in \mathscr{L}^{w}$. There exists (possibly after permuting components) a partition of w = (u, y) and $P \in \mathbb{R}^{y \times y}[\xi]$ nonsingular, $Q \in \mathbb{R}^{y \times u}[\xi]$ such that

$$\mathscr{B} = \left\{ (u, y) \mid P\left(\frac{d}{dt}\right) y = Q\left(\frac{d}{dt}\right) u \right\}$$

The partition can be chosen so that $P^{-1}Q$ is proper.

<u>Theorem</u>: Let $\mathscr{B} \in \mathscr{L}^{w}$. There exists (possibly after permuting components) a partition of w = (u, y) and $P \in \mathbb{R}^{y \times y}[\xi]$ nonsingular, $Q \in \mathbb{R}^{y \times u}[\xi]$ such that

$$\mathscr{B} = \left\{ (u, y) \mid P\left(\frac{d}{dt}\right) y = Q\left(\frac{d}{dt}\right) u \right\}$$

The partition can be chosen so that $P^{-1}Q$ is proper.

Proof: Use minimal kernel representation $\mathscr{B} = \ker R\left(\frac{d}{dt}\right)$.

R of full row rank \implies exists nonsingular submatrix *P*.

For $P^{-1}Q$ proper, select *P* to be a maximal determinantal degree (nonsingular) submatrix of *R*.

¿What is an 'input', and what an 'output' in this case?

Any selection of a 2×2 nonsingular submatrix of *R* yields output variables- the rest is inputs

$$F \qquad m_1 \frac{d^2 w_1}{dt^2} + c_1 \left(\frac{dw_1}{dt} - \frac{dw_2}{dt}\right) + k_1 (w_1 - w_2) - F = 0$$

$$-k_1 w_1 + m_2 \frac{d^2 w_2}{dt^2} + c_2 \frac{dw_2}{dt} + c_1 \left(\frac{dw_2}{dt} - \frac{dw_1}{dt}\right) + (k_1 + k_2) w_2 = 0$$

Any selection of a 2×2 nonsingular submatrix of *R* yields output variables- the rest is inputs

$$R(\xi) = \begin{bmatrix} m_1 \xi^2 + c_1 \xi + k_1 & -c_1 \xi - k_1 & -1 \\ -c_1 \xi - k_1 & m_2 \xi^2 + (c_1 + c_2) \xi + k_1 + k_2 & 0 \end{bmatrix}$$

$$F \qquad m_1 \frac{d^2 w_1}{dt^2} + c_1 \left(\frac{dw_1}{dt} - \frac{dw_2}{dt}\right) + k_1 (w_1 - w_2) - F = 0$$

$$-k_1 w_1 + m_2 \frac{d^2 w_2}{dt^2} + c_2 \frac{dw_2}{dt} + c_1 \left(\frac{dw_2}{dt} - \frac{dw_1}{dt}\right) + (k_1 + k_2) w_2 = 0$$

Any selection of a 2×2 nonsingular submatrix of *R* yields output variables- the rest is inputs

$$R(\xi) = \begin{bmatrix} m_1 \xi^2 + c_1 \xi + k_1 & -c_1 \xi - k_1 & -1 \\ -c_1 \xi - k_1 & m_2 \xi^2 + (c_1 + c_2) \xi + k_1 + k_2 & 0 \end{bmatrix}$$

 w_1 and w_2 outputs, F input; $P^{-1}Q$ strictly proper

$$F \qquad m_1 \frac{d^2 w_1}{dt^2} + c_1 \left(\frac{dw_1}{dt} - \frac{dw_2}{dt}\right) + k_1 (w_1 - w_2) - F = 0$$

$$-k_1 w_1 + m_2 \frac{d^2 w_2}{dt^2} + c_2 \frac{dw_2}{dt} + c_1 \left(\frac{dw_2}{dt} - \frac{dw_1}{dt}\right) + (k_1 + k_2) w_2 = 0$$

Any selection of a 2×2 nonsingular submatrix of *R* yields output variables- the rest is inputs

$$R(\xi) = \begin{bmatrix} m_1 \xi^2 + c_1 \xi + k_1 & -c_1 \xi - k_1 & -1 \\ -c_1 \xi - k_1 & m_2 \xi^2 + (c_1 + c_2) \xi + k_1 + k_2 & 0 \end{bmatrix}$$

 w_1 and F outputs, w_2 input; $P^{-1}Q$ not proper

$$F \qquad m_1 \frac{d^2 w_1}{dt^2} + c_1 \left(\frac{dw_1}{dt} - \frac{dw_2}{dt}\right) + k_1 (w_1 - w_2) - F = 0$$

$$-k_1 w_1 + m_2 \frac{d^2 w_2}{dt^2} + c_2 \frac{dw_2}{dt} + c_1 \left(\frac{dw_2}{dt} - \frac{dw_1}{dt}\right) + (k_1 + k_2) w_2 = 0$$

Any selection of a 2×2 nonsingular submatrix of *R* yields output variables- the rest is inputs

$$R(\xi) = \begin{bmatrix} m_1 \xi^2 + c_1 \xi + k_1 & -c_1 \xi - k_1 & -1 \\ -c_1 \xi - k_1 & m_2 \xi^2 + (c_1 + c_2) \xi + k_1 + k_2 & 0 \end{bmatrix}$$

 w_2 and F outputs, w_1 input; $P^{-1}Q$ proper

Notion of transfer function, dependent on input/output partition;

- Notion of transfer function, dependent on input/output partition;
- Number of outputs fixed, output cardinality $p(\mathcal{B})$;

- Notion of transfer function, dependent on input/output partition;
- Number of outputs fixed, output cardinality $p(\mathcal{B})$;
- ▶ $p(\mathscr{B})$ equals rank(R) for every R such that ker $R\left(\frac{d}{dt}\right) = \mathscr{B}$;

