
Exercise 1: Linear models

Call the mathematical model(Rw
,B) linear if B is a linear

subspace ofRw.

1. Prove that a linear behavior admits a representation

Rw = 0 R ∈ R
•×w (⋆)

Call (⋆) a kernel representationof B, and a minimal kernel
representation if, among all kernel representations of
B,rowdimension(R) is as small as possible.

2. Prove that (⋆) is minimal iff R has full row rank.

3. How are theR’s of minimal kernel representations
related?

4. Define what you mean by an image representation, and
prove its existence.
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Exercise 2: Static input/output models

Consider the mathematical model(U×Y,B), with B the
graph of the map

f : U → Y, y = f (u)

1. Discuss that it is not illogical to callu the input (cause)

and y the output (effect).

2. Prove that for the gas law, you can take any of the 4
variables as output, and the other 3 as inputs.

Is there anything logical about cause/effect thinking in
this example?
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Exercise 3: Symmetry

Let Tg,g ∈ G, be a transformation group onU (see appendix).
Call the model (U ,B) symmetric with respect to this
transformation group if

Tg(B) = B for all g ∈ G

1. Identify an obvious symmetry for the 32-bit strings with
a parity check.

2. Consider the law of attraction of 2 bodies.
Identify a symmetry related to exchanging positions.

3. Explain in what sense Maxwell’s equations are
symmetric with respect to translation and rotation.

– p. 3/3



Exercise 4: Energy in a spring

Consider the massless spring discussed in lecture 1.

L

F1 F2

q1

q2

L

F2

f

The behavioral equations are

q1−q2 = L, F1 +F2 = 0, L = f (F2) (♠)

with f typically looking as shown in the above figure.
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Exercise 4: Energy in a spring - continued

1. Define an associated variable,E, the energy in the
spring, and give an expression for it as a function ofL.

Now consider the spring as a dynamical system, by assuming
that q1,q2,F1,F2,L are functions of time, and that equations
(♠) hold for all t ∈ R.

2. The energy is now also a function of time. Prove that

d
dt

E = F1
d
dt

q1 +F2
d
dt

q2.

3. Considerp = F1
d
dt q1 +F2

d
dt q2, the power absorbed by

the spring. Of course, d
dt E = p. Consider the behavior of

the joint variables F1,F2,q1,q2,L,E, p. Reason that this is
a genuine dynamical system: energy and power can
bring in dynamics, even in a static system.
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Exercise 5: Conservation law

Consider the dynamical system(R,W×R,B). Assume that it
is autonomous. Let(w,c) be a typical element ofB. Call c a
conservation law if c is observable fromw and
[[(w,c) ∈ B]] ⇒ [[c = constant (as a function of time)]].

Define for the following examples (discussed in the lecture)an
additional variable such that it is a conservation law for
extended behavior.

1. Newton’s second law, made into an autonomous system
by setting F = 0.

2. A pointmass moving in a gravitational field.

3. The diffusion equation, made autonomous by setting
q = 0, viewed as a dynamical system withw(t) = T (t, ·),
and assuming

∫ +∞
−∞ T (0,x)dx < ∞.
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Exercise 6: State controllability

Consider d
dt

x = Ax+Bu, w =

[

u
y

]

.

1. Prove that this system is controllable in the sense of
behaviors iff it is state controllable in the sense of
Kalman.

Consider d
dt

x = Ax+Bu,y = Cx+Du, w =







u
y
x






.

2. Recall the standard definition of state observability in
terms of deducing the initial state from the input and
output. Give a formal definition using the notation from
behaviors.

3. Prove that state observability is equivalent to behavioral
observability with (u,y) observed andx to-be-deduced.
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Exercise 7: Time-reversibility

Σ = (R,W,B) is said to be time-reversible if w ∈ B implies
reverse(w) ∈ B, wherereverse(w) is defined by
reverse(w)(t) := w(−t).

