Call the mathematical model(R¥, %) linear if # is a linear
subspace ofR".

1. Prove that a linear behavior admits a representation
Rw=20 Re R**¥ (%)

Call (x) a kernel representationof &4, and a minimal kernel
representation if, among all kernel representations of
A,rowdi mensi on(R) is as small as possible.

2. Prove that (x) is minimal iff R has full row rank.

3. How are theR's of minimal kernel representations
related?

4. Define what you mean by an image representation, and
prove its existence.



Consider the mathematical modelU x Y, %), with % the
graph of the map

f:-U—-Y, y=f(u)

1. Discuss that it is not illogical to callu the input (cause)
andythe output (effect).

2. Prove that for the gas law, you can take any of the 4
variables as output, and the other 3 as inputs.

Is there anything logical about cause/effect thinking in
this example?



Let Ty, g € G, be a transformation group on% (see appendix).

Call the model (% ,%) symmetric with respect to this
transformation group Iif

Tg(#)=2% forall geG

1. Ildentify an obvious symmetry for the 32-bit strings with
a parity check.

2. Consider the law of attraction of 2 bodies.
ldentify a symmetry related to exchanging positions.

3. Explain in what sense Maxwell’'s equations are
symmetric with respect to translation and rotation.



Consider the massless spring discussed in lecture 1.

AFZ

The behavioral equations are

G—G=L, FR+R=0 L=1f(R) (&)

with f typically looking as shown in the above figure.



1. Define an associated variablds, the energy in the
spring, and give an expression for it as a function ot..

Now consider the spring as a dynamical system, by assuming

that gy, 0o, F1, P, L are functions of time, and that equations
&) hold for all t € R.

2. The energy is now also a function of time. Prove that

d d d

&E Fldtq1+ detCI2-

3. Considerp=F1 01+ F>30, the power absorbed by

the spring. Of course,th p. Consider the behavior of

the joint variables F1,F, g1, 0, L, E, p. Reason that this is
a genuine dynamical system: energy and power can
bring in dynamics, even in a static system.



Consider the dynamical system(R, W x R, #). Assume that it
IS autonomous. Let(w,c) be a typical element of#. Call ca

conservation law ifcis observable fromw and
[(w,c) € #] = [c= constant (as a function of time].

Define for the following examples (discussed in the lecturgn
additional variable such that it Is a conservation law for
extended behavior.

1. Newton’s second law, made into an autonomous system
by setting F = 0.

2. A pointmass moving in a gravitational field.

3. The diffusion equation, made autonomous by setting
q= 0, viewed as a dynamical system withw(t) = T(t,-),
and assuming/ > T(0,x) dx < oo,



i d
Consider O = AX+Bu w= u

dt y|

1. Prove that this system is controllable in the sense of
behaviors Iff it Is state controllable in the sense of

Kalman. -

Consider 4 u
X =Ax+Buy=Cx+Du, w=|y| .

X

2. Recall the standard definition of state observability in
terms of deducing the initial state from the input and

output. Give a formal definition using the notation from
behaviors.

3. Prove that state observability is equivalent to behaviaal
observability with (u,y) observed andx to-be-deduced.



2 = (R,W,£) is said to be time-reversible if we % implies
reverse(w) € 4, wherer ever se(w) is defined by
reverse(w)(t) :=w(—t).

1. Do Kepler’s laws define a time-reversible system?

2. LetO# peR[&]. Prove thatp(G)w=0,p e R[&], is
time-reversible iff pis either an even or an odd
polynomial. (Hint: in the time-reversible case,

p(—%)w = 0 Is also a kernel representation.)

3. Generalize the ‘i partto p(&)wi = q(§)wz, p,q € R[E].

4. Assume in addition thatp and g are co-prime. (We will

see in lecture 3 that this means thap($)w: = q(§)w.

defines a controllable system.) Prove that
time-reversibility then implies that p and g are both even.

—-n. 1



A behavior & € ¥V is said to be acover of ' ¢ ¥V if
B C A.

Consider the set of siso system® € .#2, defined by

d d
P1 (dt) 1= pz(dt)wz p1, P2 € R[&], not both zero.

1. Takepy(&) = (E+1)(E%41),p2(&) = (£ —1)(E°+1).
List all the covers of the resulting % in the set of siso

systems.

2. Generalize to arbitrary p1, po.

3. Observe from this example that the list of siso covers of a

Siso systemZ € 2 is finite. Is this also the case for the
set of siso systems for whiclig is a cover?