- Notion of transfer function, dependent on input/output partition;
- Number of outputs fixed, output cardinality $p(\mathcal{B})$;
- ▶ $p(\mathscr{B})$ equals rank(R) for every R such that ker $R\left(\frac{d}{dt}\right) = \mathscr{B}$;
- Number of inputs fixed, input cardinality $m(\mathscr{B})$;

- Notion of transfer function, dependent on input/output partition;
- Number of outputs fixed, output cardinality $p(\mathcal{B})$;
- ▶ $p(\mathscr{B})$ equals rank(R) for every R such that ker $R\left(\frac{d}{dt}\right) = \mathscr{B}$;
- Number of inputs fixed, input cardinality $m(\mathcal{B})$;
- ▶ $m(\mathscr{B})$ equals $w(\mathscr{B}) \operatorname{rank}(R)$ for every R such that ker $R\left(\frac{d}{dt}\right) = \mathscr{B}$.

- Notion of transfer function, dependent on input/output partition;
- Number of outputs fixed, output cardinality $p(\mathcal{B})$;
- ▶ $p(\mathscr{B})$ equals rank(R) for every R such that ker $R\left(\frac{d}{dt}\right) = \mathscr{B}$;
- Number of inputs fixed, input cardinality $m(\mathscr{B})$;
- ▶ $m(\mathscr{B})$ equals $w(\mathscr{B}) \operatorname{rank}(R)$ for every R such that ker $R\left(\frac{d}{dt}\right) = \mathscr{B}$.
- In discrete-time case, there always exists a causal input-output partition!

Autonomous behaviors

Recall that \mathcal{B} is autonomous if

$$w_1, w_2 \in \mathscr{B}$$
 and $w_1 \mid_{(-\infty,0]} = w_2 \mid_{(-\infty,0]}$
 $\implies w_1 = w_2$

Recall that \mathcal{B} is autonomous if

$$w_1, w_2 \in \mathscr{B}$$
 and $w_1 \mid_{(-\infty,0]} = w_2 \mid_{(-\infty,0]}$
 $\implies w_1 = w_2$

Equivalent with

$$\blacktriangleright \quad \mathfrak{m}(\mathscr{B}) = 0 \text{ (no inputs);}$$

• there exists $R \in \mathbb{R}^{w \times w}[\xi]$ nonsingular such that $\mathscr{B} = \ker R\left(\frac{d}{dt}\right)$

Example: a mechanical system

Example: a mechanical system

$$m_{1}\frac{d^{2}w_{1}}{dt^{2}} + c_{1}\left(\frac{d}{dt}w_{1} - \frac{d}{dt}w_{2}\right) + k_{1}(w_{1} - w_{2}) = 0$$

$$m_{1}\frac{d^{2}w_{1}}{dt^{2}} + c_{2}\frac{d}{dt}w_{2} + c_{1}\left(\frac{d}{dt}w_{2} - \frac{d}{dt}w_{1}\right) + (k_{1} + k_{2})w_{2} = 0$$

Classical mechanics: motion depends only on 'initial conditions'

Example: a mechanical system

$$m_{1}\frac{d^{2}w_{1}}{dt^{2}} + c_{1}\left(\frac{d}{dt}w_{1} - \frac{d}{dt}w_{2}\right) + k_{1}(w_{1} - w_{2}) = 0$$

$$m_{1}\frac{d^{2}w_{1}}{dt^{2}} + c_{2}\frac{d}{dt}w_{2} + c_{1}\left(\frac{d}{dt}w_{2} - \frac{d}{dt}w_{1}\right) + (k_{1} + k_{2})w_{2} = 0$$

$$R(\xi) = \begin{bmatrix} m_1 \xi^2 + c_1 \xi + k_1 & -c_1 \xi - k_1 \\ -c_1 \xi - k_1 & m_2 \xi^2 + (c_1 + c_2) \xi + k_1 + k_2 \end{bmatrix}$$

R nonsingular \sim autonomous system

Example: state-space systems

Let (A, C) observable and consider

$$\mathscr{B} := \{ y \in \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R}^{y}) \mid \exists x \text{ s.t. } \frac{d}{dt} x = Ax, y = Cx \}$$

Example: state-space systems

Let (A, C) observable and consider

$$\mathscr{B} := \{ y \in \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R}^{y}) \mid \exists x \text{ s.t. } \frac{d}{dt} x = Ax, y = Cx \}$$

B is autonomous: there are no free variables in *y*.

<u>Theorem</u>: Let $\mathscr{B} \in \mathscr{L}^{\vee}$ be autonomous. Then \mathscr{B} is a finite-dimensional subspace of $\mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R}^{\vee})$.

<u>Theorem</u>: Let $\mathscr{B} \in \mathscr{L}^{\vee}$ be autonomous. Then \mathscr{B} is a finite-dimensional subspace of $\mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R}^{\vee})$.

Proof: Take *R* s.t. $\mathscr{B} = \ker R\left(\frac{d}{dt}\right)$, w.l.o.g. minimal. Compute Smith form $R = U\Delta V$:

$$R\left(\frac{d}{dt}\right)w = 0 \Longleftrightarrow \Delta\left(\frac{d}{dt}\right) \underbrace{V\left(\frac{d}{dt}\right)w}_{=:w'} = 0$$

<u>Theorem</u>: Let $\mathscr{B} \in \mathscr{L}^{\vee}$ be autonomous. Then \mathscr{B} is a finite-dimensional subspace of $\mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R}^{\vee})$.

Proof: Now
$$\Delta\left(\frac{d}{dt}\right) V\left(\frac{d}{dt}\right) w = 0$$
 implies
=: w'

$$w' = \operatorname{col}(w'_i)_{i=1,...,w} \in \ker \Delta\left(\frac{d}{dt}\right) \Leftrightarrow w'_i \in \ker \delta_i\left(\frac{d}{dt}\right)$$

with δ_i the *i*-th invariant polynomial. Scalar case.

