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to be regulated

Plant has three kinds of variab les:

to be regulated variab les ,

exog enous disturbance variab les ,

contr ol variab les .

Full plant behavior :

satisfies the plant equations

Note: to be contr olled variab le is .
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General control problem

Contr ol: given a set of design specifications, find conditions for the
existence of, and compute , a contr oller suc h that the resulting
manif est contr olled behavior satisfies the specifications.

Reform ulation: given a set of design specifications, find conditions
for the existence of, and compute , a behavior suc h that

satisfies the specifications,

(implementability).

the hid den behavior , the manif est plant behavior w.r.th .

Of cour se, after finding suc h one still needs to compute an
actual contr oller that implements .
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specifications

In an -conte xt, we will deal with contr ollab le systems, and the

specifications on

� 	

are:

disturbance atten uation:

for all

stability:

‘liveness’: in , is free

Liveness: in the contr olled system behavior , no direct restrictions
on the exog enous disturbances are allo wed: every component of
is arbitrar y.
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specificationsand dissipativity

The specifications on can be reform ulated in terms of

dissipativity of , with

�

�
and the input cardinality of :

Proposition: Let . The follo wing statements are
equiv alent:

1. satisfies the specifications,

2. is -dissipative on , and ,

Recall: is called -dissipative on if for

all .
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The control problem

� 	 


. contr ol problem:

find conditions for the existence of, and compute , that
satisfies the follo wing three proper ties:

(implementability) ,

is -dissipative on (dissipativity) ,

(liveness) .

Recall: is the hid den behavior , and the manif est plant
behavior associated with :

there exists suc h that
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Synthesisof dissipativesystems

More general problem:

in to be contr olled variab le in to be
contr olled variab le ,

defining general

defining the suppl y rate

.

variablesvariables
to be controlled control

PLANT CONTROLLER

.

.

.
.
.
.
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Generalproblemformulation

General problem:

Given

�

with ,

given

� �

non-singular; is called the

weighting functional,

find conditions for the existence of, and compute , that
satisfies the follo wing three proper ties:

(implementability),

is -dissipative on (dissipativity),

(liveness).

Can be sho wn: is -dissipative .
Hence: the input cardinality of suc h attains the upper bound

.
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Questions:

What are necessar y and sufficient conditions, in terms of ,
, and , for the existence of suc h ?

If suc h exists, how can it be computed?.

Given suc h , how can we compute a contr oller that
implements this ?
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Deriving necessaryconditions

Assume , is -dissipative on , and

 .

Then is -dissipative , so: is -dissipative .

Since , we have: is -dissipative is
-dissipative .

Since , we have , whence:

is -dissipative .

For a given , is the or thogonal behavior of , defined by

for all

It can be sho wn: .
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So far, we have derived two necessar y conditions. We can obtain a
set of necessar y and sufficient conditions by adding a thir d
condition.
This conditions deals with the existence of cer tain stora ge

functions for and .

Since we have
This is used to prove the existence of a two-variab le pol ynomial
matrix

� �

suc h that

for

The BDF is the so called adapted bilinear diff erential

form . It is unique on .
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Bilinear differ ential forms (BDF’s)

Two-variab le pol ynomial matrix:

�� ��

, is a nonnegative integ er. induces a bilinear
functional, acting on infinitel y diff erentiab le trajectories, as follo ws:

� � � �

This functional is called the bilinear diff erential form induced
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Formulation of the main result

Theorem:

�

described in the problem form ulation exists
if and onl y if the follo wing conditions are satisfied:

1. is -dissipative ,

2. is -dissipative ,

3. there exist , defining

a stora ge function for as a -dissipative system,

a stora ge function for as a

-dissipative system,

suc h that that the QDF

is non-negative for and .
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The coupling condition

Surprising condition is the non-negativity:

�� �

for and .

This condition is called the coupling condition. It expresses that

the stora ge functions and should be coupled via

the adapted bilinear diff erential form .

Generalization of the well-kno wn coupling condition of state space
-theor y involving solutions of algebraic Riccati equations.
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From generalresult to particular representations

Statement of the main result does not use representations of
and . Hence: applicab le independent of the par ticular
representation by whic h the full plant is given. Each
‘numerical’ specification of leads to a ‘numerical’ verification
of the conditions, and a ‘numerical’ computation of the contr olled
behavior and the contr oller .
Procedure:

for the given representation of , compute representations
of its hid den behavior and its manif est plant behavior .

Next: express the conditions of the main result in terms of the
parameter s of these representations. This will typicall y result
in ARE’s, LMI’s, factorizability of pol ynomial matrices, etc.

Use the general construction of the contr olled behavior to
set up synthesis algorithms in terms of the parameter s of these
representations.
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Illustration: Plant in statespacerepresentation

represented by

Contr ol variab le: , to be contr olled variab le

. Weighting functional

�

�

We want and contr ollab le. For this, assume
contr ollab le, obser vable.
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Verification of the conditions

Dissipativity of

State space representation hid den behavior :

Fact: is -dissipative if and onl y if the Riccati inequality

has a real symmetric solution .
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Coupling condition

Coupling condition

It can be sho wn that the coupling condition becomes

This non-negativity is equiv alent to the combined conditions

1. ,

2. ,

3. .
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Solution for the statespacecase

Theorem: Consider the plant represented in input/state/output
representation. Then the follo wing statements are equiv alent:

1. there exists an implementab le that satisfies the
specifications.

2. there exist real symmetric solutions and of
the Riccati inequalities

suc h that .

Also: form ulas for input/state/output representations of the
required feedbac k contr oller s.
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Also: form ulas for input/state/output representations of the
required feedbac k contr oller s.
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Summarizing

The contr ol problem is a special case of the general
problem on the existence of a dissipative behavior with
maximal input cardinality , wedg ed in between two given
behavior s.

Necessar y and sufficient conditions for the existence of suc h
behavior have been form ulated.

These conditions are in terms of the existence of cer tain
stora ge functions associated with the hid den behavior and
manif est plant behavior . In par ticular , these stora ge functions
should satisfy a coupling condition.

These conditions are, representation free, and are hence
applicab le to any par ticular ‘numerical’ representation of the
full plant .

As an illustration we have derived conditions for the ‘classical’
state space contr ol problem.
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End of Lecture 8
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