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disturbance d )
variables j

PLANT c control variables

to be regulated f
variables

Plant has three kinds of variables:

® to be regulated variables f,
® exogenous disturbance variables d,

® contr ol variables c.

Full plant behavior Pg, € £4TET¢;

Pran := {(d, f,c) | (d, f, c) satisfies the plant equations }

LNote: to be contr olled variable is (d, f). J
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General control problem

o -

Control: given a set of design specifications, find conditions for the
existence of, and compute , a contr oller C such that the resulting
manif est contr olled behavior K satisfies the specifications.
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General control problem

-

Control: given a set of design specifications, find conditions for the
existence of, and compute , a contr oller C such that the resulting
manif est contr olled behavior K satisfies the specifications.

Reformulation: given a set of design specifications, find conditions
for the existence of, and compute , a behavior /C such that

® JC satisfies the specifications,
® N C K C P (implementability).
N the hid den behavior , P the manif est plant behavior w.r.th Pga11.
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General control problem

o -

Control: given a set of design specifications, find conditions for the
existence of, and compute , a contr oller C such that the resulting
manif est contr olled behavior K satisfies the specifications.

Reformulation: given a set of design specifications, find conditions
for the existence of, and compute , a behavior /C such that

® JC satisfies the specifications,
® N C K C P (implementability).
N the hid den behavior , P the manif est plant behavior w.r.th Pga11.

Of cour se, after finding such IC one still needs to compute an
actual controller C € £° that implements IC.

o |
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'H., specifications

fIn an Hoo T

-conte xt, we will deal with contr ollab le systems, and the

d—+1£

specifications on IC € £__ ; are:
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specifications on K &€ Sij}ft are:

» disturbance attenuation:

/ £ — |d|*dt < Oforall (d, f) € KN La(R,RITE),
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'H., specifications

fIn an Hoo T

-conte xt, we will deal with contr ollab le systems, and the

specifications on K &€ 233}3 are:

» disturbance attenuation:

/ 12 — |d|2dt < Ofor all (d, f) € K N La(R, R,

® stability: (0, f) € K = limy_ o f(t) = 0,

®» ‘liveness’ in IC, dis free.
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'H., specifications

fIn an Hoo T

-conte xt, we will deal with contr ollab le systems, and the

specifications on K &€ ng}ft are:

» disturbance attenuation:

/ £ — |d|*dt < Oforall (d, f) € KN La(R,RITE),

® stability: (0, f) € K = lim;,» f(t) = 0,
® liveness: in IC, dis free.
Liveness: in the contr olled system behavior, no direct restrictions

on the exog enous disturbances are allowed: every component of d
IS arbitrar vy.

o |
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H., specificationsand dissipativity

|7The ‘H ~ specifications on IC can be reformulated in terms of T

> dissipativity of JC, with

P —

and the input cardinality of IC:

14
0

0
—I,

|
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H. specificationsand dissipativity

|7The ‘H ~ specifications on IC can be reformulated in terms of T
> dissipativity of JC, with

I, ©
S= ,
0 —I,

and the input cardinality of IC:

Proposition: Let IC € Egjrft. The following statements are
equiv alent:

1. IC satisfies the H o specifications,
2. KCis X-dissipative on R_, and m(/C) = d,

Recall: %5 is called X-dissipative on R_ if ff’oo Qs (w)dt > 0 for

Lall w € B NDR,RY). J
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The H,, control problem

o N

Pran € L3TETC [’Hoo contr ol problem:j

o |
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The H,, control problem

o N

Pran € L3TETC [’Hoo contr ol problem:}

find conditions for the existence of, and compute , IC € Egj}ft that
satisfies the follo wing three proper ties:

®» N CK CP (implementability) ,
® KCis X-dissipative on R_ (dissipativity) ,
® n(K)=d (liveness).
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.

The H., control problem

Pran € L3TETC [’Hoo contr ol problem:j

find conditions for the existence of, and compute , IC € Egj}ft that
satisfies the follo wing three proper ties:

®» N CK CP (implementability) ,
® KCis X-dissipative on R_ (dissipativity) ,
® n(K)=d (liveness).