<u>Theorem</u>: Let $\mathscr{B} \in \mathscr{L}^{\vee}$ be autonomous. Then \mathscr{B} is a finite-dimensional subspace of $\mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R}^{\vee})$.

Proof: Now
$$\Delta\left(\frac{d}{dt}\right) V\left(\frac{d}{dt}\right) w = 0$$
 implies
=: w'

$$w' = \operatorname{col}(w'_i)_{i=1,...,w} \in \ker \Delta\left(\frac{d}{dt}\right) \Leftrightarrow w'_i \in \ker \delta_i\left(\frac{d}{dt}\right)$$

with δ_i the *i*-th invariant polynomial. Scalar case. Set of solutions of linear differential equation is finite-dimensional. Also *w* is!

Scalar case:

$$p\left(\frac{d}{dt}\right)w = 0 \iff w(t) = \sum_{i=1}^{n} \sum_{j=0}^{n_i} \alpha_{ij} t^j e^{\lambda_i t}$$

- > *n* is number of distinct roots of $p(\xi)$;
- $\triangleright \quad \lambda_i \text{ is } i\text{-th root of } p(\xi);$
- > n_i multiplicity of λ_i ;
- \blacktriangleright $\alpha_{ij} \in \mathbb{C}$.

Scalar case:

$$p\left(\frac{d}{dt}\right)w = 0 \iff w(t) = \sum_{i=1}^{n} \sum_{j=0}^{n_i} \alpha_{ij} t^j e^{\lambda_i t}$$

- *n* is number of distinct roots of $p(\xi)$;
- $\triangleright \quad \lambda_i \text{ is } i\text{-th root of } p(\xi);$
- > n_i multiplicity of λ_i ;
- \blacktriangleright $\alpha_{ij} \in \mathbb{C}$.

Scalar case:

$$p\left(\frac{d}{dt}\right)w = 0 \iff w(t) = \sum_{i=1}^{n} \sum_{j=0}^{n_i} \alpha_{ij} t^j e^{\lambda_i t}$$

- > *n* is number of distinct roots of $p(\xi)$;
- $\blacktriangleright \quad \lambda_i \text{ is } i\text{-th root of } p(\xi);$
- > n_i multiplicity of λ_i ;
- \blacktriangleright $\alpha_{ij} \in \mathbb{C}$.

Scalar case:

$$p\left(\frac{d}{dt}\right)w = 0 \iff w(t) = \sum_{i=1}^{n} \sum_{j=0}^{n_i} \alpha_{ij} t^j e^{\lambda_i t}$$

- > *n* is number of distinct roots of $p(\xi)$;
- $\triangleright \quad \lambda_i \text{ is } i\text{-th root of } p(\xi);$
- \blacktriangleright $\alpha_{ij} \in \mathbb{C}$.

Scalar case:

$$p\left(\frac{d}{dt}\right)w = 0 \iff w(t) = \sum_{i=1}^{n} \sum_{j=0}^{n_i} \alpha_{ij} t^j e^{\lambda_i t}$$

- > *n* is number of distinct roots of $p(\xi)$;
- > λ_i is *i*-th root of $p(\xi)$;
- > n_i multiplicity of λ_i ;
- ► $\alpha_{ij} \in \mathbb{C}$.

Scalar case:

$$p\left(\frac{d}{dt}\right)w = 0 \iff w(t) = \sum_{i=1}^{n} \sum_{j=0}^{n_i} \alpha_{ij} t^j e^{\lambda_i t}$$

where

- > *n* is number of distinct roots of $p(\xi)$;
- $\triangleright \quad \lambda_i \text{ is } i\text{-th root of } p(\xi);$
- > n_i multiplicity of λ_i ;
- $\blacktriangleright \quad \alpha_{ij} \in \mathbb{C}.$

 λ_i are the characteristic frequencies of p.

For w > 1, resort to Smith form $R = U\Delta V$:

$$R\left(\frac{d}{dt}\right)w = 0 \Longleftrightarrow \Delta\left(\frac{d}{dt}\right) \underbrace{V\left(\frac{d}{dt}\right)w}_{=:w'} = 0$$

For w > 1, resort to Smith form $R = U\Delta V$:

$$R\left(\frac{d}{dt}\right)w = 0 \Longleftrightarrow \Delta\left(\frac{d}{dt}\right) \underbrace{V\left(\frac{d}{dt}\right)w}_{=:w'} = 0$$

$$w' = \operatorname{col}(w'_i)_{i=1,...,w} \in \ker \Delta\left(\frac{d}{dt}\right) \Leftrightarrow w'_i \in \ker \delta_i\left(\frac{d}{dt}\right)$$

with δ_i the *i*-th invariant polynomial. Scalar case!

For w > 1, resort to Smith form $R = U\Delta V$:

$$R\left(\frac{d}{dt}\right)w = 0 \Longleftrightarrow \Delta\left(\frac{d}{dt}\right) \underbrace{V\left(\frac{d}{dt}\right)w}_{=:w'} = 0$$

$$w' = \operatorname{col}(w'_i)_{i=1,...,w} \in \ker \Delta\left(\frac{d}{dt}\right) \Leftrightarrow w'_i \in \ker \delta_i\left(\frac{d}{dt}\right)$$

with δ_i the *i*-th invariant polynomial. Scalar case! Assume for simplicity all roots of det(*R*) are simple:

$$w = V\left(\frac{d}{dt}\right)^{-1} w' \iff w(t) = \sum_{i=1}^{n} \alpha_i e^{\lambda_i t}$$

with $\alpha_i \in \mathbb{C}^w$ such that $R(\lambda_i)\alpha_i = 0, i = 1, ..., n$.