1. Prove thatil, := {U € R[&]"*"|U is unimodular} forms a
multiplicative group.

2. Define.%" to be the set of elements aR [£]P"" with
rank = p. Prove thatil, induces a transformation group
on .%Z," by premultiplication.

3. Show thatker nel (R(%)) defines a complete invariant
for this transformation group.

4. Show that thep x p minors (of the elements ot listed

In a well-defined order are invariants of this
transformation group. In particular, the degree of the

p x p minor of highest degree is an invariant. In lecture
4b, we show that this invariant equalsn, the dimension of
the state space.



Consider the RLC circuit discussed as an examplein the
lecture about the emergence of latent variables. This exercise
ask you to eliminate the latent variablesin an ad hoc manner.

1. First eiminateVq,Vo, V3,V and I, lp, I, 1+ toarrive at

d d
CV=le+CRcle, V=L_la+Rulg, | =letla.

2. Next, distinguish two casesto eliminate lg, le.



Let B, %1, %, c L"and F ¢ R[E]TFY.

> W N

Provethat (%, + %) € ¥
Provethat 41N %> € "

Provethat F($)% € £~
Provethat F($) 1% ¢ &~




Let F e R[E]"™ ™2, 4 :={neR[E]V™|nF =0} isan
R [&]-module, called the left syzygy of F. Assumethat you

have available an algorithm that computes a basis of the |eft
syzygy of F, and a basisfor a complement of .47, that of the

module .#” such that 4 & .+ = R[E]"". Consider
d d
R(g)wW=M (g)/ (V)
We wish to obtain an algorithm to eliminate the latent

variables ¢ from this equation.

Assumethat therowsof N form a basisfor theleft syzygy of
M, and that the rows of N’ for a basisfor complement of this

left syzygy.



1. Provethat

2. Provethat

IS unimodular

M is of theform

"
0

M’ full row rank.

3. Deducean algorithm to compute a kernel representation
of the manifest behavior of (V).

Conclusion: elimination of latent variablesin LTIDSs can be
reduced to a standard problem in computer algebra.



Consider the electrical circuit discussed in the lecture on
elimination of latent variables. The external variables ae the
port voltage V and the port current 1.

1. Which of these variables is input, output?

2. Does your answer change if you consider only
iInput/output partitions such that the transfer function is

proper?

3. Assume that we want to use the ‘scattering variables’
u=V +pl,y=V —pl as input and output variables.
Choosep such that the resulting input/output system has
a strictly proper transfer function.



1. Consider a polynomial matrix R € R&*¥|&] representing
a behavior # in kernel form. Prove that the number of
outputs p(#) equalsr ank (R).

2. Consider&# € ¥, ‘complexified’. For A € C, define
A, = {veC"|vel € #}. Prove thatA, is a linear
subspace ofC". Let Re R**¥|£] be such that
% = ker R(&). Prove that A, =ker nel (R(A)).

3. Prove thatdi nensi on(A, ) is the same for all except a
finite number of A € C. Prove that this ‘normal’
dimension is equal tom(%), the number of input
variables of .

4. Prove thatdi nensi on(A,) is zero for all except a finite
number of A € C iff £ is autonomous. Prove that
di mensi on(A,) is constant iff #Z is controllable.



Define %, € £V and %, € £ to be orthogonal if

[F2wy(t) Twa(t) dt = O for all wy € B1,W» € %o
of compact support

1. Define, using these ideas, the orthogonal complement,
HBtof B e L.

2. Prove that the systems defined by the kernel
representationR(c?t) w = 0 and the image representation

w=R" (—&) ¢ are orthogonal.

3. It can be shown that under certain conditions
(controllability) the systemsR (&) w= 0 and

w=R" (—&) ¢ are orthogonal complements. Assume

this to be the case. Prove thatZ N %~ is autonomous but
In general not zero.



1. Wehaveseen in thelecturethat & € #* iscontrollable

Iff it admits an image representation. Provethat it is
controllableiff it admitsan
observable image representation

. Consider the behavior described in kernel form by

d d
o(a)y-a(a) ¢
with p,ge R[¢].
What does controllability mean in terms of p,g?
Assuming controllability, give an observable image
representation.
Give also a non-observable image representation.



1. Partition theexternal variablein & € £" as (wg,W»).

Provethat there exists a polynomial differential operator

F (&) such that (wy,w,) € 2 implieswy = F () wy iff

W> 1S observable from wj.