Recall: A is the hidden behavior, and P the manif est plant
behavior associated with Peyii:

N ={(d, f) | (d, f,0) € Pen},

P = {(d, f) | there exists csuch that (d, f,c) € Pran}-

|
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Synthesisof dissipative systems

-

More general problem:

o |
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Synthesisof dissipative systems

o N

More general problem:

® in Pgyil to be contr olled variable (d, f) —— in Pga1 to be
contr olled variable v,
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-

Synthesisof dissipative systems

More general problem:

-

® in Pgyil to be contr olled variable (d, f) —— in Pga1 to be
contr olled variable v,

<

pI—

14
0

0
—1I,

defining |d|* — |f|? — general

> = 37T defining the supply rate Qx(v) = v Zw

|
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-

Synthesisof dissipative systems

More general problem:

® in Prun to be controlled variable (d, f) —— in Pga1 to be
contr olled variable v,

o > =

14
0

0
—1I,

defining |d|* — |f|? — general

> = 37T defining the supply rate Qx(v) = v Zw

® n(K)=d—n) =0r(X2).

v

to be controlled

PLANT

control

variables

variables

CONTROLLER

|
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General problem formulation

-

General problem:

Given N, P € £ with N C P,
given ¥ = 32T € RY*V non-singular; X is called the
[Weighting functional, ]

o |
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-

General problem:

Given N, P € £ with N C P,
given ¥ = 32T € RY*V non-singular; X is called the
[Weighting functional, ]

find conditions for the existence of, and compute , IC € £, that
satisfies the follo wing three properties:

® N CK CP (implementability),
® Cis X-dissipative on R_ (dissipativity),
® n(IC) = o4 (X) (liveness).
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.

General problem formulation

General problem:

Given N, P € £ with N C P,
given ¥ = 32T € RY*V non-singular; X is called the
[weighting functional, j

find conditions for the existence of, and compute , IC € £, that
satisfies the follo wing three properties:

o N C K CP (implementability),
® Cis X-dissipative on R_ (dissipativity),
® n(IC) = o4 (X) (liveness).

Can be shown: ICis Y-dissipative = m(IC) < o4 ().
Hence: the input cardinality of such /C attains the upper bound

0'_|_(2).

|
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o N

Questions:

® What are necessar y and sufficient conditions, in terms of N,
P, and 32, for the existence of such K?

o |
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o N

Questions:

® What are necessar y and sufficient conditions, in terms of N,
P, and 32, for the existence of such K?

® |f such IC exists, how can it be computed?.
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|7Que5tions: T

® What are necessar y and sufficient conditions, in terms of N,
P, and 32, for the existence of such K?

°

If such IC exists, how can it be computed?.

°

Given such IC, how can we compute a contr oller C that
implements this C?

o |
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Deriving necessaryconditions

fAssume N C K C P, Kis X-dissipative on R_, and T
m(IC) = 0'_|_(E).
Then IC is X-dissipative , so: N is >.-dissipative .

o |
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Deriving necessaryconditions

-

Since m(KC) = o4 (X), we have: K is X-dissipative <> (3ZIC)~ is
(—X2)-dissipative .
Since IC C P, we have (XP)+ C (ZK)+, whence:

(L P)+ is (—X)-dissipative .

|
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Deriving necessaryconditions

o N

Since m(KC) = o4 (X), we have: K is X-dissipative <> (3ZIC)~ is
(—X2)-dissipative .

Since IC C P, we have (XP)+ C (ZK)+, whence:

(L P)+ is (—X)-dissipative .

For a given 98, 98- is the orthogonal behavior of 93, defined by

+0o0
%Lz{w|/ wlw'dt =0foral w’ € BND}.

cont’

th can be shown: 2B € £7 . = Bl c gV J
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o N

So far, we have derived two necessar y conditions. We can obtain a
set of necessar y and sufficient conditions by adding a third
condition.

This conditions deals with the existence of certain storage

functions for A and (ZP)-.

since N' C P we have (XP)+ C (ZN)+
This is used to prove the existence of atwo-variable polynomial
matrix ¥ € R"*V[{,n] such that

d
ﬁfnp(m,vz) = Lx(v1,v2), for vi € N, vz € (EP)L‘

o |
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o N

So far, we have derived two necessar y conditions. We can obtain a
set of necessar y and sufficient conditions by adding a third
condition.

This conditions deals with the existence of certain storage

functions for A and (ZP)-.

since N' C P we have (ZP)+ C (ZN)+
This is used to prove the existence of atwo-variable polynomial

matrix ¥ € R"*V[{,n] such that

d
ﬁfnp(m,vz) = Lx(v1,v2), for vi € N, vz € (ZP)L‘

The BDF L (v1,v2) is the so called adapted bilinear diff erential

Lform. it is unique on N X (ZP)L. J
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Bilinear differ ential forms (BDF’Ss)

-

Two-variab le polynomial matrix:

N
(I)(Can) — Z (I)h,kchnka

h,k=0

Py 1 € R"17¥2) N is a nonnegative integ er. ® induces a bilinear
functional, acting on infinitel y diff erentiab le trajectories, as follo ws:

Ly : €°(R,R™) X Q:OO(R, R*?) — € (R, R),

dk’wz
dth PR atk

Ly (w1, wz) = Z -

h,k=0

LThiS functional is called the bilinear diff erential form induced P J
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Formulation of the main result

o N

Theorem: IC € £7_ . described in the problem formulation exists

If and only if the follo wing conditions are satisfied:

o |
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Formulation of the main result

o N

Theorem: IC € £7_ . described in the problem formulation exists

If and only if the follo wing conditions are satisfied:
1. N is X-dissipative |,
2. (XP)tis (—X)-dissipative |
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Formulation of the main result

o N

Theorem: IC € £7_ . described in the problem formulation exists

If and only if the follo wing conditions are satisfied:
1. N is X-dissipative |,
2. (XP)tis (—X)-dissipative |
3. there exist War, ¥ (snpyr € RV, n], defining

® astorage function Qw,, for N as a >.-dissipative system,

® astorage function Qg for (XP)L asa
(—32)-dissipative system,

suc h that that the QDF

Quy(v1) — Qu . (v2) + 2Ly (v, v2)

\_ is non-negative for v1 € A and v3 € (ZP)+. J
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The coupling condition

-

Surprising condition is the non-negativity:
Quy (v1) — Qu ., . (v2) + 2Ly (v1,v2) > 0

for vy € M and v € (ZP)+.

o |
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-

The coupling condition

Surprising condition is the non-negativity:
Quy (v1) — Qu ., . (v2) + 2Ly (v1,v2) > 0

for vy € M and v € (ZP)+.

This condition is called [the coupling condition. jlt expresses that

the storage functions @, and Qq,( should be coupled via

=p)Ll
the adapted bilinear diff erential form L.

|
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The coupling condition

Surprising condition is the non-negativity:
Quy (v1) — Qu ., . (v2) + 2Ly (v1,v2) > 0

for vy € M and v € (ZP)+.

This condition is called [the coupling condition. jlt expresses that

the storage functions @, and Qq,( should be coupled via

=p)Ll
the adapted bilinear diff erential form L.

Generalization of the well-kno wn coupling condition of state space
H ~-theory involving solutions of algebraic Riccati equations.

|
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From generalresultto particular representations

fStatement of the main result does not use representations of N T
and P. Hence: applicab le independent of the particular
representation by whic h the full plant Pgy11 is given. Each
‘numerical’ specification of Pgy1 leads to a ‘numerical’ verification
of the conditions, and a ‘numerical’ computation of the contr olled
behavior and the contr oller.
Procedure:

o |
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From generalresultto particular representations

|78tatement of the main result does not use representations of N T
and P. Hence: applicab le independent of the particular
representation by whic h the full plant Pgy11 is given. Each
‘numerical’ specification of Pgy1 leads to a ‘numerical’ verification
of the conditions, and a ‘numerical’ computation of the contr olled
behavior and the contr oller.
Procedure:

® for the given representation of Ppg,11, cOMpute representations
of its hidden behavior A/ and its manif est plant behavior P.
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From generalresultto particular representations

|78tatement of the main result does not use representations of A T
and P. Hence: applicab le independent of the particular
representation by whic h the full plant Pgy11 is given. Each
‘numerical’ specification of Pgy1 leads to a ‘numerical’ verification
of the conditions, and a ‘numerical’ computation of the contr olled
behavior and the contr oller.
Procedure:

® for the given representation of Ppg,11, cOMpute representations
of its hidden behavior A/ and its manif est plant behavior P.

® Next: express the conditions of the main result in terms of the
parameter s of these representations. This will typicall y result
In ARE’s, LMI's, factorizability of polynomial matrices, etc.

o |
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From generalresultto particular representations

Statement of the main result does not use representations of A T
and P. Hence: applicab le independent of the particular

representation by whic h the full plant Pgy11 is given. Each

‘numerical’ specification of Pgy1 leads to a ‘numerical’ verification

of the conditions, and a ‘numerical’ computation of the contr olled
behavior and the contr oller.

Procedure:

® for the given representation of Ppg,11, cOMpute representations
of its hidden behavior A/ and its manif est plant behavior P.

® Next: express the conditions of the main result in terms of the
parameter s of these representations. This will typicall y result
In ARE’s, LMI's, factorizability of polynomial matrices, etc.