Linear combinations of polynomial exponential vector trajectories

with $\alpha_{ij} \in \mathbb{C}^{w}$.

Linear combinations of polynomial exponential vector trajectories

$$\sum_{i=1}^n \sum_{j=0}^{n_i} \alpha_{ij} t^j e^{\lambda_i t}$$

with $\alpha_{ij} \in \mathbb{C}^{w}$.

• Characteristic frequencies λ_i are roots of det(*R*).

Together with corresponding multiplicities, they determine \mathscr{B} uniquely.

$$\mathscr{B} \in \mathscr{L}^{\mathbb{W}}$$
 is asymptotically stable \Leftrightarrow

$$w \in \mathscr{B} \Longrightarrow \lim_{t} \to \infty w(t) = 0$$

Note: asymptotic stability implies autonomy.

$$\mathscr{B} \in \mathscr{L}^{\vee}$$
 is asymptotically stable \Leftrightarrow

$$w \in \mathscr{B} \Longrightarrow \lim_{t} \to \infty w(t) = 0$$

Note: asymptotic stability implies autonomy.

<u>Theorem</u>: $\mathscr{B} = \ker R\left(\frac{d}{dt}\right)$ is asymptotically stable $\Leftrightarrow \operatorname{rank}(R(\lambda)) = \operatorname{w}(\mathscr{B})$ for all $\lambda \in \mathbb{C}$ s.t. $\operatorname{Re}(\lambda) \geq 0$.

 $\mathscr{B} \in \mathscr{L}^{\mathbb{W}}$ is stable \Leftrightarrow

$$w \in \mathscr{B} \Longrightarrow w_{|\mathbb{R}_+}$$
 is bounded.

Note: stability implies autonomy.

<u>Theorem</u>: $\mathscr{B} = \ker R\left(\frac{d}{dt}\right)$ is stable \Leftrightarrow **1.** $\operatorname{rank}(R(\lambda)) = \operatorname{w}(\mathscr{B})$ for all $\lambda \in \mathbb{C}$ s.t. $\operatorname{Re}(\lambda) > 0$; **2.** For all $\omega \in \mathbb{R}$, $w(\mathscr{B}) - \operatorname{rank}(R(i\omega))$ equals the multiplicity of $i\omega$ as a root of $\det(R)$.

 $\mathscr{B} \in \mathscr{L}^{\mathbb{W}}$ is stable \Leftrightarrow

$$w \in \mathscr{B} \Longrightarrow w_{|\mathbb{R}_+}$$
 is bounded.

Note: stability implies autonomy.

Theorem: $\mathscr{B} = \ker R\left(\frac{d}{dt}\right)$ is stable \Leftrightarrow **1.** $\operatorname{rank}(R(\lambda)) = \operatorname{w}(\mathscr{B})$ for all $\lambda \in \mathbb{C}$ s.t. $\operatorname{Re}(\lambda) > 0$; **2.** For all $\omega \in \mathbb{R}$, $w(\mathscr{B}) - \operatorname{rank}(R(i\omega))$ equals the multiplicity of $i\omega$ as a root of $\det(R)$.

Stability=roots in closed left half-plane, and semisimplicity.

End of Part I

Controllability

$$w(t) = \begin{cases} w_1(t) & \text{for} \quad t < 0\\ w_2(t) & \text{for} \quad t \ge T \end{cases}$$

$$w(t) = \begin{cases} w_1(t) & \text{for} \quad t < 0\\ w_2(t) & \text{for} \quad t \ge T \end{cases}$$

$$w(t) = \begin{cases} w_1(t) & \text{for} \quad t < 0\\ w_2(t) & \text{for} \quad t \ge T \end{cases}$$

$$w(t) = \begin{cases} w_1(t) & \text{for} \quad t < 0\\ w_2(t) & \text{for} \quad t \ge T \end{cases}$$

Past of any trajectory can be "patched up" with future of any trajectory

$$r\left(\frac{d}{dt}\right)w = 0$$

where $0 \neq r \in \mathbb{R}[\xi]$ has degree *n*.

System autonomous: every solution uniquely determined by 'initial conditions' $\frac{d^i w}{dt^i}(t)$, i = 0, ..., n-1, so no patching possible among d \Leftrightarrow erent trajectories.

Past of trajectory uniquely determines its future.

$$\frac{d}{dt}x = Ax + Bu$$
$$y = Cx + Du$$

$$\frac{d}{dt}x = Ax + Bu$$
$$y = Cx + Du$$

$$\mathscr{B}_{s} := \{(u, y, x) \mid \text{ s.t. } \frac{d}{dt}x = Ax + Bu, y = Cx + Du\}$$
$$\mathscr{B} := \{(u, y) \mid \exists x \text{ s.t. } \frac{d}{dt}x = Ax + Bu, y = Cx + Du\}$$
$$\mathscr{B}_{x} := \{x \mid \exists (u, y) \text{ s.t. } \frac{d}{dt}x = Ax + Bu, y = Cx + Du\}$$

$$\frac{d}{dt}x = Ax + Bu$$
$$y = Cx + Du$$

$$\mathscr{B}_{s} := \{(u, y, x) \mid \text{ s.t. } \frac{d}{dt}x = Ax + Bu, y = Cx + Du\}$$
$$\mathscr{B} := \{(u, y) \mid \exists x \text{ s.t. } \frac{d}{dt}x = Ax + Bu, y = Cx + Du\}$$
$$\mathscr{B}_{x} := \{x \mid \exists (u, y) \text{ s.t. } \frac{d}{dt}x = Ax + Bu, y = Cx + Du\}$$

 \mathscr{B}_s controllable $\Leftrightarrow \mathscr{B}_x$ controllable $\Longrightarrow \mathscr{B}$ controllable.