1. Do Kepler’s laws define a time-reversible system?

2. Let 0 6= p ∈ R [ξ ]. Prove that p( d
dt )w = 0, p ∈ R [ξ ], is

time-reversible iff p is either an even or an odd
polynomial. (Hint: in the time-reversible case,
p(− d

dt )w = 0 is also a kernel representation.)

3. Generalize the ‘if’ part to p( d
dt )w1 = q( d

dt )w2, p,q ∈ R [ξ ].

4. Assume in addition thatp and q are co-prime. (We will
see in lecture 3 that this means thatp( d

dt )w1 = q( d
dt )w2

defines a controllable system.) Prove that
time-reversibility then implies that p and q are both even.
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Exercise 8: Covers

A behavior B ∈ L w is said to be a cover ofB′
∈ L w if

B′
⊆ B.

Consider the set of siso systemsB ∈ L 2, defined by

p1(
d
dt

)w1 = p2(
d
dt

)w2 p1, p2 ∈ R [ξ ] , not both zero.

1. Take p1(ξ ) = (ξ +1)(ξ 2 +1), p2(ξ ) = (ξ −1)(ξ 2+1).
List all the covers of the resultingB in the set of siso
systems.

2. Generalize to arbitrary p1, p2.

3. Observe from this example that the list of siso covers of a
siso systemB ∈ L 2 is finite. Is this also the case for the
set of siso systems for whichB is a cover?
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Exercise 9: Minimal kernel representations

1. Prove thatUn := {U ∈ R [ξ ]n×n

|U is unimodular} forms a
multiplicative group.

2. DefineK w

p
to be the set of elements ofR [ξ ]p×w with

rank= p. Prove that Up induces a transformation group
on K w

p
by premultiplication.

3. Show thatkernel(R( d
dt )) defines a complete invariant

for this transformation group.

4. Show that thep×p minors (of the elements ofK w

p
) listed

in a well-defined order are invariants of this
transformation group. In particular, the degree of the
p×p minor of highest degree is an invariant. In lecture
4b, we show that this invariant equalsn, the dimension of
the state space.
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Exercise 10: Elimination in the RLC circuit

Consider the RLC circuit discussed as an example in the
lecture about the emergence of latent variables. This exercise
ask you to eliminate the latent variables in an ad hoc manner.

1. First eliminate V1,V2,V3,V4 and Ia, Ib, Ic, I f to arrive at

C
d
dt

V = Ie +CRCIe, V = L
d
dt

Id +RLId, I = Ie + Id.

2. Next, distinguish two cases to eliminate Id, Ie.
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Exercise 11: Actions on L w

Let B,B1,B2 ∈ L w and F ∈ R [ξ ]w×w.

1. Prove that (B1+B2) ∈ L w

2. Prove that B1∩B2 ∈ L w

3. Prove that F( d
dt )B ∈ L w

4. Prove that F( d
dt )

−1B ∈ L w
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Exercise 12: Elimination algorithm

Let F ∈ R [ξ ]w1×w2. N := {n ∈ R [ξ ]1×w1
|nF = 0} is an

R [ξ ]-module, called the left syzygy of F . Assume that you
have available an algorithm that computes a basis of the left
syzygy of F , and a basis for a complement of N , that of the
module N ′ such that N ⊕N ′ = R [ξ ]1×w1 . Consider

R
(

d
dt

)

w = M
(

d
dt

)

ℓ (H)

We wish to obtain an algorithm to eliminate the latent
variables ℓ from this equation.

Assume that the rows of N form a basis for the left syzygy of
M, and that the rows of N′ for a basis for complement of this
left syzygy.
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Exercise 12: Elimination algorithm (continued)

1. Prove that

[

N′

N

]

is unimodular

2. Prove that

[

N′

N

]

M is of the form

[

M′

0

]

, M′ full row rank.

3. Deduce an algorithm to compute a kernel representation
of the manifest behavior of (H).

Conclusion: elimination of latent variables in LTIDSs can be
reduced to a standard problem in computer algebra.
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Exercise 13: Input/output partition

Consider the electrical circuit discussed in the lecture on
elimination of latent variables. The external variables are the
port voltage V and the port current I.