. Partition the external variablein #Z € .Z¥ as (wy,W>).
Assumethat w» IS observable from wy. Provethat there
exists a kernedl representation of 4 of theform

d d
H<&>W1:O F<E>W1:W2

. Can you makethis special kernel representation
minimal?



Let #=kernel (R($)) € £

1. Provethat & isasymptotically stable (i.e., all elements of
P gotozeroast — o) iff rank(R(A)) = w(A) for all
A €Cst. Re(A) >0.

2. Provethat # isstable(i.e, all elementsof & are
bounded on |0, «) iff
(@) rank(R(A)) =w(ZA) for all A € Cst. Re(A) > 0;
(b) for all we R, w(HA)—rank(R(iw)) equalsthe

multiplicity of icw asaroot of det er m nant (R).

3. Provethat [Z isstabilizable] < [rank R(A) =r ank(R)
for all A € C such that Re(A) > 0].



Consider the system described by the ‘ODFE’

d
9(&>W:O ()

. “ . n N .
with O;égeR(f)l . Letg= 01:02], 01 = d—i,gzz d—zwnh

ny1,dq, and no, d> coprime polynomials.

1. Give a polynomial based kernel representation ofd).

2. Give conditions ofny,dq, Ny, dy for (&) to be controllable.

3. Prove that if (&) is controllable, then all controllable
rational symbol based kernel representations of this

system are obtained byg~— fg 0#£feR[E].



Consider the series connection of siso systems with transfe
functions g1 and g;. Assume that these systems are both

controllable.

us

U=U1_> y1:

y

1. Give a kernel representation of the series connection.
2. Under what conditions is this series connection also

controllable?

3. What is the controllable part of the series connection,

and what is its transfer function?

4. Can controllability change if you take the series

connection In reverse order.



Consider the factorization equation

h(¢) = f(=¢)T(S) C)
with he R[] given, and f € R [&] the unknown.

1. Prove that (@) is solvable iff
(i) h(§) =h(—=¢) and (ii) h(iw) > Ofor all w € R.
2. How should the above conditions be modified for the

existence of a solutiorh that is Hurwitz?
(l.e. with its roots in the open left half part of C)

3. Use these results to prove that the controllable system

P € £? has a stable norm-preserving image
representation.



Let 2 =

(Z,R",R*, B ) be a discrete-time linear

time-invariant latent variable system. Assume that it is

complete, I1.e. that

We B] < Wiyt € P lityr, forall —oo <tg>1t3 <o

Prove that 2 is a state system iff there exist matrices
E.F,G e R***® such that %, Is described by

Eox+Fx+-Gw=20

(Hint: For the “only if” part, define

e

b
C

| A(X, W) € B S. L.

}

Obviously 7" is a linear space. Deducé&,F, G from 7. )



The McMillan degree of a systemZ < .Z* is the dimension
of the minimal state space of%4, denoted byn (%). Let
R(&)w=0be a minimal kernel representation of %.

1. Prove thatn (%) is equal to the maximum of the degrees
of the w (%) x w (%) minors of R. You may use the
following fact: there exists a unimodular matrix U such
that URIs row-reduced. A polynomial matrix is row
reduced if the matrix formed by the coefficients of the
highest degrees of the rows is of full row rank.

2. Prove thatn(%#) = degr ee(det er mi nant (P)) with P
such that

b -] o

is an input/output representation of Z with P~1Q proper.

—n. 2



Consider the behavior described in kernel form by

d\  /d
o()r=ala)
with P(§) = po+pi&+...4+pn"
a€) = Go+hé+...+0é"

1. Write the polynomial matrix X € R"*?[&] obtained by
applying the shift-and-cut map to the matrix

p(E) —q(é)

2. 1sX(&) obtained in this way a minimal state map?
Explain.



Exercise 24: State construction for siso systems (contindg

3. Verify that the matrices A, B, C, and D corresponding to
this state map are

0 o ... 0 —% qn_l_pnl—:)rl]CIn
O 1 O O —% qn_z_pnl—:)ﬁCIn
A — B:
T oo
C = [0 0 O 0 A] p_ g
pn pn



Consider the scalar system

d d? d3
W+ 2&w+ Z@WJF @W = 0.

1. Prove that this polynomial is Hurwitz.

2. Use the calculus of QDFs to find a Lyapunov function
with derivative

d \2 /d2 \°
() (G



9 q= distance from equilibrium
F = force exerted

Assume all elements linear
mE choose the units so that

the spring constant, the mass,
and the damping constant
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T are all =1

1. Write the behavioral differential equation relating F and
g in kernel and in image form.

2. EXxpress the power delivered, the stored energy, and the
dissipation rate in terms of QDFs acting both on(F, q),
and on the latent variable ¢ of your image representation.