$$\frac{d}{dt}x = Ax + Bu$$
$$y = Cx + Du$$

$$\mathscr{B}_{s} := \{(u, y, x) \mid \text{ s.t. } \frac{d}{dt}x = Ax + Bu, y = Cx + Du\}$$
$$\mathscr{B} := \{(u, y) \mid \exists x \text{ s.t. } \frac{d}{dt}x = Ax + Bu, y = Cx + Du\}$$
$$\mathscr{B}_{x} := \{x \mid \exists (u, y) \text{ s.t. } \frac{d}{dt}x = Ax + Bu, y = Cx + Du\}$$

 \mathscr{B}_s controllable $\Leftrightarrow \mathscr{B}_x$ controllable $\Longrightarrow \mathscr{B}$ controllable. If *x* minimal, then \mathscr{B} controllable $\Longrightarrow \mathscr{B}_s$ controllable.

$$\frac{d}{dt}x = Ax + Bu$$
$$y = Cx + Du$$

"State point-controllability": for all $x_1, x_2 \in \mathbb{R}^n \exists x \in \mathscr{B}_x$ and $T \ge 0$ s.t. $x(0) = x_0$ and $x(T) = x_1$.

$$\frac{d}{dt}x = Ax + Bu$$
$$y = Cx + Du$$

"State point-controllability": for all $x_1, x_2 \in \mathbb{R}^n \exists x \in \mathscr{B}_x$ and $T \ge 0$ s.t. $x(0) = x_0$ and $x(T) = x_1$.

If *x* minimal, then \mathscr{B} controllable $\Leftrightarrow \mathscr{B}_s$ controllable $\iff \mathscr{B}_s$ state point-controllable.

<u>Theorem</u>: $\mathscr{B} = \ker R\left(\frac{d}{dt}\right)$ is controllable \Leftrightarrow $\operatorname{rank}(R(\lambda))$ is constant for all $\lambda \in \mathbb{C}$

<u>Theorem</u>: $\mathscr{B} = \ker R\left(\frac{d}{dt}\right)$ is controllable \Leftrightarrow $\operatorname{rank}(R(\lambda))$ is constant for all $\lambda \in \mathbb{C}$

Proof: Compute Smith form

$$R = U \begin{bmatrix} \Delta & 0 \\ 0 & 0 \end{bmatrix} V \in \mathbb{R}^{p \times w}[\xi]$$

 $U\left(\frac{d}{dt}\right), V\left(\frac{d}{dt}\right)$ bijective $\Longrightarrow \ker R\left(\frac{d}{dt}\right)$ controllable $\Leftrightarrow \ker \Delta\left(\frac{d}{dt}\right)$ is.

<u>Theorem</u>: $\mathscr{B} = \ker R\left(\frac{d}{dt}\right)$ is controllable \Leftrightarrow $\operatorname{rank}(R(\lambda))$ is constant for all $\lambda \in \mathbb{C}$

Proof: Compute Smith form

$$R = U \begin{bmatrix} \Delta & 0 \\ 0 & 0 \end{bmatrix} V \in \mathbb{R}^{p \times w}[\xi]$$

 $U\left(\frac{d}{dt}\right), V\left(\frac{d}{dt}\right)$ bijective $\Longrightarrow \ker R\left(\frac{d}{dt}\right)$ controllable $\Leftrightarrow \ker \Delta\left(\frac{d}{dt}\right)$ is.

Change variables $w \rightsquigarrow w' := V\left(\frac{d}{dt}\right) w$, define $\mathscr{B}' := V\left(\frac{d}{dt}\right) \mathscr{B} = \ker \Delta\left(\frac{d}{dt}\right)$.

<u>Theorem</u>: $\mathscr{B} = \ker R\left(\frac{d}{dt}\right)$ is controllable \Leftrightarrow $\operatorname{rank}(R(\lambda))$ is constant for all $\lambda \in \mathbb{C}$

Proof: Last $p - \operatorname{rank}(R)$ trajectories of $\mathscr{B}' = \ker \Delta\left(\frac{d}{dt}\right)$ are free, since equations are $0 \cdot w'_i = 0$.

First rank(R) equations are

$$\delta_i \left(\frac{d}{dt}\right) w_i' = 0$$

with δ_i *i*-th invariant polynomial of *R*.

Evidently, w'_i controllable if and only if $\delta_i = 1$.

Case 1:
$$CR_C \neq \frac{L}{R_L}$$

$$\begin{pmatrix} \frac{R_C}{R_L} & + & \left(1 + \frac{R_C}{R_L}\right) CR_C \frac{d}{dt} + CR_C \frac{L}{R_L} \frac{d^2}{dt^2} \end{pmatrix} V$$
$$= & \left(1 + CR_C \frac{d}{dt}\right) \left(1 + \frac{L}{R_L} \frac{d}{dt}\right) R_C I$$

$$\begin{pmatrix} \frac{R_C}{R_L} & + & \left(1 + \frac{R_C}{R_L}\right) CR_C \frac{d}{dt} + CR_C \frac{L}{R_L} \frac{d^2}{dt^2} \end{pmatrix} V$$
$$= & \left(1 + CR_C \frac{d}{dt}\right) \left(1 + \frac{L}{R_L} \frac{d}{dt}\right) R_C I$$

¿Is system controllable?

$$\left[\left(\frac{R_C}{R_L} + \left(1 + \frac{R_C}{R_L}\right)CR_C\xi + CR_C\frac{L}{R_L}\xi^2\right) - \left(1 + CR_C\xi\right)\left(1 + \frac{L}{R_L}\xi\right)R_C\right]$$

Are there **common roots** among the two polynomials?

$$\left[\left(\frac{R_C}{R_L} + \left(1 + \frac{R_C}{R_L}\right)CR_C\xi + CR_C\frac{L}{R_L}\xi^2\right) - \left(1 + CR_C\xi\right)\left(1 + \frac{L}{R_L}\xi\right)R_C\right]$$

Are there **common roots** among the two polynomials?