1. Which of these variables is input, output?

2. Does your answer change if you consider only
input/output partitions such that the transfer function is
proper?

3. Assume that we want to use the ‘scattering variables’
u = V +ρI,y = V −ρI as input and output variables.
Chooseρ such that the resulting input/output system has
a strictly proper transfer function.
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Exercise 14: Input and output cardinality

1. Consider a polynomial matrix R ∈ R
g×w[ξ ] representing

a behaviorB in kernel form. Prove that the number of
outputs p(B) equalsrank(R).

2. ConsiderB ∈ L w, ‘complexified’. For λ ∈ C, define
Aλ := {v ∈ C

w
| veλ t

∈ B}. Prove that Aλ is a linear
subspace ofCw. Let R ∈ R

•×w[ξ ] be such that
B = ker R

(

d
dt

)

. Prove that Aλ = kernel(R(λ )).

3. Prove thatdimension(Aλ ) is the same for all except a
finite number of λ ∈ C. Prove that this ‘normal’
dimension is equal tom(B), the number of input
variables ofB.

4. Prove thatdimension(Aλ ) is zero for all except a finite
number of λ ∈ C iff B is autonomous. Prove that
dimension(Aλ ) is constant iff B is controllable.
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Exercise 15: Autonomy and orthogonality

DefineB1 ∈ L w and B2 ∈ L w to be orthogonal if
∫ +∞
−∞ w1(t)⊤w2(t)dt = 0 for all w1 ∈ B1,w2 ∈ B2

of compact support.

1. Define, using these ideas, the orthogonal complement,
B⊥ of B ∈ L w.

2. Prove that the systems defined by the kernel
representationR

(

d
dt

)

w = 0 and the image representation

w = R⊤
(

−
d
dt

)

ℓ are orthogonal.

3. It can be shown that under certain conditions
(controllability) the systemsR

(

d
dt

)

w = 0 and

w = R⊤
(

−
d
dt

)

ℓ are orthogonal complements. Assume
this to be the case. Prove thatB∩B⊥ is autonomous but
in general not zero.
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Exercise 16: Observable image representation

1. We have seen in the lecture that B ∈ L • is controllable
iff it admits an image representation. Prove that it is
controllable iff it admits an
observable image representation

2. Consider the behavior described in kernel form by

p

(

d
dt

)

y = q

(

d
dt

)

u

with p,q ∈ R [ξ ].
What does controllability mean in terms of p,q?
Assuming controllability, give an observable image
representation.
Give also a non-observable image representation.
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Exercise 17: Representations of observable systems

1. Partition the external variable in B ∈ L w as (w1,w2).
Prove that there exists a polynomial differential operator
F

(

d
dt

)

such that (w1,w2) ∈ B implies w2 = F
(

d
dt

)

w1 iff
w2 is observable from w1.

2. Partition the external variable in B ∈ L w as (w1,w2).
Assume that w2 is observable from w1. Prove that there
exists a kernel representation of B of the form

H

(

d
dt

)

w1 = 0 F

(

d
dt

)

w1 = w2

3. Can you make this special kernel representation
minimal?
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Exercise 18: Stabilizability

Let B = kernel
(

R
(

d
dt

))

∈ L w.

1. Prove that B is asymptotically stable (i.e., all elements of
B go to zero as t → ∞) iff rank(R(λ )) = w(B) for all
λ ∈ C s.t. Re(λ ) ≥ 0.

2. Prove that B is stable (i.e., all elements of B are
bounded on [0,∞) iff
(a) rank(R(λ )) = w(B) for all λ ∈ C s.t. Re(λ ) > 0;
(b) for all ω ∈ R, w(B)−rank(R(iω)) equals the

multiplicity of iω as a root of determinant(R).