3. Verify the identity relating the power delivered, the
stored energy, and the dissipation rate.




Let ® € R[{,n]""" be symmetric. We have seen in the lecture
that Qo > 0iff there existsD € R[&]**" such that

®(¢,n)=D"({)D(n), e QW)= D (g) w?

1. Prove this, and interpret it as‘a QDF is nonnegative iff it
IS a sum-of-squares .

2. Inthe casew = 1 give a bound on the number of squares
and on the degree oD in terms of the degree ond.

3. State and prove the analogous statemehnd QDF is
nonnegative along 4 iff it isa sum-of-squareson %’ for a
controllable # € .Z°.



Consider the system

d d

and the supply ratew; ws.
1. Write this system in image form.

2. EXxpress what condition a QDF in the latent variable of
the image representation has to satisfy in order to qualify
as a storage.

3. Use polynomial factorization to compute 2 distinct
storages.



We have seen in the lecture that for a giverb ¢ R[{, n]" "2,
there existsW € R [, n]"***? such that

®(,n)=(+n)¥(,n)

Iff ®(—¢,&)=0. The ‘only if’ partis clear. The aim of this
exercise is to give a matrix-based proof of the ‘if’ part.

1. Prove that you may restriction attention tow; = wy = 1.

2. Prove that you may restrict attention to homogeneous
scalar two-variable polynomials

®(Z,n)=al™+apl™ N+ +a, 1dn*t+an™

3. Prove that if ® is homogeneous of degree, then WY must
be homogeneous of degree— 1.



4. Consider the equation

a0l +a1{™ N+ +ay_1{n*t+a.n"
= (+n) (0™ 1+ 010" 20+ + by 2ZN* 24+ by 1™, ()

Write this as a matrix equation a = Mb with

a € R2T1 b € R® defined in the obvious way.
What is M? Prove that it has rank n.

5. Prove thati mage (|1 —11 —1 --.]) is the left kernel of
M. Deduce that () has a solution iff

Qoraxt+---=a r+agt+---.

6. Show that this meansdb(—¢,¢) = 0. Conclude the ‘if’
part.



Consider the systemg'—tx = AX—+ Bu and the QDF supply rate
X' Ox+2x'Su+u'Ru. AssumeQ=Q' R=R".

1. Prove thatx' Kxwith K =K' is a storage iff

Q—ATK — KA

S' -B'K

S—KB

R

>0.

(LMI)

This inequality is a linear matrix inequality (LMI).

2. Prove that (LMI) has a solutionK if

o s

S' R

> 0.

3. Prove that the set of solutionK is always convex (for
fixed A,B,R, S, Q).



1. Model the port behavior of the above circuit in a
systematic way by tearing, zooming, and linking.

2.

For w
IS the

. Forw

nich va
nort be

nich va

ues of thel’'s and C’s (all assumed positive)
navior controllable?

ues of thel’'s and C’s (all assumed positive)

are the branch currents observable from the port
variables?



Consider themass-spring-damper system shown below.

damper

Fl """"""""""'ff

.vi‘é‘é‘é‘é‘é‘é‘é‘é‘é‘é‘.

springl mass1 spring2 mass?  SPring3

View this system as a interconnection of 3 springs, 2 masses,
and 1 damper. There are 2 external forces.



. Draw the associated graph with leaves.

. Assume all elements to be linear. Take as parameters of
the modules (in the obvious notationk;, ko, k3, m, mp. d.
Associate with each terminal a position and a force.
Write behavioral equations for each of the subsystems.

. Write equations for the interconnections.

. Take as manifest variables the total forcd-,i5 = F1 + P,

and the position of the center of gravity,q = mlrﬂiing.

Write the equations for the manifest variable
assignment.

. Eliminate the latent variables and obtain the differental
equation governing the manifest variables.




Consider the two circuits shown below. Number the terminals
of the first circuit by 1,2,3,4,5,6 and of the second circuit by
7,8,9,10,11,12. Assume that all the terminals together of the
iIndividual circuits form ports.

Electrical
circuitl = W circui

1. Interconnect terminal (4,7),(5,8),(6,9). Prove that the
external terminals of the interconnected circuit also
forms a port.

2. Assume that terminalsl, 2, 3 of circuit 1 form a port.
Prove that terminals (10,11, 12) form a port for the
Interconnected circuit.



Consider the setting of the stabilization theorem.