No \implies system is controllable

Case 2:
$$CR_C = \frac{L}{R_L}$$

$$\left(\frac{R_C}{R_L} + CR_C \frac{d}{dt}\right) V = \left(1 + CR_C \frac{d}{dt}\right) R_C I$$

Case 2:
$$CR_C = \frac{L}{R_L}$$

$$\left(\frac{R_C}{R_L} + CR_C \frac{d}{dt}\right) V = \left(1 + CR_C \frac{d}{dt}\right) R_C I$$

¿Is system controllable?

Case 2:
$$CR_C = \frac{L}{R_L}$$

$$\left(\frac{R_C}{R_L} + CR_C \frac{d}{dt}\right) V = \left(1 + CR_C \frac{d}{dt}\right) R_C I$$

¿Is system controllable?

$$\begin{bmatrix} \frac{R_C}{R_L} + CR_C\xi & -(1 + CR_C\xi)R_C \end{bmatrix}$$

Are there **common roots** among the two polynomials?

Case 2:
$$CR_C = \frac{L}{R_L}$$

$$\left(\frac{R_C}{R_L} + CR_C \frac{d}{dt}\right) V = \left(1 + CR_C \frac{d}{dt}\right) R_C I$$

; Is system controllable? If $R_C = R_L \implies$ system is not controllable

$\mathscr{B} = \ker R\left(\frac{d}{dt}\right), \text{ with } R \in \mathbb{R}^{\mathsf{w} \times \mathsf{w}}[\xi] \text{ nonsingular, is }$ controllable $\iff R$ is unimodular $\iff \mathscr{B} = \{0\}$

- $\mathscr{B} = \ker R\left(\frac{d}{dt}\right), \text{ with } R \in \mathbb{R}^{\mathsf{w} \times \mathsf{w}}[\xi] \text{ nonsingular, is }$ controllable $\iff R$ is unimodular $\iff \mathscr{B} = \{0\}$
- Rank constancy test generalization of 'Hautus test' for state-space systems.

- $\mathscr{B} = \ker R\left(\frac{d}{dt}\right), \text{ with } R \in \mathbb{R}^{\mathsf{w} \times \mathsf{w}}[\xi] \text{ nonsingular, is }$ controllable $\iff R$ is unimodular $\iff \mathscr{B} = \{0\}$
- Rank constancy test generalization of 'Hautus test' for state-space systems.
- Trajectory-, not representation -based definition as in state-space framework.

Image representations

<u>Theorem</u>: There exists $M \in \mathbb{R}^{W \times \bullet}[\xi]$ such that $\mathscr{B} = \operatorname{im} M\left(\frac{d}{dt}\right) \Leftrightarrow \mathscr{B}$ is controllable.

<u>Theorem</u>: There exists $M \in \mathbb{R}^{w \times \bullet}[\xi]$ such that $\mathscr{B} = \operatorname{im} M\left(\frac{d}{dt}\right) \Leftrightarrow \mathscr{B}$ is controllable.

Only if: Full behavior is controllable, since has kernel representation induced by

$$I_{\mathtt{w}} - M(\xi)
ight]$$

with constant rank over $\mathbb{C}.$

<u>Theorem</u>: There exists $M \in \mathbb{R}^{w \times \bullet}[\xi]$ such that $\mathscr{B} = \operatorname{im} M\left(\frac{d}{dt}\right) \Leftrightarrow \mathscr{B}$ is controllable.

If: Take *R* for minimal kernel representation of \mathscr{B} . Apply constancy of rank to conclude Smith form of *R* is

$$R = U \begin{bmatrix} I_{p} & 0_{p \times m} \end{bmatrix} V$$

<u>Theorem</u>: There exists $M \in \mathbb{R}^{w \times \bullet}[\xi]$ such that $\mathscr{B} = \operatorname{im} M\left(\frac{d}{dt}\right) \Leftrightarrow \mathscr{B}$ is controllable.

If: Take *R* for minimal kernel representation of \mathscr{B} . Apply constancy of rank to conclude Smith form of *R* is

$$R = U \begin{bmatrix} I_{p} & 0_{p \times m} \end{bmatrix} V.$$
Now $U \begin{pmatrix} \frac{d}{dt} \end{pmatrix} \begin{bmatrix} I_{p} & 0_{p \times m} \end{bmatrix} \underbrace{V \begin{pmatrix} \frac{d}{dt} \end{pmatrix} w}_{=:w'} = 0 \Leftrightarrow \begin{bmatrix} I_{p} & 0_{p \times m} \end{bmatrix} w' = 0 \Leftrightarrow$

$$w' = \begin{bmatrix} 0_{\rm p} \\ I_{\rm m} \end{bmatrix} \ell$$

with $\ell \in \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R}^m)$ free.

Image representations and controllability

<u>Theorem</u>: There exists $M \in \mathbb{R}^{W \times \bullet}[\xi]$ such that $\mathscr{B} = \operatorname{im} M\left(\frac{d}{dt}\right) \Leftrightarrow \mathscr{B}$ is controllable.

Consequently,

$$w' = V\left(\frac{d}{dt}\right)w = \begin{bmatrix} 0_{\rm p} \\ I_{\rm m} \end{bmatrix}\ell$$

from which

$$w = V\left(\frac{d}{dt}\right)^{-1} \begin{bmatrix} 0_{\rm p} \\ I_{\rm m} \end{bmatrix} \ell =: M\left(\frac{d}{dt}\right) \ell$$

Image representations and controllability

<u>Theorem</u>: There exists $M \in \mathbb{R}^{W \times \bullet}[\xi]$ such that $\mathscr{B} = \operatorname{im} M\left(\frac{d}{dt}\right) \Leftrightarrow \mathscr{B}$ is controllable.