3. Prove that [[B is stabilizable]] ⇔ [[rank R(λ ) = rank(R)
for all λ ∈ C such that Re(λ ) ≥ 0]].
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Exercise 19: Rational representations of controllable siso systems

Consider the system described by the ‘ODE’

g

(

d
dt

)

w = 0 (♣)

with 0 6= g ∈ R(ξ )1×2. Let g = [g1
... g2], g1 =

n1

d1
,g2 =

n2

d2
with

n1,d1, and n2,d2 coprime polynomials.

1. Give a polynomial based kernel representation of (♣).

2. Give conditions ofn1,d1,n2,d2 for (♣) to be controllable.

3. Prove that if (♣) is controllable, then all controllable
rational symbol based kernel representations of this
system are obtained byg 7→ f g 0 6= f ∈ R [ξ ].
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Exercise 20: Series connection

Consider the series connection of siso systems with transfer
functions g1 and g2. Assume that these systems are both
controllable.

u = u1 y = y2
y1 = u2g1 g2

1. Give a kernel representation of the series connection.

2. Under what conditions is this series connection also
controllable?

3. What is the controllable part of the series connection,
and what is its transfer function?

4. Can controllability change if you take the series
connection in reverse order.
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Exercise 21: Spectral factorization

Consider the factorization equation

h(ξ ) = f (−ξ ) f (ξ ) (�)

with h ∈ R [ξ ] given, and f ∈ R [ξ ] the unknown.

1. Prove that (�) is solvable iff
(i) h(ξ ) = h(−ξ ) and (ii) h(iω) ≥ 0 for all ω ∈ R.

2. How should the above conditions be modified for the
existence of a solutionh that is Hurwitz?
(i.e. with its roots in the open left half part of C)

3. Use these results to prove that the controllable system
B ∈ L 2 has a stable norm-preserving image
representation.
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Exercise 22: Structure of state equations

Let Σ = (Z,R
w
,R

x
,Bfull ) be a discrete-time linear

time-invariant latent variable system. Assume that it is
complete, i.e. that

[[w ∈ B]] ⇔ [[w |[t0,t1]∈ B |[t0,t1] for all −∞ < t0 ≥ t1 < ∞]]

Prove that Σ is a state system iff there exist matrices
E,F,G ∈ R

•×• such thatBfull is described by

Eσx+Fx+Gw = 0

(Hint: For the “only if” part, define

V :=

{[

a

b

c

]

| ∃(x,w) ∈ Bfull s. t.

[

x(1)

x(0)

w(0)

]

=

[

a

b

c

]}

Obviously V is a linear space. DeduceE,F,G from V . )
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Exercise 23: The state dimension

The McMillan degree of a systemB ∈ L • is the dimension
of the minimal state space ofB, denoted byn(B). Let
R

(

d
dt

)

w = 0 be a minimal kernel representation ofB.

1. Prove thatn(B) is equal to the maximum of the degrees
of the w(B)×w(B) minors of R. You may use the
following fact: there exists a unimodular matrix U such
that UR is row-reduced. A polynomial matrix is row
reduced if the matrix formed by the coefficients of the
highest degrees of the rows is of full row rank.

2. Prove thatn(B) = degree(determinant(P)) with P
such that

[

P −Q
]

[

y
u

]

= 0

is an input/output representation ofB with P−1Q proper.
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Exercise 24: State construction for siso systems

Consider the behavior described in kernel form by

p

(

d
dt

)

y = q

(

d
dt

)

u

with p(ξ ) = p0 + p1ξ + . . .+ pnξ n

q(ξ ) = q0 +q1ξ + . . .+qnξ n

1. Write the polynomial matrix X ∈ R
n×2[ξ ] obtained by

applying the shift-and-cut map to the matrix
[

p(ξ ) −q(ξ )
]

2. Is X(ξ ) obtained in this way a minimal state map?
Explain.
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Exercise 24: State construction for siso systems (continued)

3. Verify that the matrices A, B, C, and D corresponding to
this state map are

A =























1 0 0 . . . 0 −
pn−1

pn

0 1 0 . . . 0 −
pn−2

pn

...
. ..

. . .
.. . . . .

...