1. Give n.a.s.c. on the invariant factors of%? for the
existence of a controllerg such that the all solutions of
¢ are bounded on|0, ). This property is often called
‘stability’. What we called ‘stability’ in the stabilizati on
theorem is then called ‘asymptotic stability’.

2. Prove that there exists a controllerg such that the all
solutions of #~ are bounded on(—oo, 4-0) iff all the
iInvariant factors of &2 are even and have simple roots.



Consider Consider, for
p,q <€ R[&], coprime, with degree(q) < degree(p) =n,

the Bézoutequation pX+aQy=2z, XVy,ze R[]

1. Prove that for zwith degree(z) < 2n, there existx,y with
degree(X),degree(y) < n that satisfy the Bezout
equation. Hint: Prove that the map (x,y) — zviewed as a
map from the polynomials of degree< n to the
polynomials of degree< 2n Is injective, hence surjective.

2. Prove that
|degree(z) = 2n — 1| = [degree(y) < degree(X) =n —1].

3. Deduce a sharp pole placement result, including
properness of the transfer function of the controller, for

the siso plant
d d
Plac )Y =9\ a



Consider the setting of the implementability theorem. Assme
fifull control ¢ = w, and controllers ¥ acting onc.

1. Prove that the set of implementable controlled behaviors
obtained by controllers that act onc is in general smaller
than the set of implementable controlled behaviors
obtained with full control ¢c=w.

2. Under what conditions are these sets equal?



In the lecture, we assumed that the measurements are
elements of the universumz of events. However, In
applications, measurements may be functions of the events.
Assume that there is a (known) mapf :  — M, with M the

set where the measurements take on their values. Assume that
the measurements are collected in a subs&t of M.

1. Explain what you mean by ‘unfalsified’ and ‘the MPUM’
In this situation.

Assume?Z = R", .# = the set of linear subspaces dR",
M =R" and f linear.

2. Prove that the MPUM exists in this case.
3. Explain how to compute it usingD and f.



Let A € C,0# v e C¥, and consider the vector exponential
teR— etveCV.

1. Prove thatR(&)w = 0is unfalsified by (or
‘interpolates’) this exponential iff R(A )v=0.

-
2. Prove thati E — A Jw=0defines the MPUM that
viv \ dt

Interpolates this exponential.

3. Generalize this to obtain a recursive algorithm forn
exponentials, by computing the ‘error’ exponential

R(Ax)Vi€:t at each stage, the MPUM of this exponential,
and the recursionR+— ER.



1. Compute, using the recursive algorithm discussed in the
lecture, the MPUM for the Fibonacci series

0,1,1,2,3,5,8,...
2. Repeat for

1.1,...,1.0,0,...
N——

n times Leonardo Fibonacci
ca. 1170 —-ca. 1250

3. Prove that the MPUM for w(0),w(1),w(2),...is
autonomous Iff the data Hankel matrix has finite rank.

4. Assume that the data Hankel matrix has finite rankn.
Obtain a kernel representation of the MPUM starting
from any rank n submatrix of the Hankel matrix.



Consider the gquadratic expression

oo [ d \?2
/_OO vvz+<aw) dt.

Determine the ODE that gives the stationary trajectories
Are these local minima?

Spectral factor 1+ &4.

Determine the ODE that gives the local minima w.r.t.
one-sided variations.

> W



Consider the siso system with kernel representation

(a)r=a(a)®

with p,q € R[&] coprime. Consider the quadratic expressions

/+OO (W +y?) dt  and /_:O (U? —y?) dt.

—00

1. Determine the stationary trajectories.

2. Prove that for the first case the stationary trajectories
are local minima.

3. Determine for the second case a condition on the

modulus of the transfer function g= %
for local minimality.



Consider the siso system with kernel representation

YNyl 9,
with p,q € R[&] coprime, and the quadratic functional
—~+00
/ (U +y) dt

1. Prove that there exists a unigue Hurwitz polynomialh
such that

p(=¢)p(§) +a(=¢)a(¢) = h(=&)h(<)

2. What can you say about the degree df in terms of the
degrees ofp,g?

Assume henceforthdegree(q) < degree(p) and p,h monic.



3. Prove that o o

ul| |p E€
y|  |ql \dt

IS an iImage representation of the system.
4. Prove that the one-sided local minima are obtained by

d
hi— | £=0.
(dt>z 0
5. Prove that these traj. are generated by the control law
d d
= 1p(a) (&))"

6. Prove that this control law is a static gain acting on the
state of the system.
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