Consequently,

$$w' = V\left(\frac{d}{dt}\right)w = \begin{bmatrix} 0_{\rm p} \\ I_{\rm m} \end{bmatrix}\ell$$

from which

$$w = V\left(\frac{d}{dt}\right)^{-1} \begin{bmatrix} 0_{\rm p} \\ I_{\rm m} \end{bmatrix} \ell =: M\left(\frac{d}{dt}\right) \ell$$

Note also that *M* can be chosen with m(B) columns.

Complementability and decomposition of behaviors

<u>Theorem</u>: Let $\mathscr{B} \in \mathscr{L}^{\vee}$ be controllable. There exists $\mathscr{B}' \in \mathscr{L}^{\vee}$ such that

$$\mathscr{B} \oplus \mathscr{B}' = \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R}^{\mathsf{W}})$$

<u>Theorem</u>: Let $\mathscr{B} \in \mathscr{L}^{\vee}$ be controllable. There exists $\mathscr{B}' \in \mathscr{L}^{\vee}$ such that $\mathscr{B} \oplus \mathscr{B}' = \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R}^{\vee})$

Proof: Let $\mathscr{B} = \ker R\left(\frac{d}{dt}\right)$ be a minimal kernel representation. \mathscr{B} controllable \Leftrightarrow Smith form of R is

$$R = U \begin{bmatrix} I_{p} & 0 \end{bmatrix} V$$

<u>Theorem</u>: Let $\mathscr{B} \in \mathscr{L}^{\vee}$ be controllable. There exists $\mathscr{B}' \in \mathscr{L}^{\vee}$ such that $\mathscr{B} \oplus \mathscr{B}' = \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R}^{\vee})$

Proof: Let $\mathscr{B} = \ker R\left(\frac{d}{dt}\right)$ be a minimal kernel representation. \mathscr{B} controllable \Leftrightarrow Smith form of R is

$$R = U \begin{bmatrix} I_{p} & 0 \end{bmatrix} V$$

Define

$$R' := U \begin{bmatrix} 0 & I_{w-p} \end{bmatrix} V$$

and $\mathscr{B}' := \ker R'\left(\frac{d}{dt}\right)$. \mathscr{B}' is also controllable.

<u>Theorem</u>: Let $\mathscr{B} \in \mathscr{L}^{\vee}$ be controllable. There exists $\mathscr{B}' \in \mathscr{L}^{\vee}$ such that $\mathscr{B} \oplus \mathscr{B}' = \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R}^{\vee})$

Proof: Observe that $\mathscr{B} \cap \mathscr{B}'$ is represented in kernel form by

 $U\begin{bmatrix} I_{p} & 0\\ 0 & I_{w-p} \end{bmatrix} V$

a unimodular matrix. Consequently, $\mathscr{B} \cap \mathscr{B}' = \{0\}$.

<u>Theorem</u>: Let $\mathscr{B} \in \mathscr{L}^{\vee}$ be controllable. There exists $\mathscr{B}' \in \mathscr{L}^{\vee}$ such that $\mathscr{B} \oplus \mathscr{B}' = \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R}^{\vee})$

Proof: Easy to see image representations of $\mathscr{B}, \mathscr{B}'$ given by

$$\mathscr{B} = \operatorname{im} V^{-1} \begin{bmatrix} 0\\ I_{w-p} \end{bmatrix} \qquad \mathscr{B}' = \operatorname{im} V^{-1} \begin{bmatrix} I_p\\ 0 \end{bmatrix}$$

Consequently $\mathscr{B} + \mathscr{B}'$ represented by

$$V^{-1} \begin{bmatrix} 0 & I_{\rm p} \\ I_{\rm w-p} & 0 \end{bmatrix}$$

unimodular, consequently bijective.

$$\mathscr{B} = \mathscr{B}_{aut} \oplus \mathscr{B}_{contr}$$

with \mathscr{B}_{contr} controllable and \mathscr{B}_{aut} autonomous.

$$\mathcal{B} = \mathcal{B}_{aut} \oplus \mathcal{B}_{contr}$$

with \mathscr{B}_{contr} controllable and \mathscr{B}_{aut} autonomous.

Proof: Write Smith form of $R = U \begin{bmatrix} D & 0_{p \times (w-p)} \end{bmatrix} V$, define $\mathscr{B}' := V \left(\frac{d}{dt}\right) \mathscr{B}$.

$$\mathcal{B} = \mathcal{B}_{aut} \oplus \mathcal{B}_{contr}$$

with \mathscr{B}_{contr} controllable and \mathscr{B}_{aut} autonomous.

Proof: Write Smith form of $R = U \begin{bmatrix} D & 0_{p \times (w-p)} \end{bmatrix} V$, define $\mathscr{B}' := V \left(\frac{d}{dt}\right) \mathscr{B}$.

$$w' \in \mathscr{B}' \iff w' = \begin{bmatrix} w'_1 \\ w'_2 \end{bmatrix}$$

with $w'_1 \in \ker D\left(\frac{d}{dt}\right)$, w'_2 free.

$$\mathcal{B} = \mathcal{B}_{aut} \oplus \mathcal{B}_{contr}$$

with \mathscr{B}_{contr} controllable and \mathscr{B}_{aut} autonomous.

If
$$D = I_p \Longrightarrow$$
 take $\mathscr{B}'_{\text{contr}} = \mathscr{B}', \mathscr{B}'_{\text{aut}} = \{0\}.$

$$\mathcal{B} = \mathcal{B}_{aut} \oplus \mathcal{B}_{contr}$$

with \mathscr{B}_{contr} controllable and \mathscr{B}_{aut} autonomous.