0 0 0 . . . 0 −
p1
pn

0 0 0 . . . 1 −
p0
pn























B =























qn−1−
pn−1qn

pn

qn−2−
pn−2qn

pn

...

q1−
p1qn

pn

q0−
p0qn

pn























C =
[

0 0 0 . . . 0 1
pn

]

D =
qn

pn
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Exercise 25: Construction of Lyapunov function

Consider the scalar system

w+2
d
dt

w+2
d2

dt2w+
d3

dt3w = 0.

1. Prove that this polynomial is Hurwitz.

2. Use the calculus of QDFs to find a Lyapunov function
with derivative

−w2
−

(

d
dt

w

)2

−

(

d2

dt2w

)2

.
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Exercise 26: Power, energy and dissipation

q

F

q = distance from equilibrium
F = force exerted

Assume all elements linear
choose the units so that
the spring constant, the mass,
and the damping constant
are all = 1

1. Write the behavioral differential equation relating F and
q in kernel and in image form.

2. Express the power delivered, the stored energy, and the
dissipation rate in terms of QDFs acting both on(F,q),
and on the latent variableℓ of your image representation.

3. Verify the identity relating the power delivered, the
stored energy, and the dissipation rate.
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Exercise 27: SOS

Let Φ ∈ R [ζ ,η ]w×w be symmetric. We have seen in the lecture
that QΦ ≥ 0 iff there exists D ∈ R [ξ ]•×w such that

Φ(ζ ,η) = D⊤(ζ )D(η), i.e. QΦ(w) = |D
(

d
dt

)

w|2

1. Prove this, and interpret it as‘a QDF is nonnegative iff it
is a sum-of-squares’.

2. In the casew = 1 give a bound on the number of squares
and on the degree ofD in terms of the degree onΦ.

3. State and prove the analogous statement‘a QDF is
nonnegative along B iff it is a sum-of-squares on B’ for a
controllable B ∈ L •.
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Exercise 28: Computation of storage functions

Consider the system
(

d
dt

+1

)

w1 =

(

d
dt

+4

)

w2

and the supply ratew1 w2.

1. Write this system in image form.

2. Express what condition a QDF in the latent variable of
the image representation has to satisfy in order to qualify
as a storage.

3. Use polynomial factorization to compute 2 distinct
storages.
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Exercise 29: When is a QDF a derivative of a QDF?

We have seen in the lecture that for a givenΦ ∈ R [ζ ,η ]w1×w2,
there existsΨ ∈ R [ζ ,η ]w1×w2 such that

Φ(ζ ,η) = (ζ +η)Ψ(ζ ,η)

iff Φ(−ξ ,ξ ) = 0. The ‘only if’ part is clear. The aim of this
exercise is to give a matrix-based proof of the ‘if’ part.

1. Prove that you may restriction attention tow1 = w2 = 1.

2. Prove that you may restrict attention to homogeneous
scalar two-variable polynomials

Φ(ζ ,η) = a0ζ n +a0ζ n−1η + · · ·+an−1ζηn−1 +anηn

.

3. Prove that if Φ is homogeneous of degreen, then Ψ must
be homogeneous of degreen−1.
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Exercise 29: When is a QDF a derivative of a QDF? (continued)

4. Consider the equation

a0ζ n +a1ζ n−1η + · · ·+an−1ζηn−1 +anηn

= (ζ +η)(b0ζ n−1 +b1ζ n−2η + · · ·+bn−2ζηn−2 +bn−1ζ n−1). (∇)

Write this as a matrix equation a = Mb with
a ∈ R

n+1
,b ∈ R

n defined in the obvious way.
What is M? Prove that it has rank n.

5. Prove thatimage([1 −1 1 −1 · · · ]) is the left kernel of
M. Deduce that (∇) has a solution iff

a0 +a2+ · · · = a1 +a3+ · · · .

6. Show that this meansΦ(−ξ ,ξ ) = 0. Conclude the ‘if’
part.
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Exercise 30: LMIs

Consider the systemd
dt x = Ax+Bu and the QDF supply rate

x⊤Qx+2x⊤Su+u⊤Ru. AssumeQ = Q⊤
,R = R⊤.