® Use the general construction of the contr olled behavior IC to
set up synthesis algorithms In terms of the parameter s of thes

e
representations.
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lllustration: Plant in statespacerepresentation

Pran1 represented by

%m:Aw—l—Bu—l—Gdl
y = Cz + + d2
f = Hx
Control variable: ¢ = (u, y), to be contr olled variable
I, O
(d1,d2,u, f). Weighting functional > =
0 —1I:

We want A and P contr ollab le. For this, assume (A, (::r’)
controllable, (H, A) obser vable.

|
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Verification of the conditions

Dissipativity of N

|
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Verification of the conditions

Dissipativity of N

State space representation hidden behavior N

d
N = {(d;,—Cz,0,HZ) | T = AZ + Gdq}

|
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Verification of the conditions

Dissipativity of N

State space representation hidden behavior N

d
N = {(d;,—Cz,0,HZ) | T = AZ + Gdq}

Fact: N is > -dissipative if and only if the Riccati inequality
—ATKy — KyA—HYH+ KyGGTKy+CTCc >0

has a real symmetric solution K s.

o |
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Dissipativity of (37P)~+

|
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-

Dissipativity of (37P)~+

State space representation of (EP)L:

d
(Pt = {(GTz,0,—BTz,v) | T = —ATz + HT v}

|
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Dissipativity of (37P)~+

State space representation of (EP)L:
1 T ~ T ~ d _ T ~ T
(XP)- ={(G"2,0,—B " Z,v) | = — A%+ H v}
Fact: (XP)~ is (—X)-dissipative if and only if the Riccati
iInequality

AKp + KpAT — GGT — KpHTHKp + BBT > 0

has a real symmetric solution Kp.

|
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Coupling condition

Coupling condition

|
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Coupling condition

Coupling condition

It can be shown that the coupling condition becomes

|
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Coupling condition

Coupling condition

It can be shown that the coupling condition becomes

> 0.
I —Kp | ™

This non-negativity is equiv alent to the combined conditions

1. Kxr > 0,
2. Kp <0,
3. Ky > (—Kp)™".

o |
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Solution for the state spacecase

o N

Theorem: Consider the plant Pgypn represented in input/state/output
representation. Then the follo wing statements are equiv alent:

o |
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Solution for the state spacecase

o N

Theorem: Consider the plant Pgypn represented in input/state/output
representation. Then the follo wing statements are equiv alent:

1. there exists an implementab le /C that satisfies the Hoo
specifications.

o |
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Solution for the state spacecase

o N

Theorem: Consider the plant Pgypn represented in input/state/output
representation. Then the follo wing statements are equiv alent:

1. there exists an implementab le /C that satisfies the Hoo
specifications.

2. there exist real symmetric solutions K > 0and Kp < 0 of
the Riccati inequalities

—ATKy — KyA— HY'H + KyvGGY Ky +CTC > 0,

AKp + KpAT — GGT — KpH'HKp + BB > 0,
suchthat K > (—Kp) 1.

Also: formulas for input/state/output representations of the
required feedback contr ollers.
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Summarizing

® The H s control problem is a special case of the general
problem on the existence of a dissipative behavior with

maximal input cardinality , wedged in between two given
behavior s.

o |
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Summarizing

® The H s control problem is a special case of the general
problem on the existence of a dissipative behavior with

maximal input cardinality , wedged in between two given
behavior s.

® Necessary and sufficient conditions for the existence of such
behavior have been form ulated.

o |
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Summarizing

|7 ® The H s control problem is a special case of the general T
problem on the existence of a dissipative behavior with
maximal input cardinality , wedged in between two given
behavior s.

® Necessary and sufficient conditions for the existence of such
behavior have been form ulated.

® These conditions are in terms of the existence of certain
stora ge functions associated with the hidden behavior and
manif est plant behavior. In particular , these stora ge functions
should satisfy a coupling condition.
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Summarizing

The H o contr ol problem is a special case of the general T
problem on the existence of a dissipative behavior with

maximal input cardinality , wedged in between two given
behavior s.

Necessar y and sufficient conditions for the existence of such
behavior have been form ulated.

These conditions are in terms of the existence of certain
stora ge functions associated with the hidden behavior and
manif est plant behavior. In particular , these stora ge functions
should satisfy a coupling condition.

These conditions are, representation free, and are hence
applicab le to any particular ‘numerical’ representation of the
full plant Pgy1i.

|
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Summarizing

The H o contr ol problem is a special case of the general T
problem on the existence of a dissipative behavior with

maximal input cardinality , wedged in between two given
behavior s.

Necessar y and sufficient conditions for the existence of such
behavior have been form ulated.

These conditions are in terms of the existence of certain
stora ge functions associated with the hidden behavior and
manif est plant behavior. In particular , these stora ge functions
should satisfy a coupling condition.

These conditions are, representation free, and are hence
applicab le to any particular ‘numerical’ representation of the

full plant Pgy1i.

As an illustration we have derived conditions for the ‘classical’
state space H o contr ol problem. J
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End of Lecture 8

|
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