If $D \neq I_p$, define

$$\mathscr{B}_{\text{contr}}' = \left\{ \begin{bmatrix} w_1' \\ 0 \end{bmatrix} \mid w_1' \in \ker D\left(\frac{d}{dt}\right) \right\}$$
$$\mathscr{B}_{\text{aut}}' = \left\{ \begin{bmatrix} 0 \\ w_2' \end{bmatrix} \mid w_2' \in \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R}^{\mathsf{w}-\mathsf{p}}) \right\}.$$

$$\mathcal{B} = \mathcal{B}_{aut} \oplus \mathcal{B}_{contr}$$

with \mathscr{B}_{contr} controllable and \mathscr{B}_{aut} autonomous.

Then transform back to *w* **variables.**

Observability

¿Can w₂ be determined knowing w₁ and the system dynamics?

¿Can w₂ be determined knowing w₁ and the system dynamics?

 $\mathscr{B} \in \mathscr{L}^{w}$, $w = (w_1, w_2)$. w_2 is observable from w_1 if

$$(w_1, w_2'), (w_1, w_2'') \in \mathscr{B} \Longrightarrow w_2' = w_2''$$

Algebraic characterization of observability

Assume *B* represented in kernel form as

$$R_1\left(\frac{d}{dt}\right)w_1 + R_2\left(\frac{d}{dt}\right)w_2 = 0$$

Algebraic characterization of observability

Assume *B* represented in kernel form as

$$R_1\left(\frac{d}{dt}\right)w_1 + R_2\left(\frac{d}{dt}\right)w_2 = 0$$

¿Does

$$R_2\left(\frac{d}{dt}\right)w_2 = -R_1\left(\frac{d}{dt}\right)w_1$$
known

have a unique solution w_2 ?

Algebraic characterization of observability

Assume *B* represented in kernel form as

$$R_1\left(\frac{d}{dt}\right)w_1 + R_2\left(\frac{d}{dt}\right)w_2 = 0$$

¿Does

$$R_2\left(\frac{d}{dt}\right)w_2 = -R_1\left(\frac{d}{dt}\right)w_1$$
known

have a unique solution w_2 ?

It has $\Leftrightarrow R_2\left(\frac{d}{dt}\right)$ injective $\Leftrightarrow R_2(\lambda)$ has full column rank for all $\lambda \in \mathbb{C}$

$$m_{1}\frac{d^{2}w_{1}}{dt^{2}} + c_{1}\left(\frac{d}{dt}w_{1} - \frac{d}{dt}w_{2}\right) + k_{1}(w_{1} - w_{2}) = 0$$

$$m_{1}\frac{d^{2}w_{1}}{dt^{2}} + c_{2}\frac{d}{dt}w_{2} + c_{1}\left(\frac{d}{dt}w_{2} - \frac{d}{dt}w_{1}\right) + (k_{1} + k_{2})w_{2} = 0$$

; Is w_2 observable from w_1 ?

¿Is w_2 **observable from** w_1 ?

¿Can one determine *w*₂ **from knowledge of** *w*₁ **and the system dynamics?**

$$\begin{bmatrix} m_1 \frac{d^2}{dt^2} + c_1 \frac{d}{dt} + k_1 \\ -c_1 \frac{d}{dt} - k_1 \end{bmatrix} w_1 = \begin{bmatrix} c_1 \frac{d}{dt} + k_1 \\ -m_2 \frac{d^2}{dt^2} - (c_2 + c_1) \frac{d}{dt} - (k_1 + k_2) \end{bmatrix} w_2$$

$$\begin{bmatrix} m_1 \frac{d^2}{dt^2} + c_1 \frac{d}{dt} + k_1 \\ -c_1 \frac{d}{dt} - k_1 \end{bmatrix} w_1 = \begin{bmatrix} c_1 \frac{d}{dt} + k_1 \\ -m_2 \frac{d^2}{dt^2} - (c_2 + c_1) \frac{d}{dt} - (k_1 + k_2) \end{bmatrix} w_2$$

Is polynomial differential operator on RHS injective?

$$\begin{bmatrix} m_1 \frac{d^2}{dt^2} + c_1 \frac{d}{dt} + k_1 \\ -c_1 \frac{d}{dt} - k_1 \end{bmatrix} w_1 = \begin{bmatrix} c_1 \frac{d}{dt} + k_1 \\ -m_2 \frac{d^2}{dt^2} - (c_2 + c_1) \frac{d}{dt} - (k_1 + k_2) \end{bmatrix} w_2$$

Is polynomial differential operator on RHS injective?

$$\begin{bmatrix} c_1\lambda + k_1 \\ -m_2\lambda^2 - (c_2 + c_1)\lambda - (k_1 + k_2) \end{bmatrix}$$

has full column rank $\forall \ \lambda \in \mathbb{C} \ (\iff observability) \Leftrightarrow$

$$-m_2k_1^2 + c_1c_2k_1 - k_2c_2^2 \neq 0$$

Rank constancy test generalization of 'Hautus test' for state-space systems.

- Rank constancy test generalization of 'Hautus test' for state-space systems.
- Trajectory-, not representation-based definition as in state-space framework.

Polynomial differential operators and their properties are key;

- Polynomial differential operators and their properties are key;
- Inputs: free variables;

- Polynomial differential operators and their properties are key;
- Inputs: free variables;
- Autonomous systems;

- Polynomial differential operators and their properties are key;
- Inputs: free variables;
- Autonomous systems;
- Controllability and observability: system, not representation, properties;

- Polynomial differential operators and their properties are key;
- Inputs: free variables;
- Autonomous systems;
- Controllability and observability: system, not representation, properties;
- Algebraic characterizations;

- Polynomial differential operators and their properties are key;
- Inputs: free variables;
- Autonomous systems;
- Controllability and observability: system, not representation, properties;
- Algebraic characterizations;
- Image representations.

End of Lecture 3