1. Prove thatx⊤Kx with K = K⊤ is a storage iff

[

Q−A⊤K −KA S−KB
S⊤−B⊤K R

]

≥ 0 . (LMI)

This inequality is a linear matrix inequality (LMI).

2. Prove that (LMI) has a solution K if

[

Q S
S⊤ R

]

≥ 0.

3. Prove that the set of solutionsK is always convex (for
fixed A,B,R,S,Q).
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Exercise 31: Modeling an LC circuit

��

��

I

V
−

+
��

��

C1

C2

L1

L2

1. Model the port behavior of the above circuit in a
systematic way by tearing, zooming, and linking.

2. For which values of theL’s and C’s (all assumed positive)
is the port behavior controllable?

3. For which values of theL’s and C’s (all assumed positive)
are the branch currents observable from the port
variables?

– p. 1/4



Exercise 32: Modeling amass-spring-damper system

Consider themass-spring-damper system shown below.

spring1 spring2 spring3

damper

mass1 mass2

F1 F2

View this system as a interconnection of 3 springs, 2 masses,
and 1 damper. There are 2 external forces.
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Exercise 32: Modeling a mass-spring-damper system (continued)

1. Draw the associated graph with leaves.

2. Assume all elements to be linear. Take as parameters of
the modules (in the obvious notation)k1,k2,k3,m1,m2,d.
Associate with each terminal a position and a force.
Write behavioral equations for each of the subsystems.

3. Write equations for the interconnections.

4. Take as manifest variables the total forceFtotal = F1 +F2,
and the position of the center of gravity,q̄ = m1q1+m2q2

m1+m2
.

Write the equations for the manifest variable
assignment.

5. Eliminate the latent variables and obtain the differential
equation governing the manifest variables.
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Exercise 33: Ports and terminals

Consider the two circuits shown below. Number the terminals
of the first circuit by 1,2,3,4,5,6 and of the second circuit by
7,8,9,10,11,12. Assume that all the terminals together of the
individual circuits form ports.

ElectricalElectrical

circuit 1 circuit 2

1. Interconnect terminal (4,7),(5,8),(6,9). Prove that the
external terminals of the interconnected circuit also
forms a port.

2. Assume that terminals1,2,3 of circuit 1 form a port.
Prove that terminals (10,11,12) form a port for the
interconnected circuit.
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Exercise 34: Boundedness of solutions

Consider the setting of the stabilization theorem.

1. Give n.a.s.c. on the invariant factors ofP for the
existence of a controllerC such that the all solutions of
K are bounded on[0,∞). This property is often called
‘stability’. What we called ‘stability’ in the stabilizati on
theorem is then called ‘asymptotic stability’.

2. Prove that there exists a controllerC such that the all
solutions ofK are bounded on(−∞,+∞) iff all the
invariant factors of P are even and have simple roots.
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Exercise 35: Pole placement for siso systems

Consider Consider, for
p,q ∈ R [ξ ] , coprime, with degree(q) < degree(p) = n,
the Bézoutequation px+qy = z , x,y,z ∈ R [ξ ].

1. Prove that for z with degree(z) < 2n, there existx,y with
degree(x),degree(y) < n that satisfy the Bézout
equation. Hint: Prove that the map (x,y) 7→ z viewed as a
map from the polynomials of degree< n to the
polynomials of degree< 2n is injective, hence surjective.

2. Prove that
[[degree(z) = 2n−1]] ⇒ [[degree(y) ≤ degree(x) = n−1]].

3. Deduce a sharp pole placement result, including
properness of the transfer function of the controller, for
the siso plant

p

(

d
dt

)

y = q

(

d
dt

)

u.
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Exercise 36: Implementability

Consider the setting of the implementability theorem. Assume
fifull control c = w, and controllers C acting on c.

1. Prove that the set of implementable controlled behaviors
obtained by controllers that act onc is in general smaller
than the set of implementable controlled behaviors
obtained with full control c = w.

2. Under what conditions are these sets equal?

– p. 3/3



Exercise 37: Output measurements

In the lecture, we assumed that the measurements are
elements of the universumU of events. However, in
applications, measurements may be functions of the events.
Assume that there is a (known) mapf : U → M, with M the
set where the measurements take on their values. Assume that
the measurements are collected in a subsetD of M.

1. Explain what you mean by ‘unfalsified’ and ‘the MPUM’
in this situation.

AssumeU = R
w, M = the set of linear subspaces ofRw,

M = R
m, and f linear.

2. Prove that the MPUM exists in this case.

3. Explain how to compute it usingD and f .
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Exercise 38: Exponential interpolation

Let λ ∈ C,0 6= v ∈ C
w, and consider the vector exponential

t ∈ R 7→ eλ tv ∈ C
w.

1. Prove thatR
(

d
dt

)

w = 0 is unfalsified by (or
‘interpolates’) this exponential iff R(λ )v = 0.

2. Prove that
vv⊤

v⊤v

(

d
dt

−λ
)

w = 0 defines the MPUM that

interpolates this exponential.

3. Generalize this to obtain a recursive algorithm forn
exponentials, by computing the ‘error’ exponential
R(λk)vkeλkt at each stage, the MPUM of this exponential,
and the recursionR 7→ ER.
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Exercise 39: Autonomous behavior

1. Compute, using the recursive algorithm discussed in the
lecture, the MPUM for the Fibonacci series

0,1,1,2,3,5,8, . . .

Leonardo Fibonacci
ca. 1170 – ca. 1250

2. Repeat for

1,1, . . . ,1
︸ ︷︷ ︸

n times

,0,0, . . .

3. Prove that the MPUM for w(0),w(1),w(2), . . . is
autonomous iff the data Hankel matrix has finite rank.

4. Assume that the data Hankel matrix has finite rankn.
Obtain a kernel representation of the MPUM starting
from any rank n submatrix of the Hankel matrix.
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Exercise 40: Stationarity and minimality

Consider the quadratic expression

∫ +∞

−∞

[

w2 +

(

d
dt

w

)2
]

dt.

1. Determine the ODE that gives the stationary trajectories.

2. Are these local minima?

3. Spectral factor1+ξ 4.

4. Determine the ODE that gives the local minima w.r.t.
one-sided variations.
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Exercise 41: Stationarity for siso systems

Consider the siso system with kernel representation

p

(

d
dt

)

y = q

(

d
dt

)

u,

with p,q ∈ R [ξ ] coprime. Consider the quadratic expressions

∫ +∞

−∞

(

u2 + y2) dt and
∫ +∞

−∞

(

u2
− y2) dt.

1. Determine the stationary trajectories.

2. Prove that for the first case the stationary trajectories
are local minima.

3. Determine for the second case a condition on the
modulus of the transfer function g =

q
p

for local minimality.
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Exercise 42: Feedback control for siso systems

Consider the siso system with kernel representation

p

(

d
dt

)

y = q

(

d
dt

)

u,

with p,q ∈ R [ξ ] coprime, and the quadratic functional
∫ +∞

−∞

(

u2 + y2) dt

1. Prove that there exists a unique Hurwitz polynomialh
such that

p(−ξ )p(ξ )+q(−ξ )q(ξ ) = h(−ξ )h(ξ )

2. What can you say about the degree ofh in terms of the
degrees ofp,q?

Assume henceforthdegree(q) < degree(p) and p,h monic.
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Exercise 42: Feedback control for siso systems (continued)

3. Prove that [

u
y

]

=

[

p
q

]

(

d
dt

)

ℓ

is an image representation of the system.

4. Prove that the one-sided local minima are obtained by

h

(

d
dt

)

ℓ = 0.

5. Prove that these traj. are generated by the control law

u =

[

p

(

d
dt

)

−h

(

d
dt

)]

ℓ.

6. Prove that this control law is a static gain acting on the
state of the system.
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